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ABSTRACT 
Human-centric smart manufacturing (HCSM) is one of the 

essential pillars in Industry 5.0. Hence, human-machine 
interaction (HMI), as the centre of the research agenda for the 
advances of smart manufacturing, has also become the focus of 
Industry 5.0. As Industry 5.0 proposed three core concepts of 
human-centric, sustainable and resilient, the design orientation 
of HMI needs to change accordingly. Through understanding the 
state-of-the-art of HMI research, the technology roadmap of 
HMI development in the smart manufacturing paradigm can be 
shaped. In this paper, the focus is to review how HMI has been 
applied in smart manufacturing and predict future opportunities 
and challenges when applying HMI to HCSM. In this paper, we 
provide an HMI framework based on the interaction process and 
analyse the existing research on HMI across four key aspects: 1) 
Sensor and Hardware, 2) Data Processing, 3) Transmission 
Mechanism, and 4) Interaction and Collaboration. We intend to 
analyse the current development and technologies of each aspect 
and their possible application in HCSM. Finally, potential 
challenges and opportunities in future research and applications 
of HMI are discussed and evaluated, especially considering that 
the focus of design in HCSM shifts from improving productivity 
to the well-being of workers and sustainability. 

Keywords: Human-machine interaction; Industry 5.0; 
Human-centric Manufacturing; Edge computing; Internet of 
things; IoT; Smart Manufacturing; 6G; Internet of Everything; 
IoE. 
 
1. INTRODUCTION 

In 2020, the European Commission proposed the concept of 
Industry 5.0. It focuses on the well-being of workers and 

complements Industry 4.0 with sustainable, human-centric and 
resilient industries [1]. Industry 5.0 is driven by six enabling 
technologies:(1) personalised human-machine interaction (HMI) 
technology that will combine the strengths of humans and 
machines, (2) using digital twins to visualise systems, (3) wide 
application of renewable energy technology to improve the 
sustainability of production, (4) application of artificial 
intelligence technology to realise the analysis and processing of 
big data and complex environment, (5) application of smart 
material and bio-inspired technologies in the sensor to enhance 
its function, and (6) data transmission, storage and analysis 
technologies, such as IoT [2]. Comparatively, Industry 4.0 
focuses on automation and the productivity of machines [3], 
while Industry 5.0 focuses on providing customised, high-
satisfaction products and a production environment that is more 
environmentally friendly and caring for workers by putting 
people at the centre of production [1]. Therefore, the core of 
Industry 5.0 in the manufacturing field, Human-centric smart 
manufacturing (HCSM), has gradually attracted people's 
attention.    

According to the Smart Manufacturing Leadership Coalition 
(SMLC), smart manufacturing is defined as a data-driven, highly 
integrated collaborative manufacturing system that responds in 
real-time to changes in demand and environment [4]. In the 
context of Industry 4.0, there are two main driving factors for 
smart manufacturing, (1) the gradual replacement of mass 
production by individualised and customised production and (2) 
the popularisation of networked and intelligent equipment [5]. 

Therefore, the equipment based on the design concepts 
employed in current smart manufacturing cannot meet the 
human-centric demands of Industry 5.0. Since Industry 4.0, like 
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the previous industrial revolutions, is technology-driven, while 
Industry 5.0 is positioned as value-driven [6], the most 
significant difference between them is the difference in design 
philosophy and focus, rather than technology. Thus, this 
difference is particularly evident in the field of HMI. 

Since the 1970s, HMI-related research appeared, while 
automation start to be introduced into the engineering field. 
Some earlier research was dominated mainly by psychology and 
focused on psychological tests [7]. With the popularisation of 
new technologies, especially the widespread application of 
automation and digital equipment, research on HMI began to 
expand into more topics, such as knowledge acquisition, security 
research, time-sensitive (response within a specified time) tasks, 
human-machine task assignment, trust research. HMI research 
has generally developed from a single-domain static system 
(knowledge acquisition, psychological testing) to a multi-
domain dynamic, intelligent system (task-oriented, emotional 
interaction) [8]. This development has also benefited from the 
proliferation of sensors and embodied, situated automated 
systems brought about by artificial intelligence (AI) [9]. Sensors 
allow machines to perceive the external environment, and AI 
ensures that these systems can be trained based on data to adapt 
and respond to the environment. 

However, the emergence of Industry 5.0 has brought new 
challenges to HMI, which are mainly reflected in two aspects: 
(1) the human-centred demand of professional users in 
manufacturing scenarios, and (2) the increasing number of non-
professional users working in some domains [8]. Many HMI 
manufacturing scenarios have work and efficiency as the core 
objectives of the interaction, so the sensors and collected data in 
these scenarios often serve the manufacturing process [8, 10]. A 
lot of HMI studies struggle to meet the sustainable, resilient 
demands of Industry 5.0. Although some studies have focused on 
operator-focused topics such as safety and fatigue, these studies 
have not been widely used in HCSM [8, 11]. People-
centeredness still lack effective research and practice. The rising 
promise and popularity of vehicles that can drive themselves 
have stimulated research on the interaction process of non-
professional users [12], but this topic needs more work in the 
manufacturing field. With factory intelligence, automation, and 
the increasing amount of big data collected by sensors, it is 
unrealistic to expect future workers to understand all aspects of 
the whole system. Future HMI research needs to assume that 
workers may not acquire all the knowledge of the working 
machine and consider how to design interaction processes to help 
workers improve their interaction experience. Some researchers 
have begun to focus on using Extended Reality (Virtual Reality, 
Augmented Reality, Mixed Reality and other related technology) 
to provide users with a more accessible interaction model to 
understand and manipulate [13]. These studies offer new ideas 
for HMI in HCSM scenarios, but they also face many difficulties 
and challenges. 

Thus, it is necessary to summarise and review the existing 
HMI-related research to predict and discuss the development of 
HMI under the framework of HCSM in the future. This paper 
analyses the current HMI research from the following five 

aspects: 1) Overall framework of HMI, 2) Sensor and Hardware, 
3) Data, 4) Transmission Mechanism, and 5) Interaction and 
Collaboration. Industry 5.0 is not merely technology-oriented 
compared with Industry 4.0, so the analysis in this paper will 
focus on the shortcomings and differences in value orientation 
and design concepts and analyse potential challenges and 
opportunities in the future based on this theme. 

The structure of this paper is as follows. The first section 
introduces the paper's background, motivation, and related 
knowledge. Then the second chapter introduces the research 
methods of this paper, such as how to select relevant studies. The 
third chapter introduces and analyses state-of-art research in 
HMI from multiple perspectives. Based on the existing research, 
Chapter 4 discusses the future development of HMI in the HCSM 
field from two aspects: challenges and opportunities. Finally, the 
conclusion and references are given. 
2. METHODOLOGY 

This section introduces the approach used to search and 
classify recent publications related to HMI in the HCSM. The 
papers are searched in two steps shown in Figure 1. In the first 
step, the search string ("Human-machine interaction" AND 
"smart manufacturing") is defined to find papers that include a 
connection between HMI and smart manufacturing. Then, the 
string is used to search the title, abstract, or author keywords in 
the journal papers among the mainstream database, including 
IEEE Xplore, ScienceDirect, Springer Link, ACM, Scopus, up 
until 1st January 2022. Publication time (after 2019) was the 
main criteria for filtering at this search step, mainly because this 
paper aims to introduce the latest technology. 50 relevant papers 
were identified; among them, 13 are review papers, which 
presented different enabling technologies of HMI in smart 
manufacturing, such as different sensor technologies, 5G, IoT. 
Therefore, a new round of retrieval is conducted using these 
enabling technologies as keywords combined with smart 
manufacturing/HMI. Under this step, papers are filtered 
according to the criterion that is directly explored enabling 

FIGURE 1: TWO STEPS PAPER SELECTION AND 
EVALUATION PROCESS 
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technologies to improve the performance of HMI in smart 
manufacturing. Additionally, since HMI is a field established in 
1970, we examined the reference lists of the 50 papers to identify 
foundational papers in the past. Finally, the reviewed papers are 
classified based on four aspects: interaction and collaboration, 
sensors and hardware, data pre-processing, and transmission 
mechanisms shown in Table 1, which represents that the topics 
of reviewed papers are evenly spread over different HMI 
technologies. 
3. STATE-OF-THE-ART OF HMI IN SMART 

MANUFACTURING 
To better understand the current development of HMI in 

smart manufacturing, this paper proposes two classification 
methods for the current research in this field. The first method is 
based on the research of [14], which divides HMI into three top-
level categories: Human, Machine, and Interaction. Humans and 
machines belong to different categories due to their different 
nature. Since interaction is the most dominant behaviour in the 

process, it is also classified as a separate category. As shown in 
Figure 2, each primary category contains several more detailed 
second-level sub-categories. This method is very effective in the 
context of Industry 4.0, as it can help researchers evaluate 
research results and associated factors better. 

However, the disadvantages of this method are also 
prominent. Since it is not based on the interaction process but 
based on the research, it misses the problems faced by each 
process in HMI. Since this paper is to obtain HMI criteria 
suitable for HCSM through the analysis of existing HMI 
technology, it is necessary to study the design criteria and core 
elements in HMI according to the process. This paper aims to 
analyse the possible future development of HMI in HCSM by 
analysing each link in the process. Therefore, this paper will 
establish a process-centric HMI framework based on literature 
review and existing classification methods.  
3.1 Overall framework of HMI 

TABLE 1: LIST OF THE RECENT PUBLICATIONS OF HMI IN SMART MANUFACTURING  
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As mentioned, HMI has begun to be widely used in 
dynamic, intelligent systems. Compared with the static research 
focused on a specific field in the early days, the current HMI 
system is often more complex and diverse. Especially with the 
popularity of machine learning enabling big data analysis, this 
further increases the complexity of HMI systems. However, the 
interaction process remained unchanged. Therefore, it is possible 
to analyse and study the HMI framework according to the 
process. 

The process of HMI can be divided into the following four 
steps according to the collection, transmission and analysis of 
data: (1) the sensor collects the environment and input signals, 
(2) the signal is converted into data, (3) the data is transmitted to 
the processing centre. The process may include data pre-
processing and screening (4) interaction and collaboration. As 
shown in Figure 3, current research contributions on HMI are 
grouped under these four main categories. Unlike the three-
category approach, this framework will focus more on the 
technology and design goals used in the process. It can lay the 
foundation for predicting new applications and combinations of 
technologies after the design goals are changed in the HCSM 
scenario. 
3.2 Sensors and Hardware 

Smart manufacturing has been applied in many different 
manufacturing scenarios, so sensors in this domain are diverse. 
According to different design technology applied, these sensors 
can be divided into optical technology-based, acoustic 
technology-based, bionic technology-based, tactile technology-
based, motion technology-based [15]. According to the different 
interaction objects, these sensor devices can be divided into two 
categories: one is to collect non-human signals, such as ambient 

temperature, brightness, working equipment status, and the other 
is to collect human signals, such as heartbeat, body temperature, 
vision Capture, motion capture [16]. 

Sensors based on optical technology are mainly camera-
computer vision, LEDs and lasers also fall into this category, but 
they are used slightly differently. An optical HMI is ideal for use 
as a public interface because it does not require direct physical 
contact [15]. Camera - Computer Vision uses a camera to capture 
changes in the outside world and transmit this data to a 
processing device for processing. This technology has been 
widely used in domains such as gesture recognition, motion 
detection, and eye-tracking [17], and it has also been shown to 
have great potential in the realisation of virtual reality 
technology [18]. In smart manufacturing, it is indispensable in 
supply chain management and equipment/product positioning. In 
conventional manufacturing, increasing the number of cameras 
means increased regulatory work, so it is often seen as expensive, 
and the vast amount of data collected lacks effective means of 
analysis [19]. Nevertheless, the popularity of machine learning 
algorithms has laid the foundation for its large-scale application, 
and some research has begun to focus on using camera-computer 
vision to model workers for better real-time work and safety 
supervision. 

LEDs and lasers are often used as replacements for camera-
based HMIs because of their straightforward structure, limiting 
their applications [20]. They are often used in distance detection 
and touch sensors. Their future potential, therefore, lies mainly 
in complementing other sensors. 

Acoustic-based sensors are mainly based on speech 
recognition and sonic detection [15]. As a well-developed 
technology, sonic inspection has diverse applications in 

FIGURE 2: THREE TAXONOMY OF HMI RESEARCH FIGURE 3: FOUR TAXONOMY OF HMI RESEARCH 
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manufacturing, especially in fault detection and environmental 
analysis [21]. Speech recognition is also widely used and proven 
effective in manufacturing robots and workers' interactions. 
Considering that such interactions will become more frequent in 
future HCSM scenarios, acoustic sensors will also be widely 
used. At the same time, acoustic myography, an interesting 
branch of acoustic sensors, has also been proven to have broad 
application prospects [22]. It measures the acoustic properties of 
muscles as they contract. These sensors enable the human body 
to become part of the interface, like skeletal sound detection. 

Sensors based on bionic technology mainly detect biological 
signals for analysis through biology, computer science and 
robotics. This detection is often done through electrodes. For 
most sensors, the electrodes used were the same, with 
adjustments for the frequency of monitoring and level 
amplification [15]. These sensors are mainly divided into the 
electroencephalography-based brain-computer interface and the 
electromyography-based Myoelectric Interaction. There are also 
some studies based on electrooculography and 
electrocardiogram, but the proportion of these studies is 
relatively small. Brain-computer interfaces are the newest 
research in bionics and the most controversial, mainly due to the 
ethical and moral issues it may raise. The current brain-computer 
interface technology has realised the control of the robotic 
arm/wheelchair/mouse, and the bionic eye can restore vision for 
the blind [23, 24]. It is foreseeable that this will be a hot 
technology in Industry 5.0. Myoelectric interaction uses similar 
technology to the brain-computer interface, but its electrodes are 
mainly used to detect electrical signals from the muscles rather 
than the brain [22]. This technology has been used in human 
assistive limbs and exoskeletons in the industrial and is an 
essential part of caring for worker well-being. Sensors based on 
electrocardiogram and electrooculography have not been well 
used in the industrial field. Still, as the human-centred concept 
of Industry 5.0 begins to spread, they will also be used to care 
for and ensure workers' health. 

Tactile-based sensors are the only HMI sensors requiring 
physical contact and including all operable keys. Telerobot hand 
pressure and other force sensors are prime examples in the 
industry [25]. At the same time, as the centre of smart 
manufacturing begins to shift to human-centricity, tactile sensors 
will be better served by workers in work environments, 
especially given the role they can play in virtual reality. 

Motion technology-based sensors mainly utilise gyroscopes 
and accelerometer needles to detect motion during HMI 
processes. They are usually used in conjunction with other 
sensors. For example, it can be combined with the camera-
computer vision sensors to fully model interaction objects. These 
sensors are mainly used in wearable devices [26]. 

In the conventional smart manufacturing scenario, sensors 
that collect non-human signals still occupy the mainstream 
position. This is mainly because these sensors are designed for 
production efficiency and product quality. However, with the 
introduction of HCSM, human signals will become the most 
valued data in production scenarios, and these related sensors 
can also be promoted and applied. 

3.3 Data Processing 
After the signals are collected by sensors, they are converted 

into data and transmitted to end devices for analysis. However, 
these raw data often contain much noise and need to be pre-
processed. At the same time, although data pre-processing can 
filter out irrelevant data, the amount of retained data is still 
colossal. For this, suitable data analysis methods are required. 

In the late 1990s, academics at the Massachusetts Institute 
of Technology proposed the concept of the Internet of Things 
(IoT), the main goal of which is to digitise the real world, thereby 
creating a centralised network that can collect and process 
information [27]. There are three leading enabling technologies: 
(1) Radio Frequency Identification (RFID) and Near Field 
Communication (NFC) technology, which ensure the reception 
and transmission of data. (2) Wireless Sensor Networks (WSN) 
technology, which collects data and processes, analyses and 
transmits information through the extensive use of a large 
number of sensors; (3) Data Storage and Analytics, which makes 
it possible to generate and exchange large amounts of data 
through cloud storage [28]. IoT builds a system that can 
interconnect smart devices that integrate different 
communication technologies. 

To process the large amount of data stored in IoT, cloud 
computing was introduced into IoT architecture. Cloud 
Computing (CC) is a process of analysing and processing data 
from different devices in the cloud, and it aims to provide 
services to users in the cloud through data processing [29]. CC 
services can be divided into three categories: (1) Software as a 
service (SaaS), where users access apps and services provided 
by cloud service providers through the Internet, (2) Platform as 
a service (PaaS), where users rent from service providers 
Virtualized servers, which allow users to run their applications 
and provide computing power and capacity, (3) Infrastructure as 
a Service (IaaS), which allows users to manage and control 
software and hardware resources [27]. It has the advantage of 
accessing all relevant facilities and services anytime, anywhere. 

IoT and CC together lay the foundation for big data 
analytics. However, with the increasing number of connected 
devices in the IoT architecture and the increased timeliness 
requirements of manufacturing scenarios, this analysis method 
has ushered in its limitations. As the number of devices 
increases, the CC becomes less efficient, and the time required 
for data transfer cannot meet the real-time response requirements 
in many manufacturing plants [30]. Therefore, edge computing 
was introduced into IoT to solve this problem. 

Edge Computing (EC)is a technology that focuses on 
decentralising data processing from the cloud to the endpoint. In 
many industrial scenarios, the requirement for the response result 
of part of the data processing is real-time, so it is unrealistic to 
put this part of the data on the cloud for processing [27]. For 
example, in fault detection in the production process, if the 
machine waits for data to be transmitted to the cloud and then 
returns a response signal, the fault may have caused a series of 
severe consequences. At the same time, reliability, security and 
privacy considerations have also resulted in some data not being 
put into the cloud for analysis [31]. EC can effectively solve 
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these problems because the calculation is done at the device 
terminal and is not transmitted to the cloud. Another benefit of 
EC is that it can effectively reduce network load, thereby 
improving the efficiency of CC. In smart manufacturing, edge 
computing has been used in many scenarios, especially those 
equipped with processing chips. Some well-designed smart 
manufacturing processes can even achieve self-optimisation that 
relies entirely on equipment [32]. 

In EC and CC computing, machine learning is one of the 
most used methods. Because the data collected in the smart 
manufacturing environment has the characteristics of multi-
dimensional, intrinsic correlation and high complexity, machine 
learning is the most suitable method for analysing the 
manufacturing environment data [33]. The use of conventional 
machine learning algorithms in manufacturing is already 
familiar. In recent years, deep learning has also begun to have 
small-scale research and applications in manufacturing. 
However, since the prediction process of deep learning is still a 
"black box" for humans, it is challenging to meet the 
requirements of controllability and safety in industrial scenarios. 
For example, in some Predictive Maintenance (PdM) studies, 
although a deep learning algorithm is used to establish a failure 
prediction model, periodic human inspection and maintenance 
are still necessary [34]. 

However, deep learning can be expected to play a significant 
role in HCSM. As some human-related data begins to be 
collected in manufacturing scenarios, the analysis of this data 
will inevitably use deep learning. At the same time, due to the 
high fault tolerance rate of these human data, the requirements 
for controllability are relatively low, so the prediction model 
based on deep learning can be put into practical application 
faster. Also, the prediction model based on deep learning can be 
better trained for more changeable and personalised 
manufacturing scenarios, which meets the needs of Industrial 5.0 
for resilience. 
3.4 Transmission Mechanism 

IoT, CC and EC solve the processing problem of Industrial 
Big Data (IBD). However, collecting and transmitting data in 
WSN reliably and efficiently is another great challenge in smart 
manufacturing. In industrial scenarios, the environment is often 
complicated, and many factors such as electromagnetic 
interference, noise, signal attenuation, and high temperature will 
have a massive impact on the transmission quality. Therefore, an 
efficient and reliable data transmission mechanism is necessary. 

There are two main data transmission mechanisms in smart 
manufacturing, wired and wireless networks. The wired network 
"Industrial Ethernet" is the most widely used transport network 
in manufacturing environments [35]. It has the advantages of fast 
speed, high efficiency and strong anti-interference ability. 
However, this technology requires many connector devices, 
which leads to high maintenance costs, high failure rate and low 
scalability while taking up a lot of workspaces [36]. Therefore, 
as a representative of wireless technology, WSN has been 
adopted by many factories in recent years. A WSN usually 
consists of several wireless sensors that can collect various data 
in the environment and wirelessly transmit them to Data 

Terminal Equipment (DTE), such as cloud computing terminals 
or PCs. Although WSN can solve many problems in the wired 
network, the current WSN still has many deficiencies. Limited 
resources make it challenging to deploy in harsh environments, 
and security risks and privacy risks are four frequently discussed 
issues [37]. 

Therefore, the Internet of Everything (IoE) was proposed. 
IoE is a concept built on IoT, and it is an intelligent connection 
between people, processes, data and things, not just between 
devices [38]. IoE attempts to treat all parts of the entire 
environment as an intelligent whole, enabling optimisation and 
adjustment of resources and connections. 

The optimisation of the data transmission mechanism in 
smart manufacturing by IoE can be divided into two categories, 
hardware and software. In terms of hardware, it is mainly the 
application of EC in WSN. Simple data analysis and storage can 
be done on microchips or regional computing nodes [39]. This 
method effectively reduces the amount of data transmission in 
the network and the pressure on the central processing centre and 
improves transmission's privacy and security. Software 
optimisation is combined with hardware optimisation. For 
example, with machine learning algorithms, data transmitted by 
different sensors in industrial scenarios can be classified and 
clustered, thereby reducing energy consumption and improving 
efficiency [33]. 

As one of the enabling technologies of Industry 5.0, 6G will 
also bring new opportunities for the data transmission 
mechanism in smart manufacturing. Compared with 5G, 6G can 
provide ultra-high bandwidth, flow rate, reliability, ultra-low 
latency services, which will lay a solid foundation for integrated 
HCSM [40]. Although 6G also faces shortcomings such as short 
transmission distance and being susceptible to interference from 
obstructions, these problems will be solved by deploying EC 
equipment and applying artificial intelligence optimisation. 
Another considerable advantage of 6G is that it can improve the 
sustainability of production with advanced energy management 
schemes [41], thus satisfying industry 5.0 new demands on 
manufacturing. 
3.5 Interaction and collaboration 

Interaction and collaboration have always been the core 
goals and themes of HMI. In traditional HMI analysis, three 
research themes have been discussed, human-machine function 
and task allocation, trust and workload allocation. It is 
foreseeable that these topics will still receive continued attention 
in the HCSM scenario. Therefore, discussions on these topics are 
essential. At the same time, based on our understanding of 
HCSM scenarios and requirements, this paper will also discuss 
several topics that are expected to play an essential role in 
implementing HMI in HCSM. 

Since the introduction of automated equipment and 
machines into industrial production, the assignment of tasks and 
functions between humans and machines has been emphasised. 
The original intention of introducing automated equipment and 
machines was to perform highly repetitive tasks. However, as the 
level of automation increases, in many industrial scenarios, they 
are responsible for most tasks, while human operators are only 
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responsible for supervision and some crucial determinations. 
However, an important problem with introducing automation is 
the "irony of automation", which means operators change work 
strategies and behaviours in an automated environment [42]. 
Some drivers experience prolonged visual distraction prior to an 
accident [43]. As the number of non-professional operators 
grows, it is foreseeable that this misallocation of tasks may also 
occur in HCSM. Especially under the guiding ideology of 
human-centred, it is necessary to let human operators understand 
their tasks and responsibilities quickly and efficiently. 

As the second most-appreciated topic in the HMI area, trust 
is often discussed with incorrect use and confusion. According 
to [44], interaction and collaboration in HMI can be divided into 
four scenarios, use, misuse (over-dependence and over-trust), 
disuse (do not use, do not trust) and abuse (do not consider the 
impact of introducing machines," irony of automation"). These 
four ways will affect the operator's trust in the device to varying 
degrees, affecting the interaction and collaboration process. 
Meanwhile, the second big problem faced in HMI is confusion. 
For example, in a power plant, since the power generation system 
is highly complex, part of the equipment is always in a state of 
maintenance, so the factory will always be in a state of multiple 
modes in parallel, and this will cause workers to work in a 
confusing mode. Requirement [45]. Such situations will also 
occur frequently in HCSM, so it is necessary to build appropriate 
confusion models to help workers understand and respond to 
work conditions [12]. 

Workload distribution is the third HMI area of most 
significant concern. In traditional HMI analysis, the primary 
purpose of rational workload allocation is to avoid underload and 
overload [46], thus ensuring work efficiency and production 
quality. A study of work environment alerts found that when the 
level of automation increases, operators are less sensitive to 
explosiveness [47]. This type of load research often ends up in 
attention management. As people replace work efficiency and 
work quality as the focus of industry 5.0, establishing a close 
partner relationship between any machine and focusing on 
worker fatigue and health will receive more attention. 

In addition to these topics studied in the HMI field for many 
years, with the advent of HCSM and industry 5.0, it is expected 
that some new topics will also receive increasing attention. 
Interdisciplinary research is one of the focuses of the next phase. 
The combination of psychology, engineering and computer 
science can better analyse and model workers' state and this will 
have a wide range of applications in HCSM [48]. Regulation and 
explainability are considerable challenges for the next phase of 
HMI, especially the black box problem brought by artificial 
intelligence and machine learning algorithms [33]. With the shift 
of the focus of work brought about by industry 5.0, how to 
change these unknown factors in the existing system and take 
into account the previously ignored factors to adapt to the new 
needs are the breakthroughs for the next stage of research. 

Moral and ethical considerations and humane improvement 
are also the focus of industry5.0. With the increasing proportion 
of automated devices in decision-making, how to design moral 
and ethical considerations into programs so that these decisions 

conform to human values should also be studied in more depth 
[49]. The humanisation improvement will mainly focus on the 
design of human-computer interaction pages. At the same time, 
the introduction of automation should also ensure that workers 
realise their creativity and value, rather than raising the level of 
automation blindly. 
4. TOWARDS HUMAN-CENTRIC SMART 

MANUFACTURING: CHALLENGES AND 
OPPORTUNITIES 

4.1 Challenges 
Figure 4 shows the correlation between different HMI 

topics/enabling technologies and HCSM expectations in four 
aspects: technical, worker wellbeing, moral and security. The 
colour scale ranges from 0 (white) to 1(black). 0 (White) 
represents the HMI topics/enabling technologies that do not 
correlate with HCSM expectation, and 1(black) means that HMI 
topics/enabling technologies are highly correlated with HCSM 
expectations. 

There are still many challenges in applying HMI in HCSM. 
These challenges are mainly divided into four aspects: 1) some 
enabling technologies are still not widely used in industrial 
production, such as brain-computer interfaces, 6G, 2) the human-
centred design concept has not been widely used in the existing 
HMI design, 3) How to train workers to adapt to the new work 
environment and mode, 4) Issues in existing HMI such as work 
assignment, trust. There have been lots of studies on these issues, 
but more research is required.  

Although the popularity of smart manufacturing has enabled 
most of the enabling technologies of Industry 5.0 to appear in the 
industry, there are still many new technologies in the 

experimental stage that have not been applied in practical 
scenarios [50]. First, because the cost of promoting and applying 
new technologies is relatively high, enterprises must consider 
economic issues as well as disruption to operations. Since the 
focus of Industry 5.0 is human-centric, sustainable and resilient, 
the application of new technologies should be seen as a long-
term investment, often without short-term benefits [51]. In 

FIGURE 4: THE CORRELATION HEATMAP BETWEEN 
DIFFERENT HMI TOPICS/ENABLING TECHNOLOGIES 

AND HCSM EXPECTATIONS 
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addition to this, ethical and moral issues are also a challenging 
point for many technological applications and need careful 
consideration, especially applications like brain-computer 
interfaces and virtual reality [8]. These new technologies should 
consider not only humanisation and convenience but also the 
privacy of workers and businesses [52]. Security issues are the 
third important consideration in the application process, 
especially in HMI. As the level of automation increases, the work 
of workers and machines in manufacturing environments will be 
redistributed, which will bring new safety hazards and 
considerations. 

As one of the cores of Industry 5.0, human-centric is not 
considered enough in the existing HMI design. Current smart 
manufacturing is still oriented towards work efficiency and 
production without always giving enough attention to the well-
being of workers [2]. For example, production-related data is still 
the key focus in data collection, which leads to the lack of data 
support for HCSM [41, 53]. In industrial scenarios, the existing 
sensors are mainly based on monitoring the environment and 
equipment, and the sensors in the next stage need to pay more 
attention to workers and their conditions [54]. 

Training workers' skills and ideas are and always will be a 
crucial challenge as will the extent to which training works over 
extended periods of time and how it transfers (or not) to other 
areas. In the HCSM scenario, workers are both professional and 
non-professional. Due to the high degree of automation and 
intelligence of the system, workers will be freed from daily work 
to do more creative work and enhance personal development and 
professional capabilities. At the same time, they should not be 
expected to have all the knowledge to understand the operation 
of the entire complex system [55]. Therefore, designing suitable 
training courses and guiding work to help workers adapt to the 
work environment and improve themselves will be the focus of 
future research. 

The three major themes in the HMI field, task distribution, 
workload distribution, and trust will continue to receive attention 
in HCSM. However, as the design concept changes, new 
problems will inevitably arise in these fields. Creating a safe and 
inclusive work environment for workers will be the new goal. 
Therefore, rationally distributing tasks and workloads and 
establishing trust between workers and machines to ensure safety 
and sustainability will still be challenges for HMI applications in 
HCSM [48]. 
4.2 Opportunities 
   As seen in Figure 4, some HMI enabling technologies 
introduced in this novel review paper already meet the demands 
of HCSM, however, some are not, and need forces more in future 
studies (Figure 4). Therefore, the emergence of HCSM will bring 
many opportunities for HMI, divided into the following three 
perspectives: 1) The application of new technologies and 
interdisciplinary research brought by the introduction of the 
human-centric concept and HMI design focus on sustainability 
and resilience. 2) Improvement of workers' well-being. 3) 
Improve the relationship between human and machine 
collaboration. 

Interdisciplinary HMI research has already emerged in 
Industry 4.0, but these are often machine-led. As people become 
the centre of production, these studies will focus on 
understanding human states and intentions. For example, by 
collecting data related to workers to build a state model of 
workers, machines can better cooperate with humans. At the 
same time, through the analysis of external human behaviour 
signals, the machine can better understand the short-term and 
long-term intentions of workers. In the design of the HMI 
interface, humanised design can also better bring closer the 
relationship between humans and machines. These require 
researchers to comprehensively combine cognitive science, 
engineering, psychology, computer science and other fields. As 
sustainability and resilience become the focus of the subsequent 
research phase, the guidelines and approaches to HMI design 
will also change. These designs will incorporate more renewable 
energy technologies and smart materials to enhance the 
capabilities of sensors while making them more energy-efficient 
and recyclable [2, 56]. 

The well-being of workers will be a new opportunity in 
HCSM, and workers will move from being seen as a "cost" to an 
"investment" [57]. This change means that the future HMI 
technology will consider the needs and diversity of workers. This 
adjustment can better protect workers' rights while also helping 
workers better utilise their expertise and creativity. 

In HCSM, HMI will also aim to establish a closer 
cooperative relationship, from the old task distribution model to 
a collaborative intelligence model. Many years ago, with the 
breakthrough of artificial intelligence technology, some 
researchers believed that AI would take workers' jobs [58]. 
However, research in recent years has found that the system's 
capabilities can be better improved when AI and humans 
collaborate intelligently. Therefore, the HMI in HCSM will 
establish the relationship of intimate partner between man and 
machine through more humanised and intelligent design, such as 
empathy machine. 
5. CONCLUSIONS 

In this novel review paper, we have demonstrated different 
enabling technologies of HMI towards HCSM. We illustrated a 
new classification framework to analyse the HMI based on the 
collection, transmission, and analysis process. We then discussed 
and analysed the state-of-art technologies in each process of the 
classification framework, such as sensors and other hardware, 
data and related transmission technologies, and different 
interactions and collaborations technologies. Through our 
analysis, we detected the gap between current HMI technologies 
towards the requirements of HCSM in Industry 5.0, which leaves 
a number of challenges and opportunities in the new era of 
HCSM, such as enhancing the security, efficiency, and privacy 
(including ethical considerations) in the HMI. By handling these 
new issues and challenges through rigorous research efforts – 
and especially utilising multidisciplinary approaches to research 
challenges – a more optimal HCSM system could reach a result 
that can benefit all aspects of Industry 5.0. 
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