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Abstract5

We introduce a new solution concept called strong forward induction which

is implied by strategic stability in generic finite multi-sender signaling games

(Proposition 1) and can be easily extended to and applied in arbitrary exten-

sive form games with perfect recall. We apply this notion to infinite monotonic

signaling games and show that a unique pure strong forward induction equilib-10

rium exists and its outcome is necessarily non-distorted (Theorem 1). Finally,

we show that in this class of games the non-distorted equilibrium outcomes are

limits of stable outcomes of finite games (Proposition 2).
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1 Introduction

This paper studies a class of infinite monotonic multi-sender signaling games in the

spirit of Cho and Sobel (1992). We introduce a strong form of belief restriction

(dubbed strong forward induction) and, as our main contribution, we select a unique

equilibrium in these games. We also show that strong forward induction is implied5

by strategic stability (as defined in Kohlberg and Mertens (1986)) in finite generic

games and that our selected outcome is a limit of stable outcomes of approximating

finite games.

Banks and Sobel (1987), Cho and Kreps (1987), and Cho and Sobel (1990) suc-

cessfully rule out unintuitive equilibria in the single sender setting by the application10

of solution concepts which restrict the support of the receiver’s belief (these concepts

are: the intuitive, the D1, the Divinity, the D2, the Universal Divinity or the NWBR

criteria). We show by an example in section 2.3, that in the multi-sender setting highly

unintuitive equilibria may survive even forward induction (as defined in Kohlberg and

Mertens (1986) or as in Cho (1987)).15

The main weakness of these well known solution concepts when applied in the

multi-sender setting is that they are not taking into account the information conveyed

by the equilibrium signal of the senders who were (possibly) not deviating. This

information could obviously further restrict the support of the receiver’s belief and

yield stronger predictions (see our example in section 2.3). Such a belief restriction,20

called unprejudiced beliefs, is analyzed in Vida and Honryo (2021). They assert

that for generic finite multi-sender signaling games there is always an equilibrium

outcome which can be supported by beliefs which are unprejudiced and satisfy forward

induction at the same time. Roughly speaking, we say that such an equilibrium

outcome satisfies strong forward induction (henceforth: SFI). We prove their assertion25

now in Proposition 1 which states that for generic finite games strategically stable

outcomes satisfy SFI and hence, such an outcome generically exists.

The main contribution of this paper is that we apply the notion of SFI to a class

of infinite monotonic multi-sender signaling games and characterize the unique pure

SFI outcome (Theorem 1).30
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In our games the senders are assumed to have complete information and this

information is unknown for the receiver. This assumption about the information

structure is common and frequent in the literature with multiple senders, including a

huge part of the implementation literature, mechanism design, social choice and many

other settings in finance, industrial organization, law and economics and political5

economy.1 Our monotonicity assumptions are exact parallels of those in Cho and

Sobel (1992) tailored to the multi-sender setting.

The selected outcome is fully separating and the equilibrium signals are non-

distorted by the a priori asymmetric information (as opposed to the single sender case),

i.e. it is as if the senders and the receiver were playing a subgame perfect equilibrium10

of the associated complete information games where the receiver also knows what

the senders know. In Proposition 2 we state and prove that any such equilibrium

outcome is strategically stable in the finitistic sense (see the precise definition of the

finitistic approach in the Appendix). Hence, in this sense, in the spirit of Proposition

3.2 in Cho and Sobel (1992), we have also shown that in our class of games pure SFI15

outcome(s) are also (finistically) stable outcome(s).

The paper is structured as follows. In section 2 we set up the basic game, we define

our solution concept and provide an elaborated example. In section 3 we define our

class of infinite monotonic games, the notion of non-distorted outcome and state and

prove our main Theorem 1. In section 4 we discuss the advantages of the finitistic20

approach with the help of which some of our assumptions can be significantly relaxed

and state our Propositions 1 and 2. In section 5 we conclude. Some the definitions

and proofs are relegated to the Appendix.

2 The Model

First we define multi-sender signaling games. The formulation is based on Banks and25

Sobel (1987) and Cho and Sobel (1990). There are finitely many senders and the set

1Just to mention a few, see for example Bagwell and Ramey (1991), Battaglini (2002), Emons and
Fluet (2009), Bester and Demuth (2015), Schultz (1996), (1999), Zhang (2020) and Hartman-Glaser
and Hébert (2019).
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of senders is denoted by S with |S| > 1. There is also a single receiver. A generic

sender is denoted by i ∈ S and the other senders by −i. At the beginning of the game,

senders learn their common type which is unknown to the receiver. Namely, senders’

types are perfectly correlated. This information is the senders’ type t, an element of

the set of the first T integers, and we also denote the set of types by T . Senders’ type5

is drawn according to some probability distribution π ∈ ∆ϵT , where π is common

knowledge among the players and π(t) is the probability of t.2 We denote type t

sender i by (i, t). After the senders learn their type, each sender i simultaneously

sends a signal mi to the receiver. The set of possible signals for sender i is Mi, and

we denote Πi∈SMi by M. A generic signal profile is m ∈ M . The receiver responds to10

the senders’ signals by taking an action a from a set A. Sender i’s payoff function is

ui(t,m, a), and the receiver’s payoff function is v(t,m, a).

2.1 Strategies and Equilibria

We concentrate on pure strategies. We represent a pure strategy of sender i by mi(·),

where for each t, mi(t) ∈ Mi and we write m(·) for a profile of the senders’ strategies.15

We represent a pure strategy of the receiver by e(·), where for each m, e(m) ∈ A.

Any combination of pure strategies m(·) and e(·), together with π, induce a prob-

ability distribution over the terminal nodes of the game, which we identify with

T × M × A. This probability distribution over T × M × A is called the outcome

of the game induced by the strategies m(·) and e(·) and is denoted by [m(·), e(·)] .20

The receiver’s beliefs about the type of the senders after signal profiles is a collec-

tion of probability distributions µ = (µm)m∈M over T and let us write µ = (µm, µ−m)

where µ−m = (µm′)m′∈M\{m}. Our first simplifying assumption is:

A1. A = [a, a] and for all t,m: v(t,m, a) is a strictly concave and differentiable

function of a.25

We let e(µ)(m) be the unique best response to m ∈ M given the assessment µ and

2For any finite set X, ∆ϵX denotes the set of probability distributions for which we have that
π(x) ≥ ϵ for all x ∈ X.
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we denote by e(µ)(·) the corresponding strategy. That is:

e(µ)(m) := argmax
a∈A

T∑
t=1

v(t,m, a)µm(t).

A Perfect Bayesian Equilibrium (PBE) is a triple of strategies and assessments

(m(·), e(·), µ) that satisfies:

(1) Sequential Rationality: (a) e(·) = e(µ)(·) and (b) for all t and i : mi(t) ∈

argmaxmi
ui(t,mi,m−i(t), e(mi,m−i(t))),

(2) Bayes rule: for every t: µm(t)(t) =
π(t)∑

t′:m(t′)=m(t) π(t
′)
.5

2.2 The Solution Concept: Strong Forward Induction

Fix a PBE (m(·), e(·), µ) and let us denote by u∗
i (t) the equilibrium utility of (i, t)

in this PBE. We impose the following restriction on µ for certain out-of-equilibrium

signal profiles m. Consider any m for which there is an (i, t) such that m−i(t) = m−i

and there is no t′ such that mi = mi(t
′), and let us denote by Tm = {t|m−i(t) =10

m−i} ≠ ∅ for such an m. At such an m, the receiver knows for sure that sender i was

deviating. We are going to require that the receiver believes at such signal profiles

that sender i was deviating unilaterally (unprejudiced beliefs). Moreover, we are

going to require that the receiver cannot exclude the possibility of any such unilateral

deviation of sender i (open-mindedness), however most of the weight must be put on15

types for which the deviation is a weak best response (forward induction).3

To this end, let us set Fm = {t ∈ Tm|∃a ∈ A : ∀t′ ∈ Tm : ui(t
′,m, a) ≤

u∗
i (t

′), ui(t,m, a) = u∗
i (t)}. That is, Fm is the set of types t ∈ Tm such that for

(i, t) sending the signal mi is a weak best response.4

Fix an ε ≥ 0. We say that (m(·), e(·), µ) satisfies ε−strong forward induction if20

for all m at which the receiver knows for sure that some sender i was deviating, we

3We could have restricted beliefs for more out-of-equilibrium signal profiles, but it is not needed
for our result. In fact, we do not want to require open-mindedness at out-of-equilibrium signal
profiles where there is no sender about which the receiver knows for sure that he was deviating.
Compare this with footnote 17.

4We could restrict even more the set Fm by requiring that the action a in its definition must be
a sequentially rational action of the receiver for some belief.
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have that:

1. if Fm = ∅ or Fm = Tm then µm ∈ ∆εTm

2. if Fm ̸= ∅ and Fm ̸= Tm then µm(Fm) = 1− ε and µm(Tm \ Fm) = ε,

Point (1) and point (2) require that µm is concentrated on Tm, that is, the receiver

must believe that only sender i was deviating (unprejudiced beliefs). Point (2) requires5

that if possible, the belief puts a total weight of 1 − ε on those types of i for whom

it is a weak best response to send the signal mi (forward induction) and puts a total

weight of ε on those types of i for whom it is never a weak best response to send the

signal mi (open-mindedness). Otherwise by point (1), each type in Tm must get a

weight of at least ε.10

A PBE outcome [m(·), e(·)] satisfies strong forward induction if there is an ε̄ > 0

such that for all ε < ε̄ there is a µε such that (m(·), e(µε)(·), µε) satisfies ε−strong

forward induction.5

2.3 An Example

In this example we show that there is a distorted equilibrium which survives forward

induction but the equilibrium does not survive strong forward induction.6 Consider

the following setup inspired by Bagwell and Ramey (1991). Two firms learn their

common type t ∈ {0, 1}. For all i = 1, 2 firm i chooses a price mi ∈ [0,mi] and

receives profit according to (mi − t)(d −mi +m−i). Finally, the entrant chooses an

action a ∈ [0, 1], which can depend on the observed price vector m = (m1,m2). The

entrant’s utility is described by v(t, a) = −(t− 1+a)2. Firm i’s overall utility is given

5Given that m(·) is fixed along the sequence as ε converges to 0, we have that µε
m(t) =

π(t)∑
t′:m(t′)=m(t) π(t

′) is also fixed by Bayes rule for all t ∈ T and hence e(µε)(m(t)) = e(m(t)) and

[m(·), e(·)] = [m(·), e(µε)(·)] are also fixed, i.e. the outcome is fixed along the sequence. Open-
mindedness and ε play an important role and have extra bite only in infinite games and their role
becomes clear in the proof of Theorem 1 (see also footnote 17 and remark 2 in the Appendix for
further clarification).

6By forward induction we mean the definition of Never Weak Best Response of Cho and Kreps
(1987) or the definition of forward induction in Kohlberg and Mertens (1986). Strong forward
induction mainly differs from forward induction in that additionally to forward induction, the belief
is also restricted to be supported in Tm, i.e. unprejudiced beliefs are also required.
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by:

ui(t,m, a) = (mi − t)(d−mi +m−i) + ak,

where k < 0 is a constant. The interpretation is that d is a demand parameter, t

is a cost parameter which is unknown by the entrant but it is publicly known by

the firms. Firms set prices, that is, they send signals and receive the corresponding

profits. After observing the prices, the receiver, who is the entrant, chooses an effort

level of entry a. Firms like small effort levels, while the entrant chooses higher effort5

when his belief about the industry cost is lower. Let us fix d = 2 and k = −2.

In any separating PBE outcome it must be that m(0) = (2, 2), e(2, 2) = 1 resulting

in payoffs 2 for the firms of type 0. This is because type 0 firms in a separating

equilibrium face maximal effort by the entrant, their prices should be mutual best

responses to one another in the profit game as otherwise deviations to larger profit10

levels could not be deterred with higher effort. Suppose, however, that m(1) ̸= (3, 3)

that is, the equilibrium is distorted in the sense that the equilibrium signal profile of

type 1 firms is different from (3,3) which is the unique price profile where firms of

type 1 mutually best respond to each other in the profit game. Say m1(1) = 2.8 ̸=

(m2(1)+2+1)/2,m2(1) = (2.8+2+1)/2 = 2.9 and e(2.8, 2.9) = 0 because the entrant15

knows that t = 1 in any separating equilibrium. That is firm 2 is best responding to

firm 1’s price but firm 1 could increase its profit. This can be easily maintained as

a PBE outcome. To see this, suppose that firm 1 deviates to some m′
1 ∈ (2.8, 3.1)

which increases its profit. To deter such a deviation we can set the entrant’s belief

after the signal pairs (m′
1, 2.9) in such a way that the sequentially rational effort level20

of the entrant is sufficiently high. Say, the beliefs are concentrated on t = 0 and the

corresponding actions are 1. It is easy to see that given such beliefs firm 1 of type

1 has no incentives to deviate and increase its profit because that would induce too

high (maximal) effort from the entrant.

Notice that any belief for which the sequentially rational action of the entrant25

maintains the equilibrium must put a positive probability on the event that the firms

are of type 0, i.e. µ(m′
1,2.9)

(0) > 0. Such a belief, and hence the equilibrium, is ruled out

by strong forward induction, because the belief of the entrant must be concentrated
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on t = 1 given firm 2’s signal is m2(1) = 2.9 since the entrant knows for sure that

firm 1 was deviating and T(m′
1,2.9)

= {1}.

However, such beliefs, i.e. those having a positive probability on the event that the

firms are of type 0, are consistent with forward induction. Simple calculation shows

that for firm 2 of type 0 it is a weak best response to send the signal 2.9 and for firm 15

of type 0 it is also a weak best response to send any signal m′
1 ∈ (2.8, 3.1).7 It follows

that using only forward induction, the entrant cannot exclude the possibility that the

out-of-equilibrium signal profile is a consequence of the simultaneous deviations of

firms 1 and 2 of type 0 and hence the entrant is allowed to put positive weight on

t = 0.10

We show in the sequel that this game has a unique equilibrium which survives

strong forward induction in which type 0 firms set prices (2,2) and type 1 firms set

prices (3,3), i.e. equilibrium signals are non-distorted.

3 Monotonic Signaling Games, The Theorem

We consider a class of infinite multi-sender signaling games that satisfy certain mono-15

tonicity conditions, and which is a natural extension of the monotonic single sender

games considered in Cho and Sobel (1990). We show that in strong forward induction

equilibria (henceforth, SFI) of these games all types separate and equilibrium signals

are non-distorted. We state in section 4 and prove it in the Appendix that the fini-

tistic limits of stable outcomes are non-distorted. In this sense SFI implies stability20

in this class of games.

For simplicity we assume that the signal spaces are open real intervals.8

A0. For all i ∈ S and for all t ∈ T : ui(t,m, a) and v(t,m, a) are continuous in (m, a).9

A2. For all a′, a : a′ > a implies that ui(t,m, a′) > ui(t,m, a) for all i, t,m.

7Set µ(2,2.9)(0) = e(2, 2.9) = 0.595, µ(m′
1,2)

(0) = e(m′
1, 2) = m′

1(4 − m′
1)/2 − 1 ∈ [0, 1] for all

m′
1 ∈ [2.8, 3.1], resulting in a payoff u2(0, (2, 2.9), 0.595) = u1(0, (m

′
1, 2),m

′
1(4 −m′

1)/2 − 1) = 2 for
both firms of type 0 from the deviation to 2.9 and to m′

1 respectively, which is just their equilibrium
payoff. Clearly, firm 1 of type 1 has no incentives to deviate to m′′

1 = 2 given e(2, 2.9) = 0.595. For
other out-of equilibrium message pairs the beliefs can also be chosen to satisfy forward induction.

8We discuss the role of this simplifying assumption and how to dispense with it in footnote 14 in
the proof of our theorem.

9A0-A1 guarantees that e(µ)(·) is a function, which is continuous in µ and m.
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A3. For all (t,m), ∂v(t,m, a)/∂a is strictly increasing in t and for all m we have that

argmaxa∈A v(T,m, a) < a.10

A4. For each i ∈ S, for all mi,m
′
i,m−i, a, a

′, t, t′ such that mi < m′
i and t < t′:

ui(t,mi,m−i, a) ≤ ui(t,m
′
i,m−i, a

′) implies ui(t
′,mi,m−i, a) < ui(t

′,m′
i,m−i, a

′).11

5

Before stating our theorem, we define the notion of non-distorted outcomes. Con-

sider the degenerate incomplete information games indexed by t where the priors are

concentrated on t and the utilities, the signal sets, and the action set is exactly the

same as in the original game. For all t ∈ T , let us denote by N(t) ⊆ M ×A the set of

pure subgame perfect equilibrium outcomes [m, e(m)] of these games. Now consider10

the original incomplete-information game and an outcome [m(·), e(·)]. We say that

an outcome is non-distorted if for all types t, t′ ∈ T we have that m(t) ̸= m(t′) and

[m(t), e(m(t))] ∈ N(t).12

To ensure uniqueness and existence of SFI we need an additional assumption

about the complete-information games together with a technical assumption which15

significantly simplifies the exposition and the proof of our result. We discuss how to

dispense with this seemingly demanding technical assumption in Section 4.

B1. For all t ∈ T : |N(t)| = 1.

B2. For all t, t′ ∈ T, [m(t), e(m(t))] ∈ N(t), [m(t′), e(m(t′))] ∈ N(t′) : ∃i, j ∈ S :

mi(t) ̸= mi(t
′),mj(t) ̸= mj(t

′).1320

10A2 and A3 are the reasons why we call our games monotonic signaling games.
A2 indicates that all types of all senders have identical preferences over the receiver’s action and

prefer higher actions. We could have assumed that all senders prefer lower actions. Also, all of our
results hold with senders having monotonic preferences in different directions as long as the non-
distorted outcome is a PBE. This is the case e.g. when the number of senders is at least 3 and types
are separated at least by 3 senders (see the similar assumption B2 for two senders below, footnote
15, and how to dispense with this assumption using the finitistic approach in Section 4).
A3 together with A1 implies that e(µ)(m) is strictly increasing in µm in the sense of first-order

stochastic dominance. We could have assumed as well that ∂v/∂a is strictly decreasing in t.
11 A4 is a single crossing condition. It states that having fixed some pure signal of −i, if sender

i of a certain type is indifferent between two signal-action pairs and one signal is greater than the
other, then all higher types of sender i strictly prefer to send the greater signal and receive the
corresponding action. The assumption guarantees that higher types are more willing to send higher
signals than lower types. The single crossing condition can also hold in the other direction, i.e., with
t > t′, and can hold in different directions for different senders.

12 Notice that a non-distorted outcome is not necessarily a PBE outcome because deviations to
signal profiles where it is not sure that a certain sender was deviating, could not be deterred.

13B1 requires that the complete-information games possess a unique pure subgame perfect Nash
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We are now ready to state our main theorem.

Theorem 1. 1. Under B2, any non-distorted PBE outcome is an SFI outcome.

2. Under assumptions A0-A4, any SFI outcome is non-distorted and satisfies B2.

3. Under assumptions A0-A4, and B1-B2 there exists a unique SFI outcome which

is the non-distorted outcome.5

Proof. Statement 1: Given that B2 is satisfied, Tm is always a singleton at m−s where

it is sure that a certain sender i is deviating and hence, to comply with SFI, one must

choose µm(t) = 1 where t is such that m−i = m−i(t). But then by non-distortion

one can choose e(m) to be the subgame perfect action of the receiver in the complete

information game where the prior is concentrated on t. This e(m) deters such a10

deviation. Hence the construction of the (constant) sequence of ε−SFI equilibria is

trivial.

Statement 2: We prove the statement in 3 steps.

(1) All types separate: By contradiction, consider an ε−SFI outcome with a pool-

ing signal profile m. Given that the signal spaces are open, there is an m′ = (m′
i,m−i)15

such that m′
i > mi, there is no t ∈ T for which mi(t) = m′

i and i prefers higher actions

of the receiver by A2.14 By A4 and by A0,A1 and A3, m′
i can be and is a weak best

response only for the highest type t′ of sender i in the pool if m′
i is sufficiently close to

mi, i.e. F(m′
i,m−i) = {t′}. Hence, the belief at m′ must put probability 1− ε on t′. As

a consequence, if ε is sufficiently small, just as in the single-sender case, the receiver’s20

belief after m′ jumps upward to t′ relative to the one after the pooling signal profile

m. By A0, A1, and A3, this induces an upward jump in the receiver’s action resulting

in a profitable deviation for any type of sender i in the pool if m′
i is close enough to

mi.

equilibrium outcome (see e.g. Rosen (1965) for assumptions on the primitives applying them to the
Nash equilibrium of the game between the senders where the receiver’s action after any signal profile
is just his best reply given his belief is concentrated on any fixed t ∈ T .) B2 requires that in these
equilibria for any pair of types there is a pair of senders having different non-distorted signals for
this pair of types. Namely senders can separate all types with non-distorted signals, moreover each
type is separated by at least two senders.

14 If the signal spaces were compact, one can impose a technical assumption which is the multi-
sender counterpart of A6 in Cho and Sobel (1990) and rules out pooling at the critical corners of
M .
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(2) Any pair of types are separated at least by two senders: By contradiction,

suppose there are types t, t′ with t < t′ for which ∃!i such that mi(t) ̸= mi(t
′) and

m−i(t) = m−i(t
′). Choose t to be the smallest type for which this is true. Fix the ε > 0

and consider a deviationm′
i of (i, t) sufficiently close tomi(t) such that there is no type

t′′ for which mi(t
′′) = m′

i. Now by ε−SFI (i, t) can get an extra weight, in the belief5

of the receiver, of at least ε on some set of types t′′ > t, with which senders −i pool

with t. Hence, the receiver’s belief increases to µm′
i,m−i(t) >stoch. dom. µm(t)(t) = 1. The

receiver’s action also increases to e(µ)(m′
i,m−i(t)) > e(µ)(m(t)) if m′

i is sufficiently

close to mi(t), because ε is fixed, which results in a profitable deviation of (i, t) once

m′
i is sufficiently close to mi(t) and so, it is not too costly for sender i.10

(3) For all t : [m(t), e(m(t))] ∈ N(t) (non-distortion): By contradiction, suppose

that there is a t, i andm′
i such that ui(t,m(t), e(m(t))) < ui(t, (m

′
i,m−i(t)), e(µ)(m

′
i,m−i(t)))),

where µ(m′
i,m−i(t))(t) = 1, i.e. in the complete information game where the prior is

concentrated on t, sender i has a profitable deviation given that the receiver acts

sequentially rationally. Notice that m′
i can be chosen to be such that there is no t′15

for which mi(t
′) = m′

i. But then given that Tm = {t}, since every pair of types is

separated by at least two senders (see (2) above), SFI requires that µ(m′
i,m−i(t))(t) = 1

and hence it must be that e(m′
i,m−i(t)) = e(µ)(m′

i,m−i(t)) which together with the

above strict inequality indicates a profitable deviation for (i, t).

Statement 3: B1-B2 ensures that the non-distorted outcome is unique and all20

types are separated by at least two senders. Hence, by statement 2, this can be the

only SFI outcome. A2 ensures that it is a PBE outcome, i.e. after out-of-equilibrium

signal profiles, where there is no sender about whom the receiver knows that he was

surely deviating, the actions of the receiver can be chosen to deter deviations. It is

because all the senders prefer higher actions of the receiver and one can set beliefs25

concentrated on the lowest type of the possible deviators.15 By the 1st statement this

non-distorted PBE outcome is indeed an SFI outcome which concludes the proof of

the 3rd statement.

15If each pair of types are separated at least by 3 senders, the deviator can always be identified
after unilateral deviations and one could allow the senders to have different preferences about the
receiver’s action (see also footnote 10). In this case it is also true that all non-distorted outcomes
are PBE outcomes and they are also SFI outcomes (see also footnote 12).
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4 The finitistic approach

In this section we informally introduce the finitistic approach which allows us to tackle

the problems arose when dealing with infinite games and also allows us to connect

our solution concept to those available for finite games.

The finitistic approach allows us to think about outcomes of the infinite games in a5

broader sense, i.e. as the limit of outcomes of finite approximation of the infinite game

as the signal and action spaces become richer. Clearly, not every limit of outcomes

of approximating finite games is an outcome (in the usual sense) in the limit game

because types which may separate along the sequence may pool at the limit.16

Assumption B2 seems rather restrictive, moreover it is implied by SFI in our class10

of games. We argue in section 4.1 that the finitistic approach solves this problem and

we can dispense with B2. We also argue that the finitistic approach solves an even

more severe situation when for two types the corresponding subgame perfect signal

profiles completely coincide and these types can only separate with distorted signals.

The finitistic approach also allows us to connect our solution concept to those used15

in finite games. First, in section 4.2 in Proposition 1, we state that in generic finite

games, SFI is implied by strategic stability. Second, in Proposition 2 we state, that

in our class of games, non-distorted outcomes are limits of stable outcomes. Hence,

given statement 2 of Theorem 1, SFI implies stability in our class of games in the

finitistic sense. In the Appendix, we give a formal definition of the finitistic approach,20

and therein in Remark 2 we discuss the relation between the various limit and infinite

solution concepts and suggest a limit solution concept for infinite games in which B2

is not satisfied or in which the subgame perfect signals cannot separate certain types

at all.

4.1 Pooling only in the limit, dispensing with B225

Non-distorted outcomes are separated outcomes by definition. B2 requires a rather

strong form of separation. We argue now with the help of an example that we can

16The finitistic approach was introduced by Simon and Stinchcombe (1995).
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dispense with this strong form of separation once we allow outcomes in the infinite

game to be also the limits of outcomes of approximating finite games.

Consider the two-sender, two-type version of the job market signaling model of5

Spence (1973), where education does not increase the marginal products, types are

perfectly positively correlated and all of our assumptions but B2 are satisfied. In this

game, the corresponding subgame perfect equilibrium education levels are 0 for both

types and both senders and the situation is even more severe. Not only that the types

cannot be separated by the corresponding subgame perfect equilibrium signals of at10

least two senders, as it is required by B2, but they cannot be separated at all by these

signals. It is easy to see that in the finite versions of the multi-sender Spence model

there are ε−SFI outcomes in which the low types choose 0 education level and the

high types choose the lowest feasible education level, denoted by 0+, which is different

from 0 and hence both senders separate.1715

In the limit, types pool on the non-distorted 0 education level yet the action of

the receiver is different for the low and for the high types as they separate for both

senders along the equilibria of the approximating sequence.

4.2 Connection with stability

Consider the obvious generalization of SFI to mixed strategies in finite games. The

following proposition further justifies our solution concept using the notion of stability

17The only problematic possible deviation is for example that the high type of sender one chooses
0 education level. From the receiver’s perspective, after observing the signal profile (0, 0+), it is also
possible that the low type of sender two deviated to 0+. The belief of the receiver after this type of
out-of-equilibrium signal profiles is not restricted by ε−SFI because there is no sender about which
the receiver knows for sure that he has deviated. The receiver is allowed to believe that the low type
of sender two deviated to 0+ with probability 1. Hence, no matter how rich the signal space is and
how close 0+ is to 0, neither the low type of sender two nor the high type of sender one will have
incentives to deviate to 0+ or to 0 respectively.

We note that there is another (distorted) equilibrium of interest in which one of the senders chooses
the Riley outcome while the other sender pools on 0 education level. This outcome is also a limit of
SFI outcomes and it is also a 0-SFI but it is not an SFI as it is distorted and also violates B2 (see
statement 2 in Theorem 1). In fact, it is also a limit of stable outcomes. To see this notice that the
incentives of the low type of the pooling sender to deviate can always be stabilized and the argument
for the separating sender is the same as in the single sender case.
See Remark 2 in the Appendix for a definition of a finitistic solution concept which selects the

non-distorted outcome and rules out the distorted one.
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á la Kohlberg and Mertens (1986).18

Proposition 1. In generic finite games, stable outcomes satisfy strong forward in-

duction.5

Proof. See the proof in the Appendix.

According to statement 2 of Theorem 1, in monotonic games, SFI outcomes are

non-distorted. Together with the following proposition we have that SFI implies

stability in our class of games in the finitistic sense.

Proposition 2. Under assumptions A0-A3, a non-distorted outcome is the limit of10

stable outcomes of the approximating finite games.

Proof. See the proof in the Appendix.

5 Conclusion

We have introduced a new and powerful solution concept which can be easily applied

to any (even infinite) extensive form games with perfect recall. In generic finite15

multi-sender games it is implied by strategic stability and hence a solution generically

exists. In our main Theorem 1 we have shown how powerful this selection is in

monotonic infinite multi-sender games and demonstrated that the solution is non-

distorted. Moreover, we have also shown that the selected equilibrium outcome is a

limit of stable outcomes of approximating finite games.20
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Appendices30

6 Proof of Proposition 1, Definition of Stability

First we define stable sets of equilibria à la Kohlberg and Mertens (1986) for multi-

sender signaling games. Consider the (reduced) normal form Γ of a finite multi-sender

signaling game. Let σ = (σ1, . . . , σ|S|), where σi is a completely mixed-strategy of

sender i ∈ S.19 For δ > 0, consider the set of all normal form games Γ′ that have5

the same strategy space as Γ and for which for all i ∈ S there exists δi ∈ (0, δ), such

that if some strategy profile (σ∗, e(·)) is played in Γ′, then the payoffs are the same

as when each sender i ∈ S plays (1 − δi)σ
∗
i + δiσi and the receiver plays e(·) in Γ. A

game in this set is called a (σ, δ) perturbation of Γ.

Definition 1. A set of Nash equilibria of Γ is stable if it is minimal with respect to10

the following property: N is a closed set of Nash equilibria of Γ satisfying: for each

ϵ > 0, there is a δ > 0 such that for any completely mixed σ the (σ, δ) perturbations

of Γ have a Nash equilibrium ϵ-close to N .

Proof of Proposition 1: Consider a stable set. By Proposition 6(B) in Kohlberg

and Mertens (1986) this stable set contains a stable set of the game obtained by15

deleting strategies which are never weak best responses (inferior), e.g. those who are

not in Fm. By Theorem 1 in Vida and Honryo (2021) in generic games this stable set

then contains a PBE in which beliefs, after any m where there is a sender who was

deviating for sure, are supported on Fm if Fm is not empty, and on Tm if Fm = ∅.

Additionally the ε properties in point 1., point 2. can be also satisfied for some ε̄20

sufficiently small because the game is finite.

19For simplicity, we perturb only the strategies of the senders (just as in the literature of the
single-sender case), as we are interested in the beliefs generated by the stabilization of these trembles.
Abusing notation slightly, we can identify mixed and behavioral strategies.
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7 The Finitistic Approach for Infinite Games

We extend the scope of solution concepts defined for finite games to infinite games

following the finitistic approach introduced by Simon and Stinchcombe (1995) and

in Remark 2 below we define a limit solution concept for infinite games in which

B2 need not be satisfied or in which the subgame perfect signals might not separate

certain types at all and which selects the non-distorted limit outcome and resolves5

the multiplicity problem discussed in footnote 17.

Consider a multi-sender signaling game form G with Mi = [mi,mi] for all i ∈ S

and A = [a, a] being real compact intervals, with finite type space T , and fix the utility

functions of the senders u = (u1, . . . , u|S|) and of the receiver v, as defined in Section

2. A sequence of finite multi-sender game forms (Gn)n∈N is a finite approximation10

of G if the corresponding sequence of set of signals Mn
i and set of responses An are

subsets of Mi and A, respectively, and converge in the Hausdorff distance to Mi and

A, respectively, for all i ∈ S. For any Gn, consider the point in xn ∈ RdimGn
induced

by (u, v), where dimGn = (|S|+1)|T×Mn×An|, where Mn = Πi∈SM
n
i . Let B(xn, ϵn)

be the ϵn > 0 ball around xn, say, in the Euclidean metric, and let us choose open15

sets Dn ⊆ B(xn, ϵn) for all n with ϵn → 0. (Dn)n∈N is called a sequence of payoff

perturbations. Let R denote some solution concept for finite multi-sender signaling

games. Then:

Definition 2. Fix an infinite multi-sender signaling game form G with (u, v). We say

that λ ∈ ∆(T ×M×A) is a (pure) R* outcome of the infinite game if there is a finite20

approximation (Gn)n∈N of G together with a sequence of payoff perturbations (Dn)n∈N,

such that for any sequence (un, vn)n∈N, for which (un, vn) ∈ Dn for all n ∈ N, there

is a corresponding sequence of (pure) R outcomes (λn)n∈N : λn ∈ ∆(T ×Mn ×An) of

the games Gn, with (un, vn), weakly converging (in the weak* topology) to λ.

Remark 1. The requirement that the Dn sets are open in the definition is necessary25

because Proposition 1 holds only for generic games and we wanted to be sure that an

SFI* outcome always exists. We show in the supplementary material that a stable*
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outcome always exists.20 It then simply follows from Proposition 1 and from Definition

2 that an SFI* outcome also always exists. The proof of Proposition 2 also exploits

the fact that these sets are open.

Remark 2. In finite games any 0-SFI outcome is also an εn−SFI outcome for some

εn sufficiently small which may clearly depend on the level of approximation n (i.e.

on the richness of the signal spaces) and may converge to 0. It follows that SFI* and5

0-SFI* outcomes are the same, however, in infinite games not all 0-SFI outcomes are

SFI outcomes (see for example the one described in footnote 17).

We suggest the following solution concept: A limit outcome is SFI⋆ if there is an

ε̄ > 0 such that the limit outcome is ε−SFI* for all ε < ε̄.

The non-distorted limit outcome described in subsection 4.1 is SFI⋆ while the10

distorted outcome described in footnote 17 is not. It is because as the approximation

becomes finer, the corresponding εn > 0, which makes the distorted finite outcome to

be εn−SFI, must converge to 0.

8 Proof of Proposition 2

We prove the proposition for simplicity under the additional assumption B2 (see15

footnote 21 below how to dispense with this assumption) and only with two senders

(the proof directly generalizes to arbitrarily finitely many senders).

Consider a non-distorted outcome λ. Because of A2, it is a PBE outcome and one

can easily see that is also a PBE* outcome. Consider the pair (m(·), e(·)) for which

[m(·), e(·)] = λ. Look at the sequence of tuples (Gn, Dn, λn,mn(·), en(·))n∈N justifying20

λ such that mn(·), en(·) is a PBE of the game form Gn together with any utility

point un, vn ∈ Dn generating λn. Notice that by B2 we can choose this sequence

in a way that all the types are separated by both of the senders.21 Fix a utility

20 Srihari Govindan pointed out to us that the proof is simple by using the technique of Blume
and Zame (1994).

21We exploit assumption B2 at this point. In the absence of B2, one can argue that the approxi-
mating sequence can be chosen such that types separate on both sides. This can be done in a way
that any choice of a signal, which is a better reply in the complete information game, result in an
off signal pair where the deviator is not known. Then beliefs can be chosen freely and by A2 can be
set in such a way so as the sequentially rational action of the receiver deters such deviations.
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point yn = (un, vn) ∈ Dn and a ϵn such that mn(·), en(·) is a strict PBE and that

the non-distorted outcome is generated by strict subgame perfect equilibria for all

t for all y ∈ B(yn, ϵn) ⊆ Dn.22 Such a yn and ϵn exists by the genericity of strict

PBE and that the Dn sets are open. We show that λ is a pure stable* outcome for

a subsequence of (Gn)n∈N together with the sequence of open payoff perturbations

(B(yn, ϵn))n∈N. To this end, fix an n and some y ∈ B(yn, ϵn). Now we show stability5

of the whole component belonging to the outcome [mn(·), en(·)]. From now on we

suppress the superscript n. For simplicity, we perturb only the senders’ strategy and

with the same δ. The proof goes through for the case when these δ-s are different.

Fix an ε > 0. We design a δ̄ such that for all σ∗ strategy perturbation of the

senders for all δ < δ̄ we have an equilibrium (σ, e) of the (σ∗, δ) perturbed game10

such that σ is ε close to m(·). Fix a ξ < ε. We are going to set this ξ later to be

sufficiently small. Consider the following auxiliary game with the following strategy

perturbations of the senders. For each i ∈ S independently, nature chooses the signal

of sender i as follows:

(1) with probability δ signals are chosen according to σ∗
i ;15

(2) with probability (1− δ)(1− ξ) the strategy mi(·) is chosen.

With the remaining probability, which is (1 − δ)ξ, sender i is free to choose any

random signal in ∆Mi.

There must be a mixed-strategy equilibrium of this game. Denote the senders’

strategy in this equilibrium by σ. We show that in this mixed equilibrium, it must20

be that for all the types t of each sender i we have σi(mi(t)|t) > 0. Hence σ can be

transformed in the obvious way into an equilibrium of the game where sender i can

freely choose his signals with probability (1− δ) and with probability δ the signal is

chosen according to σ∗
i . Moreover, it will be ε-close, in fact, ξ-close to the original

component we have considered. We proceed by contradiction and assume that there25

is a t such that w.l.o.g. σ1(m1(t)) = 0. Hence there must be an m1 ∈ M1 such that

m1 ̸= m1(t) and σ1(m1|t) ≥ 1/k, where k = |M1| − 1. Let O1 = {m′
1 ∈ M1|∀t ∈

T,m1(t) ̸= m′
1} be the set of signals of sender 1 in the finite game that are never sent

22In strict equilibria deviators are always strictly worse off.
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in the original pure equilibrium. There are two cases to consider.

First, suppose thatm1 ∈ O1. Then the probability that the signal profile (m1,m2(t))

is sent by senders of type t can be bounded from below by (1− δ)2(1− ξ)ξ/k (inde-

pendently of σ∗). The probability that the signal profile (m1,m2(t)) is sent by senders

of type t′ ̸= t can be bounded (independently of σ∗) from above by ((1 − δ)ξ + δ)2.

Notice, that only k depends on n so we can choose ξ for each k to be sufficiently small

so that whenever δ < ξ the ratio:

((1− δ)ξ + δ)2

(1− δ)2(1− ξ)ξ/k
,

gets arbitrarily close to 0. That is, the receiver puts weight arbitrarily close to 1 on

the event that the signal pair arrived from senders of type t, and hence plays the

action e(µ)(m1,m2(t)), where µ(m1,m2(t))(t) = 1. Choose ϵn in such a way that the

complete-information equilibria remain strict in the finite payoff perturbed complete-

information game. But then sender 1 of type t gets strictly less, as opposed to sending5

the (complete-information) equilibrium signal m1(t) if ξ is small enough, which is a

contradiction. Hence σi(mi(t)) > 0 for all t for all i and then σ can be transformed into

a part of an equilibrium strategy in the perturbed game ξ−close to the component.

Second, suppose that m1 /∈ O1, that is, there is a t′ ̸= t such that m1 = m1(t
′).

By B2 there is only one such t′. It is easy to see that if σ is an equilibrium then it10

must be that σ2(m2(t)|t′) > 0. Otherwise, similar to the argument of the first case, the

receiver puts weight arbitrarily close to 1 in the event that the signal pair arrives from

senders of type t and we reach a contradiction. But by A2 and A3 it is impossible that

σ2(m2(t)|t′) > 0 and σ1(m1(t
′)|t) > 0 hold at the same time since then the receiver’s

belief will be arbitrarily close to a belief between t and t′. Assume that senders prefer15

higher actions of the receiver. Similar argument holds if senders prefer lower actions

of the receiver. Suppose that t < t′, but then sender 2 of type t′ is strictly worse off

by sending m2(t) than m2(t
′). If t > t′, a similar contradiction holds for sender 1 of

type t. Q.E.D.
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9 Supplementary Material, Stable* Outcome Ex-20

ists

For the existence of a stable* outcome one must show that if a stable outcome exists

for given payoffs then it also exists for all payoffs in a neighborhood of the given pay-

offs. To this end, for any finite game form Gn call a payoff (un, vn) ∈ RdimGn
very-very

nice if there is a neighborhood of it such that for all payoffs in the neighborhood the5

corresponding game has a stable outcome and the payoff-stable outcome correspon-

dence STO : RdimGn
⇒ ∆(T ×Mn × An), is continuous in that neighborhood.

Lemma 1. The set of not very-very nice payoffs has Lebesgue measure 0.

Proof of Lemma 1. It follows from the fact that the graph of the payoff-stable out-

come correspondence can be defined by a first-order formula, and hence by the Tarski-10

Seidenberg Theorem it is semi-algebraic.23 Then the statement follows from the

Lemma in Blume and Zame (1994).

Proposition 3. For any multi-sender signaling game there exists a stable* outcome.

Proof of Proposition 3. Pick any finite approximation, choose yn = (un, vn) which

are very-very nice from B(xn, ϵn) (this can be done by Lemma 1), then there exists15

a sequence of stable outcomes λ′n. Pick a converging subsequence, which exists by

compactness of ∆(T×M×A) and consider the corresponding subsequence (Gn)n∈N as

a finite approximation. Fix and denote the limit of the convergent subsequence by λ.

Since yn is very-very nice, there exists ϵ′n such that for any (un, vn) ∈ Dn = B(yn, ϵ′n)

one can find a stable outcome λn arbitrarily close (in the l1 metric) to the stable20

outcome λ′n, hence also weakly converging to λ.

23Let us demonstrate this fact by using the notation of Blume and Zame (1994). For a multi-sender
signaling game we can define the graph of STO by:

Graph(STO) = {(u, λ) ∈ U ×∆(T ×Mn ×An) : ∀ε > 0∀δ > 0∀η ∈ RC
++

∃s ∈ SE(u) ∧ λ(z) > 0 ⇔ Pr{z|s} > 0∧

∃s′ ∈ S(η) ∧ (u, η, s′) ∈ Graph(PNE)∧

||η|| < δ ∧ ||s− s′|| < ε}.

21


	WP_VIDA PETER_2022.pdf
	Introduction
	The Model
	Strategies and Equilibria
	The Solution Concept: Strong Forward Induction
	An Example

	Monotonic Signaling Games, The Theorem
	The finitistic approach
	Pooling only in the limit, dispensing with B2
	Connection with stability

	Conclusion
	Appendices
	Proof of Proposition 1, Definition of Stability
	The Finitistic Approach for Infinite Games
	Proof of Proposition 2
	Supplementary Material, Stable* Outcome Exists


