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Abstract. Self-compacting concrete (SCC) is a highly efficient concrete that can be compacted and 

formed under its own weight without external vibration. However, the constituents of SCC are many 

and they have diverse material properties. Hence, it is difficult to predict the working performance of 

SCC with a single factor regression relationship. Therefore, the artificial neural network (ANN) 

approach is chosen in the present work to simulate the relationship between proportions of 

constituents and properties of SCC. This paper aims at predicting properties of SCC containing fly 

ash based on the experimental data available from the literature. The eight input parameters in the 

proposed models include amounts of cement, water, water to powder ratio, binder, fly ash, coarse 

aggregate, fine aggregate, and superplasticizers. The four output parameters are V-funnel flow time, 

slump flow final spread diameter, compressive strength at 28 and 90 days. A procedure to select the 

number of hidden layer neurons is discussed. Moreover, the parametric analysis of the developed 

ANN model is conducted to evaluate the effect of input parameters on SCC properties. By comparing 

the estimated and experimental results, the proposed ANN model shows great potential in predicting 

the properties of SCC with different percentage volume fractions of fly ash.   

1 Introduction 

Concrete is the most widely used artificial construction 

material in the world. However, normal vibrated 

concrete (NVC) has many limitations in meeting the 

environmental and economic requirements. In recent 

years, self-compacting concrete (SCC) has become 

popular due to its high performance of fresh and 

hardened properties. To overcome the disadvantages of 

NVC and to offset the shortage of skilled labour in 

Japan, SCC was first proposed by Okamura [1]. At a 

lower level of water to binder ratio, SCC is designed 

by mixing admixtures to reach the required plastic 

viscosity and high ability of segregation resistance and 

workability.  

To conduct more sustainable production of SCC, 

the incorporation of mineral admixtures obtained from 

industrial by-products as the replacement of cement 

and fine aggregates has been investigated by many 

researchers. Fly ash is a waste material produced by 

coal electricity power plants, which is considered to be 

harmful to soil [2]. The results from the study of 

Mohammed et al. [3] showed that the addition of fly 

ash has more significant influence on SCC properties 

as compared to slag addition. This is because fly ash 

with the spherical shape increased the flowability [4]. 

Matos et al. [5] reported that the replacement of fly ash 

improved the flowability of SCC and then reduced the 

content of superplasticizers. Otherwise, the 

compressive strength decreased with the increasing 

amount of fly ash and gained significantly up to 180 

days. Although many researchers have studied the 

properties of SCC with fly ash, most of them draw the 

conclusion based on the proportioning strategy and 

experimental validation.  

With the development of computer science, 

different modelling methodologies based on the AI 

technique have been introduced to the traditional 

concrete industry. As one of the AI-based models, 

artificial neural network (ANN) is widely employed to 

predict SCC properties [6-10]. ANN is composed of a 

large number of interconnected artificial neurons, 

which can be used to simulate the structure and 

function of the brain nervous system. Compared to 

statistical methods, ANN has a stronger adaptive 

ability, learning ability, fault tolerance ability and 

robustness. Many pieces of research were carried out 

on predicting mechanical properties of SCC by using 

ANN. In the study of Asteris et al. [7], the feedforward 

neural network model showed great potential in 

predicting the 28 days strength of SCC, where the 

predicted results correlated well with experimental 

findings in the literature. Prakash et al. [10] compared 

the performance of ANN and a random kitchen sink 

(RKS) algorithm on modelling SCC tensile strength. 

Although these two networks showed high accuracy in 

the prediction, RKS worked better for large datasets. 

However, there is insufficient literature on predicting 

both fresh and hardened properties of SCC 

incorporating fly ash. 
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The aim of this study is to provide a fully trained 

effective ANN model for predicting the main 

properties of SCC mixes containing fly ash based on 

proportions. After briefly introducing ANN models 

and the back-propagation network, the parameters are 

described, and databases were normalized. Then, the 

proposed ANN model was trained and validated to 

assess the performance by mean square errors and 

correlation coefficients. Finally, a parametric analysis 

on the effect of fly ash content and water to binder ratio 

on SCC properties was carried out.  

2 Artificial neural network (ANN) 

2.1 ANN model 

The artificial neural network is an AI-based method 

that aims to realize specific functions by imitating the 

biological neural structures of human beings. 

Essentially, it is the mathematical model to reason 

about complex logical relationships and process 

information efficiently. The fundamental processing 

unit of ANN is the artificial neuron, which is 

constructed through the preliminary understanding of 

the human brain system. Each neuron can receive the 

signal from connected neurons with various weights, 

which reflect the strength of influence between neurons. 

An ANN map contains two or more layers, including 

one input layer, one output layer, and any number of 

hidden layers. The input and output neurons are 

determined by proposed problems. However, the 

number of hidden layers and their nodes are selected 

by optimum results of repeated trials. Furthermore, the 

performance of ANN models is significantly 

influenced by activation functions between layers, such 

as linear, sigmoid, hyperbolic tangent and piecewise 

functions.  

As a multi-layer feedforward network, back-

propagation (BP) is the most commonly used learning 

algorithm of ANN. Figure 1 shows the typical structure 

of a BP network with the input layer (M neurons), 

output layer (N neurons) and one hidden layer (L 

neurons). In the network, 𝑥1, ⋯ , 𝑥𝑖 , ⋯ , 𝑥𝑀  are actual 

input data, 𝑦1, ⋯ , 𝑦𝑖 , ⋯ , 𝑦𝑁 are actual output data, and 

𝑡𝑗  (𝑗 = 1,2, ⋯ , 𝑁) represents the target output value. 

The output error is expressed by 𝑒𝑗 = 𝑡𝑗 − 𝑦𝑗  (𝑗 =

1,2, ⋯ , 𝑁) and then back-propagated to the input layer 

for the weight adjustment of the network. Mean square 

error (MSE) is employed to determine the network 

performance using Equation 1. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡))2𝑛

𝑡=1         (1) 

2.2 Data collection and parameters 

To develop an accurate and well-performed ANN 

structure, complicated sources of datasets are needed 

for training, testing and validation phases. A total 

number of 242 groups of data were gathered from 31 

published papers [11-41]. Different evaluation 

indicators often have different dimensions and units, 

which will affect the results of data analysis. In order 

to eliminate the dimensional influence between 

indicators, Min-max normalization of data is required 

in the preparation stage.  

In this article, the components of SCC mixes 

containing fly ash, including cement, water, water to 

binder ratio (W/B), fly ash, binder, fine aggregate (FA), 

coarse aggregate (CA) and superplasticizers (SP), were 

selected as input variables. It has been demonstrated 

that all of these parameters have significant influence 

on the workability and hardened properties of SCC 

with fly ash. Four output variables predicted from the 

network cover the V-funnel time, the slump flow final 

spread diameter, and the compressive strength at 28 

and 90 days of SCC containing fly ash. For the 

workability of SCC mixes, V-funnel time and slump 

flow final spread diameter can be recoded as the 

measure of filling ability and flowability. The 

statistical information of input and output parameters 

are shown in Table 1. 

Table 1. Input and output parameters 

Components Minimum Maximum Average 

Input variables (kg/m3) 

  

Cement 0.00 670.00 356.76 

Water 138.00 331.50 189.34 

W/B 0.21 1.00 0.38 

Fly ash 0.00 439.00 139.70 

Binder 180.00 686.00 510.50 

FA 0.00 1180.00 676.97 

CA 0.00 1085.20 681.37 

SP  0.00 21.84 6.19 

Output variables        

  

V-funnel time (s) 1.31 34.00 8.21 

Slump flow (mm) 70.00 910.00 678.09 

28 days (MPa) 6.00 88.00 42.34 

90 days (MPa) 10.00 92.00 44.30 

Fig. 1. The architecture of an ANN model 

MATEC Web of Conferences 361, 0 (2022)
Concrete Solutions 2022

5005 https://doi.org/10.1051/matecconf/202236105005

2



2.3 BP network modelling 

The use of multi-layer neural network technology can 

realize the nonlinear mapping from the input layer to 

the output layer, so as to realize the nonlinear 

prediction of the constituents and properties of SCC 

mixes. The steps of training the BP network are 

summarized in Figure 2. To conduct an ANN model 

with good applicability, a MATLAB program was 

developed using the neural network toolbox (R2021a). 

The input databases were divided randomly into three 

groups, including 70% for training, 15% for validating 

and 15% for testing. Levenberg-Marquardt was chosen 

as the training algorithm. All training parameters for 

this model are summarized in Table 2. 

 

Fig. 2. BP neural network training process 

Table 2. Information of the ANN structure 

Parameters  

Number of input variables 8 

Number of the hidden layer 1 

Number of neurons in the 

hidden layer 
10-17 (17) 

Number of output variables 4 

Training function Levenberg-Marquardt 

Transfer functions 
Sigmoid for hidden layer 

Linear for output neurons 

Performance function Mean Squared Error 

Training epoch 20 iterations 

Training error 10−6 

Different from the number of nodes in input and output 

layers, the size of the hidden layer is mainly decided by 

the BP structure and quality of the training pattern [42]. 

Here, the ANN network with one hidden layer and 10-

17 neurons was considered. The most appropriate 

number of nodes in the hidden layer relies on the model 

performance, which was evaluated by MSEs and R 

values, as shown in Figure 3. The regression values R 

measured the correlation between output and target 

numbers. The values close to one mean a stronger 

connection. Accordingly, the network with structure 8-

17-4-1 (each number presents the number of nodes in 

each layer) performed best, which was chosen for the 

following training process. It can be seen from Figure 

4, output values predicted by ANN showed a 

significant correlation with experimental data and the 

network provided a high estimation accuracy.  

Fig. 3. Performance of the BP network with different sizes 

of the hidden layer 

2.4 BP network validation 

The validity and accuracy of a well-trained ANN 

model are influenced by many factors, such as 

databases and network parameters. Thus, to evaluate 

the neural networks and to circumvent potential 

problems, it is necessary to validate the BP neural 

network by introducing more unknown data in the 

range of input parameters used in the training part. The 

validation dataset contains 21 groups of SCC mixes 

collected from different experimental resources 

available in literature [5, 43, 44]. The difference 

between the predicted results from the existing ANN 

model and actual validation data is summarised in 

Table 3. The mean absolute percentage error (MAPE) 

was employed to evaluate the accuracy of the model, 

as shown in Equation 2.  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)−𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡)

𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)
|𝑛

𝑡=1 × 100%  (2) 

In Table 3, values of MAPE for predicting V-funnel 

time, slump flow final spread diameter and 

compressive strength at 28 and 90 days are 16.9%, 

1.9%, 6.6% and 6.5%, respectively. The error in V-

funnel time is because a high volume of aggregates and 

high viscosity mixture can easily stick to the surface of 

the funnel, which will affect the flowing time. It has 

been indicated that the proposed ANN model can 

accurately predict these properties of SCC mixes with 

fly ash.  

10 11 12 13 14 15 16 17

0.0

0.5

1.0

1.5

2.0

M
S

E
 (

1
0

-2
)

Number of nodes in the hidden layer

 MSE

 R

0.0

0.2

0.4

0.6

0.8

1.0

C
o

rr
e

la
ti
o

n
 c

o
e
ff

ic
ie

n
t 

R
 

MATEC Web of Conferences 361, 0 (2022)
Concrete Solutions 2022

5005 https://doi.org/10.1051/matecconf/202236105005

3



0 100 200 300 400 500 600 700 800 900 1000

0

200

400

600

800

1000

0 5 10 15 20 25

0

5

10

15

20

25

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

 95% confidence band

R=0.784

1:1 line

P
re

d
ic

te
d
 s

lu
m

p
 d

ia
m

e
te

r 
(m

m
)

Experimental slump diameter (mm)

 95% confidence band

P
re

d
ic

te
d
 V

-f
u
n
n
e
l 
ti
m

e
 (

s
)

Experimental V-funnel time (s)

1:1 line

R=0.711

 95% confidence band

R=0.951

1:1 line

P
re

d
ic

te
d
 c

o
m

p
re

s
s
iv

e
 s

tr
e
n
g
th

 a
t 

2
8
 d

a
y
s
 (

M
P

a
)

Experimental compressive strength at 28 days (MPa)

 95% confidence band

R=0.982

1:1 line

P
re

d
ic

te
d
 c

o
m

p
re

s
s
iv

e
 s

tr
e
n
g
th

 a
t 

9
0
 d

a
y
s
 (

M
P

a
)

Experimental compressive strength at 90 days (MPa)

 

Fig. 4. Correlation between the experimental and predicted values of output parameters  

Table 3. The comparison of actual and predicted parameters of validation databases 

Author Year 
V-funnel time (s) Slump flow (mm) 

Compressive strength (MPa) 

28 days 90 days 

Exp. ANN e (%) Exp. ANN e (%) Exp. ANN e (%) Exp. ANN e (%) 

Matos et al. 

[5] 
2019 

14.0  11.5  17.8  685  683  0.3  54.0  54.1  0.2  64.0  66.4  3.7  

9.0  12.3  36.4  700  683  2.4  57.0  56.5  0.9  70.0  68.2  2.6  

10.0  12.4  24.1  698  679  2.8  63.0  58.8  6.7  75.0  67.9  9.5  

9.0  10.3  14.2  715  688  3.7  46.0  49.2  6.9  58.0  58.5  0.8  

12.0  11.7  2.7  680  686  0.9  57.0  54.2  4.8  60.0  64.4  7.4  

13.0  12.9  0.6  675  687  1.8  59.0  57.4  2.8  74.0  68.6  7.4  

9.0  8.1  10.2  695  706  1.5  35.0  36.7  5.0  46.0  43.0  6.6  

8.0  10.0  24.5  710  700  1.4  39.0  44.4  13.9  54.0  55.5  2.7  

14.0  11.9  15.2  695  698  0.4  43.0  51.0  18.5  63.0  65.2  3.6  

Anjos et al. 

[43]  
2020 

4.6  5.8  26.3  625  650  4.1  60.1  54.1  10.0  63.0  58.1  7.8  

4.8  5.7  18.9  700  704  0.6  27.8  25.1  9.7  37.5  41.1  9.7  

12.0  11.2  6.6  700  706  0.8  40.9  39.1  4.4  58.3  51.0  12.6  

13.9  6.0  56.7  670  692  3.3  32.6  30.5  6.5  38.3  41.0  7.1  

12.8  12.2  4.5  700  704  0.6  40.0  39.3  1.7  46.5  50.2  8.0  

5.9  5.1  12.4  750  750  0.0  20.0  22.0  10.1  32.1  31.9  0.7  

6.1  6.1  0.6  745  740  0.6  28.4  25.2  11.2  40.7  37.6  7.5  

9.1  5.9  35.6  740  756  2.1  23.0  25.3  10.1  28.0  23.3  16.8  

10.4  6.6  36.2  665  741  11.4  27.5  28.7  4.5  33.5  30.1  10.3  

Choudhary et al. 

[44] 
2020 

7.0  6.6  5.4  725  724  0.2  55.6  57.0  2.5  60.0  59.0  1.6  

6.9  7.3  5.6  735  730  0.7  54.0  53.2  1.5  59.0  60.2  2.1  

7.3  7.3  0.3  740  738  0.2  45.0  47.9  6.3  56.0  60.3  7.7  

MAPE (%)     16.9      1.9      6.6      6.5  
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Fig. 5.  SCC mixes properties vs different content of W/B ratio and fly ash content 

3. Effect of fly ash content and water to 

binder ratio on SCC properties 

It is known that the effect of mineral admixtures on 

fresh and hardened properties of SCC is nonlinear with 

uncertainty, which is difficult to describe by statistical 

analysis. This section gives a reliable parametric 

assessment to evaluate the influence by predicting SCC 

properties based on the proposed ANN model. In this 

analysis, input variables related to the fly ash content 

and W/B ratio were independent, whereas others were 

set as constant. The sensitivity of SCC properties 

predicted by the ANN model to changes in fly ash and 

W/B ratio was evaluated in Figure 5. The results 

showed that all SCC mixes meet the requirements 

according to EFNARC [45]. 

As seen in Figure 5, slump flow final spread 

diameters increase with increasing fly ash content from 

10% to 60% for all mixes. The increase of flowability 

of SCC containing fly ash was reported by many 

researchers [4, 39, 46].  The adverse trend can be found 

in V-funnel times, which can be explained by the 

spherical-shaped and fine particles of fly ash resulting 

in improvement of workability. Any substitution level 

of fly ash reduces compressive strength both at 28 days 

and 90 days with the constant W/B ratio. Equivalent 

findings have been reported in published papers [3, 44]. 

Compared to the hydration of pure cement in SCC 

mixes without fly ash, a slower pozzolanic reaction 

takes place between fly ash and 𝐶𝑎(𝑂𝐻)2 in hydrated 

cement. The increased replacement level of fly ash 

reduces the amount of cement, resulting in a lower 

𝐶𝑎(𝑂𝐻)2  content and a decrease in compressive 

strength [47]. At a given fly ash content, fresh 

properties of SCC mixes increase with the increase of 

the W/B ratio. However, values of compressive 

strength reduce as the W/B ratio increases from 0.3 to 

0.4. The compressive strength of SCC mixes with a 

W/B ratio of 0.4 decreases more with increasing fly ash 

content up to 60%. 

4. Conclusions 

This research discussed the performance of an artificial 

neural network on predicting fresh and hardened 

properties of SCC mixes containing fly ash. The back-

propagation network was trained based on the 

Levenberg-Marquardt algorithm. Moreover, the 

accuracy of the model with the different number of 

nodes in the hidden layer was investigated and ANN 

with 17 neurons was chosen for the training and 

validation process. Based on results of this study, the 

following conclusions can be drawn: 

1. The predicted results of three groups in the 

modelling part comply well with databases of 

experimental results. 

2. The fully trained ANN model has great potential 

in predicting properties of SCC, such as the V-

funnel time, the slump flow final spread diameter, 

and the compressive strength at 28 days and 90 

days. Mean absolute percentage errors for each 

variable are 16.9%, 1.9%, 6.6% and 6.5% 

respectively. 

3. The proposed ANN model contributes towards 

analysing the effect of fly ash content and water to 

binder ratio on the sensitivity of SCC properties.   
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