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a b s t r a c t

The pre-supplementary motor area (pre-SMA) is central for the initiation and inhibition of

voluntary action. For the execution of action, the pre-SMA optimises the decision of which

action to choose by adjusting the thresholds for the required evidence for each choice.

However, it remains unclear how the pre-SMA contributes to action inhibition. Here, we

use computational modelling of a stop/no-go task, performed by an adult with a focal

lesion in the pre-SMA, and 52 age-matched controls. We show that the patient required

more time to successfully inhibit an action (longer stop-signal reaction time) but was faster

in terms of go reaction times. Computational modelling revealed that the patient's failure

to stop was explained by a significantly lower response threshold for initiating an action, as

compared to controls, suggesting that the patient needed less evidence before committing

to an action. A similarly specific impairment was also observed for the decision of which

action to choose. Together, our results suggest that dynamic threshold modulation may be

a general mechanism by which the pre-SMA exerts its control over voluntary action.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
Abbreviations: pre-SMA, pre-supplementary motor area; DDM, Drift Diffusion Model; SSRT, Stop Signal Reaction Time; RT, Reaction
, The Stanley Steyer School of Health Professions Tel Aviv University P.O. Box 39040, Tel
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1. Introduction

The pre-supplementary motor area (pre-SMA) is a cardinal

site of voluntary action: electrical stimulation here famously

elicits an urge to move (Fried et al., 1991), while fMRI meta-

analyses show pre-SMA activity across multiple decisions

required for voluntary actions, including which action

perform; when to perform an action; and whether to perform

it in the first place (Brass & Haggard, 2008; Zapparoli et al.,

2017). In the decision of whether to perform an action or to

withhold it, the pre-SMAhas a critical role in action inhibition.

It is consistently identified in fMRI studies of motor inhibition

tasks in young and old adults, such as the stop signal task that

requires action cancellation, and the go/no-go task that re-

quires action prevention (Rae et al., 2014, 2015; Swick et al.,

2011). Transcranial magnetic stimulation to the pre-SMA

and focal brain lesion in this area both impair stopping, by

lengthening the stop signal reaction time (SSRT) required to

successfully cancel an action (Chen et al., 2009; Floden &

Stuss, 2006). Lastly, altered pre-SMA activity is associated

with impulsivity due to neuropsychiatric (Dickstein et al.,

2006) and neurodegenerative (Passamonti et al., 2018) condi-

tions and results in inappropriately afforded, unwanted ac-

tions (Wolpe et al., 2014).

Although the critical role for the pre-SMA in stopping is

widely established, the latent cognitivemechanisms bywhich

it exerts its effect is not. Performance on the stop signal task is

commonly conceptualised as a ‘two-horse race’ between ‘go’

and ‘stop’ processes, such that whichever is completed first

determines the outcome (with go leading to action execution,

and stop leading to action cancellation) (Logan & Cowan,

1984). Several cognitive processes influence whether the go

or stop process completes the race first, such as rate of in-

formation processing, motor preparation, speed-accuracy

trade-offs, response bias, and trigger failures. However, it is

not clear which of these processes relate to the pre-SMA

(Sebastian et al., 2018).

Oneway to operationalise the specific processes performed

by the pre-SMA in stopping is by adopting models used in

decision making research. A model-based approach

commonly used to identify the latent mechanisms underlying

decision making is sequential sampling models, such as the

drift-diffusion model (DDM) (Limongi et al., 2018; Ratcliff &

Van Dongen, 2011). Such a model represents the processes

of accumulating evidence for making the decision of which

option to choose (e.g., whether to act or to withhold an action),

until evidence reaches a certain threshold. The rate of evi-

dence accumulation and threshold are typically parametrised

in these models, as well as other ‘non-decision’ time. In de-

cisionmaking paradigms, such as perceptual decisionmaking

with speed-accuracy trade-offs, several studies have shown

that the pre-SMA supports the selection of action by adjusting

the thresholds for the amount of evidence required for

decidingwhich action to choose (Cavanagh et al., 2011; Mulder

et al., 2014; Tosun et al., 2017). For example, trial-to-trial

changes in pre-SMA fMRI activity correlate with trial-to-trial
changes in decision threshold (van Maanen et al., 2011).

However, it is not currently clear whether the pre-SMA exerts

inhibitory control by similarly modulating response thresh-

olds for whether to act.

Here, we tested this hypothesis by using computational

modelling in a patient with a precise focal lesion in the pre-

SMA. While fMRI studies correlating model parameters with

brain activity have numerous advantages, testing a patient

with a focal lesion limited to the pre-SMAwould enable to test

for a causal role of pre-SMA in stopping. We capitalised on

recent developments in hierarchical Bayesian model estima-

tion in order to compare the single patient case to controls, by

estimating each model's posterior distribution and comparing

these distributions between patient and controls. Specifically,

we compared themodel-based estimated SSRTs (Matzke et al.,

2013) and response thresholds (Wiecki et al., 2013). We pre-

dicted that pre-SMA lesion would lead to an impairment in

normal inhibition, which would be reflected in abnormally

long SSRT, and which will be critically explained by low

threshold for initiating an action.
2. Methods

2.1. Participants

A 74-year-old man with a focal brain lesion in the pre-SMA

(Fig. 1) was recruited from the Cambridge Cognitive Neurosci-

ences Research Panel (CCNRP), at theMedical Research Council

Cognition and Brain Sciences Unit. Ten years prior to the

experiment, he was diagnosed with deep vein thrombosis and

commenced on warfarin. Shortly after anticoagulation, he

suffered from a small subarachnoid haemorrhage which was

revealed by brain imaging, together with a 6 cm right-sided

meningioma. He underwent a successful surgical resection.

The patient was neurologically asymptomatic before the bleed,

and hadmade an excellent recovery to normal by 6 month and

18 month post-operative clinical reviews. No sensorimotor or

cognitive impairments were reported, and he was described in

post-operative notes as functionally normal. At the time of

testing, he had no symptoms and there was no symptomatic

motor functional impairment. Mini-mental state examination

score was 28/30 (Folstein et al., 1975).

Normative control data were taken from the third stage

(“CC280”) of the Cambridge Centre for Ageing and Neurosci-

ence (Shafto et al., 2014), in which participants performed the

same stop signal task (Tsvetanov et al., 2018). We next report

how we determined the sample size in the control group, all

data exclusions all inclusion/exclusion criteria, whether in-

clusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

Data from all participants aged 60 and older were used as

control (all available data from CC280 database). After the

exclusion of four participants who had no button press data,

made up a total of 52 healthy controls (26 females; M ¼ 74

years, SD ¼ 8 years, range ¼ 60e92 years; MMSE mean ¼ 29,

SD ¼ 1). The study was approved by the Cambridgeshire 2
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(now East of EnglandeCambridge Central) Research Ethics

Committee. All participants provided a written informed

consent prior to the study.

2.2. Stop signal task

The control group and the patient performed a stop signal task

(Fig. 2; Logan et al., 1984). The task included pseudo-randomly

interleaved action (‘Go’), action cancellation (‘Stop’) and ac-

tion prevention (‘No-Go’) trials. All trial types were preceded

by a fixation cross for 500msec. In Go trials, a left or right black

arrow was displayed for 1000 msec, requiring participants to

respond by pressing the correct left or right button with their

dominant hand (index and middle fingers). In Stop trials, the

right or left black arrow was initially displayed, but after a

delay (the stop signal delay; SSD), the arrow changed its colour

to red and a pure tone was played (1000 Hz), requiring par-

ticipants to cancel their action andwithhold frompressing the

button. The length of the SSD was initially randomly set to

either 250 msec or 300 msec, and then determined for each

trial by a staircase algorithm, so as to allow successful inhi-

bition in about 50% of the stop trials. To reduce the tendency

for participants to strategically slow their responses on stop

signal tasks, three parallel algorithms were used (Rae et al.,

2014). In No-Go trials, the SSD was set to 0 msec, such that a

red left or right arrow was displayed for 1000 msec and the

simultaneous sound was played from the beginning of the

trial. No-Go trials were included as attentional catch control

trials, as No-Go uses different mechanisms to action cancel-

lation (Swick et al., 2011). The patient performed 360 trials in

total, with 270 Go trials, 60 Stop trials and 30 No-Go trials, over

two runs with a short break in between. Controls performed a

longer version of the task in the fMRI scanner, which included

480 trials in total, with 360 Go trials, 80 Stop trials and 40 No-

Go trials, again run over two runs with a short break in be-

tween. Importantly, the proportions of each trial type were

identical in the patient and controls.
Fig. 1 e Patient structural T1 MRI scan. Intracranial volume was

orientation, the origin [0, 0, 0] (blue crosshair) was set to the An

Anterior CommissureePosterior Commissure (AC-PC) line. The

minimal extension to the more posterior supplementary-motor

shown for each slice.
2.3. Estimation of SSRT

As a descriptive measure of response inhibition, we estimated

the stop signal reaction time (SSRT) using a parametric model

of the stop signal task (Matzke et al., 2013, 2019). This model

assumes a race between three independent processes: one

corresponding to the Stop process, and two corresponding to

Go processes that match or do not match the Go stimulus.

Successful inhibition on a Stop trial occurs when the Stop

process finishes before both Go processes. For a given Go trial,

a correct response occurs when the matching Go process

finishes before the mismatching Go process. The model as-

sumes that the finish times of these processes follow an ex-

Gaussian distribution, which is a positively skewed unim-

odal distribution that is commonly used to describe reaction

time data (Heathcote et al., 1991). For each of the three pro-

cesses, the model estimates the three parameters of the ex-

Gaussian distribution: The mean m and standard deviation s

of the Gaussian component, and the mean (i.e., inverse rate) t

of the exponential component. The model additionally esti-

mates two parameters that represent the probability that the

Stop and Go processes failed to start, referred to as “trigger

failure” and “go failure”, respectively (Matzke et al., 2019).

Such attentional failures are common in healthy participants

(Matzke, Love, et al., 2017; Skippen et al., 2019) and in clinical

cohorts (Matzke, Hughes, et al., 2017; Weigard et al., 2019),

and, if not modelled, can severely bias estimates of SSRT

(Band et al., 2003; Matzke et al., 2019).

SSRT was the principal parameter of interest and was

computed as the mean of the ex-Gaussian finish time distri-

bution of the Stop process, which is given by mstop þ tstop. We

additionally computed go RT as the mean of the matching Go

process (mgo-match þ tgo-match). Note that the ex-Gaussian is a

purely descriptive model of the Stop process finish time dis-

tribution, and its parameters (mstop, sstop, and tstop) are not

necessarily equivalent to parameters of a drift-diffusion pro-

cess (Matzke et al., 2020; Matzke & Wagenmakers, 2009).
extracted using FSL Brain Extraction Tool (Smith, 2002). For

terior Commissure (AC) and the scan was aligned to the

lesion was focal to the pre-supplementary motor area with

area proper (y coordinates smaller than 0). X coordinates
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Fig. 2 e Illustration of the Stop No-Go Task. Each trial in the

Stop No-Go task began with a fixation cross, followed by

the display of an arrow stimulus. The task included three

trial types (indicated by the numbers 1e3): 1) Go trial, in

which participants were asked to press a button with their

index or middle finger to indicate whether the arrow was

pointing right or left. 2) Stop trial, which the arrow was

similarly displayed at first, but following a varying stop

signal delay (SSD), the arrow changed its colour from black

to red, and a tone was played, requiring participants to

withhold the button press. 3) No-Go trial, in which SSDwas

set to 0 msec, and hence the arrow was displayed in red,

and a tone was played from the start.

c o r t e x 1 5 2 ( 2 0 2 2 ) 9 8e1 0 8 101
2.4. Drift diffusion model of response times

We used drift diffusion models to decompose the processes

underlying the decision to act or to withhold an action.

Considering the current technical challenges of directly esti-

mating evidence accumulation parameters of the Stop pro-

cess (Matzke et al., 2020), we opted for a one-choice RT model

(Limongi et al., 2018; Ratcliff & Van Dongen, 2011). On this

approach, the decision to respond and press a button can be

conceptualised as a drift process that accumulates evidence

over time as to whether the current trial is a Go or a Stop trial.

Evidence is accumulated until a certain boundary is crossed,

when the participant commits to the decision to press the

button. Such a basic ‘drift-diffusion model’ (Ratcliff &

McKoon, 2008) includes three free parameters, namely: the

decision threshold (‘a’) which is the distance between

boundaries; the average rate in which the drift process ap-

proaches the boundaries (‘v’); and the non-decision time

normally described as the sum of stimulus encoding and ac-

tion execution times (‘t’). We fit this model to RTs of responses

in the stop signal task. As our main interest was in the

mechanism underlying failure to inhibit with a pre-SMA

lesion, our principal model focused on the subset of Stop tri-

als in which participants failed to inhibit their response

(commission errors). In a complementary analysis, we

examined the latent cognitive variables of the decision of
which action to choose. To this end, we fit a two-choice DDM

to all Go trials with a response (i.e., excluding omission errors),

using the standard model of accuracy-coded responses

(Wiecki et al., 2013). For both DDMs, we also fit a model that

estimated inter-trial variability in non-decision time ‘st’, as

previously discussed (Ratcliff & Tuerlinckx, 2002). The pa-

rameters reported in the main text were from the model with

the significantly lowest deviance information criterion

(Wiecki et al., 2013) (Supplementary Materials; Figures S4-S5).

2.5. Bayesian hierarchical model fitting

In order to generate a robust estimation of the posterior dis-

tributions of each model's parameters, we used a Bayesian

hierarchical model fitting procedure to fit the data. For the

control group, model fitting was performed hierarchically,

such that parameters for a given participant were sampled

from corresponding group-level normal distributions. This

hierarchical approach allows for a reliable group-level infer-

ence of parameter distributions, as it takes into account the

data from all participants simultaneously, while explicitly

modelling individual differences (Daw, 2011; Farrell &

Lewandowsky, 2018; Gelman et al., 2014). The patient data

were fit separately so as to provide a separate posterior dis-

tribution for statistical comparison (see below). We generally

assigned relatively broad (“weakly informative”) prior distri-

butions on the model parameters; a full list of priors is pro-

vided in the Supplementary Materials (Table S1). Markov

Chain Monte Carlo (MCMC) sampling methods were used to

estimate the posterior distributions of the model parameters.

Model convergence was assessed with the potential scale

reduction statistic R^ (<1.1 for all parameters), and with visual

inspection of the timeeseries plots of the MCMC samples. To

assess a model's goodness of fit, the observed data was visu-

ally compared to simulated data generated from the model's
posterior predictive distribution (Supplementary Materials).

The ex-Gaussian race model of the stop signal task was fit

using the Dynamic Models of Choice (DMC) toolbox version

‘MBN2019’ (Heathcote et al., 2019), implemented in R, version

3.6.1 (R Core Team, 2016). The model ran with 33 chains (i.e.,

three times the number of parameters), using an automated

procedure to continue sampling until convergencewas reached

(h.run.unstuck.dmc and h.run.converge.dmc functions in the

DMC toolbox). After this, an additional 500 iterations for each

chain were obtained to create a final posterior distribution of

each parameter, to be used for statistical analyses.

The DDMmodels were fit using the HDDM toolbox, version

0.8.0 (Wiecki et al., 2013), implemented in Python 3.8.3. Each

model ran with 5 chains, with thinning by a factor of 5 to

reduce autocorrelations. We obtained 10,000 samples per

model and discarded the first 5,000 samples as burn-in, to

minimise the effect of initial values on posterior inference.

2.6. Statistical inference

Hypothesis testing and statistical inference were performed

by comparing the posterior distributions of the patient and

control (group node distribution) for each of the parameters of

interest. In brief, posterior distributions for each comparison

https://doi.org/10.1016/j.cortex.2022.03.018
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Table 1 e Summary of raw measures in the Stop No-Go
task.

Control group
mean (SD)

Patient

Go RT (ms) 661.10 (148.0) 469.97

Go overall accuracy (%) 97.31 (4.27) 94.83

Go omission error (%) 1.53 (3.33) 1.48

Go choice error (%) 1.15 (2.25) 3.69

No-Go commission error (%) 1.35 (3.15) 0

Final stop accuracy (%) 57.8 (12.4) 51.6

Mean stop signal delay (ms) 427.73 (106.59) 260.17
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were derived by subtracting the set of MCMC samples of pa-

tient and controls. That is, for a given parameter, the differ-

ence between the patient and the control group was

computed for eachMCMC sample, thereby yielding a posterior

distribution of the difference. For each comparison, we

computed the probability of this difference distribution being

different from zero (no effect) (Makowski et al., 2019), either

greater than or smaller than zero (whichever has the highest

probability). We report this as the probability of an effect for

each comparison, in line with previous research using our

modelling approach (Herz et al., 2016). No part of the study

procedures was pre-registered prior to the research being

conducted.
Fig. 3 e Ex-Gaussian model derived SSRT and Go RT. A) Standa

(probability of successfully stopped responses) in controls (blue

that across all trials, the algorithmwas successful at keeping sto

the stop signal reaction time (SSRT) parameter for controls (blu

difference (grey) on top. The probability for a group difference in

but for Go accuracy, which was the proportion of Go trials in wh

arrow). D) Same as (B) but for the distributions of model derived

Go reacting time being different from zero was 100%.
3. Results

3.1. Model-free behaviour

Basic performance in the task is summarised in Table 1 and in

Fig. 3A and C. The results show that patient accuracy and error

rates were similar to the control group. Looking at the raw Go

trials, the patient was on average 190 msec faster than con-

trols (patient: M ¼ 470 msec, SD ¼ 133 msec; controls:

M ¼ 661 msec, SD ¼ 205 msec). On Stop trials, the tracking

algorithm that adapted the SSDs converged well for both pa-

tient and controls, reaching a proportion of 51.6% successful

stop trials for the patient and a mean of 57.8% (SD ¼ 12.4%)

successful stop trials for controls in the final half of the

experimental runs (‘final stop accuracy’). By contrast, the pa-

tient required a stop signal delay that was considerably

shorter than controls on average (260 msec vs 427 msec). We

next fit an ex-Gaussian race model to patient and control

behaviour in the task, to estimate and formally compare their

SSRT and Go RT.

3.2. Ex-Gaussian model of SSRT and Go RT

The patient had a significantly higher SSRT than controls

(Fig. 3B; probability ¼ 96.81%), as the posterior of the patient's
rd box plot showing the distribution of stop accuracy

box plot and data points) and patient (red line). This shows

p accuracy just above 50%. B) Model derived distributions of

e) and patient (red), with the distribution of parameter

SSRT being different from zero was 96.81%. C) Same as (A)

ich a response matched the displayed stimulus (right vs left

Go reaction times. The probability for a group difference in

https://doi.org/10.1016/j.cortex.2022.03.018
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SSRT (median ¼ 203.52 msec, 95% QI ¼ 170.05e235.40 msec)

was distributed across higher values than the posterior of the

control group SSRT (median ¼ 165.00 msec, 95%

QI ¼ 139.38e188.74 msec). In contrast, the patient's model-

derived Go RT (median ¼ 475.79 msec, 95%

QI ¼ 463.22e489.56 msec) was significantly lower than the

control group mean Go RT (median ¼ 643.63 msec, 95%

QI ¼ 587.13e686.22 msec), with no overlap between them

(Fig. 3D; probability¼ 100%). Together, these results suggest that

although the basic performance of the patient in the task was

comparable to controls, he had a deficit in the SSRT, such that

he required more time in order to achieve successful stopping

in the task. Furthermore, the patient's Go responses in the task

were significantly faster than controls. We next examined

whether these changes could be explained by changes in the

decision threshold, first by fitting a DDM to reaction times in

stop trials in which participants failed to inhibit their response.

3.3. Drift diffusion modelling of responses

The patient threshold parameter ‘a’ (median ¼ 2.00, 95%

QI ¼ 1.27e3.37) was significantly lower than controls

(median¼ 3.59, 95%QI¼ 3.13e4.24; Fig. 4A; probability¼ 98.62%).

In contrast, there were no differences between the patient and

controls in the posterior estimates of both drift rate ‘v’ (Fig. 4B;

probability¼ 55.72%; patient:median¼ 4.64, 95%QI¼ 3.02e6.44;

controls: median ¼ 4.52, 95% QI ¼ 4.21e4.87) and non-decision

time ‘t’ (Fig. 4C; probability ¼ 73.9%; patient:

median ¼ 197.66 msec, 95% QI ¼ 123.47e239.19 msec; controls:

median ¼ 174.42 msec, 95% QI ¼ 133.74e203.63 msec). These

results suggest that thepatient required lessevidence inorder to
Fig. 4 e Drift diffusionmodel parameters for failed Stop trials. Drif

threshold ‘a’ (A), drift rate ‘v’ (B) and non-decision time ‘t’ (C) par

decision to respond in failed Stop trials. Group difference distribu

difference in ‘a’ being significantly different from zero indicating

diffusion process for the decision of whether to Stop in failed in

parameters from A-C. Ten trials were simulated for illustration.
decide whether to initiate an action (Fig. 4D) due to an abnor-

mally reduced decision threshold.

This deficit in threshold was for the decision of whether to

respond. However, it is not clear whether the patient also

demonstrated such a deficit in threshold for the decision of

which action to choose, as suggested by previous neuro-

imaging research of the pre-SMA (Cavanagh et al., 2011;

Mulder et al., 2014; Tosun et al., 2017). Such a deficit would also

explain why the patient had significantly faster responses in

Go trials (Fig. 3D). To test this, we fit a DDM to the RTs and

choice data in Go trials. We note, however, that there only a

few “incorrect” responses in terms of choice response in the

task (see Table 1), which is likely to influence the precision and

robustness of parameter estimates.

In the context of deciding which button to press, the patient

again had a significantly lower threshold (Fig. 5A;

probability ¼ 100%), with the patient posterior (median ¼ 1.11,

95% QI¼ .95e1.31) distributed across lower values compared to

controls (median ¼ 2.00, 95% QI ¼ 1.92e2.13). There was no

difference between the patient and controls in the drift rate ‘v’

(Fig. 5B; probability ¼ 89%; patient: median ¼ 3.12, 95%

QI ¼ 2.71e3.56; controls: median ¼ 2.86, 95% QI ¼ 2.79e2.93).

Lastly, there was no difference between the patient and con-

trols in non-decision time ‘t’ (Fig. 5C, probability ¼ 65.04%; pa-

tient: median ¼ 305.56 msec, 95% QI ¼ 275.03e332.49 msec;

controls: median¼ 311.06msec, 95% QI¼ 297.04e322.08msec).

The abnormality in decision threshold for action choice in the

patient is consistent with previous studies showing the

involvement of pre-SMA in modulating choice decision

threshold (Cavanagh et al., 2011; Mulder et al., 2014; Tosun

et al., 2017).
t diffusion model derived posterior estimates of the decision

ameters, for both controls (blue) and patient (red), for the

tion is displayed on top for each of the parameters, with only

a significant group difference. D) Simulation of the drift

hibition trials, based on the control (blue) and patient (red)

Raw (histograms) and fitted (lines) data are plotted on top.
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4. Discussion

The main result of this study is that a focal lesion to the pre-

SMA lengthened the time required to stop an action due to an

abnormally low response threshold. This was accompanied by

a significant increase in response speed due to a similarly

reduced threshold for deciding which action to choose. The

pre-SMA is known as a key hub for voluntary (Brass &Haggard,

2008) as well as involuntary action (Flamez et al., 2021; Herz

et al., 2015; Wolpe et al., 2014). Our results show that dynamic

threshold modulation may be a general mechanism by which

the pre-SMA exerts its control over actions.

4.1. Focal deficits in action threshold setting

Our patient displayed a selective pattern of deficits: lengthened

SSRT, with faster Go RT, which were explained by altered

thresholds for responding and choosing. This suggests the pa-

tient was in fact faster than controls in the tasks, but which

rendered him more prone to commission errors in Stop

trialsethat is, performing an action when asked to withhold.

Importantly, the patient made not a single No-Go commission

error, indicating a specific difficulty with stopping, rather than

a broader multidimensional motor inhibition impairment also

encompassing the prevention of prepotent action that is typi-

fied by No-Go trials (Chambers et al., 2009; Swick et al., 2011).

The reason why the patient encountered difficulty in

stopping is because there is insufficient dynamic shaping of

response threshold, such that the response threshold is not

dynamically increased in the context of a possible stop cue.

Consistent with previous research into the role of the pre-SMA
Fig. 5 e Drift diffusionmodel parameters for choice accuracy in G

the decision threshold ‘a’ (A), drift rate ‘v’ (B) and non-decision

(red), for the decision which button to press in Go trials. Group

parameters, with ‘a’ and ‘t’ being significantly different from zer

the drift diffusion process for the decision of which button to pr

(red) parameters from A-C. Ten trials were simulated for illustr
in decisionmaking for voluntary action (Cavanagh et al., 2011;

Mulder et al., 2014; Tosun et al., 2017), we found that the pa-

tient showed a similar deficit in threshold setting in the

context of deciding which button to choose. Taken together,

these results suggest the pre-SMA exert its control over

voluntary action by modulating decision thresholds. Such a

mechanism may allow the pre-SMA to exert its control over

whether to perform an action, when to perform it and which

action to perform (Zapparoli et al., 2017).

We note that our study reports the results fromone specific

case study, rather than a cohort of patients. We further note

that the surgical resection was the result of meningioma

which is a slow-growing tumour, and plasticity-related brain

changes may have influenced his behaviour. The very focal

nature of our patient's lesion may arguably have higher val-

idity than a larger cohort of patients with less focal lesions or

only limited overlap (Floden & Stuss, 2006). Nevertheless, the

obvious extension to this study is to broaden the sample size,

while retaining specificity over the anatomical location of the

damage. Moreover, the fact that the patient responded more

quickly in Go trials may suggest an alternative but related

explanation, whereby the patient was unable to choose the

appropriate response strategy itself, rather than unable to

stop efficiently. Previous studies have indeed shown that

response strategies, such as the speed-accuracy trade-off, can

affect the response thresholds, for example by increasing

response thresholds when accuracy is emphasised (Bogacz

et al., 2010; Mansfield et al., 2011). Interestingly, these effects

can be experimentally manipulated through instructions, and

follow-up research could investigate whether pre-SMA

impairment in decision thresholds can be recoverable by

instructing an appropriate response strategy.
o trials. Drift diffusionmodel derived posterior estimates of

time ‘t’ (C) parameters, for both controls (blue) and patient

difference distribution is displayed on top for each of the

o indicating a significant group difference. D) Simulation of

ess in the Go trials, based on the control (blue) and patient

ation.
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4.2. Modulation of response threshold by the pre-SMA
and its brain interactions

Previous research has suggested that the pre-SMA determines

the appropriate threshold when choosing an action, for

example to control a speed-accuracy trade-off (Bogacz et al.,

2010; Cavanagh et al., 2011; Forstmann et al., 2008; Mulder

et al., 2014). In the context of stopping, normal response

threshold setting would allow an individual to dynamically

shape their behaviour, such that increased response threshold

would enable a more cautious strategy of waiting for more

evidence to accumulate before responding. By contrast, lower

response thresholds would allow for fast responses at the

expense of erroneous action initiation (Bogacz et al., 2010).

The pre-SMA exerts its inhibition of unwanted action

through its connections with widespread cortical and

subcortical brain circuits (Wolpe et al., 2014). Functional

(Mansfield et al., 2011) and structural (Forstmann et al., 2012)

MRI studies, as well as an interventional stimulation study

(Cavanagh et al., 2011), have all pointed to a critical role of the

pre-SMA interactions with the striatum in inhibitory control.

For example, diffusion MRI-based tractography studies have

shown correlations between white matter connections of pre-

SMA and striatum with SSRTs in healthy individuals

(Forstmann et al., 2012; Rae et al., 2015) and response choice

thresholds in older adults (Forstmann et al., 2011). Our find-

ings are consistent with the suggestion that the pre-SMA ex-

erts inhibition by biasing the striatum to reduce response

threshold undermore liberal response policy (Cavanagh et al.,

2011; Mansfield et al., 2011).

To halt motor activity via the STN, the pre-SMA works in

concert with the right inferior frontal gyrus (rIFG) (Aron et al.,

2016). A functional connectivity study has shown that the rIFG

augments excitatory projections from pre-SMA to STN,

thereby amplifying the activation of the STN to “brake” a

voluntary action (Rae et al., 2015). A next step would be to

extend our approach to also study patients with circum-

scribed damage to the rIFG. For example, it has been proposed

that the rIFG may amplify connectivity in a widely distributed

cortical-subcortical network (Aron et al., 2004) to accelerate

the evidence accumulation or drift rate (Mulder et al., 2014;

White et al., 2014). Testing a patient with rIFG lesion would

enable us to examine whether individual differences in the

strength of rIFG-STN connectivity during stopping correlates

with drift rate. Such amechanistic dissociation would provide

further evidence for a specific role of the rIFG in hastening the

implementation of a fast, global, abortive stop process via the

STN (Aron et al., 2016; Wessel & Aron, 2013).

4.3. The pre-SMA in disorders of voluntary action

The pre-SMA and its connections in a fronto-basal ganglia

network are impaired in a number of psychiatric and neuro-

degenerative conditions. For example, in obsessive-compulsive

disorder, abnormally high activity of the pre-SMA (Yücel et al.,

2007) accounts for abnormal inhibitory control in patients (de

Wit et al., 2012), which is related to patient deficits in the

modulation of response thresholds (Banca et al., 2015). More-

over, patients with the neurodegenerative corticobasal syn-

drome show a structural impairment in the pre-SMA that
correlate with the severity of deficits in voluntary action, such

as alien limb (Wolpe et al., 2014). Pre-SMA damage and inability

to dynamically adjust response thresholds may lead to the

observed disinhibition of action affordance leading to alien

limb (McBride et al., 2013). The combination of imaging with

models of latent cognitive variables in patient groups could give

more concrete insights as to the neurophysiological mecha-

nisms that underlie pathological behaviours. For the estimation

of model parameters, Bayesian hierarchical modelling allows

robust group-level estimates even in the face of smaller data-

sets (Ratcliff & Childers, 2015). Such a combined approach will

inform future interventional studies to improve clinical

outcome in patients.
5. Conclusions

Damage to the pre-SMA impairs action inhibition by altering

response thresholds. A similar deficit was observed for the

decision of which action to choose, suggesting that threshold

modulation can be a general mechanism by which the pre-

SMA exerts its control over voluntary action. Our study illus-

trates that Bayesian hierarchical model estimation can be

used for specific hypothesis testing in single case studies.
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