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a b s t r a c t 

Large slow oscillations (SO, 0.5–2 Hz) characterise slow-wave sleep and are crucial to memory consolidation and 

other physiological functions. Manipulating slow oscillations may enhance sleep and memory, as well as bene- 

fitting the immune system. Closed-loop auditory stimulation (CLAS) has been demonstrated to increase the SO 

amplitude and to boost fast sleep spindle activity (11–16 Hz). Nevertheless, not all such stimuli are effective in 

evoking SOs, even when they are precisely phase locked. Here, we studied what factors of the ongoing activity 

patterns may help to determine what oscillations to stimulate to effectively enhance SOs or SO-locked spindle 

activity. Hence, we trained classifiers using the morphological characteristics of the ongoing SO, as measured by 

electroencephalography (EEG), to predict whether stimulation would lead to a benefit in terms of the resulting 

SO and spindle amplitude. Separate classifiers were trained using trials from spontaneous control and stimu- 

lated datasets, and we evaluated their performance by applying them to held-out data both within and across 

conditions. We were able to predict both when large SOs occurred spontaneously, and whether a phase-locked 

auditory click effectively enlarged them with good accuracy for predicting the SO trough ( ∼70%) and SO peak 

values ( ∼80%). Also, we were able to predict when stimulation would elicit spindle activity with an accuracy of 

∼60%. Finally, we evaluate the importance of the various SO features used to make these predictions. Our results 

offer new insight into SO and spindle dynamics and may suggest techniques for developing future methods for 

online optimization of stimulation. 

1

 

c  

2  

a  

t  

t  

e  

(  

c  

t  

t  

T  

i  

l

a  

M

 

c  

i  

p  

d  

t  

2  

t  

p  

2  

l  

w  

w  

h

R

A

1

. Introduction 

Slow wave sleep (SWS) is important for memory consolidation and

rucial for metabolic regulation and neural recovery ( Klinzing et al.,

019 ; Xie et al., 2013 ). This sleep state is characterized by slow wave

ctivity (SWA), mainly associated with continuous epochs of high ampli-

ude slow oscillations (SO, 0.5–2 Hz) ( Iber et al., 2007 ). SOs are thought

o be critical for memory consolidation because they provide the nec-

ssary neurophysiological conditions for hippocampal-cortical binding

 Jiang et al., 2019 ; Klinzing et al., 2019 ). Evidence suggest that the

oupling of SOs with fast sleep spindles (11–16 Hz) provides the ideal

iming for transfer of information from the hippocampus to the cor-

ex ( Helfrich et al., 2019 ; Maingret et al., 2016 ; Peyrache et al., 2009 ).

herefore, several non-invasive methods have been proposed for boost-

ng SO amplitudes. These suggest to be useful for improving cognitive
Abbreviations: SO, Slow oscillations; SWS, Slow wave sleep; SWA, Slow wave acti

ation; FS, Fast spindles; SS, Slow spindles; RF, Random Forest; FI, Feature importanc
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nd physiological characteristics related to SWA ( Marshall et al., 2006 ;

assimini et al., 2007 ; Ngo et al., 2013 ). 

Among techniques proposed for increasing the amplitudes of SOs,

losed loop acoustic stimulation (CLAS) has proved to be promising

n both young ( Ngo et al., 2013 ; Ong et al., 2018 ) and older partici-

ants ( Papalambros et al., 2017 ; Schneider et al., 2020 ). In CLAS, au-

itory clicks are applied on the peaks of SOs, increasing SO ampli-

udes of the next SO and associated phase-locked spindles ( Ngo et al.,

013 ). CLAS has been suggested to improve post-sleep memory reten-

ion ( Ngo et al., 2013 ; Papalambros et al., 2017 ) and to positively im-

act the immune and the autonomic function of sleep ( Besedovsky et al.,

017 ; Grimaldi et al., 2019 ). Nevertheless, this technique is not without

imitations. Previous studies showed that CLAS is a self-limited process,

hich increases neither SWA across the night, nor the density of slow

aves during SWS ( Ngo et al., 2015 ). Likewise, CLAS has limited ben-
vity; MCC, Matthews correlation coefficient; CLAS, closed loop acoustic stimu- 
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fits in terms of improving the consolidation of visual and procedural

emories previously associated with SOs ( Leminen et al., 2017 ). Fur-

hermore, increases in SO amplitude and power through this technique

re apparently not beneficial enough to increase memory consolidation

 Henin et al., 2019 ), and sensitivity to CLAS stimulation reduces with

ge ( Schneider et al., 2020 ). 

All this prior evidence suggests that the impact of CLAS is not exclu-

ively determined by the effects of the sensory input, but is also influ-

nced by ongoing neural processes in the SO ( Navarrete et al., 2020a ).

uch ongoing processes therefore determine whether an auditory stimu-

us can increase SO amplitude. In theory, two principal neural processes

ould be determining the outcome of each auditory click on the SO.

he first process relates to the type of wave that is stimulated. For in-

tance, a recent study in rodents suggests dissociable functional roles

or fast and slow oscillatory elements during SWA ( Kim et al., 2019 ).

ikewise, in humans, different memory mechanisms have been proposed

or SO elements depending on their origin, spread and spindle locking

 Bernardi et al., 2018 ; Helfrich et al., 2019 ; Siclari et al., 2014 ). Nev-

rtheless, the auditory modulation of SOs by auditory clicks has typ-

cally been evaluated as if all waves originated from the same mech-

nisms, and as if every stimulus were equally efficient for increasing

ognitive or physiological SO functions. A second process may be estab-

ished by the ongoing neurophysiological processes during the SO that

ould modulate the response to the click. Previous work theorised that

he outcome of the stimulus (measured as ‘no response’, ‘increased SO

mplitude’ or ‘sleep arousal’) is determined by a sweet spot in stimu-

ation that, if targeted appropriately, allows boosting of the SO with-

ut causing arousal ( Bellesi et al., 2014 ). This work suggested that this

weet spot is determined by the SOs themselves, since SOs can supress

nputs from the locus coeruleus (LC), thus preventing arousals in re-

ponse to sound stimuli while increasing the SO amplitude. Unfortu-

ately, the nature of the neural threshold determining this sweet spot is

till unknown, leaving a lot of uncertainty about the outcome of CLAS

timulation, as little is known about the responsiveness of each indi-

idual SO. These two processes are not mutually exclusive, and these

ay set the fluctuating properties of SOs that could co-determine the

esponses to the stimulation. However, there are not a priori rules to de-

ermine when a SO will have a large amplitude spontaneously or when

he optimal large-wave response will occur in response to the CLAS

lick. 

Using pre-existing databases of CLAS responses, in this retrospec-

ive study we aimed to examine the factors predicting the spontaneous

non-stimulated) and click-evoked response on each SO. We hypothe-

ize that if cortical activity modulates the response of each stimulus by

ifferentiated SO processes, then it would be possible to predict sub-

equent spontaneous and induced cortical dynamics. To test this, we

rained machine learning models to offline predict the outcome of corti-

al activity in both spontaneous and stimulation conditions. We used a

eries of features based on morphological characteristics of the ongoing

O and the estimated timing of the click stimulation. Our results show

hat the trained models can predict whether subsequent SO amplitude

ere high or low relative to the average, and whether an increment of

pindle activity occurred. We did this in both unstimulated SWS and

LAS conditions. Furthermore, using a feature importance analysis we

hen evaluated the variables that allowed us to determine the strength of

esponse of the ongoing wave to the auditory click. We found that ongo-

ng SWS dynamics may predict the event amplitude of both spontaneous

nd stimulated SOs, and that the threshold of maximal responsiveness

s determined by the level of cortical activation during the click as mea-

ured by the amplitude of SOs. From this, we argue that the response to

timulation is mediated by the high drive for cortico-thalamic activation

nd the reduced cortico- coerulear drive of large SO positive cycles. Our

ndings support the idea that SWS is comprised of several types of SOs.

his analysis of the response to CLAS may help to unravel the function

f the SO, as well as to pave the way for more targeted stimulation and

nhancement of SWS. 
d  

2 
. Materials and methods 

.1. Datasets and experimental procedures 

The data corresponds to the Young cohort from ( Navarrete et al.,

020a ). Briefly, polysomnographic data including EEG and hypnogram

f 21 young adult individuals were analyzed (14 females and mean ± SD

ge = 25.7 ± 4.7 years). The participants spent two experimental nights

n the laboratory undergoing one experimental stimulation (STIM) and

ne no-stimulation condition (SHAM). The order of experimental condi-

ions was balanced across subjects and separated by at least one week.

ll protocols were approved by the appropriate ethic committees of lo-

al institutions (University of Lübeck – U.Lub – and University of Los

ndes – U.And –) and written consents were obtained for each partici-

ant ( n = 11, U.Lub; n = 10, U.And). 

Acoustic stimuli for the STIM condition consisted of stereophonic

licks of pink noise (50 ms duration) with rising and falling slopes (5ms

uration), and stimulation timestamps were recorded online when clicks

ere applied in STIM (stim-click) or for when they were predicted in

HAM (sham-click). For the SHAM condition, the detection protocol was

dentical to STIM, but the sound was muted. Briefly, the streamed sig-

al was filtered in the SO frequency band (U.Lub: 0.25–4 Hz; U.And:

.5–2 Hz) and negative EEG deflections that surpassed an adaptative

hreshold were identified as a SO down-state during SWS (U.Lub: -80 𝜇V;

.And: -60 𝜇V). These thresholds were independently updated: each

.5 s to the largest negative amplitude lower than the default from the

ast 5 s for U.Lub whereas for U.And, this threshold was updated to half

he amplitude of the detected SO if these values was larger than default.

fter trough detection, two consecutive clicks were applied on subse-

uent SOs aiming for the subsequent SO peaks (interstimulus trial inter-

al: uLub = 1.076 s; uAnd = 1.053 s ± 0.06 s). After each trial, there was

 pause for 2.5 s before trough detection was resumed in both detection

ethods. Stimulation was applied during sustained non-rapid eye move-

ent sleep (NREM), including N2 and N3 stages, and this was manually

alted if there was visual evidence of arousals or REM ( Navarrete et al.,

020a ). 

.2. Sleep and EEG analysis 

For the analysis and pre-processing of sleep EEG, we closely followed

he procedures from ( Navarrete et al., 2020a ). Sleep scoring was per-

ormed according to ASSM scoring criteria ( Iber et al., 2007 ) by two

rained experimenters blinded to stimulation conditions. All artefacts

nd arousals were marked in the hypnogram. We focused on events de-

ected in Fz (referenced to linked mastoids) for SOs and sleep spindles

ctivity (SA) because these are the locations where SO are more pro-

ounced ( Iber et al., 2007 ). The raw data were resampled at 200 Hz

ith linear interpolation after applying an antialiasing low pass FIR fil-

er. After processing, only stimulations marked during N3 sleep stage

ere retained. SWA was obtained from the EEG signals filtered between

.5 and 2 Hz using a zero-phase windowed equiripple FIR filter (3dB at

.25 and 3.08 Hz; > 37 dB at f < 0.01 Hz and f > 4 Hz). Waves were

nly considered as SOs when their negative deflection had consecutive

ero crossings between 0.25 and 1.0 s, regardless of the wave ampli-

ude ( Riedner et al., 2007 ). Likewise, spindle activity was determined

y applying a zero-phase bandpass FIR filter between 11 and 16 Hz (3

B at 10.62 and 17.38 Hz; > 40 dB at f < 10.01 Hz and f < 18 Hz). Then,

he root mean squared (RMS) was computed by using a time window of

.2 s. Rejection criteria included trials where stimulus was applied less

han 2 s apart from any arousal, artefact, or changes to another sleep

tage other than N3. The response to the stimulus was analyzed for the

rst click of each trial. Therefore, trials in which the subsequent stimuli

ere wrongly placed before the subsequent SO trough were excluded

rom the analysis. Hence, for analysis we included 459.19 ± 242.10 tri-

ls for SHAM and 289.33 ± 178.18 trials for STIM. For spindle event

etection, the candidate events were first detected as discrete events
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Fig. 1. Selection of features for training of classifiers and the post-stimulus measures evaluated as response to click stimulation together with between-subject 

average distribution of the events labelled LOW and HIGH. (a) Three post stimulus measures were assessed in the study (in red; SO Vpp : peak-to-peak SO amplitude, 

SO trough : SO’s trough amplitude and SA amplitude : spindle activity amplitude). The features used to train the machine learning model are marked in blue, and they include 

information from pre-stimulus fast spindles (FS: 12–16 Hz) or slow spindles (SS: 9–12 Hz) (e.g. FS_Lag: Time to the previous FS, SS_Lag: Time to the previous SS), as 

well as information of the pre-stimulus SO wave (e.g. v.Neg: negative voltage, t.Neg: time of negative wave) and information about the timing of stimulus (e.g. v.Stim: 

SO voltage during stimulation, sinPhase: sinus of phase of stimulation). At the stimulus time (Stim) an auditory click was applied in STIM trials whereas a muted 

sham-click was marked in SHAM trials. A meticulous description of all evaluated features is presented in Table 1 . (b) Between-subject distribution of LOW and HIGH 

classes for SO trough amplitudes (SO trough ). (c) Between-subject distribution of LOW and HIGH classes for SO peak-to-peak amplitudes (SO Vpp ). (d) Between-subject 

distribution for LOW and HIGH classes for spindle activity amplitude (SA amplitude ). Dispersion areas represent mean ± 95% CI of the distribution. 
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here the RMS signal surpassed a threshold established as the 86.64

ercentile (equivalent to 1.5 SD over the mean for a Gaussian distri-

ution) of the spindle activity during N3. Then, spindles were identi-

ed as events with duration between 0.3 and 3 s ( Warby et al., 2014 ),

ith at least five oscillations, a unimodal peak in the spindle frequency

and and decreasing power for higher frequencies computed by the Mor-

et wavelet ( Purcell et al., 2017 ). The frequency band for fast spindles

FS) was defined as 11–16 Hz, and in the 9–12 Hz for slow spindles

SS). Finally, to avoid differences due to phase distribution, ERP analy-

es ( Section 3.5 ) were computed for events where sham and stim click

ere applied within the phase interval Φ: - 𝜋/4 to 𝜋/4 ( Navarrete et al.,

020a ). Therefore, the selection ratio for only the ERP analyses included

9.76% ± 10.98% of the trials for SHAM and 63.80% ± 9.78% of the

rials for STIM. 

.3. Selection of features and labels for classification 

For the selection of the model features, we selected a series of mor-

hological wave features taken before and during the stimulation of

he ongoing wave as shown in Fig. 1 . These predictor features, further

efined in Table 1 , describe morphological characteristics of the pre-

timulus slow-wave structure ( v.Neg, t.Neg, t.PosNeg, areaPos, waveRatio
3 
nd slopeRatio in Table 1 ), structural characteristics of SO detection and

eak estimation ( cosPhase, sinPhase, v.Stim and t.Stim in Table 1 ) and

ong term dynamics of spindle activity ( FSonStim, SSonStim, FS_Lag and

S_Lag in Table 1 ). Additionally, to control for random effects in the

nalysis of feature importance, two dummy variables were included.

hese were the features representing the subject ID and a random gen-

rated number ( sbjID and random in Table 1 ). 

Two post-stimulus measures were selected for classification of SO

nalysis and one for SS. All labels to be predicted were computed

rom wave measurements taken after stimulation. These correspond to

he trough amplitude of the post-stimulus SO (SO trough ), the peak-to-

eak amplitude of the SO after the stimulus (SO Vpp ), and the ampli-

ude of the spindle activity locked to the subsequent positive SO after

he stimulation (SA amplitude ). The selection of these variables was spec-

fied to include one measure with independent dynamics of the ongo-

ng SO (SA amplitude ), one measure with reduced dynamics of the ongo-

ng wave (SO trough ) and one measure including dynamics of the ongoing

O (SO Vpp ). Furthermore, all of these measures have been shown to be

odulated by the CLAS click ( Navarrete et al., 2020a ; Ngo et al., 2013 ;

chneider et al., 2020 ). Nevertheless, as these evaluated measures rep-

esent a continuous distribution, post-stimulus measures were binarized

or each recording. 
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Table 1 

Selection of wave and stimulation characteristics used as predictors for classification. 

Wave and stimulation characteristics used as predictors: 

Feature Description Variable 

SbjID Subject identification number Ordinal 

cosPhase Cosine of the phase of auditory stimulation Continuous 

sinPhase Sine of the phase of auditory stimulation Continuous 

v.Neg Voltage of SO trough before the click Continuous 

v.Stim Voltage in the moment of stimulation Continuous 

t.Neg Time of duration for the negative wave before click Continuous 

t.PosNeg Time of duration for the peak to trough before click Continuous 

t.Stim Time between zero-crossing to click time Continuous 

areaPos Area under curve for peak section before the click Continuous 

waveRatio Duration ratio for the wave before click Continuous 

slopeRatio Duration ratio for the negative wave before click Continuous 

FSonStim Presence of fast spindle on stimulation (Yes: 1, No: 0) Binary 

SSonStim Presence of slow spindle on stimulation (Yes: 1, No: 0) Binary 

FS_Lag Time to the previous FS (12–16 Hz) Continuous 

SS_Lag Time to the previous SS (9–12 Hz) Continuous 

random Random dummy variable Continuous 

Wave characteristics used as labels: 

Feature Description 

SO trough Trough amplitude of the post stimulus SO 

SO Vpp Peak to trough amplitude of the SO after the stimulus 

SA amplitude Maximal amplitude of the spindle activity locked to the subsequent positive SO after the stimulation 

 

a  

r  

p  

d  

(  

b  

d  

2  

b  

m  

T  

t  

a  

e  

m  

H

 

v  

i  

i  

m  

l  

l  

a  

w  

o  

t  

w  

m  

e  

t  

t  

o  

s  

s  

t  

n  

j  

p  

s  

s  

S  

t  

c  

d  

1  

(  

N  

S

2

 

p  

u  

f  

t  

t  

t  

t  

l  

R  

a  

fi  

D  

fi  

 

o  

t  

(  

f  

m  

i  

T  

e  

b  

t  

t  

s  

o  

n  

(  

s  
Our goal was to investigate whether stimulation results in a strong or

 weak neural response. Predicting the post-stimulus values per se using

egression would be an interesting alternative approach. However, the

hysiological function of SO and SS is determined mostly by the global

ynamics of these rhythms rather than exclusively their scalp amplitude

 Klinzing et al., 2019 ; Navarrete et al., 2020b ). This is also supported

y the variability of NREM activity (in frequency and EEG voltage) in-

uced by interindividual differences such as age or sex ( Bódizs et al.,

021 ). A specific SO trough voltage (e.g. 60 𝜇V) may be considered to

e a low amplitude wave in a young participant, but the same value

ay be within the 90th percentile of SO waves of an older participant.

herefore, we divided the measured amplitudes depending on the sta-

istical distribution of these values in order to predict the response to

uditory clicks. We focused on predicting strong vs weak responses for

ach participant rather than the exact prediction of event amplitudes in

icro-volts. Thus, we thresholded post-stimulus values into LOW and

IGH categories and cast the analysis as a classification problem. 

Labelling binarization was performed to determine Low and High

alues from the selected post-stimulus measures. For this, a threshold-

ng process was applied for each subject. First, outlier values were elim-

nated by removing the highest and lowest 1%. Then, an empirical cu-

ulative function was computed for each recording. For each subject,

ower and higher limits were identified independently for each stimu-

ation condition. Values lower than the 25th percentile were marked

s the local low threshold, while values higher than the 75th percentile

ere determined as the high threshold. As CLAS increases the likelihood

f larger amplitude events, it might be unclear whether the amplitude of

he middle 50% of trials is caused by ongoing spontaneous activity, or

hether they have been weakly boosted by the stimulus. Therefore, this

iddle 50% of trials were used for neither training nor testing. How-

ver, they were included for evaluating the average amplitudes when

he classifiers were applied under more natural conditions (Generaliza-

ion of classifier predictions). Subsequently, the low and high thresh-

lds were averaged between conditions for each subject to determine

ubject-based thresholds across conditions. Then, values higher than the

ubject-based high threshold were marked as HIGH, and values lower

han the subject-based low threshold were marked as LOW. An equal

umber of LOW and HIGH labels were randomly selected for each sub-

ect, and all LOW/HIGH trials of all subjects were used in the training

rocess. Nevertheless, for the testing of each measure we excluded those

ubjects with a low number of selected trials ( N < 10th percentile for all

ubjects and measures). This led to have a total population of N = 19 for
4 
O trough and SO Vpp , and a population of N = 16 for SA amplitude . From this,

he SHAM dataset was built with trials identified in the non-stimulation

ondition whereas the STIM dataset was built with trials marked as au-

itory stimulated. After pre-processing and trial selection, an average of

32.2(86.6) events remained for each subject, condition, and measure

Total number of trials for SHAM dataset: SO trough , N = 2890; SO Vpp ,

 = 3036; SA amplitude , N = 3874. Total number of trials for STIM dataset:

O trough , N = 1988; SO Vpp , N = 1986; SA amplitude , N = 1946). 

.4. Training of the classifier 

Classification models were trained using supervising learning. In su-

ervising learning, these models try to find a good approximation of an

nknown function ƒ given paired examples ( 𝜃, ƒ( 𝜃) ), where 𝜃 is a set of

eatures describing each dataset. Several classification algorithms were

ested for this study. These included Random Forest (RF), Support Vec-

or Machine (SVM) and Logistic Regression (LR). RF was found to give

he highest or close-to-highest accuracies in most cases. SVM was found

o give higher accuracies in some cases, but the results took significantly

onger to compute whereas LR got lower accuracy in the classification.

F was therefore chosen because it presented the best trade-off between

ccuracy and computation time. Likewise, RF has also proved to be ef-

cient in other problems based on sleep EEG ( da Silveira et al., 2017 ;

imitriadis et al., 2020 ). Consequently, we independently trained classi-

cation models for SHAM and STIM conditions using the RF algorithm.

A RF is an ensemble method or a meta-classifier that combines the

utputs of a collection of decision trees. A decision tree is an algorithm

hat performs classification by performing a cascade of binary decisions

‘branch off left’ or ‘branch off right’). In each binary decision, a single

eature is compared against a threshold value. The threshold is deter-

ined during training such that the classes are optimally separated us-

ng a metric called Gini impurity. A RF creates many such decision trees.

o encourage different trees to focus on different aspects of the data,

ach tree is exposed to a different subset of the data. This is achieved

y randomly selecting subsets of the samples. A RF performs classifica-

ion by collecting ‘votes’ from all the decision trees and then selecting

he majority vote. RF has been shown to be a good out-of-the-box clas-

ifier that is robust against overfitting, but it is not very sensitive to

utliers and its hyperparameters are easy to set. In addition, there is no

eed for RF to prune the trees which helps in gaining higher accuracy

 Breiman, 2001 ). We implemented decision trees grown with surrogate

plits to optimize predictions, achieved by estimating tree splits using
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omplementary features ( Hapfelmeier et al., 2012 ). Hyperparameters

ere optimized before the learning process. The values were adjusted

o optimize the performance of the algorithm. In our RF classifiers, the

wo hyperparameters were the number of trees in the forest and the

aximal number of levels in each decision tree. 

For training, all selected trials of all subjects were pooled. To obtain

n unbiased estimate of generalization performance, leave-one-subject-

ut cross-validation (LOOOCV) was performed: in each iteration, one

ubject was left out and the classifier was trained using trials from the

ther subjects. This was then repeated, leaving each subject out in turn.

o tune the model’s hyperparameters, nested cross-validation was per-

ormed: in each iteration, the training data were again split into a train-

ng set (70%) and a validation set (30%). The validation set was used

o find the best hyperparameters. The optimal model was then taken

orward and tested on the held-out subject. This resulted in a total of

 classifiers being trained for each measure in both SHAM and STIM

ases, where N corresponds to the total of subjects evaluated. 

Hence, considering 𝜃SH the set of features for the SHAM dataset, and

ST the set of features for the STIM dataset, we will denote as ƒSH the RF

lassifier trained in the SHAM dataset ( 𝜃SH , ƒ( 𝜃SH )) . Similarly, we will

enote as ƒST the RF classifier trained in the STIM dataset ( 𝜃ST , ƒ( 𝜃ST )) . 

To evaluate the performance of the binary classification we used

he Matthews correlation coefficient (MCC) ( Boughorbel et al., 2017 )

hich is a robust test for binary decisions. These metrics were calcu-

ated according with the predictive forecasting of the binary classifi-

ation model. Therefore, defining HIGH instances as positive (P) and

arked LOW instances as negatives (N), every classification response

an be grouped within four cases: (i) True positives (TP): positive values

hat are predicted as positive; (ii) False negatives (FN): positive values

rongly marked as negatives; (iii) False positives (FP): Negative values

lassified as positives, and (iv) True negatives (TN): actual negative val-

es correctly classified as negatives. Hence, the unbiased performance

valuated in the MCC sense is determined by: 

𝐶𝐶 = 

𝑇 𝑃 ⋅ 𝑇 𝑁 − 𝐹 𝑃 ⋅ 𝐹 𝑁 

√
( 𝑇 𝑃 + 𝐹 𝑃 ) ⋅ ( 𝑇 𝑃 + 𝐹 𝑁 ) ⋅ ( 𝑇 𝑁 + 𝐹 𝑃 ) ⋅ ( 𝑇 𝑁 + 𝐹 𝑁 ) 

This value ranges from -1 (perfect misclassification) to 1 (perfect

lassification), where 0 indicates random labelling. 

Accuracy (ACC) accounts for the proportion of correctly classified

amples on all classes: 

𝐶𝐶 = 

𝑇 𝑃 + 𝑇 𝑁 

𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 

As well as ACC, the MCC gives high scores for correctly labelled

lasses. Nevertheless, MCC is a stricter measure with high scores only if

he model can predict a high percentage of true positives and a high

ercentage of true negatives on any balanced or imbalanced dataset

 Chicco and Jurman, 2020 ). Therefore, we used MCC as the main metric

or evaluating training performance whereas ACC was used as a descrip-

ive metric. 

Finally, to discern the performance differences in STIM or SHAM

atasets, we compared the performance of each model applied within

nd cross-condition (i.e., SHAM model predicting SHAM labels ƒSH ( 𝜃SH )

s STIM model predicting SHAM labels ƒST ( 𝜃SH ) as well as SHAM model

redicting STIM labels ƒSH ( 𝜃ST ) vs STIM model predicting STIM labels

ST ( 𝜃ST ). 

.5. Feature importance 

It is possible to achieve high performance in both ƒSH and ƒST classi-

er models. However, the features important for making the prediction

ay differ between the classifiers, with the importance of some features

ommon to both models. Here we were interested in how the models

iffered, and which features were uniquely important for one model or

he other. 

We assessed the relevance of each feature by computing an unbi-

sed measure of feature importance. We implemented a heuristic metric
5 
ased on the permutation importance of each feature evaluated in the

oldout subject ( Altmann et al., 2010 ). For each feature, the algorithm

ermutes the values of the evaluated feature S times and applies the

rained algorithm to predict the original labels. The permutation makes

 feature uninformative by destroying its relationship with the class la-

els. The permutation increases the model’s prediction error that derives

n a distribution of S null performances. The importance of each feature

s thus determined by the change in the model’s performance. Hence,

ig changes in the error are expected for important features whereas

one or small changes are expected for less important features. 

In our analysis, we first estimated the MCC performance of the origi-

al model ( H ). Subsequently, we randomly permute the observations of

 j to estimate the performance of the model using the altered features

sing one hundred repetitions ( S = 100) for each feature ( x j , j = 1, 2,

N features). For each permuted feature, this resulted in a distribution

 H 

∗ 
j ) of one hundred performance values. Then, we took the differences

 j = H - H 

∗ 
j and computed the mean D j and standard deviation 𝜎j . We

hen defined the feature importance (FI) by permutation for x j as the

 -value FI j = D j / 𝜎j . Changes in performance of the SHAM model in the

HAM dataset ( FI SH = FI( ƒSH ( 𝜃SH )) ) and changes of the STIM model in

he STIM dataset ( FI ST = FI( ƒST ( 𝜃ST )) ) represent within-condition predic-

or weights. Likewise, changes in performance of the SHAM model in the

TIM dataset ( FI STx = FI( ƒSH ( 𝜃ST )) ) and changes of the STIM model in the

HAM dataset ( FI SHx = FI( ƒST ( 𝜃SH )) ) represent cross-condition predictor

eights. Finally, we relied on the assumption that highly important fea-

ures in both models (SHAM and STIM) should be significantly greater

han the dummy random feature included in the model. 

For determining features describing similar dynamics between con-

itions, we relied on the assumption that features equally important

n both models (SHAM and STIM) have similar changes in performance

hen applied within the same dataset. This rationale is further described

n Table S1. For each model, the predictor weights represented by the FI

alues represent the vector space of random variables in each dataset.

hen, we determined the correlations in between FI values when SHAM

nd STIM were evaluated in the same dataset using the cross-condition

odels (e.g. FI correlation in SHAM dataset 𝜌SH,ST ( 𝜃SH ) = corr( FI SH ,

I SHx ), and FI correlations in STIM dataset: 𝜌SH,ST ( 𝜃ST ) = corr( FI STx ,

I ST )). Hence, correlated FI variables between models are not indepen-

ent in the random space ( Papoulis and Pillai, 2002 ), and highly cor-

elated features suggest that these predictors may describe similar pro-

esses in SHAM and STIM datasets (Table S1). 

.6. Statistics 

To compare classifier performances within and between conditions,

e implemented a Wilcoxon signed rank test across holdout subjects.

his is equivalent to implementing a 21-fold cross-validated signed-rank

est ( Thomas, 1998 ). Also, we evaluated whether the performance of

he trained models were statistically different by computing the McNe-

ar’s test which evaluates the misclassification rates between models

 Thomas, 1998 ). 

A one-way analysis of variance (ANOVA) was calculated on FI; then

he features were compared against the dummy random feature to check

or random effects using a Tukey’s Honestly Significant Difference pro-

edure. For comparing FI ranks, we compared the Spearman’s rank cor-

elation within and between conditions. Briefly, we split the STIM and

HAM datasets into half of the subjects. This resulted in four groups:

ham group 1 (’SH-G1 ′ ), sham group 2 (’SH-G2 ′ ), stim group 1 (’ST-

1 ′ ), and stim group 2 (’ST-G2 ′ ). For this, we use a Monte Carlo method

o sample the subjects uniformly random in each half in 1600 non-

epeated combinations. For each combination of half subjects, we com-

uted Spearman’s rank correlation of the FIs. These correlations were

ubsequently normalized using a Fisher z- transformation. Then, the me-

ian Fisher z value of each permutation was obtained, generating thus

 distribution of permuted correlations Fisher z- transformed for each

f the four groups. After obtaining the Fisher z distributions for each
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roup, we applied a Kruskall-Wallis ANOVA to test the null hypothesis

hat the sample data from each group comes from the same distribution.

For comparing EEG trials, we computed significant differences be-

ween STIM vs. SHAM within subjects using the Welch unequal vari-

nce t-test with the Moser–Stevens correction for degrees of freedom

 Moser and Stevens, 1992 ). 

Further differences between groups were computed using paired t-

ests. The Benjamini & Hochberg false discovery correction (FDR) for

ultiple comparisons was applied to control for the family-wise error

ate ( Benjamini and Hochberg, 1995 ). 

. Results 

.1. Overview of datasets and variability of selected measures 

The use of two different datasets using slightly different methods for

ave detection in CLAS may have induced some variability in our data.

e did not find significant differences of sleep macro-structure between

timulation conditions either when the datasets were evaluated individ-

ally or when all participants were summed up (Table S2). Previous

nalyses have also shown that both CLAS methods were able to detect

nline SOs with amplitudes larger than 90% of the amplitudes within

he same period of stimulation ( Navarrete et al., 2020b ). Thus, these

nalyses suggest that trials from both datasets are indeed comparable. 

On the other hand, the binarization process determined subject-

pecific threshold values that differentiated low and high amplitude

vents Fig. 1 .b, c show the average distribution of labelled LOW and

IGH events. A paired t-test showed that the differences between

IGH and LOW values were significant on a group level for SO trough 

mean LOW Thres = 24.7 𝜇V, 95%CI = 21.7 𝜇V to 27.7 𝜇V; mean

IGH Thres = 105.6 𝜇V, 95%CI = 92.5 𝜇V to 118.7 𝜇V; t(22.2) = -

1.8, p < .001) as well as for SO Vpp (mean LOW Thres = 79.9 𝜇V,

5%CI = 73.5 𝜇V to 86.3 𝜇V; mean HIGH Thres = 188.0 𝜇V,

5%CI = 170.5 𝜇V to 205.5 𝜇V; t(25.3) = -11.4, p < .001) and

A amplitude (mean LOW Thres = 3.7 𝜇V, 95%CI = 3.5 𝜇V to 3.9 𝜇V; mean

IGH Thres = 6.5 𝜇V, 95%CI = 6.1 𝜇V to 6.9 𝜇V; t(21.5) = -12.2, p < .001).

The fact that slightly different methods were used for online wave

hresholding during CLAS in the two datasets means that some addi-

ional variability may have been induced into the recordings of the raw

ignal. This could have some spurious effects on the values used for

hresholding the LOW and HIGH classes from the raw data. We there-

ore compared LOW and HIGH threshold between the two evaluated

atasets and found no significant differences between them (Table S3).

rom these results, we highlight that the LOW Thres for both SO measures

re typical for events that are not considered SOs while the HIGH Thres 

re typical for SOs considered as high amplitude ( Iber et al., 2007 ). The

ame characteristic can be considered for SA amplitude LOW and HIGH

hresholds ( Purcell et al., 2017 ). Hence, it is important to note that the

OW/HIGH values do not differentiate between no-event/event trials,

ut rather between no-event/high-event trials. 

.2. Classification performance 

Overall, our trained classifiers achieved good accuracies for both

HAM and STIM models and these were comparable when evalu-

ted on within conditions datasets. Specifically, ƒSH and ƒST mod-

ls had comparable performance in all three evaluated measures:

O trough (SHAM:ACC = 0.71, 95%CI = 0.69 to 0.74; STIM:ACC =
.71, 95%CI = 0.67 to 0.74, p = .601), SO Vpp (SHAM:ACC = 0.84,

5%CI = 0.82 to 0.86; STIM:ACC = 0.83, 95%CI = 0.81 to 0.85, p = .295)

nd SA amplitude (SHAM:ACC = 0.60, 95%CI = 0.56 to 0.64; STIM:ACC =
.59, 95%CI = 0.55 to 0.62, p = .691). This indicates that it is equally

ossible to predict SO amplitude outcomes from SO morphology in spon-

aneous and stimulation conditions. However, the amplitude of spindles

ocked to SOs may be harder to predict as the accuracy was lower when

ompared to the prediction of SO amplitudes. 
6 
We were especially interested in determining whether characteristics

f the ongoing spontaneous SO and spindle signal could predict if the au-

itory stimulation would result in a LOW or HIGH SO outcome. To test

his, we evaluated the performance of the trained classifier in a cross-

lassification paradigm. Thus, classifiers trained on the STIM dataset

ere applied to the SHAM dataset to predict trial labels in SHAM, and

lassifiers trained on the SHAM dataset were applied to the STIM dataset

o predict STIM trial labels. This process helped us to determine the level

t which information from unstimulated SWS (SHAM dataset) can be

sed to predict SO characteristics after an auditory stimulation (STIM

ataset), thus providing an idea of how much the auditory stimulation

isrupts or alters the ongoing SO pattern. Similar performance of ƒSH and

ST when applied within condition indicates a similar degree of gener-

lization for the two models within their own dataset. Equivalent per-

ormance of these two classifiers across conditions (cross-classification)

ould indicate that both classifiers have similar mappings of the feature

yperspace ( Thomas, 1998 ). In other words, similar performance in the

ross-condition denotes that the prediction capabilities of these models

ere mostly based on the characteristics of the spontaneous signal. Con-

ersely, changes in the performance of classifiers in the cross-condition

ndicate that the mapping of the feature hyperspace is different, and

hese differences are caused by the auditory click. 

Like for the ACC comparisons, a Wilcoxon signed rank test on the

CC revealed no significant differences in within dataset classification

or trough, peak-to-peak voltage, or amplitude measures ( ƒSH ( 𝜃SH ) vs

ST ( 𝜃ST )), for SO trough ( Z = 0.56, p = .573), SO Vpp ( Z = 1.41, p = .159)

nd SA amplitude ( Z = 0.62, p = .535) ( Fig. 2 a). Hence, we accept the null

ypothesis regarding comparisons of performance of all three measures

ithin the trained datasets suggesting that ƒSH and ƒST perform similarly

hen applied within condition. 

The picture was different in the crossover analysis, where classi-

ers were trained on one dataset, then applied on both, and classifi-

ation performance was compared. Firstly, we found significant differ-

nces between MCC rates when both classifiers (trained on Stim ƒST and

ham ƒSH ) were applied to the SHAM dataset (i.e., ƒSH ( 𝜃SH ) vs ƒST ( 𝜃SH )).

hus, as shown in Fig. 2 b, the classification rate in SHAM differed for

O trough ( Z = 2.55, p = .011) and SO Vpp ( Z = 2.77, p = .006), but not

A amplitude ( Z = 1.34, p = .179). We also found a difference in clas-

ification rate when both classifiers were applied to the STIM dataset

i.e., ƒSH ( 𝜃ST ) vs ƒST ( 𝜃ST )), Fig. 3 c. Thus, ƒST outperforms ƒSH when pre-

icting the LOW/HIGH levels of SO trough in the stimulation condition

 Z = -2.70, p = .007). However, there was no difference in classification

erformance for SO Vpp ( Z = -0.54, p = .586), or SA amplitude ( Z = -0.57,

 = .570). 

These crossover results suggests that the classifiers (SO trough ; SO Vpp ;

A amplitude ) differ in how they obtain the information from the data to

redict each evaluated measure. Primarily, because we evaluated the

erformance within condition and found no difference between classi-

ers, we know that they have similar performance in their respective

ondition ( Fig. 2 a). This means that any differences between conditions

annot be attributed to imbalance in the performance of within classifi-

ation. Similarly, looking at the spindle measure, the performance for

redicting SA amplitude is similar for both classifiers in the crossover anal-

sis ( Fig. 2 b & c). This indicates that there is not enough information for

he ƒST classifier to predict SA amplitude responses beyond the information

rovided by the spontaneous ongoing SO features in the STIM dataset.

urning to the SO measures (SO trough and SO Vpp ), the SHAM classifier

SH outperformed the stimulation classifier ƒST on both measures in the

HAM dataset 𝜃SH , ( Fig. 2 B), but the STIM classifier ƒST only outper-

ormed the SHAM classifier ƒSH for SO trough in the STIM dataset 𝜃ST vs

SH ( Fig. 2 c). The fact that the STIM classifier did not outperform the

HAM classifier ƒSH for SO Vpp in the STIM dataset may indicate that the

uditory click does not significantly alter the positive SO amplitude, in-

reasing the complexity of the SO Vpp detection. However, the fact that

he STIM classifier outperformed the SHAM classifier on SO trough indi-

ates that the pre-stimulus information used to predict SO trough is dif-
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Fig. 2. Within and cross-classification performance of trained models and average LOW and HIGH values for post-classification labels. (a) Classifier differences in 

MCC performance for within dataset tests. (b) Classifier differences in MCC performance when SHAM classifier ( ƒSH ) and STIM classifier ( ƒST ) were tested in the 

SHAM dataset. (c) Classifier differences in MCC performance when ƒSH and ƒST were tested in the STIM dataset. (d) Average amplitude of SO trough for trials classified 

as LOW and HIGH in SHAM and STIM datasets. We can notice a larger increment of SO amplitudes in those trials marked as HIGH. The same effect was observed 

for SO Vpp (e) and SA amplitude (f). ( 
∗ ) for p < .05, ( ∗ ∗ ) for p < .01, ( ∗ ∗ ) for p < .001, (n.s) for not significant. All error bars represent mean ± 95%CI. 
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erent for the two classifiers. This suggests that the stimulation strongly

nfluences the post-stimulus SO trough, since that trough is no longer

redicted by the same pre-stimulus features as it would have been if no

lick had occurred. 

To further corroborate our results, we compared the trained classi-

ers in each dataset using a more robust method based on their classifi-

ation errors. Hence, we applied a non-parametric McNemar test which

ompares the incorrectly labelled trials generated by each classifier. Un-

er the null hypothesis, the two classifiers should have the same error

ate, so for instance, the ƒSH and ƒST classifiers would not be different

 Thomas, 1998 ). After FDR correction, our McNemar’s tests showed that

he error rate of SO measures differed significantly between ƒSH and ƒST .

his was the case in both the SHAM dataset ƒSH ( 𝜃SH ) vs ƒST ( 𝜃SH ): SO trough 

 p < .001), SO Vpp ( p < .001); and the STIM dataset ƒSH ( 𝜃ST ) vs ƒST ( 𝜃ST ):

O trough ( p = .005); SO Vpp , ( p < .001). Furthermore, we did not find dif-

erences between classifiers for spindle activity when both the ƒSH and

ST were applied in either SHAM (SA amplitude , p = .308) or STIM datasets

SA amplitude , p = .138). Overall, these results are perfectly in keeping with

he MCC analysis presented above. 

Thus, both the analysis of differences in MCC performance and the

nalysis of differences in the error rate confirm that training classifiers

n SHAM and STIM datasets results in two models with different feature

apping ( Thomas, 1998 ). This is particularly true for the SO measures

SO trough and SO Vpp ) which learn different dynamics from the evaluated

atasets imposed by the auditory stimulus. The lack of forecasting of

timulus-related changes for spindle activity might indicate that the EEG
7 
nformation that predicts these effects is mainly associated with post-

timulus processes. 

.3. Generalization of classifier predictions 

Next, we wanted to check how accurately our classifiers had pre-

icted whether subsequent SOs would fit the HIGH or LOW amplitude

lasses by examining the actual amplitudes which occurred. Therefore,

e evaluated the response of the classification for all trials. These in-

luded trials labelled trials within LOW and HIGH groups as well as

nlabelled trials falling between the [LOW, HIGH] interval thresholds,

hich were initially discarded during training of classifiers. The am-

litude of post-stimulus responses was analyzed with a 2 (Condition:

HAM vs STIM) x 2 (Classification Label: LOW vs HIGH) ANOVA as

een in Fig. 2 d–f. This showed a main effect of classification label for

O trough (F(73,1) = 59.37, p < .001), SO Vpp (F(73,1) = 126.03, p < .001)

nd SA amplitude (F(61,1) = 9.86, p = .003). In all conditions, a Tukey post

oc test revealed that HIGH labels identified higher amplitude events for

O trough (SHAM: t(18.0) = -9.1, p < .001; Cohen’s d = 2.88, 95%CI [1.95,

.82]; STIM: t(18.0) = -8.7, p < .001; Cohen’s d = 1.66, 95%CI [0.90,

.42], Fig. 2 d), as well as for SO Vpp (SHAM: t(18.0) = -18.3, p < .001;

ohen’s d = 4.04, 95%CI [2.90, 5.18]. STIM: t(18.0) = -12.3, p < .001;

ohen’s d = 2.23, 95%CI [1.40, 3.07], Fig. 2 e) and SA amplitude (SHAM:

(15.0) = -3.0, p = .008; Cohen’s d = 1.03, 95%CI [0.27, 1.79]; STIM:

(15.0) = -3.3, p = .005; Cohen’s d = 0.61, 95%CI [-0.13, 1.34], Fig. 2 f).
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Fig. 3. Feature importance of SHAM and STIM classifiers. (a) Feature importance by permutation for classification of SO trough in the SHAM dataset. (b) Feature 

importance for classification of SO Vpp in the SHAM dataset. (c) Feature importance for classification of SA amplitude in the SHAM dataset. (d) Feature importance for 

classification of SO trough in the STIM dataset. (e) Feature importance for classification of SO Vpp in the STIM dataset. (f) Feature importance by permutation ( FI ) for 

classification of SA amplitude in the STIM dataset. Vertical dashed lines at z -score 0 indicate the level of random variability for FI. Feature importance values are provided 

as the z -score of the permuted MCC performance, and bars in blue indicate those features that are significantly larger than the random dummy feature (in red). ( ∗ ) 

for corrected p < .05. All error bars represent mean ± 95%CI. 
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These differences were corroborated when we computed only la-

elled as well as only unlabelled trials (Fig. S1). Hence, for labelled tri-

ls we found differences for SO trough (SHAM: Cohen’s d = 2.16, 95%CI

1.34, 2.99], p < .001; STIM: Cohen’s d = 1.56, 95%CI [0.82, 2.31],

 < .001), as well as for SO Vpp (SHAM: Cohen’s d = 6.04, 95%CI [4.50,

.58], p < .001; STIM: Cohen’s d = 3.05, 95%CI [2.09, 4.01], p < .001)

nd SA amplitude (SHAM: Cohen’s d = 1.27, 95%CI [0.49, 2.06], p = .001;

ohen’s d = 0.65, 95%CI [-0.08, 1.39], p = .004). Likewise, for unla-

elled trials we found differences for SO trough (SHAM: Cohen’s d = 0.83,

5%CI [0.15, 1.52], p < .001; STIM: Cohen’s d = 0.41, 95%CI [-0.25,

.07], p < .001), as well as for SO Vpp (SHAM: Cohen’s d = 1.14, 95%CI

0.43, 1.84], p < .001; STIM: Cohen’s d = 0.67, 95%CI [0.00, 1.34],

 < .001) and SA amplitude (SHAM: Cohen’s d = 0.35, 95%CI [-0.37, 1.08],

 = .008; Cohen’s d = 0.30, 95%CI [-0.42, 1.02], p = .005). 

As the classifiers did not see any pre-stimulus dynamics for events

etween [LOW, HIGH] thresholds during training, the classification of

uch trials could potentially be random. If that were the case, no dif-

erence in mean amplitude for trials classifies as LOW and HIGH would

ave been evident. The fact that such differences appeared even when

ll trials are considered confirms that the classifiers were able to gener-

lize to the novel trials. We thus conclude that the classifier accurately

redicted whether SOs and sleeep spindles will have comparatively

arge or small amplitudes when it categorises them into LOW or HIGH

lasses 
8 
.4. Feature importance of evaluated classifiers 

The feature importance (FI), as determined for ƒSH and ƒST classi-

ers, showed how strongly each pre-stimulus feature weight was when

he model was applied to unseen data (holdout subject). Firstly, for each

ondition and measure, we applied a one-way ANOVA to test whether

eatures differed in importance. Secondly, we identified the features

ith FI larger than the FI estimated for a dummy random feature us-

ng Tukey’s honesty test. 

Interestingly, our analysis revealed that permuting features arising

rom the wave structure and estimated click timing (‘sham-click’) in

pontaneous SO dynamics (SHAM condition) caused significant changes

n the z- score of MCC ( Fig. 3 a and b). We found that the z- scored FI

iffered between features in the SHAM classifier for SO trough (one-way

NOVA, F(15,280) = 14.27, p < .001, Fig. 3 a). Tukey post hoc tests re-

ealed that several features for which FI was significantly higher than

he FI for the dummy random feature (-0.22, 95%CI: -0.57 to 0.12).

hese included features from the estimated sham-click ( v.Stim (4.07,

5%CI: 3.35 to 4.79; p < .001), cosPhase (1.03, 95%CI: 0.28 to 1.78;

 = .008), t.Stim (0.92, 95%CI: 0.44 to 1.39; p = .001), sinPhase (0.74,

5%CI: 0.32 to 1.16; p = .002)) as well as features of the slow-wave

tructure ( areaPos (1.83, 95%CI: 0.96 to 2.69; p = .001), waveRatio

1.24, 95%CI: 0.60 to 1.88; p = .001), t.Neg (0.48, 95%CI: -0.04 to 1.00;

 = .030), SS-Lag (0.47, 95%CI: -0.04 to 0.98; p = .030), SSonStim (0.37,
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5%CI: -0.12 to 0.87; p = .047) and FS-Lag (0.37, 95%CI: -0.03 to 0.77;

 = .030)). 

We also found differences of FI between the various features in

he SHAM classifier for SO Vpp (one-way ANOVA, F(15,225) = 36.18,

 < .001, Fig. 3 b). A Tukey post hoc test revealed that FI for v.Stim

8.75, 95%CI: 7.39 to 10.11; p = .001), cosPhase (3.74, 95%CI: 2.72 to

.76; p < .001), and sinPhase (2.69, 95%CI: 1.84 to 3.54; p < .001) were

igher than chance and larger than the dummy random feature (0.42,

5%CI: -0.18 to 1.03). 

Similarly, we found differences of FI between features in the SHAM

lassifier for SA amplitude (one-way ANOVA, F(15,240) = 4.40, p < .001,

ig. 3 c). A Tukey post hoc test revealed that waveRatio (2.07, 95%CI:

.77 to 3.36; p = .015) and FSonStim (1.95, 95%CI: 0.96 to 2.94; p = .006)

ere higher than chance and larger than the random dummy feature (-

.27, 95%CI: -0.83 to 0.29). 

Interestingly, three features that depend entirely upon the sham-click

ime ( v.Stim, cosPhase, sinPhase ) have consistently high FI in SHAM. In-

eed, the placement of the Sham-click after the detected SO trough is

on-random, and the above features were based on this time. There-

ore, these features may strongly predict the magnitude of the next os-

illation. Specifically, v.Stim (amplitude at sham-click time) is highly

orrelated with the peak amplitude of the sham-stimulated SO (SHAM

ataset: r = 0.932, p < .001). Similarly, cosPhase (the cosine of the phase

t sham-click time) correlates with the negative-to-positive slope of the

O (SHAM dataset: r = 0.207, p < .001) and the area of the negative SO

eflection before the sham-click (SHAM dataset: r = 0.122, p < .001).

ikewise, sinPhase correlates with the negative-to-positive slope of the

O before the sham-click (SHAM dataset: r = 0.123, p < .001). Overall,

hese results show that features that seem related only to the timing of

he sham-click (i.e. v.Stim, cosPhase, sinPhase ) also predict characteris-

ics of the SO structure. 

In contrast to SHAM, in the STIM dataset the feature impor-

ance of only a few variables were significantly higher than the fea-

ure importance of the dummy random feature. Thus, FI differed be-

ween features for the STIM classifier on SO trough (one-way ANOVA,

(15,278) = 12.943, p < .001, Fig. 3 d). The Tukey post hoc test revealed

hat v.Stim (3.52, 95%CI: 2.83 to 4.20; p < .001) was the only feature

igher than the dummy random variable (0.13, 95%CI: -0.33 to 0.59).

ther click-related FI such as for tStim and sinPhase were also higher

han chance, but they were not statistically different from the dummy

andom variable. 

As with the SHAM dataset, the FI differed between features for

he STIM classifier on SO Vpp (one-way ANOVA, F(15,241) = 27.958,

 < .001, Fig. 3 e). The Tukey post hoc test revealed v.Stim (6.44, 95%CI:

.39 to 7.48; p < .001), sinPhase (1.37, 95%CI: 0.94 to 1.80; p = .004),

nd cosPhase (1.33, 95%CI: 0.73 to 1.93; p = .014) were higher than the

andom dummy feature (0.17, 95%CI: -0.30 to 0.65). 

For SA amplitude , although there was a significant difference between

roups as determined by a one-way ANOVA (F(15,239) = 1.805,

 = .035, Fig. 3 f), there were no significant differences between the FI

f the random dummy variable and the remainder of features. 

As each of the models was trained on data from different sub-

ects, this could lead to cases where testing features could have values

utside the range of the training features. This would cause a model

rift usually known as covariate shift ( Shimodaira, 2000 ). This effect

s usually solved using variable transformation or batch normaliza-

ion prior to training and classification ( Kawakita and Takeuchi, 2014 ;

ugiyama et al., 2007 ), but this is hard to implement in online acquisi-

ion and difficult to interpret in the physiological context. Therefore, we

sed the feature values as computed and evaluated differences in distri-

ution between training and testing sets (Table S4). We found no differ-

nces between training and testing feature distributions across subjects

or within condition experiments ( ƒSH ( 𝜃SH ) and ƒST ( 𝜃ST ) ). Similarly, we

ound no differences between training and testing for most of the fea-

ures for between condition experiments ( ƒSH ( 𝜃ST ) and ƒST ( 𝜃SH ) ). How-

ver, we found only one significant effect of covariate shift for v.Neg
9 
hen evaluating the SO Vpp response in between condition experiments

 p < .01 FDR corrected). Interestingly, v.Neg was not highlighted by our

nalyses as a variable with high FI although this is commonly used as

he main characteristic for SO detection for CLAS (using negative wave

hresholding). 

We also compared the FI weights between conditions. As seen in

he Fig. S2, we only found differences in areaPos when evaluating the

O trough ( ΔFI (ST – SH) = -1.50, 95%CI: 0.91 to 2.95; p = .047) as well as

or the top three features in SO Vpp ( v.Stim ΔFI (ST – SH) = -2.32, 95%CI:

.04 to 2.65; p = .030; sinPhase ΔFI (ST – SH) = -1.33, 95%CI: 0.89 to 2.73;

 = .030; cosPhase ΔFI (ST – SH) = -2.41, 95%CI: 0.98 to 4.00; p = .003).

owever, as we were interested in evaluating the “importance ” of the

eatures for prediction, we evaluated whether the FI ranks are more

imilar within conditions but more dissimilar between conditions. For

his, using 1600 Monte Carlo permutations, we divided STIM and SHAM

atasets in half subjects and compared FI ranks between the four groups

sham group 1 (SH-G1), sham group 2 (SH-G2), stim group 1 (ST-G1),

nd stim group 2 (ST-G2)). A Kruskall-Wallis ANOVA test rejected the

ull hypothesis that the sample data from each group comes from the

ame distribution (Table S5) and post hoc analyses indicated signifi-

ant differences of FI ranks between but not within conditions (Fig. S2).

herefore, these analyses further suggest that the rank of the heuristic

I are more correlated within datasets than between datasets. 

.5. Similarity of feature importance between SHAM and STIM models 

Finally, we wanted to determine whether the features in SHAM and

TIM datasets are evaluated in the same way by ƒSH and ƒST classifiers.

e therefore studied how feature permutation changed the classifier

erformance within and across conditions. Considering that dynamics

earnt by ƒSH are based only on the drift of SWA in the SHAM dataset, fea-

ures evaluated similarly by both classifiers may indicate that these are

ostly related to spontaneous EEG activity. From a mathematical per-

pective, when applied to the same dataset, ƒSH and ƒST classifiers can be

onsidered as vectorial functions in the same vectorial space. The predic-

or weights estimated as values of feature importance thus represent the

ector space of random variables in the evaluated dataset. Features with

orrelated feature importance in both ƒSH and ƒST classifiers are there-

ore not independent in the multidimensional feature space, suggesting

hat these predictors may describe similar processes in SHAM and STIM

onditions (Table S1). The correlation of cross-condition changes in per-

ormance in the SHAM dataset during the crossover analysis were de-

ned by 𝜌SH,ST ( 𝜃SH ) = corr( FI SH , FI SHx ), interpreted as the correlations of

euristic FI computed from ƒSH and ƒST classifiers on the SHAM dataset.

he correlations of cross-condition changes in performance in the SHAM

ataset were defined by 𝜌SH,ST ( 𝜃ST ) = corr( FI STx , FI ST ), interpreted as the

orrelations of heuristic FI computed from ƒSH and ƒST classifiers on the

TIM dataset. 

In Fig. 4 we show the cross-correlogram of FI for within vs cross-

ondition when the classifiers were applied in SHAM and STIM datasets.

ur data suggest that the amplitude of the stimulated SO ( v.Stim ) is

imilar in importance for predicting SO activity in both datasets. Af-

er FDR correction, we found the correlations of feature importance

ere significant for v.Stim (within condition) vs v.Stim (cross condi-

ion) evaluated under SO trough ( v.Stim : 𝜌SH,ST ( 𝜃SH ) = 0.92, p < .001

nd 𝜌SH,ST ( 𝜃ST ) = 0.88, p < .001, Fig. 4 a and b) and SO Vpp ( v.Stim :

SH,ST ( 𝜃SH ) = 0.92, p < .001 and 𝜌SH,ST ( 𝜃ST ) = 0.88, p < .001, not shown).

his suggests that data dynamics mapped by this feature in both models

ay describe similar information in SHAM and STIM datasets. Hence,

he v.Stim predictor is not an independent variable between spontaneous

nd stimulation conditions. This shared dependence between conditions

uggests that the classifier effect of this feature on the amplitude of

he SO outcome is mainly generated from spontaneous neural dynamics

ather than dynamics associated with the stimulation. 

Similarly, for SA amplitude we found that correlations between feature

mportance from within and cross condition classifiers were significant
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Fig. 4. Cross-correlogram for changes in feature importance between within and cross classification models applied to SHAM ( 𝜌SH,ST ( 𝜃SH )) or STIM ( 𝜌SH,ST ( 𝜃ST )) 

datasets. (a, b) Correlations of feature importance between classifiers applied to SHAM (a) and STIM (b) datasets evaluated on SO trough. (c-d) Correlations of feature 

importance between classifiers applied to SHAM (c) and STIM (d) datasets evaluated on SA amplitude. Significant correlations were highlighted by an arrow and ( ∗ ∗ ∗ ) 

for p < .001 after FDR correction, (n.s) stands for not significant. 
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or correlation of waveRatio (within condition) with waveRatio (cross

ondition) in SHAM ( 𝜌SH,ST ( 𝜃SH ) = 0.90, p < .001, Fig. 4 c), but this was

ot true in the STIM dataset ( Fig. 4 d). This further suggests that the au-

itory click disturbs the pre-stimulus slow-wave dynamics that predict

A amplitude . Specifically for the SHAM dataset, we found a high correla-

ion of feature importance between within and cross condition classifiers

or waveRatio vs t.Stim ( 𝜌SH,ST ( 𝜃SH ) = 0.72, non-corrected p = .011) and

SonStim vs FSonStim ( 𝜌SH,ST ( 𝜃SH ) = 0.75, non-corrected p = .006) but

hese did not survive after FDR correction. This further suggests that

nformation from the shape of the SO wave predicts the post-click spon-

aneous spindle activity. 

Further electrophysiological analysis of classified trials shows how

redicted SO amplitudes (HIGH and LOW classes) mediate the post-click

O or spindle ERP amplitudes in SHAM and STIM datasets. Fig. 5 a de-

icts the average ERP for trials predicted as HIGH vs trials predicted

s LOW for SO trough in the SHAM dataset. Note the apparent increase

f SO trough amplitude before the estimated time of stimulation. This

ould suggest that this trough amplitude ( v.Neg ) is a main predictor for

pontaneous SO trough . However, v.Neg was not identified as a top pre-

ictor by feature importance as indicated previously in Fig. 3 a. Hence,

igger troughs do not predict a bigger post-click SOs, but rather the

pparent increasing of trough amplitude may correspond to averaging
10 
he structure of the negative deflection of SOs, represented by the most

mportant features ( areaPos, waveRatio, cosPhase, t.Stim, sinPhase as in

ig. 3 a and Section 3.3 ). As expected, the amplitude of the wave at the

stimated click ( v.Stim ) shows larger positive deflections for trials pre-

icted as HIGH SO trough . 

Similarly, Fig. 5 c depicts the averages of trials predicted as HIGH

utcome vs trials predicted as LOW for SO trough in the STIM dataset. Un-

ike predictions in SHAM, in STIM the structure of the pre-stimulus SO

id not predict changes in the averaged SO between HIGH and LOW

rials. Only the SO amplitude during the click ( v.Stim ) provided a repre-

entative feature for SO trough prediction. 

Conversely, EEG trials representing LOW and HIGH SA amplitude were

ot different for either SHAM ( Fig. 5 b) or STIM datasets ( Fig. 5 d). These

ndings are in keeping with reduced importance of SO amplitudes for

he prediction of post-event SA amplitude in both conditions. 

Importantly, features should not simply be considered in isolation

ince they interact together in terms of their impact on the subsequent

scillatory structure. To look at this, we performed a more detailed anal-

sis of the combined contribution of the highest ranked features in the

rediction of LOW/HIGH for SO trough outcome ( Fig. 5 e). First, to distin-

uish between the feature distributions, we calculated the difference be-

ween normalized event distributions (HIGH - LOW) for SHAM and STIM
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Fig. 5. Wave amplitude and feature importance for post-classification labels. (a) Post-classification HIGH (HI) vs LOW (LO) EEG average trials locked to the estimated 

click for SO trough classification evaluated in the SHAM dataset. (b) Post-classification HI vs LO EEG average trials locked to the estimated click for SA amplitude classification 

evaluated in the SHAM dataset. (c) Post-classification HI vs LO EEG average trials locked to the applied click for SO trough classification evaluated in the STIM dataset. 

(d) Post-classification HI vs LO EEG average trials locked to the applied click for SA amplitude classification evaluated in the STIM dataset. Orange bars indicate clusters 

of significant differences between classified LO and HI trials ( p < .05) after FDR correction. Error areas represent mean ± 95%CI. (e) Pair plots for some of the top 

features by FI for SO trough indicating the difference of normalized histograms (HIGH - LOW) for SHAM (lower diagonal) and STIM (upper diagonal) datasets. Plots 

in the diagonal shows the histogram difference between selected features. Positive values indicate larger concentration of HIGH events whereas negative values 

indicate a larger concentration of LOW values. Orange arrows indicate apparent boundaries between HIGH and LOW events for STIM (black-to-blue) and SHAM 

(black-to-green) conditions. v.Stim: SO voltage during stimulation; sinPhase: sinus of phase of estimated/applied stimulation; areaPos: Area under curve for the peak 

of the SO wave before the click, and waveRatio: Duration ratio for the wave before click. 

11 
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atasets. The resultant distribution indicates that large v.Stim predict

arger subsequent SO trough amplitudes. Notably, trials having a v.Stim >

0 μV are associated with a larger concentration of HIGH events for both

TIM and SHAM ( Fig. 5 e). Interestingly, this 50μV threshold is also evi-

ent in the averaged SWA in which ERPs were locked to the time of stim-

lation for HIGH and LOW trials in SHAM ( Fig. 5 a) and STIM ( Fig. 5 c)

onditions. Furthermore, the features from the wave structure ( areaPos

nd waveRatio ) also hint at larger effects of these dynamics in the dis-

ribution of LOW and HIGH events in both datasets (orange arrows in

ig. 5 e). 

. Discussion 

We were able to accurately predict whether application of an audi-

ory click to a SO will lead to a large enhancement of the subsequent

O. This was achieved by using features of an ongoing slow oscillation

n a machine learning classifier. Thus, we were able to predict the cat-

gories (LOW/HIGH) of the trough amplitude (SO trough ), the peak-to-

rough amplitude of the SO (SO Vpp ), and the maximal amplitude of the

pindle activity locked to the subsequent positive SO (SA amplitude ) after

ach click-time in both STIM and SHAM conditions by analysing oscilla-

ion features from before the click or sham-click. We also correctly pre-

icted whether either spontaneous oscillatory activity or a phase-locked

ound would lead to a large neural response (classification accuracy >

7% for SO amplitude and > 55% for spindle activity) in both STIM and

HAM conditions. Finally, we performed a feature importance analysis

o identify the most important EEG features for prediction of SOs and

pindles. To this end, we permuted features to assess how they influ-

nced the generalization of classifiers to unseen trials. 

.1. Classification using pre-stim SO wave features differentiates SO 

lick-response in SHAM and STIM 

Although our classifiers performed similarly in SHAM and STIM

atasets, performance was decreased in cross-classification for both

atasets. This is likely due to disruption in the ongoing EEG pattern

aused by the auditory click, since the click is the only thing that distin-

uishes the two conditions. This pattern revealed that STIM and SHAM

lassifiers represent non-dependent non-orthogonal mathematical mod-

ls that derive different information from the ongoing signal in these

wo conditions, at least when classifying for SO trough and SO Vpp . These

esults demonstrate that the EEG features prior to the presentation of the

ound stimulus carry information about the magnitude of the subsequent

rain response following the sound. Conversely, we found no differences

etween classifiers for SHAM and STIM when predicting SA amplitude , pos-

ibly indicating that pre-stimulus information is not very helpful when

redicting this measure in the STIM dataset. 

.2. Spontaneous pre-stim features predict post-stimulus SHAM and STIM 

pindle dynamics 

Overall, we found no differences in the model prediction of spindle

ctivity amplitude between SHAM and STIM models. Previous studies

ndicated a boosting effect of CLAS on spindle activity. This enhanc-

ng effect is specifically related to an increase in amplitude of spin-

le activity locked to the SO directly after the click ( Ngo et al., 2013 ;

chneider et al., 2020 ). We found that the presence of spindle events

n the ongoing wave and the SO structure were the main variables pre-

icting spindle amplitude. Furthermore, we found evidence that CLAS

isturbed the spontaneous relationship between post-stimulus spindle

ctivity and ongoing SO dynamics. However, the ongoing SWA appears

o retain the same level of information for SHAM and STIM classifiers to

redict the amplitude of post-stimulus spindle activity. Consistent with

revious literature ( Antony et al., 2019 ; Ngo et al., 2015 ), we found

hat changes in spindle related activity (e.g. FSonStim) were better pre-

icted by refractory periods of spindle rebound. Our results further sup-
12 
ort the idea that responses to external stimuli such as clicks diverge

or innate SWA because of the distinctive thalamocortical dynamics of

O and spindles ( Navarrete et al., 2020a ). Hence, the pre-stimulus con-

itions evaluated here in both STIM and SHAM models only conveyed

nformation relating to spontaneous spindle dynamics, and information

elevant to the spindle response to CLAS might be mainly concealed

ithin post-stimulus SWS dynamics. 

.3. Feature importance in classification of the SHAM dataset 

Analysis of feature importance for the SHAM classifier allowed us

o determine which features best characterize the level of cortical ac-

ivity of the SO cycle. We found that variables relating to the timed

tructure of the SO were important for predicting spontaneous SO am-

litudes. Indeed, because the timing of stimulation depends on the

ave detection algorithm ( Navarrete et al., 2020a ; Ngo et al., 2015 ),

he stimulation-related variables were given high feature importance

ccordingly. Our results thus suggest that sham-click stimulation re-

ated features in the SHAM dataset also convey information about sub-

equent spontaneous cortical activation. Specifically, the voltage dur-

ng the sham-click ( v.Stim ) may indirectly reveal the level of sponta-

eous neural depolarization, which is then measured via scalp ampli-

ude ( Crunelli et al., 2018 ; Siclari et al., 2014 ). Meanwhile, global neu-

al synchrony may be determined by the timing and phase of the es-

imated stimulus ( cosPhase, sinPhase and t.Stim ) along with the infor-

ation about SO wave structure ( areaPos, waveRatio, slopeRatio , etc)

 Riedner et al., 2007 ). Therefore, the features we identified as important

or the prediction of spontaneous SO activity (amplitude: v.Stim ; and SO

tructure: areaPos, waveRatio, t.Neg, cosPhase, sinPhase ) may also index

he strength of thalamocortical drive on individual SOs. 

Following this, we hypothesize that the prediction of spontaneous

O activity by the SHAM classifier may help to discriminate thalam-

cortical from cortico-cortical SOs. Recent studies proposed that syn-

hronizing factors of the SO may assist in discerning different thalamic

nd cortical mechanisms involving the dynamics of the ongoing SWA

 Bernardi et al., 2018 ; Siclari et al., 2014 ). In this direction, thalamocor-

ical circuits trigger Up-states on each SO wave, contributing to cortical

ynchronization across the cortex and driving the structure of the SO cy-

le ( Amzica and Steriade, 1995 ; Crunelli et al., 2018 ) and thus may be

ndicated by those features describing the SO structure. Likewise, the

igh importance of the scalp amplitude predictor ( v.Stim ) agrees with

revious work indicating that increased levels of cortical depolariza-

ion may lead to large synchronous hyperpolarizations ( Neske, 2016 ),

nd therefore this could highlight intrinsic characteristics of the thala-

ocortical dynamics ( Siclari et al., 2014 ). Nevertheless, this hypothesis

hould be tested by adding a larger spatial sample and further intracor-

ical recordings. 

.4. Feature importance in the STIM classifier indexes SO dynamics 

odulating response to the auditory click 

Our feature importance analyses for the STIM classifier indicated

hat the main variable predicting the post-stimulus SO-amplitude out-

ome is the wave amplitude during stimulation. This result follows pre-

ious work which has suggested that the peak amplitude is the optimal

iming for the auditory click to enhance the ongoing waves ( Ngo et al.,

015 , 2013 ). Our findings build on this by indicating that considering

he stimulus phase alone is not enough to optimally enhance the SO.

nstead, the wave amplitude during stimulation better predicts the out-

ome of the acoustic click. Consistent with this, we recently demon-

trated that the window of opportunity for the click to effectively en-

ance SOs is limited to a wide phase interval around the wave peak

 Navarrete et al., 2020a ), challenging the hypothesis of a particular SO

hase as the optimal target for SO enhancement ( Santostasi et al., 2015 ).

eglecting the importance of wave amplitude could explain the fail-

re of many auditory clicks to boost SO memory consolidation function
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hile still increasing the post-stimulus response ( Henin et al., 2019 ). In

he current report, we show that the average amplitude of post-stimulus

rials increases considerably when our classification method is used to

elect the SO cycles to stimulate (Cohen’s d > 1.6 for SO amplitude and

ohen’s d > 0.6 for spindle activity). We therefore suggest that future

etection algorithms may consider inclusion of decision rules that eval-

ate amplitude characteristics to boost the effectiveness of the acoustic

lick for enhancing the SO response. 

Our results also suggest that auditory clicks during elevated neu-

al excitability within SO peaks set the arousal threshold which con-

ributes to the cortical synchronization process of slow-waves. The pre-

ictor importance analyses for the STIM classifier showed that stimu-

ation disturbs the effect of the SO wave structure on the prediction

f SO troughs. However, wave amplitude during the click still drives

he click outcome as it does in the spontaneous generation of large SO

roughs in SHAM. Consistent with this, previous studies have indicated

hat cortical excitability is maximal during periods of neural activation

ithin SO peaks ( Massimini, 2002 ; Rosanova and Timofeev, 2005 ). Like-

ise, it has been proposed that the diffusely projected “matrix ” thala-

ic system imposes a sensory threshold upon the arousal system, allow-

ng auditory stimulation to effectively enhance or decrease SOs, or pro-

oke cortical arousals ( Bellesi et al., 2014 ). We suggest that this arousal

hreshold is determined by the amplitude of the SO. This could be partly

ediated by thalamocortical activity, since this drives synchronous fir-

ng in the cortex ( Neske, 2016 ; Siclari et al., 2014 ). Importantly, cor-

ical activity also suppresses the locus coeruleus such that it is harder

or it to trigger arousal during large cortical up-states ( Bellesi et al.,

014 ; Eschenko et al., 2012 ). Consequently, because of the increased

xcitability of the cortical up-states in SO peaks and the reduced cortico-

oerulear interactions during large SO peaks, the stimulus during high

mplitude waves induces a global hyperpolarizing effect which mani-

ests in large SO troughs. 

.5. Study limitations 

We would also like to caution the reader about some particularities

f our study. Firstly, our definition of SA amplitude is broader than the

efinition of spindle events as we did not evaluate detected spindles.

evertheless, SA amplitude and spindle detection are closely entwined.

ikewise, we did not rule out the possibility that other SO or spindle fea-

ures may also contribute to the prediction of spontaneous or boosted

O oscillations. Nevertheless, in this study we included the most promi-

ent morphological features of the SO wave, and those that are less

ikely to be perturbed by the auditory click while preventing feature

ulticollinearity. Secondly, we must make the reader aware that com-

uting all measures described here may be very slow, and therefore in-

fficient. Even aiming for a specific positive v.Stim amplitude, the most

mportant feature, could be difficult and induce delays in the stimula-

ion algorithm. Instead, computing v.Stim as an online hard threshold

such as in the SO detection process e.g. + 50 𝜇V) might also improve

he amplitude responses for auditory clicks. Thirdly, our analysis pro-

ess focussed on the global dynamics of SO activity across a sample of

ealthy subjects, therefore excluding any within-subject variability that

ay modify the response to the stimulus. Likewise, these parameters

ould change for CLAS responses in subjects with variable levels of cor-

ical excitability such as CAPs and ultraslow oscillations ( Bernardi et al.,

018 ; Lecci et al., 2017 ). Lastly, the real effects on functional or cog-

itive performance related to the enhancement of SO and spindles by

LAS should be further evaluated by measuring pre-stimulus metrics.

ndeed, the increasing of SO amplitudes by CLAS could be related to un-

erlying neurophysiological mechanisms that may or may not subserve

emory consolidation. Hence, caution must be taken when associating

he studied features with memory processes as this relationship cannot

e predicted by the offline and retrospective analysis of this study. 
13 
. Conclusions 

To summarize, we trained machine learning algorithms to predict

pontaneous and post-stimulus SO and SA amplitudes. We found that

pontaneously generated SO trough amplitude can be predicted by the

ngoing structure of the previous SO wave. By contrast, stimulus-related

ncrease in a SO is mainly predicted by SO amplitude at the time of

he click. Therefore, we suggest that SO amplitude may work as a kind

f cortical threshold to prevent the click from causing arousal, while

aintaining maximal cortical activity. 

Based on these findings, we suggest that the online detection of a

ew salient features and the application of our random forest classifier

ould be used in the optimization of future CLAS algorithms. Using this

ethod, future studies could evaluate the effect of less stimuli but im-

roved SO response on memory and sleep architecture. Applying op-

imized version of CLAS may also facilitate a better understanding of

he dynamics of both spontaneous SOs and SOs that have been boosted

hrough CLAS. 
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