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Abstract

This paper focuses on indoor semantic segmentation based on RGB-D images. Semantic segmentation is a pixel-
level classification task that has made steady progress based on fully convolutional networks (FCNs). However, we
find there is still room for improvements in the following three aspects. The first is related to multi-scale feature
extraction. Recent state-of-the-art works forcibly concatenate multi-scale feature representations extracted by spatial
pyramid pooling, dilated convolution or other architectures, regardless of the spatial extent for each pixel. The second
is regarding RGB-D modal fusion. Most successful methods treat RGB and depth as two separate modalities and
force them to be joined together regardless of their different contributions to the final prediction. The final aspect is
about the modeling ability of extracted features. Due to the “local grid” defined by the receptive field, the learned
feature representation lacks the ability to model spatial dependencies. In addition to these modules, we design a depth
estimation module to encourage the RGB network to extract more effective features. To solve the above challenges,
we propose four modules to address them: scale-aware module, modality-aware module, attention module and depth
estimation module. Extensive experiments on the NYU-Depth v2 and SUN RGB-D datasets demonstrate that our
method is effective against RGB-D indoor semantic segmentation.

Keywords: Semantic segmentation, Scale selection, Attention, RGB-D, Depth estimation

1. Introduction1

The purpose of semantic segmentation is to assign2

specific class labels to regions in the input images. This3

is a fundamental task for scene understanding [1], video4

analysis [1, 2], clothing retrieval [3], and such of those5

intelligent applications [4]. However, scene understand-6

ing is a daunting task, especially for indoor scenes, due7

to the varying illuminations and cluttered backgrounds.8

With the development of commercial depth cameras,9

such as Kinect and Prime-Sense, we are able to cap-10

ture high-quality, synchronized RGB and depth images.11

RGB data provides rich visual information such as color12

and texture. In contrast to RGB data, the depth modal-13

ity data provides pure shape and geometry information,14
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which is invariant to lighting and reflectance. Com- 15

bining these two complementary modalities provides us 16

with an opportunity to dramatically improve the perfor- 17

mance of semantic segmentation of indoor scenes. 18

Extensive studies have been conducted for the task 19

of indoor semantic segmentation. [5] proposes a patch- 20

wise model, and [6] utilizes an R-CNN (Region-based 21

Convolutional Neural Network) scheme to learn an 22

RGB-D multi-modal feature representation to boost the 23

performance. Recently, [7] proposes an end-to-end 24

FCN (Fully Convolutional Network) for semantic seg- 25

mentation and achieves significant improvement. How- 26

ever, there are still many problems with indoor semantic 27

segmentation. Towards the problem of multi-scale ob- 28

jects, many successful methods [8, 9, 10, 11, 12] adopt 29

pyramid layers to extract multi-scale feature represen- 30

tations. Towards the problem of modeling long-range 31

contextual information, [9, 13, 14] utilize global pool- 32

ing techniques to obtain global context feature, and [15] 33

subdivides images into super-pixels and uses LSTM 34
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RGB Depth(HHA) GT Baseline

(a) pixel itself lacks appropriate scale information for semantic segmentation (board)  

(c) feature lacks proper ability to model spatial dependencies (fridge)

(b) improper RGB and depth modality models fusion (chair)

wire

Figure 1: Limitations of the baseline on indoor scene semantic seg-
mentation with RGB-D data. The depth image in this paper is encoded
to three channel HHA (horizontal disparity, height above ground, and
angle with gravity). The baseline consists of two-stream atrous spa-
tial pyramid pooling networks trained on RGB and depth data respec-
tively. These two networks are combined together by late fusion with
equal-weight sum.

(Long Short-Term Memory) to aggregate and enlarge35

contextual information by multi-scale context intertwin-36

ing. Towards RGB-D fusion, three levels of fusion are37

often adopted. The first one is early fusion [5], which38

simply concatenates the input of two complementary39

modalities, RGB and depth, together as four-channel in-40

put. The second one is middle fusion [6], which lever-41

ages the two modalities, RGB and depth, as two inde-42

pendent inputs and extracts different modality feature43

representations, and then concatenates them together to44

learn a final classifier. The third one is late fusion (also45

called score map fusion) [7], which utilizes RGB and46

depth as two separate inputs to learn two different mod-47

els, and obtain two different score maps. Then, the two48

score maps are fused together by equal weights.49

In this paper, the model proposed by [8] is extended50

by using the late fusion strategy. This extended model51

is used as our baseline for indoor semantic segmenta-52

tion in this study. Compared with [7], our extended53

model achieves better performance. However, we have54

found that there are three aspects that can be improved.55

The first is that the pixel itself does not have enough56

information for semantic prediction, it needs to learn57

the appropriate scale information. As shown in Figure58

1(a), since the appearance of the board object is very59

similar to the back wall, multi-scale feature representa-60

tions extracted using multiple atrous convolutional lay-61

ers do not provide proper surrounding scale information62

for pixels on the board. Likewise, for the wire object,63

since it is so thin the extracted multi-scale features do64

not capture suitable information for it. The second is65

about the fusion of two complementary modalities. As 66

shown in Figure 1(b), the appearance cues are beneficial 67

for classifying the object as a chair, whereas the depth 68

cue would confuse the identification of chair parts (most 69

sofa objects in the dataset are near a wall). The third one 70

is that the extracted features lack the ability to model 71

long-range dependencies. As shown in Figure 1(c), part 72

of the refrigerator is misclassified as a door (due to be- 73

ing confused by the rectangle shape). 74

This paper aims to discuss the problem of indoor 75

semantic segmentation based on the two complemen- 76

tary modalities of RGB and depth. In particular, we 77

propose a scale-aware module, a modality-aware mod- 78

ule, and an attention module, which address the above 79

three-aspect problems. The scale-aware module learns 80

a proper scale feature representation for each object in 81

the input. It learns a weighted mask for each extracted 82

multi-scale feature, and then multiplies these masks by 83

the multi-scale features to generate a scale-aware fea- 84

ture representation to address the first problem. Towards 85

the second problem, the modality-aware module is pro- 86

posed to combine the two complementary modalities of 87

RGB and depth using different weights instead of equal 88

weights. Towards the third problem, an attention mod- 89

ule is introduced to complement the scale-aware mod- 90

ule, which can capture long-range dependencies in the 91

generated scale-aware feature representation. Besides 92

the above three modules, since we have the ground truth 93

depth value of the input RGB image, we can thus de- 94

sign an encoder-decoder depth estimation module on the 95

RGB network to encourage the RGB backbone network 96

to extract better and more precise features. The contri- 97

butions of this paper can be summarized in the follow- 98

ing aspects. 99

• An efficient scale-aware module with modality- 100

awareness, an attention module, and a depth esti- 101

mation network is proposed for semantic segmen- 102

tation. 103

• Within the network, a scale-aware module is used 104

to select the appropriate scale feature for each 105

pixel, which enables a proper scale feature repre- 106

sentation to be learned for each object in the input. 107

• In order to improve the segmentation performance, 108

a modality-aware module is proposed, which adap- 109

tively combines the RGB module and depth mod- 110

ule to obtain useful features. 111

• To further improve the segmentation performance, 112

the attention module and depth estimation module 113
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Figure 2: The overall architecture of our SAMD model for RGB-D indoor semantic segmentation. It is a two-stream convolutional neural network,
one for RGB and the other one for depth (HHA). SAMD consists of four parts: 1) the encoder feature extractor part. It is a standard two-stream
convolutional neural network, which leverages atrous spatial pyramid pooling to learn multi-scale feature representations; 2) the scale-aware
module, which is used to learn features maps of an appropriate scale; 3) the modality-aware module, which is proposed to effectively combine
RGB and depth networks based on the contributions of the two modalities; 4) the attention and depth estimation module, which is used to extract
more plausible features. Best viewed in color.

are proposed to extract better feature representa-114

tions. The former is to obtain long-range depen-115

dent features, and the latter is to force the RGB116

module to extract more plausible feature represen-117

tations.118

The rest of the paper is organized as follows. Sec-119

tion 2 briefly covers related work, highlighting current120

work. Then we give the details of the proposed ap-121

proach in Section 3. Experimental results and analysis122

are provided in Section 4. Finally, the conclusions are123

drawn in Section 5.124

2. Related Work125

The proposed method relates to a lot of work on126

scale-aware selection, attention method, modal combi-127

nation and depth estimation. CNN-based semantic seg-128

mentation has achieved great advances in recent years129

[16, 8, 13, 9, 17, 18, 19, 20]. Most of the existing work130

has employed fully convolutional networks (FCNs) [7].131

However, objects in indoor scenes cover a huge range of132

scales due to both their range of actual sizes in the real133

world, as well as by their differences in distance to the134

camera. The methods above only forcibly stack the ex-135

tracted multi-scale features together. This is not enough136

for real-world cluttered indoor scene understanding.137

Selecting the appropriate scale feature for each pixel138

is particularly important. Many successful works have139

investigated this problem. [21] proposes a channel at- 140

tention scheme to boost the performance of semantic 141

segmentation. [22] exploits a scale-space to select a 142

properly scaled feature. However, as far as we know, 143

there is little work on RGB-D feature scale selection. In 144

this paper, we propose a scale-aware module that com- 145

bines RGB and depth modal features to build a scale- 146

aware module to improve the performance of RGB-D 147

semantic segmentation. Although the scale-aware mod- 148

ule can generate features that fit the scale for each neu- 149

ron, the feature cannot reflect the contributions of each 150

modality. 151

The synchronized RGB and depth pair images pro- 152

vide useful multi-modal information for the task of 153

computer vision. Most successful methods simply com- 154

bine the extracted multi-modal feature representation 155

using early fusion [5], middle fusion [6], or late fusion 156

[7]. However, in the final prediction layer, RGB and 157

depth contribute unequally in most cases. An exam- 158

ple is shown in Figure 1 (b) where the chair object is 159

misclassified by concatenating the two complementary 160

modalities with the same weight. 161

Recently, the attention mechanism has been proposed 162

to model and capture long-range dependencies, and it 163

has become an integral part of many successful works 164

[23, 24, 25, 26]. [27] proposes a self-attention mecha- 165

nism to capture long-range dependencies of inputs and 166

achieves the state-of-the-art performance in machine 167

translation. The attention mechanism has not only been 168
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used in the Natural Language Processing (NLP) field,169

but has also been utilized in the computer vision field.170

[28] utilizes a self-attention scheme to obtain better per-171

formance on the image generation task. [29] adopts172

an attention mechanism in object recognition to boost173

performance. [30] proposes a MAT (Motion-Attentive174

Transition) module comprised of a soft attention unit175

and an attention transition unit to learn more specific176

and useful feature representations.177

The combination of semantic segmentation and depth178

estimation was studied in many previous works, with179

the goal of improving both semantic segmentation and180

depth estimation. [31] proposes three ways to improve181

semantic segmentation performance with depth estima-182

tion, and [32] adopts knowledge from a semantic seg-183

mentation network to teach the depth estimation task.184

In our paper, we introduce depth estimation as an auxil-185

iary task to help improve semantic segmentation.186

This paper adopts a scale-aware module, a modality-187

aware module, a self-attention and a depth estimation188

module to address the above problems. As shown in189

the experiments, the proposed four modules can achieve190

performance gains on many publicly RGB-D semantic191

segmentation datasets.192

3. Our Approach193

In the following section, we mainly focus on the194

learning details of the proposed SAMD method. SAMD195

is composed of four modules: the scale-aware module,196

the modality-aware module, attention, and depth esti-197

mation (as shown in Figure 2). The scale-aware mod-198

ule is used to generate a scale-aware feature representa-199

tion which predicts the scale information for each pixel200

from the learned multi-scale feature representation. The201

modality-aware module is to learn an effective fusion202

way for the two modal networks. To further improve203

the performance, we propose the attention and depth es-204

timation modules. The attention module is used to cap-205

ture the global feature dependencies in the spatial do-206

main for the input feature. The depth estimation module207

is used to push the RGB network to extract more precise208

and useful features.209

We adopt atrous spatial pyramid pooling (ASPP) as210

our feature encoder to extract multi-scale features. To211

be specific, let L = {(R1,D1, Y1), ..., (Rn,Dn, Yn)}212

be the n pairwise RGB-D training data, where R =213

{ri}H×W
i=1 is the RGB modality training image whose214

size is H ×W , and D = {di}H×W
i=1 is the correspond-215

ing depth training image, whose size is H × W , and216

Y = {yi}H×W
i=1 is the label image, in which ri and217

di are corresponding pixels in the pairwise image, la- 218

bel yi ∈ {0, 1, ..., C} gives the per-pixel label, C de- 219

notes the number of the categories. In our approach, 220

given an H × W pair RGB-D image, through the en- 221

coder part, we obtain features fr
e and fd

e whose sizes are 222

H
8 ×

W
8 (ignoring the channel size), where fr

e is from 223

RGB modality, and fd
e is from depth modality. These 224

two features serve two purposes. The first is to gener- 225

ate subsequent multi-scale feature representations and 226

the second is used in our scale-aware module for scale 227

selection. 228

3.1. Scale-aware Module 229

The output of the feature encoder part is a multi-scale 230

feature of the forced concatenation, but the learned fea- 231

ture still does not hold the correct scale feature represen- 232

tation. To this end, we employ a scale-aware module to 233

enable our model to learn a feature map of proper scale 234

for all neurons in the input. 235

Specifically, let the multi-scale feature set gener-
ated from fr

e and fd
e be {fr

ai
, fd

ai
}, where fr

ai
denotes

the multi-scale feature extracted from the RGB modal-
ity feature encoder part by dilated convolution (a.k.a.
atrous convolution) [8] (kernel size ai), fd

ai
denotes the

feature from the depth modality. In the experiments, we
adopt four dilated kernel sizes (6, 12, 18, 24) for each
modality, and ai stands for the 4 different dilated ker-
nels. We concatenate fr

e and fd
e to generate ff

e , and
feed it into a 1× 1 convolutional layer conv(.) and out-
put ff

c whose size is 8×H
8 ×

W
8 . Then we use a softmax

operation to normalize ff
c to obtain ff

m. For the RGB
modality, we split the four channel feature representa-
tion (corresponding to the four channels of fr

e ) ff
mj

in
ff

m and then calculate the scale-aware features fr
sa and

fd
sa as follows:

fr
sa =

4∑
j=1

fr
ai
� ff

mj
(1)

to the depth modality, 236

fd
sa =

8∑
j=5

fd
ai
� ff

mj
(2)

where the operator � represents the Hadamard product. 237

3.2. Modality-aware Module 238

The modality-aware module is proposed to combine 239

feature representations of RGB and depth modalities for 240

semantic segmentation. The structure of the module is 241
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Figure 3: Illustration of the scale-aware confidence map. The two images in the first column are RGB and depth images. The two images in the
second column are scale-aware confidence maps upon the two modalities. The remaining 4 images in the first row are each scale channel confidence
map of RGB modality, in the second row are each channel confidence map of depth modality. From left to right, they are a6, a12, a18, a24. For
the sake of simplicity, we show the confidence maps (average value) by using the “COLORMAP JET” color map (where blue is low value and red
is high value) upon RGB. Best viewed in color.

RGB & GT Prediction Confidence Map Error MapColorbar

Figure 4: Illustration of the scale-aware module. From the illustra-
tion, we can find that with the scale-aware module, our model can
effectively focus on larger and smaller objects, as shown by the red
dashed boxes. From left to right and top to bottom, they are RGB
and ground truth; prediction results with and without the scale-aware
module; confidence maps with and without scale-aware module (in-
cluding the colorbar where the value increases from blue to red); error
maps with and without scale-aware module. Best viewed in color.

similar to the scale-aware module and it is composed of242

four layers. The first one is a concatenation layer which243

is used to combine the fr
sa feature and fd

sa feature. The244

second one is a 1× 1 convolutional layer which is used245

to produce an M2×h×w modal mask. The last two are246

a softmax layer and a matrix multiplication layer. The247

former is used to generate a normalized modal mask and248

the latter is used for element-wise multiplication. For249

brevity and clarity, the layers are not illustrated in Fig-250

ure 2.251

To be more specific regarding the structure of the
modality-aware module, after the concatenation layer,
we obtain RGB-D fusion feature representation ff ∈
R(2c×h×w), and then feed it to the 1 × 1 convolu-
tional layer to produce the mask M . Then M is fed
into the softmax layer to produce a normalized modal
mask M ′ ∈ R2×h×w. Let Mrgb ∈ R1×h×w and
Mdepth ∈ R1×h×w denote the modal masks on RGB
and depth respectively. When the modal masks are gen-
erated, we calculate the predictions based on RGB and

depth using the Hadamard product as follows:

P rgb = Conv(fr
at)�Mrgb

P depth = Conv(fd
at)�Mdepth

(3)

where Conv(.) denotes a 1× 1 convolutional layer, and 252

Conv(fr
at) ∈ RC×h×w, Conv(fd

at) ∈ RC×h×w. The 253

elements in P (i, j)rgb and P (i, j)depth imply how con- 254

fidently we can rely on RGB and depth respectively to 255

predict the pixel (i, j) in the input. 256

Finally, we generate the final prediction result as fol-
lows:

P f = P rgb + P depth (4)

3.3. Attention and Depth-estimation Modules 257

To further improve the segmentation performance, 258

we propose attention and depth estimation modules to 259

obtain long-range dependencies and more plausible fea- 260

ture representations. In order to enlarge the context re- 261

lationship of the above-obtained fr
sa and fd

sa features, 262

inspired by [33], we introduce a self-attention module 263

to improve the obtained feature modeling ability. 264

For the sake of simplicity, let the size of the image
feature obtained from the RGB modality scale-aware
layer be fr

sa ∈ Rc×h×w, where c denotes the feature
channel, h = H

8 , w = W
8 . Take the RGB modality as an

example for explanation. We copy the fr
sa and reshape it

into three feature spaces, Θ(f) ∈ Rc×N , θ(f) ∈ Rc×N ,
and ϑ(f) ∈ Rc×N , respectively, where N = h × w.
Then we calculate self-attention using the above two re-
shaped features, as follows:

at = softmax(Θ(f)T · θ(f)) (5)

each item at(i, j) in the module at is the dot-product
similarity, which indicates the effect of the model at
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the ith position to the jth position. To make it more
implementation-friendly, we normalize the attention
module before the softmax operation. Then we obtain
the scale-aware attention feature representation as fol-
lows:

fr
at = fr

sa + β(at · ϑ(f)). (6)

For the depth modality, fd
at is similarly defined as fr

at,265

where β is a learnable parameter, and is initialized to 0266

during training inspired by [28]. The scheme mentioned267

above makes our model rely on non-attention features268

in the initial stages of training. For the depth modality,269

we utilize the same operation as the depth image feature270

representation.271

For the depth estimation module, we adopt the struc-
ture of Monodepth2 [34], which is a successful depth
estimation model. For simplicity of training, we adopt
Depth Loss and Gradient Loss.

Ldepth = 1
n

n∑
i=1

√
log2(di)− log2(dGt

i ) (7)

Lgrad = 1
n

n∑
i=1

∥∥∇(d)−∇(dGt)
∥∥

1 (8)

where n is the number of pixels in the input image, di272

and dGt
i denote the predicted depth value and the corre-273

sponding ground truth depth value, respectively. In the274

experiments, the main purpose of the task is to obtain275

a per-pixel semantic segmentation label, and the depth276

estimation module is to encourage the RGB network277

to extract a more effective feature representation. We278

use the pre-trained Monodepth2 model to initialize our279

depth estimation module, and then use a small learning280

rate (1e-4) to fine-tune it in the final experiments.281

4. Experiments282

In this section, we perform extensive experiments283

on two publicly available datasets, NYU-Depth v2 and284

SUN RGB-D to evaluate our method. All of our imple-285

mentations are made using the popular PyTorch frame-286

work.287

4.1. Datasets288

• NYU-Depth V2 is one of the most popular RGB-289

D indoor scene datasets, consisting of 1449 finely290

labeled RGB and depth image pairs. The entire291

dataset is divided into two parts, of which 795 are292

for training and 654 are for testing.293

• SUN RGB-D is a large-scale RGB-D dataset re- 294

cently used for indoor scene understanding. It con- 295

tains 10335 pairs of RGB and depth images cap- 296

tured by four kinds of commercial depth sensors. 297

Of these finely labeled image pairs, 5285 pairs are 298

used for training and the remaining 5050 pairs are 299

used for testing. 300

4.2. Metrics 301

Following recent methods [10, 35], performance in 302

our experiments is quantitatively measured by pixel ac- 303

curacy (Acc), mean intersection over union (mIoU), 304

mean pixel accuracy of different categories (mAcc) and 305

frequency weighted IoU (f.w. IoU), which are widely 306

used in indoor semantic segmentation. To be concrete, 307

let nij be the number of pixels which are misclassified 308

as class j when the ground truth is category i. ti is 309

the number of pixels which belong to the ith category, 310

where ti =
∑

j nij , and the total number of pixels in 311

the dataset is t. The above four metrics are defined as 312

follows: 313

• pixel accuracy =
∑

i
nii

t 314

• mean intersection over union = 315

1
C

∑
i

nii

ti+
∑

j
nji−nii

316

• mean pixel accuracy = 1
C

∑
i

nii

ti
317

• frequency weighted IoU = 1
t

∑
i

tinii

ti+
∑

j
nji−nii

318

4.3. Training Protocol 319

In the following, we will provide details of the exper- 320

imental implementation. 321

Learning rate policy The training procedure con- 322

sists of two stages. In the first stage, we adopt the Adam 323

optimizer to train two independent networks of RGB 324

and depth modalities respectively for semantic segmen- 325

tation, excluding the scale-aware and modality-aware 326

modules. For each modality network, we adopt “poly” 327

learning rate policy, where the current learning rate is 328

calculated by multiplying the initial learning rate with 329

(1 − iter
max iter )power, power = 0.9, the initial learning 330

rate is set to 0.01. We use ResNet50 and ResNet101 331

as our backbone network and combine atrous spatial 332

pyramid pooling as our feature encoder to extract multi- 333

scale features. Each of the backbones is initialized by 334

the model pre-trained on ImageNet, and the other lay- 335

ers are initialized by random weights. In the second 336

stage, we add the scale-aware module and the modality- 337

aware module and then fine-tune our RGB-D model on 338

the synchronized RGB and depth training data. Each 339

6
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Figure 5: The visualization of results on the NYU-Depth v2 dataset. The comparison results of (d) and (f) demonstrate that our SAMD module is
effective for indoor semantic segmentation. For the detailed analysis, please refer to Section 4.4. Best viewed in color.

modality network is initialized by the trained models340

obtained from the first stage. During the training, we341

discard the classification layer in the already-trained342

network in every single modality, and then combine343

them together via the added scale-aware and modality-344

aware modules. In the second stage, we set the initial345

learning rate to 0.001.346

Data preprocessing and data augmentation In347

the experiment, the depth modality image is encoded to348

three-channel HHA (horizontal disparity, height above349

ground, and angle with gravity) image as the approach350

[6]. In both training stages, our two separate modal-351

ity networks and our RGB-D model are trained on the352

cropped images of size 417×417. To avoid over-fitting,353

common data augmentations such as random brightness354

jittering, random left-right flipping, and random scaling355

in the range of [0.5, 2.0] to the input training samples356

are used.357

Loss In the experiments, the overall loss is as fol-
lows:

L = Lseg + λ1 · Laux + λ2 · Ldep (9)

where λ1 and λ2 are the balancing weights for the se-358

mantic segmentation and depth estimation. To enhance359

the feature representation extracted from the backbone,360

we adopt an auxiliary loss after the 4th blocks (as used361

in [13]) to supervise the training process. In the exper-362

iments, λ1 is set to 0.5, and λ2 is set to 0.1. Ldep is363

composed by LDepth and Lgrad.364

Figure 6: Illustration of the self-attention module. We observe that,
with this module, the extracted feature representation is better (as
shown in the red dashed bounding boxes). From left to the right and
top to down, they are RGB and ground truth images; the RGB feature
and HHA feature without attention module; RGB and depth feature
with attention module; prediction results with and without attention
module; error maps with and without attention module.

4.4. Ablation Studies and Discussion 365

In order to demonstrate that our SAMD model 366

does not depend on any particular feature encoder ar- 367

chitecture, we embed scale-aware module, attention 368

module and modality-aware module into two standard 369

fully convolutional backbone networks, ResNet50 and 370

ResNet101. We provide the quantitative results on the 371

NYU-Depth v2 dataset of these two backbone networks 372

in Table 3. Through the results, we find that using 373

our SAMD module significantly improves the perfor- 374

mance of semantic segmentation throughout the differ- 375

ent backbones. In the experiments, we use ResNet50 376

and ResNet101 as alternatives for our backbone net- 377

work, and the default choice is ResNet101 if not explic- 378

itly specified. 379

In order to show that our scale-aware module does not 380
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Table 1: Category-wise IoU results on the NYU-Depth v2 dataset. The Baseline and SAMD rows show the results of our baseline and SAMD
model respectively. The class of background is ignored during performance evaluation. The top two results are shown in red and blue respectively.
Cheng‡ pre-trains their model on SUN RGB-D dataset, and then fine-tunes it on NYU-Depth v2 dataset.
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Long [7] 69.9 79.4 50.3 66.0 47.5 53.2 32.8 22.1 39.0 36.1 50.5 54.2 45.8 11.9 8.6 32.5 31.0 37.5 22.4 13.6 18.3 59.1
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Wang [35] – – – – – – – – – – – – – – – – – – – – – –
Daniel [38] – – – – – – – – – – – – – – – – – – – – – –

Gu [39] – – – – – – – – – – – – – – – – – – – – – –
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Cao [42] – – – – – – – – – – – – – – – – – – – – – –
Baseline 77.4 86.5 59.4 76.6 63.1 65.4 39.8 38.1 51.2 37.5 59.5 67.5 60.8 17.0 13.6 46.2 51.6 44.5 55.1 29.9 16.5 73.4
SAMD 82.3 89.7 62.3 73.0 64.8 67.7 51.0 46.8 51.8 46.9 65.5 71.3 62.2 23.4 19.7 60.1 48.8 49.7 51.7 42.0 26.6 81.2
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Long [7] 27.3 27.0 41.9 15.9 26.1 14.1 6.5 12.9 57.6 30.1 61.3 44.8 32.1 39.2 4.8 15.2 7.7 30.0 65.4 34.0 46.1 49.5
Gupta [6] 6.4 14.5 31.0 14.3 16.3 4.2 2.1 14.2 0.2 27.2 55.1 37.5 34.8 38.2 0.2 7.1 6.1 23.1 60.3 28.6 – 47.0
Deng [36] 8.9 21.6 19.2 28.0 28.6 22.9 1.6 1.0 9.6 30.6 48.4 41.8 28.1 27.6 0 9.8 7.6 24.5 63.8 31.5 – 48.5
He [37] 29.8 41.7 52.5 21.1 34.4 15.5 7.8 29.2 60.7 42.2 62.7 47.4 38.6 28.5 7.3 18.8 15.1 31.4 70.1 40.1 53.8 55.7

Cheng‡ [10] 34.2 45.3 53.4 27.7 42.6 23.9 11.2 58.8 53.2 54.1 80.4 59.2 45.5 52.6 15.9 12.7 16.4 29.3 71.9 45.9 60.7 59.3
Wang [35] – – – – – – – – – – – – – – – – – – – 43.9 53.5 –
Daniel [38] – – – – – – – – – – – – – – – – – – – 51.6 – –

Gu [39] – – – – – – – – – – – – – – – – – – – 50.3 – –
Zhou [40] 33.5 56.0 60.8 31.7 47.7 25.3 14.8 83.7 77.6 40.2 83.8 67.3 48.2 66.2 11.0 30.6 21.2 39.2 76.6 51.2 63.8
Lin [41] 37.8 56.2 67.1 32.5 44.2 39.1 12.5 52.6 82.6 47.1 68.2 63.8 45.2 61.4 21.5 34.7 18.3 44.8 77.0 51.2 64.0 –
Cao [42] – – – – – – – – – – – – – – – – – – 76.4 51.3 63.5 63.0
Baseline 24.9 45.8 53.2 23.2 39.8 27.1 5.1 73.5 64.9 38.4 86.2 67.5 43.3 57.0 5.1 28.0 19.9 38.6 73.4 46.7 61.7 61.2
SAMD 35.0 58.4 66.6 35.3 48.4 23.0 12.1 77.5 87.9 44.7 81.2 64.9 54.3 57.8 8.6 32.7 22.9 44.0 74.4 52.3 67.2 61.9

Figure 7: Performance Analysis. Depth estimation on NYUDepthv2
dataset.

depend on feature types, we utilize two methods, atrous381

spatial pyramid pooling (ASPP) and pyramid pooling382

(PSP) to extract multi-scale feature representations. In383

both experiments, we keep all settings exactly the same384

and extract four kinds of scale features in each modal385

network. We find that the use of ASPP (52.3) to extract386

multi-scale features is slightly better than PSP (52.1).387

To demonstrate the effectiveness of the scale-aware388

module, we compare the results of using and not us-389

ing this module. The qualitative analysis is shown in390

Figure 4. From the comparison result, with the scale-391

aware module, our model learns more proper scale fea- 392

ture representations for pixels. A pixel itself does not 393

have enough contextual information for semantic seg- 394

mentation, so it has to look around to check which class 395

it belongs to. Whether it is from texture (RGB) or depth 396

values (depth), the “board” object is very similar to sur- 397

rounding pixels. The method of the forcible concatena- 398

tion of the multi-scale feature would make some pixels 399

confused when determining which category they belong 400

to. Without the scale-aware module, the confidence 401

map on the board region is low as shown in Figure 4. 402

Also, the “wire” object (categorized into “otherprops”) 403

is too thin to be classified. With the scale-aware module, 404

the model learns an appropriate feature representation. 405

When comparing with the baseline model that does not 406

have this module, the performance of our model is su- 407

perior. To discover the importance of the self-attention 408

module, we provide the comparison results with and 409

without the module, as shown in Figure 6. From the 410

results, we can find that, through the self-attention mod- 411

ule, our model can model long-range dependencies. 412

The feature extracted from the scale-aware module, 413

we can find that the feature extracted from the different 414

atrous rate ai which is focused on the different region 415

on the input images, as shown in Figure 3. From the 416
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Table 2: Performance on the SUN RGB-D dataset. The SAMD row shows the results of our SAMD model. The class of background is ignored
during performance evaluation.
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Song [43] 36.4 45.8 15.4 23.3 19.9 11.6 19.3 6.0 7.9 12.8 3.6 5.2 2.2 7.0 1.7 4.4 5.4 3.1 5.6
Liu [44] 37.8 48.3 17.2 23.6 20.8 12.1 20.9 6.8 9.0 13.1 4.4 6.2 2.4 6.8 1.0 7.8 4.8 3.2 6.4
Ren [45] 43.2 78.6 26.2 42.5 33.2 40.6 34.3 33.2 43.6 23.1 57.2 31.8 42.3 12.1 18.4 59.1 31.4 49.5 24.8
Li [46] 74.9 82.3 47.3 62.1 67.7 55.5 57.8 45.6 52.8 43.1 56.7 39.4 48.6 37.3 9.6 63.4 35.0 45.8 44.5

Cheng [10] 91.9 94.7 61.6 82.2 87.5 62.8 68.3 47.9 68.0 48.4 69.1 49.4 51.3 35.0 24.0 68.7 60.5 66.5 57.6
Wang [35] – – – – – – – – – – – – – – – – – – –
Zhou [40] – – – – – – – – – – – – – – – – – – –
Cao [42] – – – – – – – – – – – – – – – – – – –
SAMD 93.4 96.9 79.2 84.6 87.4 79.1 57.6 49.9 76.3 55.1 72.5 83.8 71.9 29.3 36.4 65.3 60.2 65.9 59.2
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Song [43] 0.0 1.4 35.8 6.1 9.5 0.7 1.4 0.2 0.0 0.6 7.6 0.7 1.7 12.0 15.2 0.9 1.1 0.6 9.0
Liu [44] 0.0 1.6 49.2 8.7 10.1 0.6 1.4 0.2 0.0 0.8 8.6 0.8 1.8 14.9 16.8 1.2 1.1 1.3 10.1
Ren [45] 5.6 27.0 84.5 35.7 24.2 36.5 26.8 19.2 9.0 11.7 51.4 35.7 25.0 64.1 53.0 44.2 47.0 18.6 36.3
Li [46] 0.0 28.4 68.0 47.9 61.5 52.1 36.4 36.7 0.0 38.1 48.1 72.6 36.4 68.8 67.9 58.0 65.6 23.6 48.1

Cheng [10] 0.0 44.7 88.8 61.5 51.4 71.7 37.3 51.4 2.9 46.0 54.2 49.1 44.6 82.2 74.2 64.7 77.0 47.6 58.0
Wang [35] – – – – – – – – – – – – – – – – – – 53.5
Zhou [40] – – – – – – – – – – – – – – – – – – 60.5
Cao [42] – – – – – – – – – – – – – – – – – – 58.5
SAMD 39.9 39.7 85.4 45.3 54.4 67.1 38.2 53.2 18.1 43.2 77.2 54.1 68.7 85.7 79.9 69.1 77.2 43.5 63.4

Table 3: Performance on different feature extractor encoder backbone
network of our model.

Backbone w/o SAMD w/ SAMD
ResNet50 45.1 48.1

ResNet101 46.7 52.3

Table 4: Performance on different modality fusion methods of our
model.

Methods mIoU
Late fusion [7] 48.9

Gated fusion [10] 51.3
Modality-aware fusion 51.9

figure, we also find that the scale feature extracted from417

the scale-aware module, has different levels of attention418

on each modality. This phenomenon spurs us to design419

the next modality-aware module.420

To demonstrate the effectiveness of the modality-421

aware module, we provide three results on the NYU-422

Depth v2 dataset with different modality fusion meth-423

ods as shown in Table 4. In all three experiments, they424

all include the scale-aware and self-attention modules.425

All parameter settings in the experiments are the same426

except for the fusion method used. The late fusion ap-427

proach follows the instruction in [7], which fuses RGB428

and depth networks by equal-weight score. [10] pro-429

poses a gated fusion way to fuse RGB and depth by430

Table 5: Performance on the NYU-Depth v2 test dataset (4-class).

Acc mAcc
Courprie [5] 64.5 63.5

Hermans [47] 69.0 68.1
Stuckler [48] 70.6 66.8

Wang [49] – 74.7
Eigen [50] 83.2 82.0

He [37] 83.6 82.5
SAMD 86.9 85.7

regarding the varying contributions of the two comple- 431

mentary modalities. The last row is the performance 432

of our modality-aware fusion, which achieves superior 433

performance. 434

To demonstrate that the depth estimation module is 435

workable and useful, we provide the depth estimation 436

results of input images, as shown in Figure 7. From 437

the results, we can find that the depth estimation can 438

provide a plausible depth value for the input image. 439

To have a better understanding of how the proposed 440

SAMD model outperforms the baseline method, we pro- 441

vide the visualization results of the improvement of IoU 442

for each semantic category in Figure 8. As can be seen 443

from the statistics result in Figure 8, our SAMD is su- 444

perior to the baseline in most classes. 445

In Table 6, we give the quantitative comparisons of 446

with and without our SAMD components on the NYU- 447
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Table 6: Ablation study of the proposed SAMD model on NYU-Depth
v2 dataset. S, A, M and D denote scale-aware module, self-attention
module, modality-aware module and depth estimation module, re-
spectively.

Methods mIoU
a. Baseline 46.7
b. Baseline + S 47.8
c. Baseline + A 48.6
d. Baseline + M 48.4
e. Baseline + S + A 49.8
f. Baseline + S + M 49.9
g. Baseline + A + M 49.5
h. Baseline + S + A + M 51.9
i. Baseline + S + A + M + D 52.3

Figure 8: Performance Analysis. Per-class IoU improvement of our
SAMD model over baseline on NYU Depth-v2 test dataset.

Depth v2 dataset. From the comparison results (b ∼448

i), each component in the proposed SAMD module will449

benefit the performance of the indoor semantic segmen-450

tation. The qualitative results are illustrated in Figure 5,451

it gives the visualized comparisons with and without our452

SAMD module on the NYU-Depth v2 dataset. In Table453

1, we give the results of the comparison between our454

model and state-of-the-art methods on the NYU-Depth455

v2 dataset. From the results, we can find that our model456

is better than state-of-the-art methods in many classes.457

We also test our model on the SUN RGBD dataset, and458

we obtain a state-of-the-art comparable result, 63.4%459

mean accuracy, more detail please refer to Table 2.460

We compare SAMD to other state-of-the-art meth-461

ods on the 4-class of the NYU-Depth v2 dataset, and462

the quantitative results are shown in Table 5. We also463

check the model size saved by PyTorch for both base-464

line and our SAMD to demonstrate the proposed mod-465

ule wouldn’t increase the parameter size of the baseline466

too much. The size of baseline is 127.28M, and our467

SAMD is 136.19M.468

5. Conclusion 469

In this paper, we propose SAMD to tackle the chal- 470

lenging problems for indoor semantic segmentation 471

with RGB-D data. SAMD is composed of three main 472

parts: (1) the scale-aware module which is designed for 473

generating a spatial-sampled and scale-sampled feature 474

representation, (2) the modality-aware module which 475

can weigh the varying contributions of the two comple- 476

mentary modalities for better fusion, and (3) the self- 477

attention module and depth estimation module, which 478

can produce long-range dependencies for better model- 479

ing and push the RGB network to extract more plausible 480

features. Theoretical analysis, qualitative and quantita- 481

tive experimental results on NYU-Depth v2 and SUN 482

RGB-D dataset demonstrate that SAMD can achieve 483

significant performance gains for indoor semantic seg- 484

mentation. 485
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[6] S. Gupta, R. Girshick, P. Arbeláez, J. Malik, Learning rich fea- 510

tures from RGB-D images for object detection and segmenta- 511

tion, in: ECCV, 2014. 512

[7] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks 513

for semantic segmentation, in: CVPR, 2015. 514

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. 515

Yuille, DeepLab: Semantic image segmentation with deep con- 516

volutional nets, atrous convolution, and fully connected CRFs, 517

PAMI. 518

[9] X. Q. X. W. J. J. Hengshuang Zhao, Jianping Shi, Pyramid scene 519

parsing network, in: CVPR, 2017. 520

10



[10] Y. Cheng, R. Cai, Z. Li, X. Zhao, K. Huang, Locality-sensitive 521

deconvolution networks with gated fusion for RGB-D indoor se- 522

mantic segmentation, in: CVPR, 2017. 523

[11] X. Li, H. Zhao, L. Han, Y. Tong, S. Tan, K. Yang, Gated fully 524

fusion for semantic segmentation, in: Proceedings of the AAAI525

Conference on Artificial Intelligence, Vol. 34, 2020, pp. 11418–526

11425.527

[12] X. Li, H. He, X. Li, D. Li, G. Cheng, J. Shi, L. Weng, Y. Tong,528

Z. Lin, Pointflow: Flowing semantics through points for aerial529

image segmentation, arXiv preprint arXiv:2103.06564.530

[13] L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethink-531

ing atrous convolution for semantic image segmentation, arXiv532

preprint arXiv:1706.05587.533

[14] X. Chen, K.-Y. Lin, J. Wang, W. Wu, C. Qian, H. Li,534

G. Zeng, Bi-directional cross-modality feature propagation with535

separation-and-aggregation gate for RGB-D semantic segmen-536

tation, arXiv preprint arXiv:2007.09183.537

[15] D. Lin, Y. Ji, D. Lischinski, D. Cohen-Or, H. Huang, Multi-538

scale context intertwining for semantic segmentation, in: ECCV,539

2018.540

[16] C. Liang-Chieh, G. Papandreou, I. Kokkinos, K. Murphy,541

A. Yuille, Semantic image segmentation with deep convolu-542

tional nets and fully connected CRFs, in: ICLR, 2015.543

[17] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam,544

Encoder-decoder with atrous separable convolution for semantic545

image segmentation, arXiv preprint arXiv:1802.02611.546

[18] X. Li, Z. Jie, W. Wang, C. Liu, J. Yang, X. Shen, Z. Lin,547

Q. Chen, S. Yan, J. Feng, Foveanet: Perspective-aware urban548

scene parsing, arXiv preprint arXiv:1708.02421.549

[19] S. Kong, C. Fowlkes, Recurrent scene parsing with perspective550

understanding in the loop, arXiv preprint arXiv:1705.07238.551

[20] W. Wang, T. Zhou, F. Yu, J. Dai, E. Konukoglu, L. Van Gool,552

Exploring cross-image pixel contrast for semantic segmentation,553

in: ICCV, 2021.554

[21] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, arXiv555

preprint arXiv:1709.01507.556

[22] D. G. Lowe, Distinctive image features from scale-invariant key-557

points, International journal of computer vision 60 (2) (2004)558

91–110.559

[23] D. Bahdanau, K. Cho, Y. Bengio, Neural machine transla-560

tion by jointly learning to align and translate, arXiv preprint561

arXiv:1409.0473.562

[24] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, D. Wierstra,563

Draw: A recurrent neural network for image generation, arXiv564

preprint arXiv:1502.04623.565

[25] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,566

R. Zemel, Y. Bengio, Show, attend and tell: Neural image cap-567

tion generation with visual attention, in: ICML, 2015.568

[26] Z. Yang, X. He, J. Gao, L. Deng, A. Smola, Stacked attention569

networks for image question answering, in: CVPR, 2016.570

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.571

Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in:572

NIPS, 2017.573

[28] H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-574

attention generative adversarial networks, arXiv preprint575

arXiv:1805.08318.576

[29] H. Hu, J. Gu, Z. Zhang, J. Dai, Y. Wei, Relation networks for577

object detection, in: CVPR, 2018.578

[30] T. Zhou, S. Wang, Y. Zhou, Y. Yao, J. Li, L. Shao, Motion-579

attentive transition for zero-shot video object segmentation, in:580

Proceedings of the AAAI Conference on Artificial Intelligence,581

Vol. 34, 2020, pp. 13066–13073.582

[31] L. Hoyer, D. Dai, Y. Chen, A. Koring, S. Saha, L. Van Gool,583

Three ways to improve semantic segmentation with self-584

supervised depth estimation, in: CVPR, 2021, pp. 11130–585

11140.586

[32] V. Guizilini, R. Hou, J. Li, R. Ambrus, A. Gaidon, Semantically-587

guided representation learning for self-supervised monocular588

depth, arXiv preprint arXiv:2002.12319.589

[33] X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural net- 590

works, in: CVPR, 2018. 591

[34] C. Godard, O. Mac Aodha, M. Firman, G. J. Brostow, Dig- 592

ging into self-supervised monocular depth estimation, in: ICCV, 593

2019, pp. 3828–3838. 594

[35] W. Wang, U. Neumann, Depth-aware CNN for RGB-D segmen- 595

tation, in: ECCV, 2018. 596

[36] Z. Deng, S. Todorovic, L. Jan Latecki, Semantic segmentation 597

of RGBD images with mutex constraints, in: ICCV, 2015. 598

[37] Y. He, W.-C. Chiu, M. Keuper, M. Fritz, STD2P: RGBD seman- 599

tic segmentation using spatio-temporal data-driven pooling, in: 600

CVPR, 2017. 601
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