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Abstract. A bridge digital twin (DT) is expected to be updated in near real time during inspection 

and monitoring but is usually subject to massive heterogeneous data and communication constraints. 

This work proposes an efficient framework for a bridge DT with decreased communication 

complexity to achieve updates synchronously and provide feedback to the physical bridge in time. 

The integrated edge computing and non-cellular long-distance wireless communication enable DT 

resilience when cloud servers become unresponsive due to the loss of internet connection. This 

framework is validated by different scenarios for DTs in support of bridge inspection and 

monitoring. It is demonstrated that the framework can enable dynamic interaction between on-site 

inspection and online bridge DT during the survey as well as knowledge transfer among different 

sectors in time. It can also support local decision-making on a single bridge as well as regional 

dynamic coordination for multiple bridges without cloud-server involvement.  

1. Introduction

Bridges serve a critical role in transport systems, and their failure will result in traffic disruption, 

economic loss, and even severe casualties. According to the ASCE report in 2021, 6154 or 7.5% 

of the nation’s bridges are considered structurally deficient in the US, and unfortunately 178 

million trips are taken across these bridges every day (ASCE, 2021). Therefore, regular 

inspections and effective monitoring of bridges are mandatory in many countries. A bridge 

digital twin (DT) is a promising tool for bridge management and predictive maintenance (PdM), 

which is expected to be updated in near real time as new data is collected, as well as provide 

feedback to the physical bridge for assessment and prediction in time (Ye et al., 2019). For 

example, bridge DTs can release early warnings (load restriction, closure, etc.) for bridge 

capability based on real-time simulation, can provide dynamic responses based on monitoring 

and prediction with real-time data, and can enhance the efficiency of collaboration among 

different stakeholders. However, data transmission in real time (or near real time) has not been 

well addressed under situations with massive heterogeneous data and various communication 

constraints (low data rates, small payload size, limited duty cycle, etc.), especially for the 

bridges in remote areas without a stable cellular network. Moreover, the cloud-based DT 

services will become unavailable when the cloud server is unresponsive, e.g., the internet 

connection is lost. This brings in potential risks for both physical bridges and people on the site 

when an emergency has been predicted to take place. 

This paper aims to propose an efficient and resilient framework for a bridge DT via edge 

computing and non-cellular long-distance wireless communication to tackle the issues stated 

above. In this framework, massive heterogeneous data generated from drone inspection and 

real-time structural health monitoring (SHM) are interpreted into the information required for 

relevant DT services (e.g., visualization, structural analysis, prediction) in reduced forms (e.g., 

semantic information, geometric coordinates, binary profiles), thus decreasing communication 

complexity and cloud-processing burden significantly and achieving DT updates in near real 

time. Then by fusing the transmitted information with multi-source data, information and 

knowledge (e.g., life-cycle information, inventory, traffic, weather), the DT can provide holistic 

feedback (e.g., early warnings, inspection advice, optimized maintenance planning) to the 
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physical bridge in time based on AI and big-data analysis. Hence, this framework can enable 

dynamic interaction between on-site inspection and online bridge DT services, information 

exchange across different stakeholders, as well as knowledge transfer among different sectors, 

e.g., the knowledge gap between local inspectors and remote structural specialists (or drone 

inspection suppliers and bridge maintenance contractors). In terms of resilience, this framework 

can support local decision-making on a single bridge based on SHM, e.g., load restriction, as 

well as regional dynamic coordination for multiple bridges through non-cellular long-distance 

wireless communication without cloud-server involvement, e.g., decentralized dynamic 

evacuation. 

This framework is validated with different scenarios for DTs in support of bridge inspection 

and monitoring. It is demonstrated that the framework can enable effective updating and 

feedback between a physical bridge and its DT in near real time. The framework is suitable for 

long-distance wireless communication with low data rates (e.g., LoRa), and exhibits fault 

tolerance by operating autonomously at a local and regional level when the cloud server is 

unresponsive due to the loss of internet connection. 

2. Related Work 

2.1 Bridge Digital Twin 

A bridge DT is defined as a virtual representation of a physical bridge, which updates in near 

real time as new data is collected, provides feedback to the physical bridge and performs ‘what-

if’ scenarios for assessing asset risks and predicting asset performance (Ye et al., 2019). Bridge 

DT models can be created by building information modelling (BIM), physics-based approach 

(finite element modelling), data-driven approach (statistical modelling) and data-centric 

engineering approach (hybrid modelling), with the key features, including digital replica 

(geometry and others); data composition; bidirectional connection (update and feedback) in 

near real time; the life-cycle span of a physical bridge; common data environment (CDE); 

visualization; simulation; learning from real measurement data (Ye et al., 2019). Dang and 

Shim et al (Dang et al., 2018) developed a bridge maintenance system based on digital-twin 

models, including 3D geometry models and structural analysis models. The structural 

monitoring data (strain, displacement, loading, etc.) and the environmental data (temperature, 

wind, etc.) during operation are collected to provide essential information for bridge condition 

assessment and prediction. Structure deterioration is linked to the elements of the bridge, 

changing the structural parameters for analysis. Then, the bridge DT can be updated with each 

inspection and online monitoring to support decision-making for bridge maintenance. Dang et 

al. (Dang, Tatipamula and Nguyen, 2021) proposed a cloud-based DT framework (cDTSHM) 

for real-time SHM and proactive maintenance of bridges, which was demonstrated via both 

model and real bridges using deep learning for damage detection with high accuracy, but it 

requires advanced communication such as 5G, which brings in high service costs (infrastructure 

building, data charges, etc.) and is not suitable for bridges in remote areas without stable cellular 

networks. Meanwhile, when cloud servers are unresponsive, e.g., the internet connection breaks 

down, the cloud-based DT services such as early warnings will become unavailable. Moreover, 

from the practitioners’ view in the UK, a major gap between academic research and industrial 

practice towards applications of the digital twin supporting bridge O&M is the difficulty to 

keep the bridge DT updated in routine practice  (Ye et al., 2021). 
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2.2 IoT Wireless Communication 

Although wired networks are generally faster than wireless, the latter enables monitoring of 

remote bridges which used to be inaccessible by cables. The capability of different IoT wireless 

communication technologies is indicated in Figure 1 (Mekki et al., 2019; Foubert and Mitton, 

2020). Short-range wireless communication (e.g., WIFI, Zigbee) is suitable for data acquisition 

on site. Commercial cellular networks work at a medium range with higher service costs such 

as data charges. Meanwhile, with the rise of frequency bands, bandwidth and data rates increase, 

while ratio wavelength and coverage range decrease, i.e., distance 3G > 4G > 5G. For long-

range wireless communication, NB-IoT and LTE-M rely on existing cellular networks, while 

the others are non-cellular networks working on unlicensed ISM bands, which are suitable for 

remote areas where cellular communication is not available. However, long-range wireless 

communication technologies usually have limited data rates, e.g., NB-IoT (up to 158.5kbps), 

LoRa (sub-GHz, up to 50kbps), as well as limited payload size and a constrained duty cycle, 

e.g., LoRa has up to 250-byte payload size and 1% duty cycle. This results in the difficulty to 

update the bridge DT synchronously with massive heterogeneous data through long-range 

wireless communication. 

 

Figure 1: Capability of IoT wireless communication technologies (data rate vs distance). 

2.3 Bridge Inspection and Monitoring 

Drones are taken as a game-changer in bridge inspection, which can get less limited access as 

well as better angles to the areas difficult or dangerous for people to reach. Drone inspection 

for bridges is taken by payloads with fast data collection, e.g., thousands of points per hour for 

photogrammetry, and millions of points per hour for Lidar. Many approaches have been 

developed for drone inspection to detect surface deficiency automatically (e.g., cracking). Xu 

et al. proposed an end-to-end crack detection model for bridges based on a convolutional neural 

network (CNN), achieving a detection accuracy of 96.37% without pre-training (Xu et al., 

2019); Dorafshan et al. proposed an automatic crack identification and segmentation on a 

concrete surface with Otsu’s thresholding and morphological operations (Dorafshan and Qi, 

2016). Furthermore, Kim et al. developed a system for crack identification and measurement, 

equipped with a pre-calibrated camera and an ultrasonic distance sensor to obtain crack images 

and the distance from the camera to the target surface, achieving successful measurement for 

the cracks (thicker than 0.1mm) with the maximum length estimation error of 7.3% (Kim et al., 
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2017). Moreover, drones can be located with geo-coordinates (latitude, longitude and height) 

through differential positioning at centimetre-level accuracy (Bisnath, 2020), e.g., real-time 

kinematic (RTK), post-processing kinematic (PPK). 

Bridge SHM uses a sensor network attached to the bridge to acquire measurements in real time, 

including structural response (acceleration, strain, displacement, inclination, etc.) and ambient 

parameters (loading, temperature, wind, flood, etc.), and then employ data-driven approaches 

to assess bridge structural integrity, e.g., damage detection, remaining-useful-life prediction. 

The approaches can be indicator-based (e.g., natural frequencies, mode shapes) or direct use of 

data in the time and/or frequency domain. Kim et al. proposed a damage indicator with the 

vehicle-induced vibration from a set of multivariate autoregressive models in the case study of 

the ADA bridge with different artificial damages (Kim et al., 2021). Neves et al. employed an 

artificial neural network (ANN) with the train-induced acceleration data to identify the structure 

health conditions of the KW51 railway bridge (Neves, González and Karoumi, 2021). Sajedi 

and Liang proposed a framework for structural damage diagnosis based on a fully convolutional 

encoder-decoder architecture using the vibration signals from a grid sensor network, which can 

localize damages and distinguish multiple damage mechanisms with reliable generalization 

capacities (Sajedi and Liang, 2020). 

3. Methodology 

Drone inspection and real-time SHM have been accepted as effective approaches to indicate 

structural defects before maintenance. Current drone inspection for bridges is usually project-

based and updated asynchronously, which heavily depends on the expertise of inspectors in 

situ. Meanwhile, the huge amount of data from real-time SHM is also arduous for transmission, 

especially when wireless networks are required. Although pre-processing (e.g., downsampling, 

feature extraction) can decrease communication complexity to a degree, it will result in a loss 

of high-frequency information, and local services will become unavailable when the cloud 

server is unresponsive. Moreover, it is difficult to employ the approaches with direct use of data 

on the cloud, e.g., deep learning, which requires massive data transferred to the cloud. 

Advanced communication such as 5G/6G is supposed to solve these problems, but it also brings 

in high infrastructure investment and service costs. Therefore, as communication time is 

calculated with equation 1, instead of increasing transmission capability, if the massive 

heterogeneous data can be interpreted into critical information in reduced forms via edge 

computing, it can decrease communication complexity and cloud-processing burden 

significantly. The derived transmittable information depends on domain knowledge and DT 

services, e.g., damage mechanism, location and extent for structural assessment and prediction. 

Many technologies can play a significant role in this procedure, e.g., machine learning, 

knowledge representation, computer vision and SLAM (simultaneous localization and 

mapping). Meanwhile, the information in transmission should be as precise as possible, such as 

the damage profile, which means the loss before and during transmission should be minimized, 

e.g., the compression loss. Then the derived information can be updated in the bridge DT in 

near real time, and fused with multi-source data and information, e.g., life-cycle information, 

inventory, traffic, as well as domain-specialist knowledge, such as maintenance knowledge 

from similar bridges, to provide holistic feedback to the physical bridge in time.  

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦/𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ + 𝐿𝑎𝑡𝑒𝑛𝑐𝑦  (1) 

This strategy becomes available with the development of edge devices, e.g., MCU 

(microcontroller unit), SBC (single-board computer), FPGA (field-programmable gate array), 

as well as AI and deep learning development at the edge, such as edge AI and tinyML. The 
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edge-based processing in the strategy does not only generate the required transmittable 

information with low complexity but also supports decision-making locally and triggers 

autonomous responses on the bridge site via the control system such as actuators. The 

bidirectional data flow is shown in Figure 2. Furthermore, with non-cellular long-distance 

wireless communication such as LoRa, the strategy can enable regional dynamic coordination 

for multiple bridges (as well as other infrastructures such as tunnels) without cloud-server 

involvement via data transmission between adjacent edge devices such as sensor nodes and 

gateways. This is suitable for decentralized dynamic evacuation.  

 

Figure 2: Proposed strategy and data flow for a bridge DT. 

4. Framework Development 

The framework is developed for a bridge DT in support of both drone-enabled inspection and 

real-time SHM. It aims to use the derived information with low communication complexity 

from edge computing to overcome communication constraints in bandwidth, achieving 

synchronous updates in the bridge DT, as well as provide feedback to the physical bridge based 

on DT services in near real time. In the drone inspection, defect detection, localization and 

quantification can be taken on board or a control station and then transmitted in reduced forms 

to gateways via long-distance communication. The detection of defects (e.g., cracking) can be 

carried out by object detection such as YOLO. Defect quantification including dimensions, 

areas, etc., can be taken based on semantic segmentation by image processing or deep learning 

(e.g., DeepLab). An approach based on PPK is developed to provide defect localization in the 

bridge coordinate system, as indicated in Figure 3 and equation 2. The coordinates can be 

further linked to bridge elements based on geometric information. The crack direction (such as 

latitudinal or longitudinal) can be determined by drone position and camera angle. Given 

situations without stable GNSS signals, e.g., underneath a bridge, SLAM based on IMUs 

(inertial measurement units), and cameras (or laser scanners) can help to improve accuracy. 

 

Figure 3: Defect localisation in the bridge coordinate system. 
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Note: φ1, φ2 – base and drone latitude; λ1, λ2 – base and drone longitude; R is earth’s radius; Hdrone – 

drone height; Hbase – top receiver height; hequip – equipment height. 

In the real-time SHM, data collection to embedded systems on the site can be wired (e.g., 

fieldbus) or wireless (e.g., WIFI). Data transmission from embedded systems to gateways is 

based on a long-distance wireless network such as NB-IoT or LoRa. The algorithms and AI 

models are deployed on embedded systems in the framework, which can also support local 

decision-making. In addition, there is non-cellular long-distance wireless communication (e.g., 

LoRa) between adjacent gateways (or embedded systems), which can enable autonomous 

coordination for multiple bridges. This non-cellular network is designed as a supplementary 

approach to cloud-based communication, starting to work when the cloud server becomes 

unavailable, e.g., the internet connection is lost. Then the interpreted information required for 

DT services from both scenarios with low complexity can be transmitted via the internet to the 

cloud server (MQTT broker) and published to the DT applications (MQTT client) through the 

MQTT protocol, while the feedback based on DT services can be published to the broker and 

transmitted to the physical bridge and local inspectors in time, as shown in Figure 4. 

 

Figure 4: Proposed data transmission framework for a bridge DT. 
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5. Framework Validation 

Three scenarios for DTs in support of bridge inspection and monitoring are adopted for 

framework validation: 1) drone-enabled crack inspection; 2) vibration-based damage detection; 

3) decentralized dynamic evacuation. A LoRa module (embedded in Arduino MKR WAN 

1310) is used for data transmitting (TX) and receiving (RX). The Things Network (TTN) is 

used as the LoRaWAN network server and MQTT broker. The MQTT clients are created with 

Eclipse Paho to publish/subscribe messages. 

5.1 Scenario 1 – Drone-enabled Crack Inspection 

During drone inspection, the images of potential deficiency areas of a bridge are taken by the 

onboard camera. Here, the images are from the dataset created for automatic bridge crack 

detection (Xu et al., 2019). A laptop is taken as the control station. Firstly, the crack image is 

identified with a pre-trained CNN model with an accuracy of 96.05%. Then crack images are 

segmented with Otsu’s thresholding and morphological operations. Moreover, the dimensions 

(width and length) can be obtained with the spanned pixel number and pixel length 

(predetermined before the inspection by distances from the camera to a target surface). The 

crack location and direction can be determined by drone position, camera angle, and the 

distance from the camera to the surface with the developed approach (as indicated in Figure 3 

and equation 2). The crack coordinates can be linked to the bridge element based on geometric 

information. Moreover, the extracted binary profile is suitable for lossless compression (e.g., 

PNG) with the run-length encoding (RLE) to minimize image bytes, as shown in Figure 5. 

Compared to previous image transmission through LoRa (Pham, 2018), this method has less 

communication complexity with a lossless profile for cracking. 

 

Figure 5: Crack profile segmentation and compression. 

The derived defect information can be transmitted through LoRa and MQTT to a web-based 

bridge DT application. Then the DT can provide feedback based on domain knowledge to local 

inspectors in time, e.g., more in-depth inspection or even closure, as shown in Figure 6. 

 

Figure 6: Bridge DT in support of drone inspection with the proposed framework. 
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5.2 Scenario 2 – Vibration-based Bridge Monitoring 

The real-time vibration signals are collected in an embedded system on the bridge. Here, the 

acceleration data is from a VBM project of the KM51 bridge (Maes and Lombaert, 2021) 

generated by 6 uniaxial accelerometers before and after maintenance (damaged and healthy 

conditions respectively). Raspberry Pi 4 (Model B, 8G RAM) is taken as the SBC of the 

embedded system. The SVM models with statistical features (root mean square, shape factor, 

kurtosis, skewness, peak, impulse factor, crest factor, clearance factor) and wavelet-packet 

energy (at level-3 decomposition with sym4 wavelet) respectively are trained on the SBC for 

pattern recognition, achieving the accuracy of 91.45% and 96.58%. A 1D-CNN with input data 

(50176×6) from 6 accelerometers is trained on the Google Codelabs with the accuracy of 

95.73% and deployed on the SBC. Therefore, both SVM with feature extraction and CNN with 

direct use of data can make the inference for damage detection based on the embedded system, 

thus supporting decision-making (such as load restriction) on the bridge site without cloud-

server intervention. Then the derived structural health information (e.g., healthy or damaged) 

is transmitted to a web-based bridge DT application through LoRa and MQTT in near real time 

(as shown in Figure 7). Moreover, with a grid sensor network and specific algorithms for 

semantic damage segmentation (Sajedi and Liang, 2020), the derived information including 

damage mechanisms, locations, extent, etc., can also be transferred to the bridge DT in the same 

way. Finally, the feedback based on DT services (e.g., structural assessment and prediction) 

can be provided to the physical bridge reversely in near real time. 

 

Figure 7: Bridge DT in support of VBM through the proposed framework. 

5.3 Scenario 3 – Decentralized Dynamic Evacuation 

When the cloud server becomes unresponsive, e.g., the internet connection is lost, the 

framework will start autonomous coordination for multiple bridges based on a non-cellular 

long-distance network in response to emergencies, e.g., dynamic evacuation. Here in 

assumption, an area with 6 bridges is under the threat of flooding and the internet connection is 

lost. The LoRa sensor node for flood monitoring on each bridge is supposed to be Class B or C 

and activated by its adjacent LoRa gateway, which is built on a Raspberry Pi. Both gateways 

have multiple channels, allowing sufficient opportunities to uplink and downlink messages, and 

can also transmit data between each other through LoRa. The communication topology (left) 

and bridge network (right) are shown in Figure 8. The dash lines represent the LoRa network; 

the stars represent the gateways; the squares stand for the bridges; the full lines and the weights 

are for roads and distances between bridges. People need to transfer from the flooding area (left 

side of the dashed line) to the safety area (right side).  
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Figure 7: Communication topology (left) and bridge network (right) diagrams for simulation 

An open-source LoRa emulator (Al Homssi et al., 2021) is adopted here simulating TX and 

RX. To simplify the simulation, there are only two bridge conditions (Y – open, N – closed). 

The evacuation route is only updated as a gateway receives a message that a bridge becomes 

unavailable (closed), and the affected weights become infinitely great. Therefore, when a bridge 

is closed, the evacuation routes will be updated via edge computing on the gateways using the 

Floyd algorithm without cloud-server involvement, and then the results (as shown in Table 1) 

are downlinked to each node through LoRa. 

          Table 1:  Evacuation routes updated for each node 

Nodes Status / Shrotest Route and Distance Status / Shrotest Route and Distance 

A Initial / A C B S and 4 BN and EN / A F H S and 6.2  

B Initial / B S and 1 BN and EN / B D F H S and 6.4 

C Initial / C B S and 2.5 BN and EN / C D F H S and 6.2 

D Initial / D B S and 2.2 BN and EN / D F H S and 5.2 

E Initial / E S and 1 BN and EN / E F H S and 3.2 

F Initial / F E S and 2 BN and EN / F H S and 2.2 

G Initial / G F E S and 4 BN and EN / G F H S and 4.2 

H Initial / H S and 1 BN and EN / H S and 1 

6. Discussion and Conclusion 

This work proposed an efficient and resilient digital-twin communication framework to support 

smart bridge survey and maintenance. Thanks to decreased communication complexity, the 

framework can update the bridge DT synchronously during drone inspection and real-time 

SHM, as well as provide feedback based on DT services to the physical bridge in time. It enables 

dynamic interaction between on-site inspection and online bridge DT, as well as knowledge 

transfer among different sectors during the survey. The framework can support decision-

making locally for a single bridge as well as dynamic coordination for multiple bridges via a 

non-cellular long-distance wireless network without cloud-server involvement. It has the 

potential for automated drone-enabled bridge inspection in remote areas, which can be taken as 

an alternative to in-person regular inspection. Furthermore, ultra-low-power MCUs (e.g., 

Arduinos, STM32 microcontrollers) with limited memory and optimised algorithms for tinyML 
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are expected to be applied in this framework to provide bridge DTs with long-term performance 

based on batteries under the situation without cable-based power supply. 
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