
 i 

 

Integration of distributed diesel 
generators in power system, Iraq 

case study 

 
by 

Saad Kadhim Khalaf 
 

Supervised by: 

Prof Liana Cipcigan 
   Prof Nicholas Jenkins 

 

School of Engineering 
Cardiff University 

Cardiff, Wales, United Kingdom 
 

Thesis submitted in candidature for the degree of Doctor of 
Philosophy at Cardiff University 

 

October 2021 
 



 i 

DECLARATION 
 
This work has not been submitted in substance for any other degree or award at this or 
any other university or place of learning, nor is being submitted concurrently in 
candidature for any degree or other award.  

 

 Signed ………………………………. (Candidate)    Date …..............................      

 STATEMENT 1  

This thesis is being submitted in partial fulfilment of the requirements for the degree of 
PhD.  

Signed ………………………………. (Candidate)    Date …..............................      

STATEMENT 2  

This thesis is the result of my own independent work/investigation, except where 
otherwise stated.  

Other sources are acknowledged by explicit references. The views expressed are my 
own.   

Signed ………………………………. (Candidate)    Date …..............................      

 STATEMENT 3  

I hereby give consent for my thesis, if accepted, to be available for photocopying and 
for inter-library loan, and for the title and summary to be made available to outside 
organisations.  

 Signed ………………………………. (Candidate)    Date …..............................    

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS  

I hereby give consent for my thesis, if accepted, to be available for photocopying and 
for inter-library loans after expiry of a bar on access previously approved by the 
Graduate Development Committee.  

Signed ………………………………. (Candidate)    Date …..............................    

 



 ii 

ACKNOWLEDGEMENTS 
 
I can’t express enough words to thank my supervisor, Professor Liana Cipcigan, for her 

delicate and great leadership during my study to acheive this work with the best value. Her 

expertise, support, kindness, and wonderful supervision have been motivated me to complete 

the Ph.D journey with the great value for me, I am really grateful a lot to her. 

I would also thank my co-supervisor, Professor Nick Jenkins, for his valuable advice and 

views. I will never forget these mornings working together on my work, not to mention the 

hard questions which inspired me to widen my research from various perspectives. Without 

support from both supervisors, this thesis would not have evolved as it has.  

I owe my thanks to my colleagues and all other staff of Cardiff School of Engineering for 

organizing many important courses and lecturers that of course were so instrumental in my 

PhD progress. My appreciation goes to staff in the research office of engineering school 

(Aderyn Reid, Chris Lee, and Jeanette Whyte) who continuously supported research students. 

I am also grateful to the Higher Committee for Education and Development (HCED-Iraq), 

without their financial support, it would have been impossible to achieve this research. I would 

like to acknowledge the University of Mustansiriyah, Baghdad, Iraq for providing me with the 

opportunity to continue my study. I would also thank the cooperation by the staff of many 

ministries in Iraq, spatially the Ministry of Eelectricty , I would forward my grateful thank to 

the international consultant Mr. Nafa for his  deep expertise. 

Thanks to all my colleagues in the centre for Integrated Renewable Energy Generation and 

Supply (CIREGS) for their discussion and feedback, especially Dr Mazin Muhssin.



 iii 

ABSTRACT 
 

In this work, existing off-grid diesel generators of the Zyounah region in 

Baghdad are investigated to provide an understanding of the real challenges of 

these generators for the consumers in terms of environmental and economic 

perspectives. The result reveals that if the load in which a generator operates is 

less than the generator’s size, the generator’s efficiency will drop, and the 

generator will consume a large amount of fuel and ultimately emit more CO2 

emissions. Hence, the selection of a diesel generator should be close to the 

required load demand. 

Due to the mismatch between generation and supply in Iraq, the integration of 

existing off-grid diesel generators into the  Iraq power system is important in 

providing flexibility in localized areas and help avoid or reduce the number of 

blackouts. The optimal location and sizing of these generation units is a suitable 

option for improving the operation of electrical networks. This study presents a 

methodology to find the best placement and the right size of the diesel 

generators in the distribution network of Ziyounah in the Baghdad area. 

In this study, demand forecasting using Linear Regression (LR) and Artificial 

Neural Networks (ANN) is presented to provides the power operator for 

Ziyounah in Baghdad with valuable information that is used for minimising the 

operational cost for integrated unit generations and accurately match electricity 

production to consumption in summer and winter seasons of 2020. Based on 

the forecasted demand, economic dispatch analysis was carried out using 

Lagrange multiplier (LM) and linear programming methods (LP) and assisted 

by the MATLAB application. The overall objective is to determine the optimal 

dispatch power for various types of generator sources including PV and grid 

import subject to several constraints to reduce the total operating cost for the 

integrated generation units while meeting the peak during 24hour in the summer 

and winter season.  
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1 Chapter 1 
 

Introduction 
 

1.1  Background 
 
The Iraq power system is facing a severe shortage of generation. This is due to 

the security situation1 and lack of natural gas for use in power plants[1],[2]and[3]. 

In fact, Iraq does not have the required infrastructure for treating and using 

natural gas. Consequently, natural gas is flared before it can be used as a fuel for 

power generation[4]. In 2011, for example, almost 60% of the natural gas 

production in Iraq was flared, which led to a significant economic loss [1]and 

[4]. As a result of this malpractice concerning the usage of natural gas, many of 

the gas power plants have been modified to use heavy oil or diesel fuel rather 

than natural gas for producing electricity but at lower efficiencies.  

Increasing demand is widening the gap between the electricity demand and the 

generation supply, see Figure1-1. The population is growing at a rate of 

approximately 1 million per year and it was estimated that 4.5GW of generating 

capacity suffered damage, and about one-fifth of the transmission lines were 

rendered inoperable during the war [5]. Hence, consumers hardly have four to 

six hours of power during the hot summer days, particularly when the 

temperature hits its maximum of more than 48°C. 

 
Figure 1-1 Peak demand and maximum power supply from the grid, 2014-18 [6] 

 
1  Security problems affect Ministry personnel movements, and discourage international 
contractors from working in Iraq 
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1.2   The high temperature issue 
 
Iraq is generally a hot, dry, arid region, with a semi-arid/ Mediterranean climate 

in the north and north-eastern areas. Temperatures can vary significantly, for 

example, the summer season in Iraq is hot and dry, with temperatures frequently 

exceeding 48°C. Meanwhile, the temperature in the winter season drops to 5°C 

and is even below 0°C during a few days in December and January.  

 

1.2.1 The effect of temperature on power plants 
 
In Iraq, the maximum demand occurs on hot summer days when the temperature 

is typically around 45°C. Because of this, the available capacity of the power 

plants has to be reduced at these times of peak load to reflect their output at this 

temperature. The maximum achievable output from thermal power plants 

declines at high ambient temperatures compared to their production under normal 

conditions. Figure 1-2 shows the gap between gross installed generation and 

available peak capacity on hot summer days in 2011[7]. The achievable peak 

output from steam turbine plants reduces at high ambient temperatures.   

 
Figure 1-2 Iraq difference between gross installed generation capacity and available 

peak capacity in Summer days, 2011 [7] 

 

1.2.2 The effect of temperature on energy consumption 
 

In Iraq, electrical demand is growing far more quickly than supply, contributing 

to electricity shortages and forcing the country to import electricity from Iran, 

about 2GW, despite its rich energy resources [2]. Population and economic 

growth as well as rapid urbanization, are the main reasons underpinning the rise 

in consumption[8]. 
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In 2017 the demand increased to about 22,000MW during the summer season, 

because of the increased use of air conditioning units on hot summer days [7], 

see Figure 1-3, but the maximum supply did not met this demand, particularly in 

the summer. 

The long-standing gap between supply and demand is estimated to have caused 

about $40 billion losses for the Iraqi economy[7]. 

The focus of this thesis is on the growth of residential load which is represents 

approximately 75% of the total demand in Baghdad[7].  
 

 
Figure 1-3 Relationship between the electrical load and the temperature, data recorded  

by SCADA  of distribution network May- September 2016 for Iraq as a whole 

 
1.3   The availability of generation 
 
Electricity generation in Iraq is from various power-generating units, including 

steam turbines, gas turbines and hydroelectric power stations, as shown in Figure 

1-4. It can be seen that the electrical energy supplied from the natural gas power 

plants is 48%. This is the most significant proportion of the total electrical energy 

supply, compared to other types of power plants for Iraq in 2013. In the same 

year, the energy supply from hydropower plants accounted for 8% and this is the 

smallest percentage of the total.  
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Figure 1-4 The energy supply in GWh for various power plants in Iraq and their weights 

in percentage for 2013 [9] 

 

 Figure 1-5 shows the installed, available and peak supply generation for the 

existing power plants in Iraq for the 2017 year [10]. The Ministry of Electricity 

had increased the peak supply capacity to 15,500MW by 2017. However, this 

was far from being adequate to match the peak demand.  

 

 
Figure 1-5 Comparison of Installed, Available and Peak Supply Capacities 2017 [7] 

 
Figure 1-6 compares the nameplates capacity and the effective generation (peak 

supply capacity) of power plants between 2003-2017. It is noted that since 2003 

the effective capacity of power plants has been smaller than the nameplate rating, 

due to plant de-rating, maintenance problems, very high temperatures of 45°C 

during the hot summer season and fuel switching[5]. However, significant 
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increases in the generation installed were made since 2003, with available 

capacity expanding by 10 GW, see Figure 1-6.  
 

 
Figure 1-6 The difference between the installed and effective capacity of power plants in 

Iraq 2003-2017 [5] 

 
 
1.4   Power Transmission and Distribution System in Iraq  
 
The generation and use of electricity in Iraq was introduced in 1917 during the 

First World War. The generation sector at that time was made up of small mobile 

DC sets supplying specific local loads[11]. During 1960 and 1970, Iraq 

experienced fast economic progress because of the increased revenue from the 

oil industry. During that period, the Iraq power system was expanded with the 

introduction of 132 kV and 400 kV power transmission systems, and sufficient 

generation to meet the 6,000 MW demand.  

By 1990, the peak demand in Iraq was approximately 5,100 MW with the total 

installed generating capacity of about 10,000 MW. The following year, as a result 

of the war in the region, several power plants and substations were significantly 

damaged resulting in a reduced generating capacity below 2,500 MW. Several 

transmission lines were put out of service. After the 2003 war, The distribution 

networks were seriously degraded and many substations and overhead lines were 

damaged or looted[11]. However, there was an international effort by the United 

0

5

10

15

20

25

30

35

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

GW
Nameplate capacity and effective generation capacity

Maximum effective capacity Nameplate capacity



 6 

States in Iraq, which allocated US$4.5 billion, to restore electricity generation 

level and to rehabilitate the electrical power systems by replacing the looted and 

vandalized plants, and repairing partially damaged, poorly repaired and outdated 

power plants. The Ministry of Electricity in Iraq has also expanded the power 

transmission lines and distribution substation networks after the war of 2003. 

Nevertheless, the generation suppliers are still far from being adequate to satisfy 

the peak demand, see Figure 1-7. 

 

 
Figure 1-7 Available electricity supply and peak demand before and after the war 2003 

(1990-2020) [2] 

 

Despite continuing progress towards adding more generation to the power 

system, there will be a gap between generation supply and peak demand of 

electricity in Iraq for several years to come, see Figure 1-8. 
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Figure 1-8  Predicted peak demand against available and planned generation supply for 

the future (2022-2030) [6] 

 

Generally, Iraq’s power transmission lines consist of 400 kV and 132 kV 

systems. Power generation plans are connected to either the 400 kV or the 132 

kV system. In 2016,  the entire power transmission system consisted of 21 

substations at 400 kV with 2,400 MVA installed capacity and 403 substations 

(68 of which were mobile substations) at 132 kV with 37,796 MVA installed 

capacity. Whilst the power distribution system (33/11 kV) consisted of 412 

substations with 29,702 MVA installed capacity.  
 

 
1.5  Load shedding in developing countries  
 
 
Load shedding is applied by operators of an electrical system that is short of 

generation to balance the power supply with the demand by temporarily 

switching off some loads in different geographical areas[12][13]. Load shedding 

is commonly used in countries whose electrical supplies are not able to meet their 

peak demand such as Nigeria, India, Bangladesh, Pakistan, and South Africa as 

well as Iraq [14][15][16].  

 

In Iraq, the load shedding program plays an important role in managing the load 

by a deliberate shutdown of supply in some parts of the distribution network. The 
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system operator in Iraq uses this program to prevent system blackouts 

particularly when the demand is high during the hot summer season.  
 
1.6    Environmental impact 
 
Due to climate change and greenhouse gas emission problems, environmental 

impact has become one of the most concerning factors in any electrical power 

system scheme because of the gaseous emission from the fossil fuel that is 

utilised in power generation plants [17],[18]and[19]. Cities are responsible for a 

large amount of the world’s CO2 environmental pollution. In developing 

countries, existing global sustainability guidelines for cities are often not 

appropriate due to climate differences between developed and developing 

countries. There are also problems specific to countries suffering from political 

instability, e.g. the degradation of public services and utilities, severe damage to 

the infrastructure and economic deterioration. The environment of cities is, 

therefore, one of the main areas where work can be undertaken to reduce 

undesirable impacts on the environment caused by conventional power 

generation, traffic congestion, greenhouse emissions, and rapid population 

growth [20]. In developing countries like Iraq, the demand for energy from fossil 

fuels is a particular problem which is exacerbated by a lack of investment in 

renewable resources. The developing countries such as Arab gulf countries and 

Iraq, rely on burning fossil fuels for as much as 90% of their power generation, 

this dramatically increases CO2 emissions and environmental pollution [21].  

 

Figure 1-9 Percentage of population in Urban and Rural, Iraq [2] 
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In developing countries, there is extreme use of natural resources and 

environmental pollution as a result of their use of conventional power production, 

particularly in hot dry and arid regions. The main reason for increasing energy 

demands lies in the growth of the economy and population. In countries such as 

China, India and the Middle East regions [22] this has resulted in rapid 

urbanization. For example, in Iraq, there has been a rapid shift from the 

population living mainly in rural areas to urban regions as shown in Figure 1-9. 

In 1947, 70% of the population resided in rural areas; by contrast, today, more 

than 70% of the population lives in cities [23]. Such urbanization and increase in 

population density are identified as the key factors shaping future cities [24]. 

Therefore, there is a significant challenge to find an acceptable solution for new 

and existing cities developments taking the impacts of climate change, and 

managing a balance between various dimensions of sustainability[25]. 

Over 90% of energy is produced by burning fossil fuels in Arab Gulf countries. 

This is because these countries are rich in oil and other fossils fuels.  There is 

limited uptake of renewable resources like solar generation, despite favourable 

climatic conditions [26]. However, a shift in global practices to reduce energy 

consumption and an increased reliance and investment in renewable resources 

could contribute to reducing CO2 emissions. Many developed countries already 

emphasize the use of energy-saving systems, but these renewable technologies 

are mostly absent in the Middle East [27]. Therefore, energy consumption is 

causing significant challenges that need to be addressed by sustainable planning, 

focusing on the transition from the concept of energy-consumption to energy-

producing homes, by exploiting the use of solar energy. 

 

1.7   Off-Grid diesel generators in Iraq 

Iraq’s power system is facing significant challenges due to the mismatch between 

generation and supply. To overcome this problem a large number of households 

are using private diesel generators. The private diesel generators in Baghdad are 

classified as stand-alone diesel generators and community diesel generators. The 

community diesel generators have been introduced since1999 by third parties to 

overcome the electricity shortage and to accommodate uninterrupted 24-hour 
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power to consumers throughout the year. The stand-alone diesel generators 

supply a single house while the community diesel generators supply a 

neighbourhood with private wires, see Figure 1-10. Most stand-alone units have 

capacities ranging between 10-50 kVA, while community diesel generators have 

capacities of more than 100 kVA.  

Generally, there is one community diesel generator for 350-450 houses in 

domestic areas in Baghdad. For example, Zeyouna region of Baghdad has 

approximately 9,000 houses supplied by 19 community generators whose total 

capacity is 10MW. A survey in 2009 estimated that there were approximately 

900MW of small diesel generation units in Baghdad. Most types of generators 

use engines from: Scania, Volvo, Perkins, Cummins, and they are connected at 

low voltage (LV) 0.4 kV. These units have drawbacks such as pollution, bad 

wiring and acoustic noise, as shown in Figure 1-10.  

 
 

 
Figure 1-10 Private diesel generators connected (a) to a single house (b) to the 

community with private wires 

 
1.8   New Ziyouna area of Baghdad 

The area under investigation in this research is an Iraqi district (Ziyouna) which 

is located in the heart of Baghdad City (see Figure 1-11) and has about 9,000 

residential consumers (houses). Existing off-grid diesel generators are distributed 

around Ziyounah.  

(a) (b) 
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Figure 1-11 New Ziyouna area / Baghdad2 

 
The numbers and capacities of diesel generators in the New Ziyouna area of 

Baghdad are shown in Table 1-1.         
 

Table 1-1The numbers and capacities of diesel generators in New Ziyounah area of 
Baghdad 

Generator Size (kW) 250 500 750 1000 

Number of Generators 6 6 4 3 

 

The location of the diesel generators between houses in the New Ziyouna area of 
Baghdad is shown in Figure 1-12.  

 
2 The map of Ziyounah district has been provided by Ministry of Electricity of Iraq/ Department of GIS; 
this area consists of 9000 residential consumers (houses). 
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Figure 1-12 The locations of off-grid diesel generators in the New Ziyounah area of 

Baghdad 

 

1.9   Challenges 
 
The challenges of electricity supply in Iraq are illustrated clearly in the district 

of Ziyounah and include: 

1. The electricity consumption in Iraq is very high due to economic 

development, population growth, and the usage of low efficiency 

domestic appliances. 

2. Generation units including diesel generators and PVs are needed to supply 

the peak demand. 

3. Inefficient operating of diesel generators (e.g. non-optimal dispatch of 

generation units) leads to an increase in fuel consumption, operation cost 
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and CO2 emissions from the generators. This means, the size of the 

generators generators (DG) must be selected suitably. 

4.  There are blackouts in the power system due to the mismatch between the 

electricity supply and demand in Iraq. 

5.  The diesel generators in Ziyouna of Baghdad are presently operated off-

grid, and managed independently of the distribution system. They need to 

be integrated into the distribution system and re-located to improve the 

performance of the network and to reduce the acoustic noise to the 

consumers. 

 

1.10    Research questions  
 
 
RQ1: How do the third parties sell electricity from the diesel generators to Iraqi 

consumers? (to understand and identify the difference in electricity tariff between 

the government supply and neighbourhood generators for lower-class 

households). 

 

RQ2: How are carbon emissions and fuel consumption estimated for a diesel 

generator at any operating load? 

 

RQ4: How would the integration of the stand-alone neighbourhood diesel 

generators into the Iraq power system provide technical and economic benefits 

with low environmental effect? 

 

RQ5: Is there a strong relationship between the maximum power demand and 

the maximum temperature in Iraq during the days in the summer, winter and 

spring seasons?  

 

RQ6: What are the techniques considered to predict the daily and hourly peak 

demand, which is required for planning and operating, for Ziyonah area of 

Baghdad based on the historical data collected in this research? 
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RQ7: Can the operator overcome the mismatch between demand and supply, i.e. 

what are the required numbers of diesel generators and PV to meet the peak daily 

demand for Ziyounah area of Baghdad in the summer and winter season of 2020? 

What is the method to calculate the number of diesel generators? 

 

RQ8: In what ways can the operators for the Iraq power minimise the total 

operating cost for integrated generation sources during 24 hours while meeting 

the demand? 

 

1.11    Objectives of the thesis 
 
The objectives of the thesis are:  

1. Investigate the real challenges of off-grid diesel generators for the decision 

makers in terms of environmental and economic perspectives.  

2. Compare the electricity tariff provided by the government with the cost of 

supplying the demand using private off-grid diesel neighbourhood generators 

over the months of hot summer days. 

3. Estimate the models of diesel fuel consumption and carbon emissions for the 

diesel generators. 

4. Provide a feasible solution to the Iraqi power system by integrating off-grid 

private diesel generators into the distribution network. 

5. Develop an algorithm to find the best location and size of diesel generators at 

the peak load in a 35- bus radial distribution network in Ziyounah district of 

Bagdad. 

6. Evaluate and investigate the impacts of integrated private diesel generators in 

electricity savings and networks performance. 

7. Test and compare the performance of forecasting the daily and hourly demand 

for Ziyounah district of Bagdad using linear regression and ANN techniques. 

8. Provide the results of daily and hourly forecast, used in chapter 6, for 

minimising the operational cost of integrated diesel generators and accurately 

match electricity production with consumption in the summer and winter 

seasons of 2020. 
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9. Produce a cost model for different sizes of diesel generators used to estimate 

the fuel consumption and operating cost. 

10. Estimate the additional required PV generation units to meet the peak demand 

based on maximum daily forecasted demand. 

11. Generate the optimal diesel generators scheduling using Lagrange multipliers 

and Linear Programming techniques to reduce the total operational cost and 

carbon emissions whilst meeting the demand constraints.   

 

 

1.12    Research plan 

Figure 1-13 illustrates the research plan. Main objectives are provided, and the 

links between the tasks are shown. 

 

Figure 1-13 Research plan of the thesis  
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2 Chapter 2 
 
 

Literature review 
 

This literature review discusses the established knowledge of each of the subjects 

studied in this PhD: optimal location of distributed generators, load forecasting, 

and economic dispatch. 

 
2.1 Optimal location of distributed generators 
 

Distributed power generation, which in the past was  known as embedded 

generation in Anglo-Saxon countries, decentralized generation in Europe and 

Asian countries and dispersed generation in North American countries [28], is a 

power source connected directly to the distribution network. It refers to small 

generating units installed near local loads or load centres to avoid the need for 

network expansion and to satisfy new load areas. This section is related to 

Chapter 4 which presents a methodology to find the best placement and the right 

size of the diesel generators in the distribution network of Ziyounah in the 

Baghdad area.  

 

According to The Electric Power Research Institute (EPRI), distributed 

generation is generation from ‘a few kilowatts up to 50 MW’ [29]. Distributed 

power generation can be renewable energy sources or internal combustion 

reciprocating engines [28]. 

International Energy Agency (IEA) defines distributed power generation as on-

grid generating plants supplying consumers or providing support to a distribution 

network, integrated to the grid at distributed level voltages. The contribution of 

the power distributed generation in power systems is relevant worldwide and 

their use in the future power systems is expected to increase further [29]. 

 

Due to considerable costs, the size of distributed generators (DG) must be 

selected suitably to improve the system performance such as to reduce system 
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losses and improve the voltage profile while meeting the demand and the network 

constraints. The problem of distributed generators planning has recently received 

much attention by power system operators and researchers. Selecting the best 

places for distributed generators units and their preferred  sizes in large power 

systems is a complex combinatorial optimization problem[28].  

 

The integration of distributed generators units in non-optimal places may reduce 

the network performance such as an increase in system losses and have a negative 

effect on voltage profile which is problematic particularly in developing 

countries facing high-power loss and poor voltage profile [30]and[31].Therefore, 

distributed generators should be allocated in an optimal way to maximize the 

system efficiency [29].  

 

Various literatures have focused on optimal sizing and placement of DGs to 

minimize real and reactive power loss using several techniques such as particle 

swarm optimization (PSO) and hybrid PSO [32]–[34] generic algorithm (GA) 

[35], artificial bee colony (ABC), and hybrid ant colony optimization (ACO) [36] 

have all been suggested for DGs sizing and siting. In a few recent studies, 

heuristic methods such as hybrid harmony search algorithm (HSA) and particle 

artificial bee colony (PABC) [37] and intersect mutation differential evolution 

(IMDE) [38] have all been applied for the optimal design of capacity and 

placement of both DGs and shunt capacitor. However, the mentioned studies are 

usually computationally demanding and share common criteria which is the 

minimization of real power loss as a single objective. In [39], a less 

computationally intensive method which uses analytical expression was 

proposed. The DGs are considered to be located in the primary distribution 

system and the objective of DG placement is to reduce the losses. Further studies 

have used different approaches to reduce the search space of the algorithm and 

the computational burden. For example, in references [37] and [40]the authors 

have approached location optimization based on the ratio of change in real power 

loss in the line connecting the bus to changes in active or reactive power of the 
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same bus in a radial network. However, this method is not suitable for the 

allocation of multiple distributed generators.  

 

Many approaches have been developed for placing distributed generators units 

optimally in the network. An evolutionary programming optimization method 

has been developed to determine the optimal size of the DGs[41]. Two new 

approaches based on the sensitivity of real and reactive power losses with respect 

to the size of DGs have been proposed to obtain the best size and location of 

these generators towards minimizing power losses in the distribution networks. 

The proposed methods have been developed based on the constant impedance 

and current load characteristics. The developed techniques have been tested on a 

practical long radial distribution network [42]. In [43] it is proposed a 

backtracking search optimization algorithm (BSA) to assign DGs  along with 

radial distribution networks (RDNs). The objective function is adopted with a 

weighting factor to enhance the performance of the network and reduce the real 

losses of the network. The proposed methodology is applied to 33- and 94-bus 

RDNs to investigate its viability.  

 

The loss sensitivity factor based on the current injection technique for sizing and 

location of DGs units in radial distribution system is given in [44]. Calculation 

of cost of DGs is provided in [45] based on triangular, conventional, and complex 

power limits. Reference [46] presented two new methodologies for optimal 

location of DGs utilising an optimal power flow (OPF) based model in real time. 

The optimisation problem is formulated for two different objectives, namely, 

social welfare maximization and profit maximization. The candidate locations 

for DGs placement are identified based on Locational Marginal Price (LMP). 

[47] proposed the hybridization of GA and artificial bee colony algorithm (ABC) 

for obtaining the optimal location and size of multiple generators and capacitors 

in radial distribution systems to reduce the cost of the system. This hybrid 

algorithm is tested on IEEE 33- and 69-bus radial distribution systems. Reference 

[48] describes a Novel methodology to calculate optimal DGs sizes based on real 

power loss. This method considers optimal DGs sizes at unity power factor. 
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Several authors have presented a methodology for optimal DGs allocation and 

sizing in the distribution network considering loss minimization, and to guarantee 

an acceptable level of voltage profile. A GA based optimization technique has 

been used to obtain the results. The results for voltage profile and losses have 

been determined based on the load flow[49]. The authors in [50] presented a 

method for optimal sitting and sizing of multiple DGs using particle swarm 

optimization (PSO) based approach. Research presented in [51]deals with the 

impact of voltage dependent load models on the predicted energy losses in DGs 

planning. A multi-objective optimization approach based on losses reduction and 

voltage profile improvement for distributed generators allocation using GA was 

proposed in [52].  

 

A mixed-integer linear programming approach to find optimal size and allocation 

of DGs in radial distribution systems is presented in [53]. The proposed 

formulation accounts for the steady-state operation of the radial distribution 

system, considering different load levels, different types of DGs with their 

capability curves, and different topologies of the radial distribution system. [54] 

proposed a reconfiguration methodology based on a cuckoo search algorithm 

(CSA). The objective is to minimize active power losses and maximize voltage 

magnitude. The CSA method is a new metaheuristic algorithm inspired from the 

obligate brood parasitism of some cuckoo species for solving optimization 

problems. The effectiveness of the proposed CSA is investigated on three 

different distribution network systems: 33-, 69-, and 119-node systems. A simple 

method for optimal placement of distributed generators in a radial distribution 

system based on voltage sensitivity index (VSI) analysis is presented in [54]. The 

main objective is to minimize real power loss, voltage profile improvement. [55] 

presented an optimal proposed approach (OPA) to determine the optimal sitting 

and sizing of DGs subject to the system constraints to achieve multi-objectives 

using a genetic algorithm. This approach could bring benefits such as voltage 

profile improvement, spinning reserve increasing, power flow reduction and total 

line loss reduction. 
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The authors in [56] presented a simple method for investigating the optimisation 

problem for location and capacity of DGs in three-phase unbalanced radial 

distribution systems (URDS) to reduce power loss and to improve the voltage 

profile of the distribution network using voltage index (VSI) analysis. Loss 

sensitivity factors (LSFs) are utilised to select the candidate locations for the 

multiple generators placements and Simulated Annealing (SA) is used to 

estimate the optimal size and locations of generators [57]. [58] proposed a PSO 

method to study the optimal power flow (OPF) of a power system integrated with 

a renewable generator like wind and photovoltaic (PV) to minimize the 

transmission losses system on an IEEE 30-bus RDN. A new method for optimal 

sizing and location of distributed generation units in radial distribution systems 

was proposed in [59]. In this method, the optimal location for generators obtained 

by power loss sensitivity and optimal size is given by Harmony Search Algorithm 

(HSA). [60] proposed a novel combination of nondominated using GA and fuzzy 

method to minimize four objective functions, namely, cost, emission, power 

losses, and voltage deviation, on a typical 34-bus test microgrid. In [61]optimal 

location of DGs is given based on loss sensitivity and voltage stability index. A 

simple conventional iterative search technique along with Newton Raphson 

method of load flow study is carried out for the optimisation problem to reduce 

both cost and power loss very effectively. The paper also focuses on optimization 

of the weighting factor, which balances the cost and the loss factors. [62] 

proposed a population-based incremental learning (PBIL) algorithm to find the 

optimal location of DGs and PSO to define the size of those devices. The 

objective is to reduce the computation time and real power losses and improve 

the voltage profiles. The proposed algorithms are tested on IEEE 33- and 69-bus 

radial distribution systems. [63] proposed an efficient analytical method for 

optimally allocating distributed generators in electrical distribution systems to 

minimize power losses. [64] proposed a hybrid GA-PSO algorithm to reduce 

losses and maintain acceptable voltage profiles in a radial distribution system 

simultaneously. The objective function is to optimally size and place DGs in 

appropriate buses in the system to reduce operating cost and real power losses 
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(RPLs) and enhance voltage stability. The proposed algorithm is demonstrated 

on IEEE 33- and 69-bus distribution systems.   

 

Ref [65] proposed a backtracking search algorithm (BSA) to study the effect of 

different load models on determining sizes and optimal locations of the DGs. The 

main aims were to improve the network voltage profile and reduce power loss in 

RDNs. The proposed algorithm is tested on 136-bus and 69-bus radial 

distribution networks with four load models, but it has a random mutation scheme 

that uses only one direction individual for each target individual [65]. 

 

Table 2-1 presents a taxonomy of the reviewed optimal placement of distributed 

generators models.  

 
Table 2-1 Distributed generator placement methods  

Ref  Proposed 

approach 

Objectives Gap identification 

[43] BSA Reduce the real power 

losses and enhance the 

voltage profile 

 

 

 

• It has not included stability and 

Noise Index 

•  It has not provided economic 

assessment  

[54] CSA Minimise active power 

losses and maximise 

voltage magnitude  

 

 

•  It has not included stability 

and Noise Index 

• Case study not real 

[63] Analytical  Minimise power losses 

 

 

 

 

 

• Lack of knowledge in 

methodology 

• Case study not real 

• Target is limited to power 

losses only 
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[64] GA-PSO Minimise power losses and 

maintain acceptable 

voltage profiles 

•  Lack of clarity in 

methodology 

• Economic assessment was not 

provided 

 

[47] GA-ABC Reduce the cost of the 

system and decrease RPLs 

 

 

• Lack of clarity in methodology 

• Lack of data presented  

• No improvement for network 

 

[60] GA and 

Fuzzy  

Minimise cost, emission, 

power losses and voltage 

deviation  

• It has not included stability and 

Noise Index 

 

[62] PBIL and 

PSO 

Reduce active power losses 

and improve voltage 

profile 

 

• It has not provided economic 

assessment 

• Not real system 

[58] PSO Minimise transmission 

losses 

 

 

 

 

• It has not provided economic 

assessment 

• Lack of clarity in methodology 

• Target is limited to real power 

losses only 

[65] BSA Reduce power losses and 

improve network voltage  

• It has not provided economic 

assessment 

• Lack of clarity in methodology 

• It has not included stability and 

Noise Index 

 

[41] Evolutionary 

programming 

Minimize the distribution 

losses while satisfying the 

voltage constraint in the 

system 

 

• Target is limited to real power 

losses only 

• Not real system 
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[42] Sensitivity 

analysis  

Minimise power losses • Target is limited to real power 

losses only 

• Lack of clarity in methodology 

 

[44] Loss 

sensitivity 

factor  

Minimise total power 

losses of the network 

•  Target is limited to real power 

losses only 

• Proposed method is 

complicated  

• Lack of clarity in methodology 

• It has not included stability and 

Noise Index 

• Economic assessment was not 

provided 

 

[48] Sensitivity 

method 

Minimising cost of power 

obtained from distributed 

generators 

 

• Target is limited to real power 

losses only 

[49] GA Evaluate generation units’ 

impact in system 

reliability, losses and 

voltage profile 

• Economic assessment was not 

provided 

• It has not included stability and 

Noise Index 

 

[52] GA  Reduce Losses and 

Improve Voltage Profile 

 

• Economic assessment was not 

provided 

• Noise Index was not included 

 

[53] A mixed-

integer linear  

minimizes the annualized 

investment and operation 

costs 

• Complicated technique  

• Test case study (not real) 

• Economic assessment was not 

provided 

 

[54] Cuckoo 

Search 

Voltage profile 

improvement, spinning 

• Test case study (not real) 
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Algorithm 

(CSA) 

reserve increasing, power 

flow reduction and total 

line loss reduction. 

• Economic assessment was not 

provided 

• Lack of clarity in methodology 

• It has not presented DGs 

 

[56] Voltage 

index (VSI) 

analysis  

Reduce Losses and 

Improve Voltage Profile 

 

• Economic assessment was not 

provided 

• It has not presented DGs 

• Noise index was not included  

 

[57] Loss 

sensitivity 

factor 

method 

(LSFs)  

 

Obtaining optimal sizes of 

capacitors.  

 

• Lack of clarity in methodology 

• It has not presented DGs 

• Economic assessment was not 

provided 

• It has not included stability and 

Noise Index 

 

[59] Harmony 

Search 

Algorithm 

(HSA). 

Reduce Losses and 

Improve Voltage Profile 

 

• Economic assessment was not 

provided 

• Test case study (not real) 

 

[61] Newton 

Raphson 

method 

Reduce both cost and 

power loss 

• It has not included stability and 

Noise Index 

• Not improved voltage profile 

• Economic assessment was not 

provided 

 

A review of distributed generator placement methods showed that the 

optimisation of generator location and size have many advantages such as meeting 

the incremental demand, reducing the total real power losses and enhancing the 

network performance.  The comprehensive review revealed that the optimal 

location and sizing of generation units using GA proved to be a suitable option 
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to be used in this study that describes a realistic problem for the power systems 

in the context of the case study in Iraq. Due to the lack of studies in Iraq and 

based on the collected real data, the proposed approach of finding the best 

placement for diesel generators will address multiple directions of practical 

solutions, including future planning vision for researchers and power operators.   

 
2.2 Load forecasting 
 

Due to the non-storable nature of electrical energy, it is necessary to balance at 

all times the electrical power network to ensure that the power supply is equal to 

the demand. However, an increase in the gap between the generation supply and 

the demand creates voltage/frequency deviations, which are harmful to electric 

networks devices and consumers and can even cause serious damage as in the 

case of blackout [66]. To keep the relationship between production and 

consumption in compliance with different standards and to secure the operations 

of the power system, electric load consumption must be predicted and controlled 

instantaneously. Prediction of electricity demand is a necessary task for power 

system operation because it can help the operators make decisions including unit 

commitment or load switching. Electrical distribution designers and operators 

use a wide range of electrical load forecasting techniques for resource planning 

and generation dispatch [67]. Predicting the load on a system helps operators 

minimize the costs of operation, as well as increase the reliability of meeting 

demand. 

 

The accuracy of load forecasts can have a significant impact on power system 

operations, because the economy of operation and the control of the power 

system may be very sensitive to forecasting errors. Forecasting errors can lead to 

either overly conservative or overly risky scheduling, which can produce large 

economic penalties [68]. Extremely high forecasts may result in the start-up of too 

many generation units and unnecessarily high levels of reserves. On the other 

hand, forecasts that are too low may result in failure to have the necessary 

spinning and operating reserves required. In both cases, inaccurate forecast could 

result in increased operating costs. Consequently, efforts aimed at the 
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development of forecasting techniques that reduce the magnitudes of forecast 

errors can often be justified based on the resulting high savings. For example, in 

the predominantly thermal British power system, it was estimated in 1985 that 

the increase in operating costs correlated with a 1% rise in the forecasting error 

was £10 million per year[69]. 

 

Load at a given hour depends not only on the load at the past hour but also on the 

load at the same hour on the past day, as well as weather variables, events, human 

behaviours and so on. Hence, there are several important exogenous variables 

that must be considered, particularly the weather-related variables [70]. Usually, 

historical load data are utilised for the forecast. These data show a short-term 

correlation between the demand and climatic information. This information may 

include temperature, the day of the week, and other factors[71].  

 

The research methods of load forecasting are classified into two main groups: 

statistical methods and artificial intelligence methods. In statistical methods such 

as regression methods, an equation determines the relationship between load and 

its corresponding factors after training with historical data. Several statistical 

forecasting techniques have been applied to load forecasting such as time 

series[72], similar-day approach [73], regression methods[68], expert 

systems[74], and so on. These methods are linear models and the load pattern is 

usually a nonlinear function [70]. While in the artificial intelligence techniques, 

a human being’s way of thinking and reasoning in forecasting would be copied.  

 

In chapter 5, Linear Regression (LR) and Artificial Neural Networks (ANN) 

techniques are implemented to improve a decision of the daily and hourly peak 

demand during the summer and winter days 2020. Based on correlation factor 

and the type of historical data collected from the Ministry of Electricity in Iraq, 

it was found that these techniques are suitable for this study.  
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2.2.1 Statistical methods 
 

Regression analysis is a well-known statistical technique which is mainly used 

for two conceptually distinct purposes. First, regression analysis is widely used 

for prediction and forecasting. Second, in some situations, regression analysis 

can be used to understand causal relationships between the independent and 

dependent variables[75].  In recent years many companies used regression 

analysis in their forecasting efforts [76]. According to Institute of Business 

Forecasting (IBF), about 16% of the companies use regression for their 

forecasting needs[76]. The advantage of regression analysis is that it can be used 

to capture important relationships between the forecast variable of interest and 

the predictor variables. The main challenge, however, is that in order to generate 

the forecasts, the model requires the future values of each predictor. In power 

systems, regression analysis is used to predict electric loads based on historical 

data such as past load and weather [77].  

 

Regression methods can be classified into two categories as simple linear 

regression and multiple linear regression. In simple linear regression, a bivariate 

model is built to predict a response variable (𝑦) from an explanatory variable (𝑥). 

In multiple linear regression, the model is extended to include more than one 

explanatory variable producing a multivariate model[78]. 

 

2.2.1.1 Simple linear regression analysis 
 

A simple linear regression estimates the relationship between a response variable 

𝑦 , and a single explanatory variable 𝑥 [78] and finds a linear function that, as 

accurately as possible, predicts the value of y as a function of 𝑥 [79]. This method 

has been presented in Section 5.2.1. Linear regression analysis is an important 

technique which is extensively used for predicting the unknown values of a 

variable from the known values of other related variables (factors). In linear 

regression, the variable whose values will be predicted is the dependent variable. 

On the other hand, known variables that are used for prediction, are independent. 
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In other words, forecasting is the process of creating predictions of the future 

based on historical data and future independent variables. 

 

Among the statistical models, the linear regression analysis has revealed 

promising results due to the reasonable accuracy and relatively simple 

implementation when compared to other techniques [80]. It can be used, for 

example, to examine the relationship between variables such as weather and time 

of the day and the variable being forecast. The general form of the linear 

relationship between the dependent and independent variables can be expressed 

as follows [81]: 

 

𝑌 = 𝑎&𝑥& + 𝑎(𝑥( + ⋯+ 𝑎*𝑥* + ε                            (2.1) 

 

where, y is the real output, 𝑥&to 𝑥* represent the influence parameters, 𝑎&to 𝑎*  

represent the coefficients for the corresponding influence parameters, and ε is the 

associated error term. 

 

Usually, the objective of the regression model is to minimize the sum of squared 

errors by varying the coefficients 𝑎&to 𝑎* [82]. For electricity load forecasting in 

power systems, regression models correlate a relationship between the historical 

values of the load with the influence parameters such as weather and the day of 

the week to predict the future value of the load [82].  

 

2.2.1.2     Multiple linear regression analysis  
 

Multiple linear regression extends simple linear regression to include more than 

one explanatory variable. In both cases, we still use the term ‘linear’ because it 

is assumed that the response variable is directly related to a linear combination 

of the explanatory variables [78]. It is generally represented by the relationship 

between a single outcome variable (Y) and some explanatory variables (𝑥,	)[71]. 

This method has been discussed in Section 5.2.3. The equation for multiple linear 

regression has the same form as that for simple linear regression but has more 

terms[78],[83] : 
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𝑌, = 𝐵/ +	𝐵&	𝑥&,	 + 𝐵(	𝑥(,	 + ⋯𝐵*	𝑥*,	 	+ 	ε,	                                                        (2.2) 

 

Where: 𝐵/ , 𝐵&, … 𝐵*	are the model parameters to be estimated, i= {1,2, 3, .., n}, 

and n is the number of explanatory variables.  

 

These equations shown can be represented in matrix form as follows: 

 

y = 𝑋𝛽 + ϵ                                                                                                              (2.3) 

 

Where: 

y = 5

𝑦&
𝑦(
⋮
𝑦7
8,  𝑋 = 9

1 𝑥&&	 𝑥&(	 … 𝑥&<	
1 𝑥(&	 𝑥((	 … 𝑥(<	
⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥=&	 𝑥=(	 … 𝑥=<	

> 

 

𝛽 = 9

𝛽/
𝛽&
⋮
𝛽<

>, and ϵ = 5

ϵ/
ϵ&
⋮
ϵ7
8 

 

The matrix X and y contain information about the independent variables and 

dependent variables of all historical data, respectively. Using the least square 

method, 𝛽 of (2.3) can be derived by the following equation: 

 

𝛽 = (𝑋	𝑋)A B&𝑋	𝑦A 	                                                                                                (2.4) 

 

From the above regression coefficient 𝛽, the future load can be forecasted from 

the multiple linear regression model as below: 

 

𝑦C = 𝑋𝛽                                                                                                                   (2.5) 
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Where: 𝑦C is the prediction of y and the difference of those two is the error of 

forecasting. After collecting the future independent variable matrix 𝑋D , the 

forecasted independent variable 𝑦Dis calculated as: 

𝑦D = 𝑋D𝛽                                                                                                                (2.6) 

 

For big data, the number of rows is high in X and y and matrix and the operation 

is very time intensive. Therefore, multi-core parallel processing is used for big 

matrix transpose, multiplication and inverse operations to solve Equations (2.4) 

-(2.6). 

 

2.2.2 Artificial Neural Networks 
 

ANN structure can be classified into two categories as single and multilayer 

network. Networks with only input and output layer connected by the synaptic 

weights are termed as single layer network as presented in Figure 2-1 [84] . 

Networks having neuron layers between input and output layers are known as the 

multi-layer neural network (MLN). Figure 2-2 shows a multi-layer ANN 

structure with three layers. The layer between the input and output layer is 

referred to as the hidden layer. Multi-layer neural networks have higher 

computational abilities as compared to single-layer networks. These MLP 

networks can learn the complex relationship between the input and output 

patterns which are not possible in the case of single layer networks [84].  

 

 
Figure 2-1 A Neuron Structure [84] 
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Figure 2-2 Multi-Layer Network[84] 

 

2.2.3 Review of load forecasting based on regression analysis and ANN 
 

In the last 25 years many papers have focused on the forecasting of electrical 

demand using different methods[85]. The authors in [86] studied a model for 

electricity forecasting in New Zealand using multiple linear regression analysis, 

taking into account demographic and economic variables. It was found that the 

electrical demand is correlated effectively with all variables. Ranjan and Jain [87] 

analysed the electrical consumption pattern in Delhi as a function of population 

and weather sensitive parameters for the period 1984–1993. They developed 

multiple linear regression models of electrical consumption for the winter, 

summer and post monsoon seasons. [83] presented short term load forecasting of 

system loads from hours to days ahead based on historical data and future 

independent variables using the multi-variable linear regression (MLR) method. 

It was found that weather has a significant role in short term load forecasting. 

[68] studied the application of the linear regression approach in short term load 

forecast and resolved that this method provided reliable results under different 

conditions.  

 

Recent researches have been accomplished on the utilization and implementation 

of artificial intelligence approaches particularly Neural Networks (NNs) to the 

electrical load forecasting problem. The authors in [88] and [89] implemented 

load prediction using ANN  for the first time. Various variants, homogenous and 

hybrid models by using artificial neural network combined to stochastic learning 

approaches have been successfully applied in forecasting short term load 

consumption [90]. The back-propagation training algorithm is mostly considered 
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to train the neural network models. However, Artificial Immune System (AIS) 

learning algorithm [91] and backpropagation momentum training algorithm [92] 

were used to overcome accuracy speed and convergence problem. The number 

of neurons and the weights of the neural network forecasting model is generally 

optimized using heuristic approaches or combined with some other techniques to 

improve the prediction accuracy and performances[93]. The authors in 

[94],[66]and[95] presents approaches for load forecasting using ANN tools in 

MATLAB. 

 

In Ref. [96], a Deep Belief Networks (DBN) made up of multiple layers of 

constrained Boltzmann machines is utilised for short-term electricity load 

forecasting based on the Macedonian hourly demand data. The layer-by-layer 

unsupervised training scheme succeeds in setting the parameters by using a 

supervised backpropagation training algorithm. А novel input variable selection 

is also introduced to enhance the quality of the electrical demand data. The mean 

absolute percentage error (MAPE) is reduced by up to 8.6% compared to the 

predicted data supplied by the Macedonian system operator (MEPSO) for the 24-

h ahead forecasting, and the MAPE for daily peak forecasting is decreased by up 

to 21%. Certainly, results from this research show the suitability and the superior 

accuracy of DBN for both daily peak and daily load curve prediction compared 

to traditional methods. In the work presented by [97], various artificial neural 

network combined models based on multi-objective optimization and data pre-

processing methods were presented simultaneously to find high accuracy and 

great stability of the forecasting model. The experimental outcomes from an 

application to the half-hourly electrical load data of three Australian states 

revealed that both the accuracy and stability of the combined model are excellent 

to those of other benchmark models. In Ref. [98] a probability density forecasting 

method based on quantile regression, neural network utilising triangle kernel 

function is presented to quantify the uncertainty associated with power load 

demand and finding more information of future load. The nonlinear structure of 

the neural network is applied to transform the quantile regression model for 

constructing a probabilistic forecasting technique. Furthermore, the triangle 
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kernel function and direct plug-in bandwidth selection method are used to 

achieve kernel density estimation. The experimental study from the case of the 

study shows a suitable performance of the probability density forecasting 

technique compared to several existing forecasting methods. 

 

[67] presents an artificial neural network (ANN) for forecasting the short-term 

electrical demand of a university campus using real historical data from Colorado 

State University. The typical structure of ANNs in this area of research has 24 

output nodes representing the hourly loads of the day, 30 output nodes 

representing the day loads of the month. Each of these hours and days have 

multiple inputs, which often includes historical data as well as weather and time 

variables. Reference [99] presents an in-depth look at which variables most 

affected the load profile, based on case studies on a realistic system, i.e., the 

Egyptian Unified System, by determining linear correlation coefficients. It was 

revealed that the identification of the historical load is the most influencing factor, 

while the temperature is the most influential weather variable, especially in 

summer and fall. Based on the type and granularity of collected historical data 

and correlation factor, the most suitable methods for selected case study in Iraq 

are LR and ANN. 

 

2.3 Economic dispatch 
 

This Section is related to the work which describes an optimal dispatch for the 

power operator of Ziyounah distribution network. Economic dispatch is the 

process of allocating generation levels to the generating units in the mix, so that 

the load demand may be supplied entirely and most economically. Real power 

economic dispatch aims to make the generator’s fuel consumption or the 

operating cost of the whole system minimal by obtaining the power output of 

each generating unit under the constraint condition of the system load demands. 

The idea behind the optimal dispatch problem is that at the central power monitor 

the load varying is continuously monitored (in real-time), and the power operator 

(dispatcher) regulates generation supply (typically only real power is considered) 

to match the total power generation supply with the total power demand. This 
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generation is controlled in such a way as to minimize the operating cost while 

satisfying all the operating constraints.  

Generation dispatch has been extensively studied and investigated by many 

authors in books on power system analysis [100],[101],[102],[103]and[104]. The 

problem of the economic dispatch of generation over the power system 

generation portfolio has attracted the attention of engineers since the early 1920s 

[105]. Since then, many comprehensive surveys on the economic dispatch have 

been provided. One of the first surveys on ED practices appeared at the end of 

the 1970s [106]. Happ in [106] and the IEEE Working Group present the work 

of authors from the inception of economic loading to the present status. Happ 

evaluated the progress of optimal dispatch going as far back as the early 1920s 

when power operators were concerned with the problem of economic allocation 

of generation units, i.e., the proper division of the load among the generating 

units available. Before 1930, several approaches were considered such as (a) the 

base load method where the next most efficient generation unit is loaded to its 

maximum capability, then the second most efficient generation unit is loaded, 

etc., (b) ”best point loading,” where units are successively loaded to their lowest 

heat rate point, beginning with the most efficient generation unit and operating 

down to the least efficient unit, etc. It was identified as early as 1930, that the 

incremental method, later known as the equal incremental method, provided the 

most economic results. The theoretical work on optimal dispatch was later aided 

by the development of analogue computers for suitably executing the 

coordination equations in a dispatching environment. A transmission loss penalty 

factor computer was developed in 1954 and was used in conjunction with an 

incremental loading slide rule for scheduling daily generation in a load 

dispatching office. By 1955, an electronic differential analyzer was developed 

for economic scheduling for off-line or on-line use. The use of digital computers 

for obtaining power dispatch was investigated in 1954. 

 

In the last two decades, there have been fundamental changes in the structure of 

power systems, as well as significant progress in the economic dispatch problem 

formulation and the solution methodologies. There is a need to keep track of the 
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changes in the solution approaches to enable the power operators to choose the 

most relevant solutions for their systems, as well as for researchers to have a solid 

understanding of the problem and of the progress made to date[107].  

 

Economic dispatch can be classified based on the type of generation units as 

economic dispatch with conventional generation sources and dispatch with non-

conventional generation sources. The economic dispatch with conventional 

generation sources which is also called the classic economic dispatch, in which 

line security constraints are neglected [108]. The fundamental of the ED problem 

is the set of input–output characteristics of a power generating unit such as 

Thermal unit and Hydroelectric Units [108]. The dispatch with non-conventional 

generation sources, such as solar photovoltaic, solar thermal, diesel generators, 

wind, geothermal, storage batteries, etc. have an important feature compared to 

conventional generation [109]. These renewable energy sources have been 

implemented in the power dispatch as an alternatives way to reduce pollution and 

operation costs. A decades ago, researchers have included these sources in the 

power dispatch system instead of focusing mainly on thermal [110]. The 

availability of their installation is easy as compared to conventional power plants 

with the lowest transmission power losses. However, the use of PV faces many 

challenges. Firstly, the PV systems are not much reliable to dispatch the power 

as per regulated power generation demand. Secondly, PV still have a costly 

investment in many areas of the world [111]. 

 

Optimized power dispatch is the process of optimization to find the generating 

unit's schedule to meet system constraints and to supply the demand power [112]. 

The optimization methods of power dispatch are classified into three categories, 

which are hybrid, non-conventional, classical methods [112]. The conventional 

approach for solving economic dispatch problems is known as the classical 

method while non-conventional methods are used to handle the nonconvex and 

practical dispatch problems. The third category is hybrid methods which combine 

two or more classical and/or non-conventional methods to improve the 
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performance of individual methods. Figure 2-3 illustrates the three types of 

optimization methods for economic power dispatch  

 

 
Figure 2-3 Types of optimization methods for optimal power dispatch 

 

2.3.1     Classical methods 
 

There are several classical methods that have been used in order to solve the 

economic dispatch problem such as the lambda iteration method which is 

extensively used. Other methods like Newton's method [113], gradient search 

method [114] and quadratic programming method [115]. have solved economic 

dispatch problems with different objective functions included cost, loss, and 

reductions. The proposed algorithms have been achieved the best optimal 

solution and less computational time. In addition, the system operation is 

satisfied simultaneously. The classical methods are adaptive, flexible when 

analysing the problem and easy to understand. The conventional methods include 

the lambda iteration method provide a feasible solution when the fuel cost 

function is convex[116]. 

 

2.3.1.1  Lagrange Multipliers method 
 

Section 6.6 presents optimal dispatch using Lagrange Multipliers method. The 

Lagrange multipliers technique is widely used to solve extreme value problems 

in science, economics, and engineering[117]. The Lagrange multipliers method, 
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named after Joseph Louis Lagrange, provides an alternative method for the 

constrained nonlinear optimization problems [118]. The Lagrange multipliers 

method is also called as lambda iteration method[119]. The authors in [117] used 

lambda iteration to solve the linear quadratic equation to minimize the operating 

cost for the power system, considering no losses and with losses. [120] proposes 

a fast and easy to use generic MATLAB syntax to help in solving dispatch 

problems using the modified L Iteration Method.  

 

The Lagrange multipliers or lambda iteration method deals with both equality 

and inequality constraints. Without the inequality constraints, the standard form 

of the nonlinear optimization problems can be formulated as [118]: 

 

𝑚𝑖𝑛	 𝑓(𝑥&, 𝑥(, … 𝑥<	)                                                                                       (2.7) 

 

Subject to:   

 

		𝐺	(𝑥&, 𝑥(, … 𝑥<	) = 0                                                                                     (2.8) 

 

G is a function vector. The variables are restricted to the feasible region, which 

refers to the points satisfying the constraints. 

	

G= 𝑓 [𝐺&	(𝑥&, 𝑥(, … 𝑥<	) = 0,…… . , [𝐺7	(𝑥&, 𝑥(, … 𝑥<	) = 0]	N, the constraints 

function vector. 

 

The Lagrange function F is constructed as [117]: 

 

F(X, λ) = F(X)	 − λG(X)	                                                                               (2.9) 

 

Where X =(𝑥&, … 𝑥<	), the variable vector, λ = (λ&, … λ7	) are called Lagrange 

multipliers. 

The extreme points of the 𝑓 and Lagrange multipliers λ satisfy: 
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∇𝐹 = 0                                                                                                          (2.10) 

That is   VD
VWX

− ∑ λZ7
Z[&

V\]
VWX

= 0                                                                  (2.11) 

and  

𝐺&	(𝑥&, 𝑥(, … 𝑥<	) = 0					                                                                               (2.12) 

 

 

At the solution, multiple generators have the same marginal (or incremental) cost. 

This common marginal cost is equal to λ. If the power demand changes, changes 

in total costs can be estimated from λ, and the solved value of λ can be used to 

obtain Pi.  Fuel cost of power generation of each generator can be expressed as 

a quadratic function of real power generation [121]: 

 Ci =αi +βiPi +γi 𝑃𝑖(        £/h hourly fuel consumption of DG                    (2.13) 

Where: αi, βi, and γi   are the coefficients for the cost equations; i= {1,2, 3, .., 

N}, N= the number of generation units. This equation is used to determine the 

incremental cost (λ) using the differential equation shown in Equation (2.14): 
_`aX(bX)c
_(bX)

= λ                                                                                                   (2.14) 

Total fuel cost is lowest when λ values are equal for each generator. The value 

of λ for the initial configuration of the system can be determined by using 

Equation (2.15), and the electric power output of each generator unit can be 

determined from Equation (2.16) 

λ =
𝑷𝑫f∑ gh

𝟐	𝜸𝒊		
𝒏
𝒊m𝟏		

∑ o
𝟐	𝜸𝒊		

𝒏
𝒊m𝟏		

                                                                                              (2.15) 

 

𝑃𝑖 = pBqr
(	s,

                                                                                                        (2.16) 

 

2.3.1.2 Linear programming method 
 

Section 6.7 presents optimal dispatch using Linear programming method. Linear 

programming can be applied to various studies. It is widely used in mathematics 

and engineering problems and practical planning applications. It has proven 
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useful in power system optimization problems [122],[123]. Linear programming 

methods are attractive to power operators and researchers because they include 

the system operation constraints in their formulation and have no convergence 

problems as they resolve the problem in its primal form. There were three major 

linear programming-based methods introduced for the solution of the economic 

dispatch problem in the last 20 years: (i) the simplex method (ii) the interior-

point method, and (iii) the mixed-integer linear programming [107]. In addition, 

Lagrangean approaches were introduced to deal with constraints that may be part 

of the solution strategy. Simplex linear optimization methods deal with seeking 

a set of feasible solutions placed on the vertex of the feasible convex polyhedron 

and then driving along edges of the polyhedron to vertices with successively 

better values of the objective function until the optimum is given. Contrary to the 

simplex method, the interior-point-based methods reach the best solution by 

traversing the interior of the feasible region and have proved to be more efficient 

in practice, particularly for large systems. Additional to the efficiency in terms of 

computational effort, interior-point methods do not need a feasible starting point 

[124]. 

 

The application of linear programming methods is based on either the 

transformation of the quadratic approximation of the generation cost into the 

piecewise linear format or the use of the Incremental Cost (IC), ignoring several 

constraints in the first stage and correcting the solution in additional stages if the 

constraints considered were violated [107]. 

 

In [125], a nonlinear primal–dual interior-point method was applied to solve the 

extended optimal power flow model of a pool-bilateral electricity market. The 

objective function of the dispatch power model in deregulated markets comprises 

a linear approximation of the power generation cost, a linear approximation of a 

penalty cost for the deviation of the vector of the contracted power from the 

proposed values and a linear approximation of the transmission losses. 
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In [126], contingency constraints (reserve constraints) were taken into 

consideration, in addition to the standard economic dispatch formulation, to 

include the impact of an outage or loss of a generation of any generating unit. 

The simplex method is applied to solve the linear formulation of the economic 

dispatch problem with implicit upper and lower generation constraints. 

 

Linear programming techniques can also deal with a quadratic function using a 

linear function approach as a series of straight-line segments [127]. 

 

Linear programs are problems that can be expressed in a mathematical form as: 

Find a vector x 

That minimizes 𝑐Nx 

𝑚𝑖𝑛
W
𝑓N𝑥	 such that u

𝐴𝑥 ≤ 𝑏
𝐴yz𝑥 = 𝑏yz
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

                                                                              (2.17) 

Where f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices. 

 

2.3.2     Hybrid and non- conventional methods  
 

The hybrid method is to combine two or more algorithms to mitigate their 

weaknesses and provide better performance for solving optimization 

problems[128]. The proposed hybrid algorithms such as GA-PS-sequential 

quadratic programming [129], NM-FAPSO [129]and differential evolution 

algorithm-PSO [130] showed a highly efficient technique to solve the economic 

dispatch problem. The drawback of this type of algorithm sometimes is a long 

computational time because it uses two or more algorithms. 

 

Non-conventional methods can deal with the complicated optimization problem 

and are developed to solve the Combined Economic-Emission Dispatch (CEED) 

problem. Numerous methods of this type like Ant colony optimization (ACO) 

[131], Genetic Algorithm (GA) [132], Bat algorithm (BA)[133] and Particle 

swarm optimization (PSO) [134] have been used to solve the dispatch problem.  
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2.4 Summary  
 

This chapter presented a review of optimization methods of the latest research on 

optimal location and size of DGs on the distribution network. It presented various 

optimization methods applied to different test systems to improve the 

performance of the power system. According to previous researches, it is clear 

that if the DGs such as existing diesel generators are well-placed, they could 

provide benefits to the grid by providing flexibility in localized areas and help 

avoid or reduce the number of blackouts. Based on a comprehensive review it 

was selected GA method for the optimal location and sizing of these generation 

units for improving the operation of electrical networks. Based on the type and 

granularity of collected available data, it was shown that this approach is more 

suitable for the real case study in Iraq.  

 

Load Forecasting is a very necessary task for power system operation because it 

can help the operators make significant decisions for generation dispatch 

including unit commitment. A comprehensive review of the latest techniques of 

simple regression and ANN has been applied to load forecast was provided. It 

was shown that linear regression analysis has revealed promising results due to 

the reasonable accuracy and relatively simple implementation when compared to 

other techniques, especially, when it deals with causal relationships between the 

independent and dependent variables such as power demand and temperature. A 

review of load forecasting methods based on ANN shown that this technique 

produces accurate results for short term load forecasts with a time lead ranging 

from an hour to a week due to its clear model, easy implementation, and good 

performance. In addition, the other important feature of this technique is its 

capability of generalization and non-linear learning relationships between 

variables such as the relationship between load at a given time and load at the 

same hour on the past day. 

 

This chapter also presented a review of optimization techniques of the latest 

research for the economic dispatch of DG units on the distribution network. It is 
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shown that economic dispatch is an important approach that can allocate the DGs 

output so as to minimise the total operational cost while meeting the constraints 

of total load demand. An extensive literature review of solution techniques for 

optimal power dispatch problems has shown that The Lagrange multipliers and 

linear programming methods are very efficient techniques for economic dispatch 

on power systems that are capable of dealing with both equalities constrained and 

inequality constrained nonlinear optimization problems. However, the Lagrange 

multipliers method deals with quadratic functions only while the linear program 

method can be applied only when the objective function and all the constraints 

can be expressed in terms of linear equations/inequations. 
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3 Chapter 3 
 

Assessment of off-grid diesel generators in 
Iraq 

 
3.1   Introduction  
 

A diesel generator is a source of energy that can be used as a backup generation 

unit or an emergency power supply to generate power for commercial, residential 

and industrial loads during a short interruption of power [135],[136],[137]. They 

are generally used as off-grid small electrical generation units in remote locations 

across the world because of their low capital costs [25].  A diesel generator is a 

compound of a diesel engine with an electrical generator to generate electrical 

energy [25]. Typically, there are two types of diesel generators in the market, 

either two poles (3000 rpm) or four poles (1500 rpm) characteristics. The 

following expression can match the speeds of 50 Hz synchronous diesel 

generators with 3000 or 1500 rpm:  

 

120	 × 	𝑓 = 𝑛	 × 	𝑃                                                    (3.1) 

Where:  

n is the speed (rpm);  

f is the frequency; 

P is the number of poles of the diesel generator.  

 

The 3000 rpm machines are structurally simpler with 2-poles and thus results in 

lower acquisition cost. These are most suitable for light-duty applications and 

appropriate for the operation of fewer than 400 hours per year. While the 1500-

rpm units are 4-pole machines which are more common for heavy-duty 

applications and are rather more expensive. 4-poles diesel generators are 

desirable when more than 400 hours of operation per year is anticipated. 

Generally, the higher the rpm the generator has, the more wear and tear on the 

bearings, therefore more recurrent maintenance requirements. The diesel 
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generator technically has a lifetime period that varies from 5000 to 50,000 hours, 

with an average of 20,000 hours, depending on the quality of the engine and its 

proper installation and execution with regular operation and maintenance [137].  

 

This chapter aims to provide an analysis of the fuel consumption of diesel 

generators during operation, which contributes to carbon emissions in Ziyounah 

region of Baghdad. It also compares the operational cost for the generators with 

the price of electricity from the National Grid in Iraq. 

 

3.2    Carbon dioxide emissions from diesel generators 
 

Diesel engines have many undesirable effects such as greenhouse gases (GHG),  

including particulate matter (diesel soot and aerosols), oxides of nitrogen and 

carbon dioxide. The total amount of greenhouse gases (GHGs) released by any 

system to support people activities, directly and indirectly, is termed as carbon 

footprint [138]. It is not easy to get all the required data for every particular 

greenhouse gas emissions due to technical and monitoring problems. Therefore, 

for simplicity, it is usually stated in terms of the amount of CO2 emissions [139]. 

The calculation of carbon dioxide emissions is based on the amount of fuel 

consumption from diesel generator[139]. The carbon content of fuels lightly 

varies, but typically the average carbon content values to estimate CO2 emissions 

could be adapted [140]. The consumption of one-litre diesel produces about 

2.7kg of CO2 [25],[141].  However, the CO2 emissions produced and consumed 

by the diesel generator depends upon the characteristics of the generator set and 

the characteristics of the fuel and is usually in the range of 2.4–2.8 kg of CO2 /L 

[25]. 

 

3.3   Diesel fuel consumption and the efficiency of diesel generators 

A diesel generator is characterised by its efficiency and rate of specific fuel 

consumption. The efficiency of the diesel generator depends on the ratio of rated 

power to output power. The overall efficiency of the diesel generator depends 

upon its thermal, generator and mechanical efficiency. The thermal efficiency 
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relies on the quality of diesel oil. The specific fuel consumption (L/kWh) of a 

diesel generator is defined as the consumption of fuel required to produce 1kW 

of electrical power for supplying a given load during 1 hour time.  The fuel 

consumption of a diesel generator depends on the generator size and the load at 

which the generator operates, as shown in Figure 3-1. For example, a diesel 

generator with a size of  20kW has a fuel consumption of about 0.55 L/kWh when 

the generator operates near 25% of its rated power  [142]. In contrast, the same 

generator consumes approximately 0.363 L/kWh if it is operating between 75% 

and 100% of its rated power[143]. Generally, a typical diesel generator consumes 

between 0.32 and 0.53 L/kWh at its rated power[144]. 

 

Figure 3-1 The fuel consumption of diesel generators based on the size of the generator 
and the load at which the generator operates at [145]. 

 

3.3.1 Model of Diesel fuel consumption  
 

For estimating the model of diesel fuel consumption, linear regression analysis 

with two independent variables, which are nominal capacity and power output of 

the diesel generator, was conducted in this study based on the data from Figure 

3-1. It was found that the coefficients ( 𝛼_� and 𝛽_� ) of the model of fuel 
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consumption for the diesel generators are 0.0811 L/kWh and 0.2982 L/kWh 

respectively.  

The hourly fuel consumption for a diesel generator is assessed by Equation (3.2) 

[146],[147],[148]. 

  F� 			= α��	Pn	 +	β��	Po	              L/h                                                                  (3.2) 

Where: 

 𝛼_� and 𝛽_�	are the coefficients of the fuel consumption model.  

Pn is the nominal capacity of the diesel generator. 

Po is the power output of the diesel generator 

3.3.2 Calculation of diesel generators’ efficiency   

The efficiency of the diesel generator is directly proportional to its rated power 

and the load at which the generator operates at. The efficiency of a diesel 

generator (𝜂��) is defined as the power output divide by the thermal input energy 

of fuel consumption, and this efficiency is assessed by Equation (3.3) [146]. 

η�� =
��	
��×	�

                                                                                                    (3.3)                                                              

F� is the hourly fuel consumption of a diesel generator in L/h, 

 T is a conversion from diesel fuel to kWh thermal =10.723 kWh thermal / litre, 

 Po is power output of the diesel generator. 

Equation (3.3) is used to calculate the efficiencies for diesel generators, taking 

into account the energy of 1MJ = 0.2778kWh thermal and 1 litre of diesel = 

38.6MJ, or 1 litre of diesel = 38.6 x 0.2778 = 10.723kWh thermal. That means 

one litre of diesel fuel has an input energy content of approximately 38.6MJ, 

which approximates to 10.723kWh. The calculations of diesel generators’ 

efficiencies for different capacities and operating are shown in Table 3-1. 
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Table 3-1 The efficiencies of diesel generators 20kW-1000kW during operating 

 
 
3.4   Carbon intensity calculation at various efficiencies 
 

The calculations of carbon intensity are presented in Figure 3-2. The Figure 

shows that 73.11kg of CO2 are produced per 10�BTU3 when diesel is burnt. In 

other words, 73.11kg of CO2 is produced when 292.7 kWh thermal of diesel is 

burnt. Therefore 0.249 kg of CO2 is produced when 1 kWh thermal of diesel is 

burnt. The Carbon intensity (C.I) of a diesel generator is expressed as:      

                 

C. I = /.(��	
���

		kg	of	CO2/kWhe                                                                        (3.4) 

 
3 Conversions BTU to kWh, multiply by 2.9275x10B�, Lbs to kg multiply by 0.4535392. 

 

Generator 

Size (kW) 

 

¼ Load 

 

½ Load 

 

¾ Load 

 

Full load 

20 17.1% 22.8% 23% 25% 

60 17.1% 21.2% 21% 25.7% 

200 21.8% 26.6% 27.9% 28.4% 

230 22.2% 26.8% 28.3% 28.4% 

250 22.4% 26.9% 28.2% 28.4% 

300 22.6% 27.2% 28.6% 28.6% 

350 22.7% 27.4% 28.7% 28.6% 

400 23.0% 27.5% 28.8% 28.6% 

500 23.3% 27.7% 29.1% 28.7% 

600 23.3% 27.9% 29.3% 28.7% 

750 23.5% 28.0% 29.3% 28.8% 

1000 23.7% 28.1% 29.5% 28.8% 
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Figure 3-2  Carbon dioxide emissions calculations from diesel fuel 

It is assumed an engine efficiency of 28.8%. This gives a carbon intensity of 

diesel generation of 865 gCO2/kWhe.  

 

For calculating the carbon intensities for diesel generators at various efficiencies, 

Table 3-1 is considered. The calculation is presented in Table 3-2 by using 

Equation (3.4) 
Table 3-2 The carbon intensities of diesel generators based on their efficiencies 

 

Generator  

Size (kW) 

 

1/4 Load 

 
 

 

1/2 Load 

 

 

3/4 Load 

 

 

Full load 

 

Carbon intensity 

gCO2/kWhe 

Carbon intensity 

gCO2/kWhe 

Carbon intensity 

gCO2/kWhe 

Carbon intensity 

gCO2/kWhe 

20 1456 1092 1083 996 

60 1456 1175 1186 969 

200 1142 936 892 877 

230 1122 929 880 877 

250 1112 926 883 877 

300 1102 915 871 871 

350 1097 909 868 871 

400 1083 905 865 871 

500 1069 899 856 868 

600 1069 892 850 868 

750 1060 889 850 865 

1000 1051 886 844 865 

73.11kg
CO2 emitted 
per million 

British 
thermal units 

(Btu) of 
energy

292.7kWh 
(thermal)  

Burnt energy 
of diesel

0.249 kg/kWh 
(thermal) 

CO2 emitted 
per kWh 

thermal of 
burnt diesel
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The Emission Factor (EF) is calculated as: 

 

EF = 	
0.249kg	of	CO2
kWh	thermal 	× 	10.723

(conversion	from	kWh	thermal	to	litres)	 

 

EF = 	2.67	kg/litre (absolute value) 

 

3.5   Model of carbon emissions for a diesel generator 
 
The estimation of the total CO2 emissions from a diesel generator is expressed in 

Equation (3.5) [136]    

  

CO2	emissions = ∑ 𝐹𝑐	 × 	𝐸𝐹±
&                                                                                              (3.5) 

 

Where: t= Time period during operation of generator in hour(h) 

 𝐹𝑐 = ��	
���×	�

  is fuel consumption in litre/h, and  EF is the emission factor in kg 

of CO2 / litre for diesel generator, which depends on the type of fuel and diesel 

engine characteristics. Or anothery way to express CO2 emission is: 

 

CO2	emissions = ∑ CI	 × 	Po	²
&                                                                                          (3.6) 

 

Where 𝐶𝐼 is carbon intensity in kg/kWh. 

 

The results presented in Section3.4 and 3.5 for the carbon intensity or carbon 

dioxide emitted by diesel generators is relatively higher than the carbon intensity 

emitted by other generation units such as Combined Cycle Gas Turbine (CCGT), 

which has a carbon intensity of 490kg of CO2  per kWh. This is because the 

carbon intensity depends strongly upon the generator’s efficiency and fuel type. 

In addition, a diesel generator should operate close to its rated power to avoid 

high fuel consumption and CO2  emissions. 
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3.6    Off-Grid diesel generators in Iraq 
 
3.6.1 Background  

Currently, diesel generators are becoming more important for supplying Iraq’s 

consumers. According to the Ministry of Planning in Iraq, the number of diesel 

generators that supply communities in the country as a whole is about 90,000 

units, supplying the consumers directly contributing to about 20% of demand. 

However, this is a costly stop-gap measure. At a tariff of GB£ 450-900/MWh by 

the third party charging around £15/Ampere.Month of capacity, this option is 

more expensive than the supply from the national grid. These generators captured 

annual revenues of around £3 billion in 2018, which is equal to the amount 

allocated to the electricity sector in the federal budget for capital expenditure in 

2019 [6].  

 
3.6.2 Financial considerations 

 

Electricity supply, helping to mitigate some of the most acute shortages in the 

peak demand, with three-quarters of it providing cooling in the summer months. 

In 2018, the combined total of these generators was 5 GW[6]. The private 

generators are provided with a certain amount of diesel fuel by Baghdad 

Provincial Council at the official price of about GB£0.24/litre, which is cheaper 

than that from the market, which is about £0.45/litre. The fuel is provided to the 

diesel owners based on the size of generators (i.e. up to 5,000 litres/month).  

 

The cost of electricity from diesel is higher than the electricity from the public 

supply because the government heavily subsidises the electricity supply to 

consumers. The grid provides the majority of electricity, but more than 90% of 

the consumers’ electricity bill goes to an expensive neighbourhood generation[6] 

because of load shedding operation. It is expected that the household might pay 

as much as £3,000 per year to the neighbourhood generator as the generator 

charges are as much as £15/Ampere.Month of capacity during hot summer days 

despite regulations in place that asked for lower charges. It is well known in Iraq 

that consumers buy electricity from the generators’ owner based on electrical 
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current (Ampere) instead of energy (kWh). This is, however, not sufficient to 

supply all the demand from fundamental appliances such as lighting, 

refrigerators, ceiling fans, water coolers as well as air coolers (low current). 

These fixed charges translate to around £750/MWh for consumer, or an average 

price of £180/MWh for electricity delivered, which is eight-fold the average 

residential electricity price in the Middle East region today[6].  

In 2018, the electricity tariff from the government had been categorised into four 

levels (see Figure 3-3) to provide a progressive tariff scheme to consumers, 

which aimed to make electricity more affordable for low-income households. 

 

Figure 3-3  Electricity Tariff  from Iraq government in ( £ ), source: Ministry of 
Electricity, Currency converter: IQD= 0.0006 GBP 

 

To calculate the maximum electrical current (Amper)4, which is supplied to the 

consumers from the generator, providing the same amount of the consumption 

using electricity from national grid, the data from the government tariff (kWh) in 

Figure 3-3 is considered.  

 

 
4 The electricity supply from diesel generators is sold to consumers in electrical current (Amper) instead 
of energy(kWh) in Iraq, and it is controlled by circuit breakers to avoid exceeding the required 
maximum current. 
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It is known that consumers in whole Iraq buy electricity from diesel generators in 

electrical current (Amper) instead of energy(kWh), and it is controlled by the diesel 

generators owner to avoid exceeding the required current. 

In the calculation, it is considered that the generator operates 10 hours per day at  

0.85p.u. power factor. Therefore the consumption for 1kWh per month is 

calculated as  

1kWh = 220𝑉	x	current	(Amper)x	0.85	pf	x	10hours	x	30days 

It was found that the electricty tariff (kWh/ month) from diesel generator is equal 

to £0.267 (0.01782A		x	£15). In contrast, tariff for electricity from the national 

grid using the lower tariff for 1,500kWh shown in Figure 3-4 is equal to £0.02, 

which is cheaper than the tariff from the diesel generators.  

Figure 3-4 compares the electricity tariff for the government and neighbourhood 

generator in four categories of consumption over the month. It can be seen that 

the tariff from generators is almost the same at £0.288/ kWh. This is because the 

cost of 1A per month from the generators is constant regardless of whether 

consumers use it or not. The tariff from the government, by contrast, increases 

from 0.006£/kWh to 0.072£/kWh over the four categories of consumptions.  

The government introduced the cheapest tariff for the first level of consumption 

to support the lower-class households. This means, or these customers 1500kWh 

of monthly consumption, using the tariff from diesel generators is 47 times more 

expensive than the electricity tariff provided by the government. Therefore, the 

efforts to reduce the contribution or costs of neighbourhood diesel generators 

could improve electricity affordability for most, if not all, families. Without 

urgent and concerted action, these pressures are likely to increase as rapid 

population growth and economic development increases electricity demand. 

Achieving a stable, affordable and reliable electricity supply is essential not just 

to serve the basic needs of the Iraqi people but to improve living conditions 

stimulating economic growth. 



 53 

 

Figure 3-4  Comparison between tariff in £/kWh from Iraq’s National Grid and 
neighbourhood generators  

 

3.6.3 CO2 emissions and fuel consumption for diesel generators in 
Ziyounah  

 

3.6.3.1    Methodology  
 

Off-Grid diesel generators, which are detailed in section 3.6.3, are assumed to be 

distributed in Ziyounah region. A constant load demand of 200 kW with 10 hours 

of operation of a diesel generator per day (2,000kWh/day) is assumed for this 

analysis. The amount of fuel consumption and CO2 emissions of these diesel 

generators is determined using Equations(3.2), (3.5) and (3.6). There are four 

different sizes of existing off-grid diesel generators in this study. The capacities 

of these generators are: 250kVA, 500kVA, 750 kVA and 1,000kVA. Hence, the 

rated power capacity of diesel generators is changed from 250kW to 1,000kW 

for comparative results, see Figure 3-5. 
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Figure 3-5  Flowchart for calculating fuel consumption, carbon intensity and CO2 

emissions for diesel generators based on 100kW power load 
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3.6.3.2    Results and discussion 
 

SCENARIO (1): Estimation of fuel consumption and CO2 emissions from 
diesel generators based on the absolute value of Emission Factor 
(EF)= 2.67 kg/litre 

 
In this scenario, the fuel consumption and the CO2 emissions for the diesel 

generators are determined based on the Emission factor (EF) =2.67 kg/ litre.  

It is assumed that the Emission Factor is constant at 2.67 kg/ litre. To determine 

the fuel consumption and carbon emission emitted from different sizes of 

generators, Equation (3.2) or Equation (3.3) is applied at a constant load demand 

of 200 kW with 10 hours of operation of a diesel generator per day, see Figure 

3-5. 

It can be observed that the efficiency of a diesel generator decreases from 23.34% 

to 13.25%, with increasing of its rated power capacity from 250kW to 1,000kW 

with a load demand of 200kW. The fuel consumption for the generators was 

found to be 799.15 litres/day (0.4 litres/kWh) with a 250kW rated power and 

1407.40 litres/day (0.7037liters/kWh) with a 1,000kW rated power diesel 

generator as shown in Table 3-5. Similarly, the CO2 emissions were found to be 

2,133kg/day (1.066kg/kWh) with a 250kW rated power and 3757.76kg/day 

(1.8789kg/kWh) with a 1,000kW rated power diesel generator. 

It is estimated that the use of a 250kW rated power diesel generator will consume 

799.15 litres of diesel oil and emit 2133 kgCO2 per day. Similarly, a 1,000kW 

rated power diesel generator will utilize 1407.40 litres of diesel oil and produce 

3,757 kgCO2 per day with a load demand of 200 kW per hour or 2,000kWh/day, 

see Table 3-3.  

If the load in which a generator operates is less than the generator’s size, the 

generator’s efficiency will drop, and the generator will consume a large amount 

of fuel and ultimately emit more CO2 emissions. 
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Table 3-3 Estimation of fuel consumption and CO2 emissions from diesel generators 

Rated power 

of Diesel 

Generator 

Efficiency of 

Diesel 

Generator  

Fuel consumptions  CO2 emissions 

(Litres/ kwh) (Litres/ day) (kg/day) Intensity 

(kg/kWh) 

250 kW 23.34% 0.3996 799.15 2133 1.06688 

500 kW 18.62% 0.5010 1001.90 2675 1.33755 

750 kW 15.48% 0.6023 1204.65 3216 1.60822 

1000 kW 13.25% 0.7037 1407.40 3757 1.87890 

 

SCENARIO (2): Estimation of CO2 emissions from diesel generators based on 
variable value of  Emission Factor (EF), EF changed from 1 to 1.3 

In this scenario, it is assumed that the Emission Factor is varying from 1 to 1.3. 

To determine the carbon emission emitted from different sizes of generators, 

Equation (3.5) or Equation (3.6) is applied at a constant load demand of 200 kW 

with 10 hours of operation of a diesel generator per day. In the case of calculation 

the carbon intensity Equation (3.4) is carried out, see Figure 3-5. 

In Tables 3.4 and 3.5, the input value of the emission factor is changed from 1 to 

3.5kgCO2/litre, and the rated power of the diesel generator is varied from 250kW 

to 1,000kW. It was found that the amount of CO2 emissions increased by 3.5 

times as the emission factor is increased from 1 to 3.5kgCO2/litre (see Table 3-

5). For example, the carbon emissions from a 1,000kW rated power diesel 

generator increases from 1,407kg to 4,925kg when the emission factor is 

increased from 1 to 3.5kgCO2/litre. 

Table 3-4 Carbon emissions (kgCO2/day) at a various rated power of diesel generator 
and emission factors 

Rated power 

capacity of Diesel 

Generator 

Carbon emissions (kgCO2/day) 

 EF=1 EF= 1.5 EF= 2 EF= 2.5 EF=3 EF=3.5 

250 kW 799.15 1198.73 1598.30 1997.88 2397.45 2797.03 

500 kW 1001.90 1502.85 2003.80 2504.75 3005.70 3506.65 

750 kW 1204.65 1806.98 2409.30 3011.63 3613.95 4216.28 

1000 kW 1407.40 2111.10 2814.80 3518.50 4222.20 4925.90 
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Table 3-5 shows the carbon intensity for the diesel generators at various rated 

power and emission factors. It can be seen that the carbon intensity is directly 

proportional to the emission factor and the rated power of the diesel generator. 

Therefore, the rated power of the selected diesel generator should be closely 

matched to the load demand to reduce CO2 emissions. 

Table 3-5 Carbon Intensity (kgCO2/kWh) at various rated power of diesel generator and 
emission factors 

Rated power 

capacity of Diesel 

Generator 

Carbon Intensity (kgCO2/kWh) 

 EF=1 EF= 1.5 EF= 2 EF= 2.5 EF=3 EF=3.5 

250 kW 0.40 0.60 0.80 1.00 1.20 1.40 

500 kW 0.50 0.75 1.00 1.25 1.50 1.75 

750 kW 0.60 0.90 1.20 1.51 1.81 2.11 

1000 kW 0.70 1.06 1.41 1.76 2.11 2.46 

 

3.6.4 Summary  
 
In this chapter, existing off-grid diesel generators of the Zyounah region in 

Baghdad are investigated to provide an understanding of the real challenges of 

these generators for the consumers in terms of environmental and economic 

perspectives. 

 

It is estimated that for households who consume less than 500kWh/month, the 

tariff from diesel generators is 47 times more expensive than the electricity tariff 

provided by the government because the government heavily subsidizes the 

electricity supply to consumers. 

 

Models of both diesel fuel consumption and carbon emissions for these units are 

presented to determine the hourly fuel consumption, efficiencies and the total 

CO2 emissions of the diesel generators during any period of time.  

 

The fuel consumption and CO2 emissions for four diesel generators in the New 

Ziyouna region of Baghdad case study are determined during the day based on a 
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constant Emission factor (EF) = 2.67 kg/litre. It is found that the efficiency of the 

diesel generator is inversely proportional to the fuel consumption rate, CO2 

emissions and rated power of the diesel generator with a constant load demand 

of 200kW (2,000kWh/day) in the hot summer days.  

 

In scenario 2, it is assumed that Emission Factor (EF) is changed from 1 to 3.5 

because the value of this factor depends on fuel quality and the diesel engine 

characteristics. It is revealed from the analysis that both the carbon intensity and 

the emission of carbon dioxide increased by 3.5 times as the emission factor is 

increased from 1kg to 3.5kgCO2/litre.  

If the load in which a generator operates is less than the generator’s size, the 

generator’s efficiency drop, and the generator consume a large amount of fuel 

and ultimately emit more CO2 emissions. Hence, the selection of a diesel 

generator should be close to the required load demand. 

This outcome is especially relevant for the power operators and policy decision-

makers in countries and governments that are in the process of shaping their own 

climate policies. The lesson learnt form this study is that operating of isolated 

diesel generators with limited load is expensive and environmentally damaging 

which can be a disadvantage especially if they are operating around a well-

populated neighbourhood. The model of carbon emissions for the generators in 

section 3.5 is significant, and it is linked to the discussion in chapter 6 because 

the output of CO2 emissions can be calculated depending on the dispatch power 

of diesel generators.   
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4 Chapter 4 
 

Optimal integration of distributed 
generators in the Iraq power system 

 
4.1  Introduction 
 
    Iraq’s power system is facing significant challenges due to the mismatch 

between generation and supply. If these existing diesel generators were to well-

placed, they could provide benefits to the grid by providing flexibility in 

localized areas and help avoid or reduce the number of blackouts [37]. The 

optimal location and sizing of these generation units is a suitable option for 

improving the operation of electrical networks [34], [29]and[149].  

    This chapter presents a methodology to find the best placement and the right 

size of the diesel generators in the distribution network of Ziyounah in the 

Baghdad area. The optimization of these two parameters reduces the real power 

losses, stabilizes the grid voltage, and improves the network performance [149], 

[150],[37],[40] and [151]. This optimization approach also contributes to 

minimizing the level of acoustic noise from existing diesel generators that are 

installed at the neighbourhood location. The objective function looks to minimize 

the real power losses of the network keeping the voltage within the permissible 

levels5. In addition, the economic impact was assessed by calculating the saving 

obtained when the diesel generators are best placed in the network.  

4.2   Mathematical formulation     
 

One advantage of deploying distributed generators in distribution networks is to 

minimize the total system real power loss and improves the network 

performance while satisfying certain operating constraints. In other words, the 

problem of DG application can be interpreted as obtaining the optimal size and 

 
5 The permissible voltage level for Iraq’s power system (low and medium voltage) is  
(0.95- 1.05pu) [160]. 
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location of that generator to meet the desired objective function subject to 

equality and inequality constraints. The power-flow analysis is the heart of the 

DG-unit solution algorithm [152]. Accordingly, the power-flow algorithm 

offered in [40],[152]and [153] is applied in this work. The mathematical 

formulations of the non-linear optimization problem for the DG-unit application 

is shown in Figure 4-1. 

Consider a three-phase, balanced radial distribution feeder with n buses, l laterals 

and sub laterals. Also, DG units and shunt capacitors as shown in Figure 4-1. 

 

 
Figure 4-1 Radial distribution feeder model including DG and capacitor [37] 

 

 

The power flow is carried by the following set of recursive equations derived from 

the single line diagram shown in Figure 4-1.  

 

	Vrf& = 𝑉r − 2(rrf&	Pr +	xrf&	Qr) + (	𝑟,f&(	 + 𝑥,f&(	 ) x `	bX
Á	fÂX

Á	c
ÃX
Á	                        (4.1) 

 

	Prf& = Pr −
ÄhÅo`	bX

Á	fÂX
Á	c

ÃX
Á	 − 	PÆrf&							                                                              (4.2)             

 

	Qrf& = Qr −
ÇhÅo`	bX

Á	fÂX
Á	c

ÃX
Á	 − 	QÆrf&	                                                                (4.3)          

Where  
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i= {1,2, 3, .., n}, n= The total number of buses  

𝑃, and 𝑄, = The real and reactive power flowing out of bus	r 

𝑃Ê, and 𝑄Ê, = The real and reactive load power at bus	r 

 

The resistance and reactance of the line section between bus i and bus i + 1 

are donated by 𝑟,f& and 𝑥,f& respectively.  

 

To incorporate the method, Equations (4.2) and (4.3) are modified as [153]. 
 

	Prf& = Pr −
ÄhÅo`	bX

Á	fÂX
Á	c

ÃX
Á	 − 	PÆrf&	 + µÌ + 𝐴Prf&		                                           (4.4)                       

	Qrf& = Qr −
ÇhÅo`	bX

Á	fÂX
Á	c

ÃX
Á	 − 	QÆrf&	 + µz + 𝑅Prf&		                                        (4.5)    

 
Where           
 
µb = Real power multiplier, set to zero when there is no active power source or 

set to 1 when there is active power source 

 

µz = Reactive power multiplier, set to zero when there is no reactive power 

source or set to ±1 when there is a reactive power source 

 

𝐴	𝑃,f&		 = Active Power magnitude injected at bus i + 1 

𝑅Prf&		 = Reactive Power magnitude injected at bus i + 1 

 

The following terminal conditions should be satisfied: 
 

i. At the end of the main feeder, laterals and sub laterals 
 

P* = Q* 	= 0 

P=Î = Q=Î = 0 

 
ii. The voltage at bus k is the same voltage as its lateral 

V= = V=�	 

The real and reactive power losses of each section connecting two buses are: 

	PÆ�ÏÏXÅo = (	𝑝,(	 + 𝑄,(	/		𝑉,(	)rrf&                                                                    (4.6)            



 62 

	QÆ�ÏÏXÅo = (	𝑝,(	 + 𝑄,(	/		𝑉,(	)xrf&                                                                   (4.7) 

 

 

4.3 Distribution power flow solution algorithm 
 
The method is used to solve the radial distribution feeders with laterals and sub 

laterals taking into account any embedded distribution generation and shunt 

capacitors. The analysis was carried out by the MATLAB application. The feeders 

can be divided into single line feeders and laterals. 

The solution steps for single line feeders including the proposed approximation 

formulas are summarized as: 

Step 1: Read the feeder data. 

 
Step 2: Find the sum of power loads (active and reactive) for all buses and the 

sum of all resistances and inductive reactance’s of each section connecting two 

buses. 

Step 3: Assume the sending end real power, reactive power and voltage to be: 

P	� = 	∑ 	PÆ,f& + PaÑÒ±ÓÔ
*
Õ[/                                                                             (4.8) 

      
Q	� = 	∑ 	QÆ,f& + QaÑÒ±ÓÔ

*
Õ[/                                                                          (4.9) 

 
V	� = 	1 + j	0	p. u.                                                                                        (4.10)                                 
                                                               
Where  
 

PaÑÒ±ÓÔ = 	
((∑ 	×ØXÅo)

Ù
ÚmÛ

Á
Å(∑ 	ÜØXÅo)

Ù
ÚmÛ

Á
)	∑ 	ÝhÅo	

Ù
ÚmÛ

ÞÛ
Á	

<B&
                                                 (4.11) 

 

QaÑÒ±ÓÔ = 	
((∑ 	×ØXÅo)

Ù
ÚmÛ

Á
Å(∑ 	ÜØXÅo)

Ù
ÚmÛ

Á
)	∑ 	ßhÅo	

Ù
ÚmÛ

ÞÛ
Á	

<B&
                                                (4.12) 

 
The approximation factors in Equation (4.11) and (4.12) are used to reduce the 

iterations required for solution as in reality, there are no lossless systems and 

rarely feeder with only two buses. In other words, the result gets closer to the 

exact loss values. Then, we use these values 	𝑃Ó and 𝑄Ó in the initial iteration. 
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Step 4: Apply power flow Equations (4.1), (4.4) and (4.5) for the feeder. 

Step5: If the absolute values of 𝑃	< and 𝑄	* of the last bus are zero or within an 

acceptable tolerance ≤ 10-7 p.u., the power flow solution is acceptable, otherwise 

go to next step. 

Step 6: For the first bus in the main feeder set: 

	P�<yà = 	 	P�Óá_	 − 	P	*                                                                                 (4.13) 

	Q�<yà = 	 	Q�Óá_	 − Q	*                                                                                (4.14)          

Then, use these new initial values and follow step 4 

The solution steps for laterals is presented in Figure 4-2. 
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Read the feeder data  
(main and laterals) 

Find the sum of power loads (real and 
reactive) on laterals and represent them 

as loads on the main feeder 

Apply the power flow solution as presented 

earlier for the main feeder 
 

Stop 

START 

Is there is more lateral? 
 

With the voltage of the far bus that represent lateral, use this 

value as first bus voltage on this lateral, and solve the lateral 

individually as described earlier 
 

Determine the total real and reactive power injected into the 

lateral (use data from last power flow run) and represents them 

again as a load in the main feeder 
 

Run the power flow solution for the main 
feeder 

With the bus voltages found by last step, solve each lateral 
individually. Then the power flow solution is reached 

Figure 4-2 Flowchart for power flow Solution for Laterals 
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4.4   Optimal placements of the diesel generators using Genetic 
Algorithm (GA) 

 

Optimal integration of the generators is achieved by improving  the system 

performance such as to reduce the system loss, improve the voltage profile while 

maintaining the system stability[28]. In this thesis, the existing diesel generators 

are used as distributed mobile generators units and an optimisation algorithm was 

developed to re-locate these generators in an efficient way to minimise losses and 

reduce the local pollution in the urban areas. Re-locating the existing diesel 

generators reduces the acoustic noise significantly and overcomes the drawbacks 

of the load shedding program.  

 

The selection of the best location and the optimal size of the distributed generators 

in distribution networks is a complex, stochastic and non-linear problem 

[154][155]. Therefore, the optimization framework is implemented using Genetic 

Algorithms (GA) with the goal to enhance the network performance by 

maximizing Network Performance Index (NPI) considering the Real Power Loss 

Index, Voltage stability Index and Voltage Profile Improvement Index.  

 

The Network Performance Index (NPI) numerically describes the impact of diesel 

generators on the distribution networks considering the maximum load. NPI close 

to unity value means higher diesel generator benefits. Network Performance 

Index (NPI) gives an indication of best location and size for DG source. The 

technique incorporates genetic algorithms combined with heuristic rules to 

evaluate most feasible locations based on NPI so that all network performance 

parameters are improved. In some cases, the best combination of locations may 

not be feasible for connecting of DG units due to geographical, social constraints. 

Hence it is important to obtain the other alternatives. To cater this need a priority 

list of bus numbers is prepared with decreasing order of NPI. This aspect provides 

flexibility for the power designer to select the suitable locations satisfying 

technical and implementation constraints. 
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The genetic algorithm approach assists to identify bus locations for insertion of 

multiple DG units. The convergence of the GA search is conducted on the basis 

of a fitness function as defined by the designer. The selection of GA parameters 

such as type of crossover, size of population, mutation and termination criteria is 

to be decided depending on nature of application. 

 

The power flow is obtained by recursive equations, taking into account the 

connection of embedded diesel generators. The power flow results are used to 

calculate parts of the objective function. The Genetic Algorithms (GA) is 

searching the diesel generator locations, by knowing the total number of the 

generators that the operator is interested to connect. The Network Performance 

Index is implemented as the fitness function for GA playing an important role in 

the capacity allocation of the diesel generators. 

 
The developed algorithm is in the following steps: 

Step 1: Read the network data: the loads connected to the different buses, the 

resistance and reactance for transformers and lines. 

Step 2: Run the power flow algorithm to obtain the base case, without generators 

connected. 

Step 3: Read the available generators capacity to be connected to the network. 

Step 4: Generate the bus numbers where the generators need to be connected 

using Genetic Algorithm GA. 

Step 5: Run the power flow for the network with generators connected to find the 

bus locations. 

Step 6: Calculate the Network Performance Index (NPI). 

Step 7: Maximise the value of NPI based on the optimisation function as shown 

in Figure 4-3.  

Step 8: Choose the best three combinations with the highest values for NPI. 

genetic algorithm iterates to find an optimum.  

Step 9: Find the best combination.  

 

The best combination will have the highest value of NPI indicating that the value 

of real power loss is minimised. Also, the voltage profile is improved. The NPI 
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values are computed for the first three best combinations and sorted out in a 

descending order. 
 

 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                     

 

 

4.5   Indices for network performance 
 

To evaluate the performance of the network, there are various indices that can be 

used. These are incorporated in the Network Performance Index (NPI) [156]. 

Run power flow for the base case 

Get the bus numbers using GA 
 

Connect Generators and run the 
power flow 

Calculate NPI 
 

Stop 

START 

Print results 

Is Gen>Max? 
 

Give NPI value 
to GA 

Figure 4-3 Flow Chart for NPI 
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Real Power Losses Index (PLoosIn):  

One of the most important benefits offered by connecting   diesel generators is the 

reduction of real power losses [156]. This index is expressed as follow: 

 
 
PLossI*	 = 1 − (�Æ�ÏÏ)��

(�Æ�ÏÏ)Û
                                                                                                           (4.15) 

   
Where (PLoss)dg is real power losses with diesel generators connected, and 

(PLoss)o is real power losses without the generators connected. 

 

Voltage Stability Index (VSIn): the voltage stability problem is discussed in 

[156], [157] and [158]. VSIn is presented as a voltage stability index from a 

simple power system shown in Figure 4-4. The improvement in voltage stability 

is important because the power system with lesser voltage stability may move to 

uncontrollable state [159]. 

 

 
Figure 4-4  Simplified power system [14] 

 
 

Voltage stability index of branch j (𝑉𝑆𝐼𝑗) is written as: 
 
 VSIj = 4[(XPj	 − 	RQj	)( + (XQj	 + 	RPj	)	(VÕ(]                                          (4.16) 

Where Pj, Qj are real and reactive power received at jth bus and R and X are the 

resistance and reactance of the branch connecting the jth bus. If the system has 

lower VSI that means the system is considered to be more stable. 

The voltage stability index VSIn of the total network is expressed as:   

VSIn = max {VSI1, VSI2, ……VSIn……VSI(N)                                      (4.17) 

The branch in the distribution network that corresponds to the index of VSIn is 

called the weakest branch [156]. Voltage collapse is likely to start from the 
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weakest branch. Hence, the margin of the static voltage stability can be found 

according to the deviation between the value of VSIn and the critical value 1.0. 

Voltage Profile Improvement Index (VPIIn): 

 Diesel generators connection to the distribution networks at the best location will 

improve the voltage profile keeping the voltage level between the acceptable limits 

[158][160][150].  

 
(VPIIn) is defined as [161] by:  

 

𝑉𝑃,	= 	 (	çh	Bç]Xè)	.		(çéêß	Bçh	)
(	çÙëéB	ç]Xè)	.		(çéêß	BçÙëé	)

                                                       (4.18)  

    

Where i= {1,2, 3, .., n}, n= The total number of buses  

VPi is the voltage profile of the ith bus.  

Vmin is the minimum permissible voltage and Vmax is the maximum permissible 

voltage of the network buses.  

Vnom is the nominal voltage, which typically is 1p.u.  

The voltage profile index of the network is expressed as: 

 

𝑉𝑃𝐼<	 = &
<
 ∑ 𝑉𝑃,	<

,[&                                                                             (4.19) 

 
Voltage profile Improvement Index (VPII) is defined as the ratio between the 

voltage profile of the network with generators and the voltage profile without 

generators and is expressed as: 

 

𝑉𝑃𝐼𝐼	 =	
ç�Õ*	��h
ç�Õ*

                                                                                     (4.20) 

 

Where 𝑉𝑃𝐼𝑛	_�, is the voltage profile index of the network with generators for 

ith   node and 𝑉𝑃𝐼𝑛 is the voltage profile index of the network without generators.  

 

Then      𝑉𝑃𝐼𝐼<		 = 	 ç�ÕÕh	B&
ç�ÕÕéêß	B&

                                                                          (4.21) 
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 Noise Improvement Index (NIn): 

This index represents the improvement in the overall noise level from diesel 

generators connected to the community neighbourhoods. Since the location of 

some diesel generators is very close to the consumers, the location of the 

generators in the network should be chosen carefully in order to mitigate the noise 

level. According to Cummins Power Company [162] the permitted noise levels 

for diesel generators at property is between 52dB and 72dB depending on their 

locations. NIn is given as: 

 

𝑁𝐼<	 = 1 − (í�rÏî)ê
(í�rÏî)ï

                                                                                                                       (4.22) 

 

Where (𝑁𝑜𝑖𝑠𝑒)ó	and (𝑁𝑜𝑖𝑠𝑒)ô are the noise levels at the consumer site after and 

before the diesel generators connection. 

 

 Noise	= 70dB − log	( d)                                                            (4.23) 

Where d is the average distance between a generator and consumers. 

 

Network Performance Index (NPI): 

The Network Performance Index is a composite index proposed to quantify the 

benefits of diesel generators. This index represents a comprehensive 

improvement in the network performance such as real loss reduction, and voltage 

profile improvement. The Weighting factors are decided by the power operator 

or designer of the distribution system. The parameter which was given the highest 

weightage factor will have the most significant improvement after the connection 

of the generation units. In addition, all other parameters which are included in 

NPI also have an improvement over the base case. Hence, choosing the best 

combination of buses for the location of generators is made by the highest value 

of NPI. Such a selection will result in an overall improvement in network 

performance, such as reduction in system power loss, improvement in voltage 

profile, improvement in voltage stability as well as a reduction in acoustic noise 

from the generators. A priority list with reducing the value of NPI is prepared so 
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that the generators can be connected at the most feasible locations. The top 

priority places give the highest value of NPI, enhances the system performance 

to the maximum extent. Hence this turns out to be the best solutions. If the 

priority with the highest NPI is not feasible, the designer can select the following 

best places in the network with decreasing order of priority. This manner gives 

flexibility and choices for efficient planning of the network. 

The NPI is computed as: 

 

NPI = 	W&		PLossI*	 + W(		VSI<	 + W÷		VPII< +	W�		NI*		                                  (4.24)      

Where 𝑊&		, 𝑊(		, 𝑊÷	and 𝑊�		are the weightage factors. 
 
Weighting factors are expressed as: 
 
∑ 𝑊,	 = 1.0		⋀�
r[& W	r ∈ [0,1]                                                                                           (4.25) 

 

 

4.6   Economic analysis   
 
    To get the best combination along with the economic benefits, a separate cost 

analysis is done as shown in Figure 4-5. When generators are connected to the 

system the load is supplied partly by the generators, and the rest is met from the 

grid. Hence, the total cost will be the cost of the utility power drawn and the power 

from the generators. Then the savings obtained is calculated by comparing it with 

the base case, i.e. without generators. Thus, the savings are computed for the first 

three best combinations and sorted out in descending order. 

Both the results are analysed and compared, and the best combination has a higher 

value for both the NPI and savings. 

 

The economic analysis is considering the following steps: 

Step 1: Calculate the operating cost for delivered electricity from the national grid 

before the connection of generators (Base cost). The operating cost for the 

electricity from the national grid (£/hr.) is equal to the power from the utility (P 

utility) x Cost for Iraq power (£0.09/kWh) [6].  
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Where   

P utility= 𝑃Ê+ 𝑃ÊÓûû 

Step 2: Calculate the operating cost for delivered electricity from the national grid 

(C	ü²rýr²þ) after connection of generators, same as in step1. 

Step 3: Obtain the operating cost of diesel generators (C	ÿî) = Consumption 

(litre/hr) x £0.24 (Cost of diesel in Iraq £/litre). Based on the calculation presented 

in Section 3.3, the consumption for generators of 0.2MW, 0.25 MW and 0.3MW 

at full load is 65, 81 and 114 litres respectively. Therefore, Total operation cost 

of generators C	²ÿî=C	ÿ(//+ C	ÿ(!/+C	ÿ÷//= (65x0.24) + 81x0.24+114x0.24= 

62.4£/hr. 

Step 4: Calculate the total cost of electricity (total cost) = C	ü²rýr²þ+ C	²ÿî 

Step 5: Calculate the saving = Base cost - Total cost  

 

 
 Figure 4-5  Flowchart for cost savings  
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4.7    Case study: new Ziyounah area of Baghdad  
 
     The network under study is an Iraqi radial 11/0.4kV distribution network with 

35 buses and 22 lines with the total load of 2.07MW. This network uses 

underground cables and consists of 11 transformers whose capacities are 

630kVA, supplying 377 residential load consumers. The single line diagram is 

shown in Figure 4-6. 

 

Figure 4-6  The 11/0.4 kV distribution network, 35 busbars and 22 lines 
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There were 0.75MW of diesel generation installed for every 377 houses. These 

generators supply the houses through the network. Weighing factors for 

calculating NPI are presented in Table 4-1: 

 

 

Table 4-1 Weighing factors for NPI 

W1(PLoosIn) W2(QLoosIn) W3(VSIn) W4(VPIIn) 
0.4 0.2 0.2 0.2 

 

 
Table 4-2 Base data before insertion of the generators 

P load MW P utility MW P losses MW Cost=P utility x   
90£/MW 

2.0725 2.7325 0.66 245.92 
      
 

To calculate the noise levels at the consumer site before and after the diesel 

generators are connected, it is important to collect real data of the average distance 

between the network’s buses and the consumers as shown in Table 4-3. In this 

study, buses between 14 and 24 i.e. the low voltage side of the transformers in 

the distribution network were considered.  
 

Table 4-3 Average distances from buses to the consumers 

Bus No. 

Average 
distance to 
consumer 

(m) 

Bus No 

Average 
distance to 
consumer 

(m) 
14 35.5 20 18 
15 22 21 20.5 
16 28.5 22 31.5 
17 22 23 18.5 
18 34 24 37 
19 17.5   
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4.8    Results and discussion 
 
This section presents the finding of NPI algorithm which describes in Figure 4-3 

to determine the optimal size and locations of three diesel generators on the 

distribution networks. Cost saving showing in Figure 4-4 is also presented 

considering two scenarios.  

 

4.8.1 Scenario (1): maximum load in the summer season of 2017 
 
In this scenario, there are three generators with capacities of 200kW, 250kW and 

300kW to be connected to the residential area. The total power generation from 

these units is less than the maximum load which occurs in the summer season, 

and is about 36% of the total load. As a result of this mismatch, the power is taken 

from the grid to supply the remaining load and the generators are operated at their 

rated capacity.  

 

4.8.1.1   Performance evaluation: 
 

 The results for this scenario with three diesel generators are presented in Table 

4-4. It was found that the optimum capacities for three diesel generators are 

0.2MW, 0.25MW and 0.3MW and the optimum placement is at the bus bars 18, 

22 and 24 respectively. The first three best combinations are chosen based on the 

highest NPI value leads to overall system improvement. For example, bus 22 has 

the largest demand with 47 consumers (see Figure 4-6), and it is relatively located 

far from the consumers 31m (see Table 4-3). Hence, it has been selected as the 

best place to be connected with the generator of 0.25MW to improve the network 

performance and reduce the acoustic noise from the generator to consumers. 
 

Table 4-4 The best location for three generators based on Max NPI (in the decreasing 
order of NPI) 

Gen sizes 
MW 

Bus 
No 

Ploss 
MW VPIIn VSIn NPI NIn 

0.20 18 
0.62 1.075 0.9763 0.507 0.362 0.25 22 

0.30 24 
0.20 14 0.625 1.069 0.9769 0.503 0.351 0.25 18 
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Gen sizes 
MW 

Bus 
No 

Ploss 
MW VPIIn VSIn NPI NIn 

0.30 24 
0.20 14 

0.63 1.063 0.9769 0.494 0.339 0.25 18 
0.30 22 

 
 

Figure 4-7 shows the voltage profile along with the radial network with and 

without diesel generators connection in the summer season of 2017. It can be 

observed from the result that the minimum voltage obtained after the connection 

of the generators was 0.951 p.u at busbar 32, wherein the case of without 

generators , the minimum voltage was 0.948 p.u. at the same busbar which is 

lower than the acceptable voltage limits (0.95 p.u.-.05p.u.). Hence, the result 

verifies the ability of the proposed method to improve the voltage profile at 

maximum load (see Figure 4-7).  

 
Figure 4-7 Voltage profile when the generators are connected at bus 18, 22 and 24 

 
 

The results in terms of loss reduction are illustrated in Figure 4-8, which 

compares the loss of real power in each branch before and after the connection 

of the diesel generators to the network. It was found that the highest percentage 

of losses reduction on L3-4 was recorded at 62.7%; losses reduction 	

= 	
5.1 − 1.9
5.1 = 62.7%
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Figure 4-8 Real power losses of networks lines with and without generators connected at 

buses 18, 22 and 24 

 
 

Figure 4-9 shows the impact of the diesel generators on the transformers and 

lines loading when the generators are connected to the buses 18, 22 and 24. It 

can be observed that the loading of most of the transformers and lines on the 

network have reduced after connecting the generators.  

 

 
Figure 4-9 Transformers and lines loading with and without generators connected at 

buses 18, 22 and 24 
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4.8.1.2  Economic result:  
 

After the generators are connected to the best places in the network, the economic 

analysis is performed using the algorithm presented in Figure 4-10.  

It was estimated that the total cost of the electricity for three generators (0.2MW, 

0.25MW and 0.3MW) is about £62.4/h as presented in Section 4.5. 
 
 
It was found that the best saving for electricity price of £9.7/h occurs when the 

diesel generators 200kW, 250kW and 350kW are connected in the network at bus 

numbers 18, 22 and 24 respectively, see Table 4-5.  

 
 

Figure 4-10 Flowchart for cost comparison 
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Table 4-5 The best location for three generators based on saving (in the decreasing order 

of the saving) 

Savings 
Choice 
no: 

Generator 
sizes 

Bus 
No 

Saving (£/hr.) = 
Base cost-total 

cost, see Sec. (4.5) 
NPI 

NPI 
Choice no: 

1 

0.20MW 18 

9.7 0.5071 1 0.25MW 22 

0.30MW 24 

2 

0.20MW 14 

9.4 0.5037 2 0.25MW 18 

0.30MW 24 

3 

0.20MW 14 

8.72 0.4940 3 0.25MW 18 

0.30MW 22 

   

 

4.8.2 Scenario (2): the summer season of 2025 with the load increase by 
80% 

     Integration of the diesel generators into the network is more important in the 

context of a significant increase in the load in the future. It is estimated an 80% 

increase of the load by 2025 based on [163]. Base on the optimisation study, the 

best location for the connection of diesel generators was found at buses 18, 21 

and 24 and an increase in the load by 80%. 

 

Figure 4-11 shows the voltage profile along with the radial network with and 

without diesel generators connection for the summer season of 2025. The 

minimum steady state voltage limit is 0.95 p.u. based on the distribution code in 

Iraq [150]. It was found that in the future, diesel generators in Iraq will play an 

important role in improving the terminal voltages (see Figure. 4-10).  
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Figure 4-11 Voltage profile when the generators are connected at bus 18, 21 and 24 

 
 

Figure 4-12 shows the impact of the diesel generators on the transformers and 

lines loading when the generators are connected to the buses 18, 21 and 24. It was 

found that the transformer T8 and the line L2-3 loading is close to 100% before 

the diesel generators are connected to the network. When the diesel generators are 

connected to the network at the best location, the loading of transformer and line 

is reduced to 45% and 75% respectively.  

 

 
Figure 4-12 Transformers and lines loading with and without generators connected at 

buses 18, 21 and 24 



 81 

The enhancement result in terms of loss reduction is also illustrated in Figure 4-

13.  It can be seen that the highest percentage of losses reduction on line L9-10 

and line L6-7 was recorded at 62.2% and 51% respectively. 

Real	power	loss	reduction	in	P	Æ�B&/ = 	
2.2 − 0.83

2.2 = 62.2% 

Real	power	loss	reduction	in	P	Æ�B$ =
3.5 − 1.69

3.5 = 51% 

 
Figure 4-13 Real power losses of networks lines with and without generators connected 

at buses 18, 21 and 24 

 
 
4.9   Conclusion 
 
    Due to the increase of the electrical consumption in Iraq, the diesel generators 

in the distribution network and the optimisation of their location and size have 

many advantages such as meeting the incremental demand, reducing the total real 

power losses and enhancing the network performance. This study presented an 

important challenge to the Iraqi power system and provides a feasible solution by 

integrating diesel generators in the distribution network. An optimisation 

algorithm was developed to find the best location and size of diesel generators at 

the peak load in a 35- bus radial distribution network has total maximum load of 

2.0725MW with 377 consumers in Ziyounah district of Bagdad.  

The optimisation process is solved by the combination of genetic algorithms (GA) 

techniques with power flow to evaluate the diesel generators impacts in savings 

of electricity and networks performance, including a reduction in real power loss 
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and acoustic noise from the generators and improving voltage profile. The fitness 

evaluation function that drives the proposed method to the solution is the Network 

Performance Index (NPI). The objective is to maximise the capacity of the 

generator by knowing the total number of generation units that the power operator 

is interested to connect. The Network Performance Index (NPI) gives an 

indication of best busbars and capacity for generators. As evident from results, 

the selection of bus locations and corresponding capacities of generators based on 

the highest NPI leads to overall system improvement. The result has also shown 

that the determination of the best locations in the network for connection 

generators with the help of the proposed Network Performance Index (NPI) leads 

to savings in electricity due to real power loss reduction in the network. 
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5 Chapter 5 
 

Load forecasting 
 
5.1 Introduction 
 

In this study, Linear Regression (LR) and Artificial Neural Networks (ANN) 

techniques are implemented to improve a decision of the daily and hourly peak 

demand during the summer and winter days 2020. The models were trained using 

historical load data to determine the model parameters for the LR model and the 

weights of the network for ANN. Then, the use of obtained weights or parameters 

allows the prediction of the output for a given input. Mean Absolute Percentage 

Error (MAPE) is considered to evaluate the model performance. After analysing 

the model prediction results, it was found that the LR technique offers a higher 

degree of prediction accuracy in daily peak load forecasting compared to the 

ANN technique. Whilst, hourly peak load forecasting result was less accurate 

than the result from ANN.  

 

In Iraq, the temperature varies between the seasons, and the residential load is 

affected directly by the seasons, as shown in Figure 5.1. In Iraq, the seasons are: 

1. Winter season: from 1st Dec to 28th Feb. 

2. Spring season: from 1st Mar to 30th April. 

3. Summer season: from 1st May to 30th Sep.   

4. Autumn season: from 1st Oct to 30th Nov. 
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Figure 5-1 Daily peak loads of the Zeyonah area in Baghdad for different seasons of 

2017. Ministry of Electricity of Iraq.  

 
 

Figure 5-1 shows that the electric load consumed during a season is affected by 

weather fluctuations. The electric power consumed in hot summer due to the 

increase in the use of air conditioning equipment is higher relatively to the power 

consumed in cold winter which also increases due to the use of electrical heaters. 

 

5.2 Linear regression method (LR) 
 

Regression analysis is a well-known statistical technique used to identify the 

dependence between a given variable and one or more explanatory variables. It 

is often used in forecast estimates [164]. It can be used, for example, to examine 

the relationship between variables such as weather and time of the day and the 

variable being forecast. [165] studied the application of the linear regression 

method in STLF and concluded that this method provided reliable results under 

different conditions.  

5.2.1 Simple linear regression analysis  
 

Simple linear regression is a linear regression model with a single explanatory 

variable. In order to represent the relationship between a response variable (Y) 

and an explanatory variable (X), it is used a line of best-fit. The general form of 

the linear relationship between the dependent and independent variables can be 

expressed as follows [81]: 
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𝑌 = 𝐵/ + 𝐵&	X+ ε                         (5.1) 

 

Where Y is predicted by X and 𝐵/𝑎𝑛𝑑	𝐵&	are the model parameters to be 

estimated, and ε is the error of the estimate.  

The scope of this analysis is to predict the daily peak demand in the winter and 

summer season of 2020. The historical training data required for the summer, 

winter and spring seasons for this analysis are presented in Appendix A. 

 

5.2.2 Correlation and regression analysis by using a simple linear 
technique   

 
Correlation analysis provides information on the strength and direction of the 

linear relationship between the daily peak demand and maximum temperature, 

while a simple linear regression analysis model estimates in a linear equation, as 

presented in Section5.2, that can be used to study the predicting values of one 

variable (maximum daily demand)  based on the other. 

 

5.2.2.1  Correlation coefficient (R)  
 
 
As mentioned in Section 5.2.2, a correlation coefficient (R) is a statistical relationship 

between two variables that can describe the strength and direction of the linear 

relationship between the daily peak demand and maximum temperature. The correlation 

coefficient R in the range of -1 and 1. The sign of R corresponds to the direction of the 

relationship. If R is negative, then as maximum temperature increases, the maximum 

power tends to decrease. If R is positive, then as maximum temperature increases, the 

maximum power tends to increase. A perfect linear relationship (R=-1 or R=1) means 

that one of the variables can be perfectly explained by a linear function. The correlation 

coefficient (R) is expressed as: 

 

            Correlation coefficient (r)=  ∑(WBW&)('B	')	(

)zÔ(	∑(WBW&)Á ∑(WB'	* )Á	)
                                     (5.2) 

 

It was found that the correlation coefficient for summer, winter and spring is 

0.8872, -0.904 and 0.1658 respectively. Regression coefficients for the three 

models (summer, winter and spring) are presented in Figure 5.2, 5.3 and 5.4. 
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In Figure 5-2, the correlation indicates a strong relationship between 

maximum loads and maximum temperature in the summer season as the daily 

peak load is proportional directly to the ambient temperature during this season. 

While in a winter season, the daily peak load is inversely proportional to the 

ambient temperature as shown in Figure 5-3.  

 

 
Figure 5-2 Correlation between daily peak loads and max temperature of Zeyonah area 

in Baghdad for the summer season 

 

 
Figure 5-3 Correlation between daily peak loads and max temperature of Zeyonah area 

in Baghdad for the winter season 

Figure 5-4 shows the strength of the relationship between loads and temperature 

in the spring season. In this model with coefficient ®=0.1658, the correlation has 

a weak relationship compared to the correlation coefficient in the summer and 
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winter seasons. This means the demand is not affected significantly by the 

fluctuation of temperature during this season. This is because the majority of 

consumers are not using the air conditioner nor water heaters on spring days. 

 

 
Figure 5-4 Correlation between daily peak loads and max temperature of Zeyonah area 

in Baghdad for the spring season 

 

The correlation analysis results in this section show that the results are significant 

because the role of maximum temperature change having the greatest effect on 

maximum power demand during summer and winter seasons. In other words, the 

graphical results give support for our assumption that peak demand consumption 

in Iraq increases with maximum temperature in summer and decreases in winter 

while it has less correlation with the same temperature in spring. 

 This means the fluctuation of the maximum temperature cannot be ignored for 

summer and winter in this study because it is the most important affecting peak 

power demand. 

 

 

5.2.2.2    Slope of maximum power against maximum temperature 
 

The regression coefficients for the models are computed as: 

 

 	B/ = 𝑦	* - 𝑏	𝑥&                                                                                                          (5.3) 
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		B&= ∑W'B<W'+
∑WÁB<W&Á

                                                                                                  (5.4)  

Which describes a line with slope		B& and y-intercept 	B/ 

 

The line slope	𝐵/ represents the slope of maximum power against the maximum 

temperature. It was found that the slope for the summer, winter and spring is 1.3187, -

0.84 and 0.1529 respectively. The coefficients regression for the models are presented 

in Figure 5-5, 5-6 and 5-7. That means, for an increase of 1°C temperature in the 

Ziyounah area of Baghdad, there will be an increase of 1.3187 MW, a decrease of 0.84 

MW and an increase of 0.1529 MW electricity peak demand during summer, winter and 

spring seasons respectively. 

 

 
Figure 5-5 Slope of maximum daily power against maximum daily temperature for the 

summer season 

 

 
 

Figure 5-6 Slope of maximum daily power against maximum daily temperature for the 
winter season 
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Figure 5-7 Slope of maximum daily power against maximum daily temperature for the 
spring season  

5.2.3 Multiple linear regression analysis  
 

A multiple linear regression model is a statistical technique that can 

use many explanatory variables to predict the outcome of a response variable. It 

is generally expressed by the relationship between a single outcome variable (Y) 

and some explanatory variables (Xi) presented as:  

 

𝑌 = 𝐵/ + 𝐵&	𝑥&	+𝐵(	𝑥(	 + ⋯𝐵*	𝑥*	 + ε                                                          (5.5) 

 

Where  𝐵/, 𝐵&, …𝐵*		are the model parameters to be estimated, and n is the 

number of explanatory variables.  

The scope of this analysis is to predict the hourly peak load in the winter and 

summer season of 2020. The historical training data required for the summer and 

winter season for this analysis are presented in Appendix B. 

 

5.3 Artificial Neural Networks (ANN)  
 
 

STLF based on the ANN technique is considered in this study due to its clear 

model, easy implementation, and good performance [67]. The other important 

feature of this technique is its capability of generalization and non-linear learning 

relationships between variables, as well as its capability to adjust the weights 

between layers [166]. ANN structure can be classified into two categories as 
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single-layer and multi-layer network. The network that has only the input and 

output layer connected by the synaptic weights are known as a single layer 

network. While network with neuron layers between input and output layers are 

known as the multi-layer neural network. The hidden layer represents the layer 

between the input and output layer. Multi-Layer Perceptron (MLP) has been 

selected for this research as their networks have the ability to learn the complex 

relationship between the input and output patterns which are not possible in the 

case of single-layer networks [66]. Figure 5-8 shows a multi-layer ANN structure 

with four layers. 

 

 
Figure 5-8 Structure of Multi-Layer Network [167] 

 

5.4 Evaluation criteria 
 

To investigate the forecast model performance, an intuitive measuring criterion 

is used. The percentage error is computed at every time step and the model 

performance is evaluated over the whole period. Many forecasting studies use 

Mean Absolute Percentage Error (MAPE) as an indication of model 

performance. This method is calculated with respect to data that is positive only, 

such as electricity load demand. MAPE is defined as the average of percentage 

errors and it is expressed as: 

 MAPE=  
∑ ,-./01234567.18/-./012 ,9
o

:
                                                                                   (5.6) 

where N is the sample size, the time samples in this study. The number of samples 

considered is the number of days in a month or hour in a day. The acceptable 
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value of MAPE is 5% from a practical point of view [67] and hence the criteria 

of MAPE 5% will be used as a criterion for acceptable performance. This limit 

represents the average of all percentage errors among the forecast period. 

Generally, when different models are subjected to comparison, better 

performance is evaluated based on the least MAPE error.   

5.5   The Methodology of Load Forecasting (LF)   
 

A LF model based on Linear Regression (LR) and Artificial Neural Network 

(ANN) analysis were used to forecast future daily peak and hourly peak demand. 

Single linear regression analysis was considered to predict the daily peak 

demand, whilst multiple linear regression was implemented to predict hourly 

peak demand. In addition, daily and hourly peak load forecasting were obtained 

using the ANN method, taking into account the same historical data that are used 

for predicting the daily and hourly peak demand using LR method. 

 

5.5.1 The Methodology of daily load forecasting   
 
This section presents the forecasting process using simple linear regression and 

ANN for forecasting daily load.  
 
For simple linear regression, the procedure is to train the model to estimate its 

parameters and then to use this forecast model to extrapolate the future daily peak 

demand. In the first step of the training process, which is used to find the 

parameters 	B/ and 	B&, historical data shown in Figure 5-10 and 5-11 are 

required for summer and winter seasons. For the second step, correlation analysis 

is applied to evaluate the relationship between a dependent variable and an 

independent variable to determine the correlation coefficient (r). It is important 

to find a strong relationship between independent variables and dependant 

variables. After the correlation is done, a simple linear regression is applied to 

estimate the model parameters or coefficients for a given model. Once the model 

is trained, it is ready for forecasting. For the daily peak demand forecasting, the 

testing set is the forecasted maximum temperatures provided from the Iraqi 

Meteorological Organization and Seismology (IMOS), see Figure 5-9. A 
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common criterion of evaluation between different models is the Mean Average 

Percentage Error (MAPE).  

 

For daily peak load forecasting, a set of historical data for 2019, i.e. daily peak 

demand as outputs and maximum temperatures recorded as inputs, is used to train 

the model for simple linear regression. The input and output data for training is 

selected for the time interval 01/January/2019 - 01/March/2019 for the winter 

season, and for time interval 01/May/2019 - 01/October/2019 for the summer 

season. The daily peak demand forecasting for this technique during the month 

of January 2020 is assumed as a representative month for winter season. While, 

the peak demand forecasting during the month of September 2020 is assumed as 

a representative month for summer season. Figure 5-10 and 5-11 show real 

historical data of daily peak loads with the maximum temperature were used to 

train the models for forecasting the daily peak demand for summer and winter 

seasons for Ziyounah district in Baghdad.  
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Figure 5-9 Flowchart of modelling and forecasting process for daily peak load using 

simple linear regression analysis 
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Figure 5-10 The training data required for forecasting the daily peak of the winter 

season 

 

 
Figure 5-11 The training data required for forecasting the daily peak of the summer 

season 

 
 

For daily load forecasting using ANN, the nature of electric consumption 

makes it difficult to be predicted accurately [66]. However, the development of 

artificial intelligence techniques, particularly the neural networks with their 

advantage of automatic learning from measured data can be successfully used for 

electric load prediction, which is extrapolated to the future without the need to 

add more information about the system [166].  

 

The load forecast model-based ANN was implemented in the MATLAB Neural 

Networks Toolbox. The model was trained using the same data that are used for 

predicting the daily peak demand using the simple linear regression method 

shown in Figure 5-10 and Figure 5-11 to determine the weights of the network. 
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Then, the use of obtained weights allows the prediction of the output for a given 

input. The historical data used in predicting the daily peak demand was one input, 

which represent the daily peak load.  

The target for training is one month ahead for the same season. The input and 

the desired output efforts were made to optimise network parameters during the 

training phase. The ANN algorithm tries to minimise the difference between the 

desired and actual output by adjusting the weights of the network. Tangent 

hyperbolic (tanh) activation function is used for the hidden, and linear activation 

function is used in the output layer. The output layer has only one neuron in its 

output layer, which contains the predicted value of the load during the month.  
 

 
Figure 5-12 Flowchart of the neural network model to forecast daily peak load 
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The mean absolute percentage error in equation (5.6) is considered to evaluate 

the accuracy of neural network and the predicted load.  

The flowchart of the proposed forecasting model is presented in Figure 5-12.  

The learning mechanism of this model is summarized as follows: 

1. Read collecting data is the first step in designing load forecasting based 

ANN. In this section, the data represents the actual daily peak load of 

Ziyounah district for a certain month.  

2. The neural network was initialised by using the function (Newff) for MLP 

which has one input layer, one hidden layer and one output layer. The 

transfer function has been chosen as “tansig" and "logsig"for hidden and 

output layers respectively.  

3. At the training stage, the network was trained with historical data. 

4. After the training process, the network was simulated or tested This process 

is run by calling the function "sim". 

5. Finally, the best training result is obtained with a minimum value of Mean 

Absolute Percent Error MAPE (i.e. the lower the MAPE is, the more accurate 

the estimation is). 

 

5.5.2 The Methodology of hourly peak load forecasting   
 

This section presents the forecasting process using multiple linear regression 

and ANN for forecasting 24h load. 
 
For the methodology of hourly peak load forecasting using multiple linear 

regression, the procedure is to train the model to estimate its parameters and then 

to use this forecast model to extrapolate the future hourly peak demand as shown 

in Figure 5-13. In the first step of the training process, which is used to find the 

parameters 𝐵/, 𝐵&, …𝐵*		 , historical data shown in Table 5-1 and 5-2 are 

required. For the second step, correlation analysis is applied to evaluate the 

relationship between a dependent variable and an independent variable to 

determine the correlation coefficient (r). After the correlation is done, multiple 

linear regression is applied to estimate the model parameters or coefficients for 
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a given model. Once the model is trained, it is ready for forecasting. For the 

hourly peak demand forecasting, the testing set is shown in Table 5-2. A common 

criterion of evaluation between different models is the Mean Average Percentage 

Error (MAPE).  

 

 
Figure 5-13 Flowchart of modelling and forecasting process for hourly peak load using 

multiple linear regression analysis 

 
 

It was assumed that the 15th January 2020 and 11th July 2020 represent typical 

days in the winter and summer seasons, and it was selected as a representative 
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day for hourly peak load forecasting based on multiple linear regression 

forecasting. Four independent variables, which represents 24-hour load profile 

for four days, were required to train and test the summer and winter season 

models as shown in Table 5-1 and Table 5-2. The target was assumed to be the 

24-hour load profile of the fifth day, see Table5-1.  
 

 
Table 5-1 Methodology of creating required data for training (historical data) for 2020 

 
Training (MW) from the past year 2019  Target 

(MW) 
day 

 
hour 

X1= 
day1 

(Sunday) 

X2= day2 
(Monday) 

X3= day3 
(Tuesday) 

X4= day 4 
(Wednesday) 

Y= day5 
(Thursday) 

1 P1,1 P1,2 P1,3 P1,4 P1,5 

2 P2,1 P2,2 P2,3 P2,4 P2,5 

3 . . . . . 

. . . . . . 

. . . . . . 

.  . . . . 

24 P24,1 P24,2 P24,3 P24,4 P24,5 

 

Table 5-2 Methodology of creating required data for testing for year 2020 

 
Input data for testing for year 2020 

Forecast 
load 

(MW) 
day 

 

hour 

X1= day1 

(Sunday) 

X2= day2 

(Monday) 

X3= day3 

(Tuesday) 

X4= day4 

(Wednesday) 
X4= day5 

(Thursday) 

1 P1,1 P1,2 P1,3 P1,4 P1,5 

2 P2,1 P2,2 P2,3 P2,4 P2,5 

3 . . . . . 

. . . . . . 

. . . . . . 

.  . . . . 

24 P24,1 P24,2 P24,3 P24,4 P24,5 
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For the methodology of hourly peak load forecasting using ANN, the load 

forecast model-based ANN was implemented in the MATLAB Neural Networks 

Toolbox. The model was trained using the same historical load data that are used 

in the multiple linear regression technique to determine the weights of the 

network, see Table 5-1 and 5-2. Then, the use of obtained weights allows the 

prediction of the output for a given input. The historical data used in predicting 

the hourly peak demand were four inputs or days as shown in Figure 5-14 which 

are the hourly peak power demand for the time interval 7th- 10th July 2019 for 

the summer season, and the hourly peak power demand in 11th- 14th January 

2019 for the winter season, see Appendix B. 

The target for training is one day ahead for the same week which is 11th July 

2019 and 15th January 2019 for the summer and winter seasons respectively. The 

day of a week is suitably coded as an input to the network. The input and the 

desired output efforts were made to optimise network parameters during the 

training phase. The ANN algorithm tries to minimise the difference between the 

desired and actual output by adjusting the weights of the network. Tangent 

hyperbolic (tanh) activation function is used for the hidden, and linear activation 

function is used in the output layer. The output layer has only one neuron in its 

output layer, which contains the predicted value of the load during the day. The 

architecture of the proposed ANN model is shown in Figure 5-14.  

 

 
Figure 5-14 The proposed structure of MLP neural network model to forecast hourly 

peak load 
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Figure 5-15 Flowchart of the neural network model forecast hourly peak load 

 
 
 
The mean absolute percentage error in Equation (5.6) is considered to evaluate 

the accuracy of neural network and the predicted load.  
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The flowchart of the proposed forecasting model is presented in Figure 5-15.  

The learning mechanism of this model is summarized as follows: 

6. Read collecting data is the first step in designing hourly peak load 

forecasting based ANN. In this section, the data represents the actual hourly 

peak load of Ziyounah district for a certain month  

7. The neural network was initialised by using the function (Newff) for MLP 

which has one input layer, one hidden layer and one output layer. The 

transfer function has been chosen as “tansig" and "logsig"for hidden and 

output layers respectively.  

8. At the training stage, the network was trained with historical data. 

9. After the training process, the network was simulated or tested This process 

is run by calling the function "sim". 

10. Finally, the best training result is obtained with a minimum value of Mean 

Absolute Percent Error MAPE (i.e. the lower the MAPE is, the more accurate 

the estimation is). 
 

5.6 Data analysis  
 

5.6.1 Daily peak load data analysis 
 
In this study, daily peak demand for the Ziyouna area in Baghdad in 2019 was 

considered as historical data for training load forecasting based on LR and ANN 

to predict the maximum daily demand in 2020. This data represents the time 

interval from May 2019 -September 2019 for the summer season, see Figure 5-

11. Whilst, the time interval from January 2019 -February 2019 represent the 

winter season, as shown in Figure 5-10. Figure 5-10 and 5-11 show the variation 

of the maximum daily temperature and maximum load with respect to the time 

during the seasons. It was assumed that the summer season in Iraq is starting 

from May to September, when the temperature is increasing during this time. 

Whilst, the winter represent only two months (January and February) because the 

weather during this period is the coldest in Iraq. 

 

The testing set was the forecasted maximum daily temperatures for September 

2020 (summer) to predict the maximum daily load in September 2020. The 
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maximum daily temperatures for January 2020 (winter) was used to test the 

model to predict the maximum daily load in January 2020. This data was 

provided by the Iraqi Meteorological Organization and Seismology (IMOS).  

 

5.6.2 Hourly peak load data analysis 
 

Hourly peak load forecasting has been performed on weekdays during the 

summer and winter seasons using historical load data gathered for the time 

interval 7th- 11th July 2019, which represent the summer season. Whilst, the time 

interval 11th -15th Jan 2019 represent the winter season for Ziyouna area in 

Baghdad.  

This data was collected in 2019 using SCADA system at 33/11kV power 

substation of the Ziyouna distribution network. The load values are representing 

the dominant residential type of load.  

The testing set was the hourly peak load in 2020 gathered for the time interval 

7th- 10th July 2019 to predict hourly peak load in 11th July (summer), and for 

the time interval 11th- 14th January 2020 to predict hourly peak load in 15th 

January(winter).  

 
5.7 Forecasting Results  
 

After training the models, testing was used for load forecasting using LR and 

ANN techniques to predict the daily peak load for one month ahead for summer 

and winter seasons of 2020. In addition, 24-hour load demand was predicted 

based the same techniques for one day ahead in summer and winter seasons of 

2020, using the testing data in Appendix B. Once the testing data utilises the 

model, the forecasting result is presented here in this section. Mean absolute 

percentage error (MAPE) criteria are computed according to equation (5.6), and 

the model performance is evaluated over the whole period of time. It was 

assumed that the 15th January 2020 and 11th July 2020 represent typical days in 

the winter and summer seasons, and it was selected as a representative day for 

the LR and ANN forecasting. While, the month of January 2020 and September 
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2020 represent typical months in the winter and summer seasons, and it was 

selected as a representative month for both techniques.  

Figure 5-16 shows the comparison between the results of daily peak demand 

for LR against ANN technique during the month of January 2020, which was 

assumed as a representative month for winter season. It was found that MAPE 

for LR and ANN models was 3.6% and 3.7% indicating that the forecasted load 

from the proposed model based LR is closer than that results from ANN. Looking 

at this result in more details, it can be seen that there is an inaccurate predicted 

demand by ANN which shown in red line in Figure 5.16 on 29th Jan 2020, i.e. 

the actual power is greater than the predicted power with approximately 4MW. 

 

 
Figure 5-16 Comparison of daily peak demand predicted by LR and ANN, with 

MAPE=3.6%and 3.7%, against actual power for Jan 2020 

 
 

Figure 5-17 compare the results of daily peak demand for LR against ANN 

technique during the month of September 2020, which was assumed as a 

representative month for summer season. It is obvious that the forecasted peak 

demand using LR technique with MAPE=3%, which represents in blue line is 

more accurate than the results from ANN with MAPE=3.8%. This means more 

backup generation units at peak time are required to supply the area based on that 

error during the month to match the actual demand and keep the system stable. 

However, there was an acceptable deviation between the actual and predicated, 

0
5

10
15
20
25
30
35
40

01
/0

1/
20

20
02

/0
1/

20
20

03
/0

1/
20

20
04

/0
1/

20
20

05
/0

1/
20

20
06

/0
1/

20
20

07
/0

1/
20

20
08

/0
1/

20
20

09
/0

1/
20

20
10

/0
1/

20
20

11
/0

1/
20

20
12

/0
1/

20
20

13
/0

1/
20

20
14

/0
1/

20
20

15
/0

1/
20

20
16

/0
1/

20
20

17
/0

1/
20

20
18

/0
1/

20
20

19
/0

1/
20

20
20

/0
1/

20
20

21
/0

1/
20

20
22

/0
1/

20
20

23
/0

1/
20

20
24

/0
1/

20
20

25
/0

1/
20

20
26

/0
1/

20
20

27
/0

1/
20

20
28

/0
1/

20
20

29
/0

1/
20

20
30

/0
1/

20
20

31
/0

1/
20

20

M
W

Date

Actual power vs predicted

Acutual  Max power

Predicted Max power by LR

Predicted Max power by ANN



 104 

i.e. under-prediction or over-prediction of the maximum power load, see Figure 

5-17. 

 
Figure 5-17 Comparison of monthly peak demand precited by LR and ANN, with 

MAPE =3%and 3.8%, against actual power for September 2020 

 
Figure 5-18 illustrates the comparison between the result of predicted demand 

for LR and ANN against with actual power during 24 hours in 11th July which 

was assumed as a representative day for summer season. The recorded MAPE 

for LR and ANN is 5.7% and 3.7% respectively. Hence, the forecasted hourly 

peak load from the proposed model using ANN is performing well and the 

forecasted results are very close to the real demand data. Unlike the result by LR 

which shows inaccurate predicting during 24hours. Hence, the obtained results 

of forecasting performance reveal the effectiveness of the ANN model over LR. 

According to the MAPE results with 5.7% for LR and 3.7% for ANN, the author 

believes that power operators required more generation units which are 5.7% of 

peak demand for using LR or 3.7% of peak demand for using ANN. This can 

assist to avoid any mismatch between the supply and demand due to these errors.  

 

 

20

25

30

35

40

45

01
/0

9/
20

20

02
/0

9/
20

20

03
/0

9/
20

20

04
/0

9/
20

20

05
/0

9/
20

20

06
/0

9/
20

20

07
/0

9/
20

20

08
/0

9/
20

20

09
/0

9/
20

20

10
/0

9/
20

20

11
/0

9/
20

20

12
/0

9/
20

20

13
/0

9/
20

20

14
/0

9/
20

20

15
/0

9/
20

20

16
/0

9/
20

20

17
/0

9/
20

20

18
/0

9/
20

20

19
/0

9/
20

20

20
/0

9/
20

20

21
/0

9/
20

20

22
/0

9/
20

20

23
/0

9/
20

20

24
/0

9/
20

20

25
/0

9/
20

20

26
/0

9/
20

20

27
/0

9/
20

20

28
/0

9/
20

20

29
/0

9/
20

20

30
/0

9/
20

20

M
W

Date

Actual power vs predicted

Actual Max power

Predicted Max power by LR

Predicted Max power by ANN



 105 

 
Figure 5-18 Comparison of hourly peak demand precited by LR and ANN, with MAPE 

=5.7%and 3.7%, against actual power for 11th July 2020 

 

         
Figure 5-19 compares the results of hourly peak demand for LR and ANN 

techniques against the actual power during the day of 15th Jan 2020. This date 

was selected to as a typical day in winter season. The performance of the both 

techniques of LR and ANN are satisfactory at MAPE =4% and 3.1% 

respectively.   

 
Figure 5-19 Comparison of hourly peak demand precited by LR and ANN, with MAPE 

=4%%and 3.1%, against actual power for 15th January 2020 
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5.8    Conclusion  
 

Load forecasting using LR and ANN is implemented in this study to provides the 

power operator for Ziyounah in Baghdad with valuable information that can be 

used in chapter 7 for minimising the operational cost for integrated unit 

generations and accurately match electricity production to consumption in 

summer and winter seasons of 2020. 

     (MAPE) criteria were introduced to evaluate the model performance over the 

whole seasons. The difference error measures between the predicted and actual 

results provide useful insight into how the predicted can be used for a varying 

approach to the energy management for the distribution network of Zyonnah. 

Load forecasting models, in their present form, may be used in the following 

chapters for gaining predictive knowledge on the 24-hour load and peak demand 

forecasted of Zyounah ; which may then be used in achieving goals such as 

decreased overall operational cost and CO2 emissions from the generation units 

that connected to the grid, as well as balancing the supply and demand. If load 

forecasting is advantageous for the operator to meet these goals or other 

motivation, it is vital to understand the limitations of the LR and ANN’s ability 

to accurately predict the demand. 

    According to the MAPE results, the author believes that load forecasting using 

LR provides predictions of peak demand that are accurate enough to be used in 

chapter 7 for planning the required generation units at peak time to supply the 

area based on the daily peak predicted demand during the month. This might be 

because of a strong correlation between the maximum temperature and the daily 

peak demand during the summer and winter seasons, i.e. the demand is affected 

significantly by the fluctuation of temperature during both seasons. It was found 

that the correlation coefficient for summer and winter is 0.8872, -0.904, 

respectively. The positive value of regression R at 0.8872 in summer means that 

the daily peak load is proportional directly with the ambient temperature during 

this period of time. Whilst, the negative value of regression R, at -0.904 in winter, 

indicates that the daily peak load is inversely proportional with the ambient 

temperature during this season. This attributed to a large number of usages of air 

conditioning in summer and water heaters in winter.  
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MAPE results for the ANN shows that this technique is more accurate than the 

LR technique in predicting 24-hour demand to control and scheduling the power 

system during the daytime. This because of its ability to deal with non-linear 

learning relationships between variables (hourly peak demand). 

 

Due to the reasons outlined above, it is, therefore, load forecasting using LR in 

predicting peak demand for one month ahead (January 2020 and July 2020) and 

ANN in predicting hourly peak demand for one day ahead (15 January 2020 and 

11 July 2020) is considered in this study. 
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6 Chapter 6 
 

Economic power dispatch in Iraq power 
systems 

 

6.1   Introduction  
 

This chapter describes an optimal dispatch for the power operator of Ziyounah 

distribution network to calculate the optimal production schedule for connecting 

diesel generators and PV into the network in relation to the network’s operating 

constraints. This approach can bring energy, environmental, and economic 

benefits not only to the power operator of Ziyounah in Baghdad but also to other 

power users whose generation suppliers do not meet their peak demands.  

In this study, Economic dispatch analysis was carried out using Lagrange 

multiplier (LM) and linear programming methods (LP) and assisted by the 

MATLAB application based on forecasted demand in summer and winter seasons 

because operational decisions in power systems such as economic dispatch 

depends on the future behaviour of demand [168][169].  

The overall objective is to determine the optimal dispatch power for various size 

of diesel generators including PV and grid import to reduce the total operating 

cost and CO2 emissions simultaneously for the integrated generation units while 

meeting the peak during 24hour in the summer and winter season. To reflect the 

environmental effect for diesel generators, the calculation of CO2 emissions from 

diesel generators can be calculated at any output power by using the Equations 

(3.5) or (3.6).  

 

Results demonstrate that the proposed for LM and LP is a highly suitable and 

simple approach to determining the optimal dispatch in the power system with 

various types of generator sources subject to several constraints.  
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The environmental effect of diesel fuel led to using PV to meet the rising power 

demand[136].  In this context, the integration of PV to meet the demand of a given 

area is a promising scenario to overcome the Iraqi power system challenges. The 

main reason for support to PV technologies is that they are desirable technologies 

that must be supported because they are suitable for the environment and 

contribute to sustainability and energy security objectives. Though, for various 

legitimate reasons, they are still comparatively expensive sources and tend to 

disrupt the normal way that power systems are used to operate[18]. 

 

6.2   Operating cost of a diesel generator  

The operating cost of a diesel generator plays a vital role in economic scheduling. 

It is equal to the fuel consumption of a diesel generator(litre/kWh) multiply by 

the price of fuel (£/litre). As mentioned in Chapter3, the fuel consumption 

depends on the size of the generator and the load at which the generator operates 

at.  For example, a diesel generator size 250kW has an operating cost of about 

0.1 £/kWh when the generator operates near 25% of its rated power. In contrast, 

the same generator operates approximately 0.078 £/kWh if it is operating at full 

load, see Table 6-1 and Figure 6-1. 

 
 

Table 6-1 The operating (marginal) cost per kWh and the cost per hour for different 
sizes of diesel generators based on Iraqi fuel cost6 

 

Generator 

Size (kW) 

 

1/4 Load 

 

1/2 Load 

 

3/4 Load 

 

Full load 

Operating cost 
 

Operating cost Operating cost Operating cost 

£/kWh £/h £/kWh £/ h £/kWh £/ h £/kWh £/ h 

250 0.0994 6.213 0.0828 10.355 0.0790 14.824 0.0784 19.62 

500 0.0959 11.99 0.0806 20.165 0.0767 28.776 0.0778 38.91 

750 0.0947 17.76 0.0796 29.866 0.0761 42.837 0.0776 58.20 

1000 0.0941 23.54 0.0793 39.67 0.0757 56.789 0.0775 77.49 

 
6 Cost for 1gallon of diesel in Iraq = £1.09 based on rate currency= 1666.67 
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Figure 6-1 The operating (marginal) cost per kWh for 250kW, 500kW and 1000kW of 
diesel generators 

 

6.3   Developing the operating cost model of a diesel generator 
 
The input-output characteristics of a fossil fuel generating set plays an important 

role when the economic operation is considered [136]. Operating efficiencies of 

generators and fuel cost have a significant effect on operation cost of diesel 

generators. The fuel costs generated by these units are described using quadratic 

functions  [8], [11], [13], [15].  

In practical cases, the fuel cost of a diesel generator can be expressed as a 

quadratic function of real power generation[2], [121] [5], [6].  

 C𝑖	 = αi	 + βiPi	 + γi	𝑃𝑖(				£/	h	                                                                (6.1) 

Where: i= {1,2, 3, .., N}, N= the number of generation units; αi, βi, and γi   are 

the coefficients for the cost equations of the ith generator; Pi is the power 

output of the ith generator.  
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To obtain the cost model for generators, Table 6-1 is used as an estimate of the 

quantity of fuel consumption uses during operation. From Table 6-1, the fuel cost 

of four groups of diesel generators is found by using a quadratic regression 

analysis which is a way to model a relationship between the output power (kW) 

and the operating cost (£/h). The result is a regression equation that is used to 

make predictions about the operating cost for the generators.  

To find the coefficients of α, β and γ, we assumed that (x) represents the output 

power of generators and (y) represents the operating cost (£/h). The regression 

equations are presented here [174].  

α	 = [<(ÇÁþ)	∗	<(ÇÇ)]	–	[<(Çþ)	∗	<(ÇÇÁ)]
	[(<(ÇÇ)	∗	<(ÇÁÇÁ)]	B[<(ÇÇÁ)]Á							

																																														                             (6.2)     

β	 = [<(Çþ)	∗	<(ÇÁÇÁ)]	–	[<(ÇÁþ)	∗	<(ÇÇÁ)]
	[(<(ÇÇ)	∗	<(ÇÁÇÁ)]	B[<(ÇÇÁ)]Á							

																																														                          (6.3)                                                                                                                                       

γ	 = 	 ∑'X		
*
– 	β	 ∑WX	

*
	– 		α	 ∑WX

Á

*
                                                                           (6.4)                                                  

Where:  

 i= {1,2, 3, .., n}, n= the sample size 

S(xx) 	= 	∑ 𝑥,( −	
(∑WX)Á

*
						                                                              

S(xy) 	= 	∑ 𝑥,	𝑦, 		− 	∑ 𝑥,	 ∗
∑'X
*

                                                  

S(xx() 	= 	∑ 𝑥,÷ 	− 	∑ 𝑥,	 ∗
∑WXÁ

*
                                                   

S(x(y) 	= 	∑ 𝑥,( yi		 − 	∑ 𝑥,( ∗
∑þr
*

                                               

S(x(x() 	= 	∑ 𝑥,� 	− 	
(∑WXÁ)Á

*
                                                              

 
Table 6-2 Coefficients of the cost equation for four size of diesel generators by using 

regression analysis based on Table 6-1 

The coefficients of the 

cost equations 
Units G1 G2 G3 G4 

α £/h 2.351 5.0685 7.621 10.35 

β £/ 𝑘𝑊ℎ 0.06 0.052 0.05 0.049 

γ £/𝑘𝑊(h 0.000052 0.000034 0.000024 0.0000185 
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Figure 6-2 Coefficients of Alpha, Beta and Gama for cost equations for generators in G1, 
G2, G3 and G4  

For calculating the fuel cost for diesel generators at various loading, the 

coefficients equation α, β, and γ are considered. The calculation is presented in 

Figure 6-3. by using Equation (6.1). 

 

 

Figure 6-3 Graphs of fuel cost of four diesel generator types 250kW, 500kW, 750kW and 
1000kW during operating 
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6.4   Assumptions  

In this chapter, it is assumed that the electricity from the national grid should not 

exceed 77.5% of the peak demand. This allocation is calculated by the Ministry 

of Electricity for Baghdad Governorate which depends on several factors such as 

population and the size of demand for that area.  

The assumptions are taken into account as: 

The number of diesel generators distributed in Ziyouna region are: 

• Group1: Ge1, Ge2, Ge3, Ge4, Ge5 and Ge6 = 250 kW                6 units 

• Group2: Ge7, Ge8, Ge9, Ge10, Ge11and Ge12 = 500 kW           6 units 

• Group3: Ge13, Ge14, Ge15 and G16 = 750 kW                           4 units 

• Group4: G17, G18, and G19 =1000 kW                                       3 units 

• Total capacity of diesel power generations = 10,500 kW 

• National electricity supply ≤77.5% of peak load (Source: Ministry of 

Electricity) 

• Using renewable energy sources with high priority and when are 

available. 

• The number of the PV system is 200 systems. Every system consists of 

12 panels with total power rated of 10kW 

• Cost for 1gallon of diesel in Iraq = £1.09, or 1 litre of diesel= £0.2397 

• Neglecting line power losses in the analysis of total production cost 

• It has been chosen that 12th July and 15th January are representative days 

for the summer and winter seasons in Iraq. 

6.5   Calculations of the number of diesel generators 
 

Calculation of the number of diesel generators is important every day with 

varying peak loads during the seasons. The minimum number of these units will 

be available and selected before applying the dispatch analysis.  
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Scheduling of generators can be divided into two separate parts: unit commitment 

and economic dispatch. Unit commitment takes place before the real-time 

operation and determines the set of generating units that will be available for 

dispatch. Economic dispatch is undertaken in real-time and determines the 

amount of generation required from each available unit[175]. In this section, a 

simple unit commitment is used to determine the minimum number of diesel 

generators required every day with varying peak loads, i.e. the number of diesel 

generators required is calculated before applying the dispatched power of the 

generation units. This calculation is simple to the problem and it can be conducted 

to impose priority order, wherein the most efficient units (the bigger size of diesel 

generators) are loaded first to be followed by the less efficient units (the smaller 

size of diesel generators) in order as the peak load increases. Therefore, if < PD, 

we increase the number of units otherwise, if  > PD, we reduce the number of 

units. The best result occurs when = PD, taking into consideration that the bigger 

size of generators is the top priority 

 

In the summer season, all the diesel generators are required to be integrated into 

the distribution network of Ziyounah due to a severe shortage of generation during 

this time. But in the winter season, the number of diesel generators required is 

calculated as shown in Table 6-3. This table shows the minimum number of diesel 

generators at peak load and the additional generation required to match the 

demand in the district.  

The calculations are for January 2020 considering the predicted maximum 

demand. We assume that these generators are operating at full load. For instance, 

on the 15th January 2020, the power supply required is 8500kW, see Table6-3. 

Therefore, the numbers of required generators are: 

Group4: 3X1000kW= 3000kW,  

Group3: 4X750kW= 3000kW,  

Group2: 5X500kW= 2500kW,  

Group1: 0X250kW= 0 kW, 

Total = 8500kW this represented the total output power of required generators 

operating at 100% to match the maximum load on the15th January 2020.  



 115 

 
Table 6-3 Minimum number of diesel generators required for January 2020 for Ziyouna 

district/ Baghdad based on forecasting load  

Day 

Predicted 

maximum 

demand  
 

Maximum Power 

supply required7 to 

meet the demand in 

MW 

= 22.5% *Predicted  

Number of Generators  

 for group1- group4 
 

Total 

maximum 

generation 

of diesel 

generators 

(MW) 

Gr1 

250 

Gr2 

500 

Gr3 

750 

Gr4 

1000 
 

1 34.408 7.038 0 4 4 3 8 

2 35.332 7.227 0 4 4 3 8 

3 34.408 7.038 0 4 4 3 8 

4 33.484 6.849 0 4 4 3 8 

5 33.946 6.9435 0 4 4 3 8 

6 33.484 6.849 0 4 4 3 8 

7 32.56 6.66 0 3 4 3 7.5 

8 28.853 5.901 0 2 4 3 7 

9 28.853 5.901 0 2 4 3 7 

10 30.25 6.187 0 2 4 3 7 

11 29.788 6.093 0 2 4 3 7 

12 27.929 5.712 0 1 4 3 6.5 

13 28.853 5.901 0 1 4 3 6.5 

14 30.712 6.282 0 2 4 3 7 

15 35.574 7.515 0 5 4 3 8.5 

16 34.408 7.038 0 3 4 3 7.5 

17 37.191 7.607 0 5 4 3 8.5 

18 33.484 6.849 0 4 4 3 8 

19 31.262 6.3945 0 3 4 3 7.5 

20 32.56 6.66 0 3 4 3 7.5 

21 30.899 6.320 0 2 4 3 7 

22 33.484 6.849 0 4 4 3 8 

 
7 The percentage of 22.5% assumed to be the gap between supply and peak demand, providing by 
Ministry of Electricity for Baghdad. This means about 77.5% of maximum demand can be supplied as 
permissible limit from the grid. 
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23 34.408 7.038 0 4 4 3 8 

24 34.782 7.114 0 4 4 3 8 

25 32.56 6.66 0 3 4 3 7.5 

26 35.332 7.227 0 4 4 3 8 

27 35.332 7.227 0 4 4 3 8 

28 34.87 7.132 0 4 4 3 8 

29 36.729 7.512 0 5 4 3 8.5 

30 34.408 7.038 0 4 4 3 8 

31 35.332 7.227 0 4 4 3 8 

 

6.6   Optimal scheduling of generation using Lagrange multipliers  

Since losses are neglected, the total demand PD is the sum of all generation 

outputs. Ci is assumed to be known for each generator. The problem is to find the 

real power generation for each generator such that the objective function (i.e., 

total production cost) as defined by the equation [176] [177]. 

Ct=∑ 𝛼𝑖 + 	𝛽𝑖𝑃𝑖	 + 	𝛾𝑖		𝑃𝑖(							<
,[&                                                                   (6.5)                               

is at a minimum 

Where Ct	 = 	C1 + 	C2 + 	C3 + ⋯+ 	Cn 

subject to the constraint 

∑ 𝑃𝑖	 = 𝑃𝐷						<
,[&                                                                                              (6.6)                

Where Ct is the total production cost, Ci is the production cost of the ith generator. 

Pi is the generation of ith generator. PD is the total load demand which equal to 

the difference between the forecasting demand and allocated supply from national 

electricity, and n is the total number of dispatchable generating units.  

The objective function is found by using the Lagrange multipliers [170], [172]. 

	L	 = 	Ct + 	λ	(PD	 − 	∑ 𝑃𝑖)				<
,[&                                                                      (6.7)                                                                                                                   
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The minimum of this unconstrained function is found when 

V	Ê
VD,

= 0			                                                                                                           (6.8)          

V	Ê
Vp
= 0                                                                                                              (6.9) 

First condition, given by (6.8), results in 

V	E²
VD,

+ λ(0 − 1) = 0	                                                                                       (6.10) 

Since  Ct	 = 	C1 + 	C2 + 	C3 + ⋯+ 	Cn 

Then V	E²
VD,

= _	E²
_D,

= λ	, therefore the condition for optimal dispatch is  

_	E²
_D,

= λ	   i=1, 2,….n  

Or     βi + 2γi	Pi				 = 				λ										                                                                     (6.11) 

Second condition, given by (6.9), results in   

∑ 𝑃𝑖 = 𝑃𝐷	<
,[&                                                                                                 (6.12) 

To find the solution, (6.11) is solved for 𝑃𝑖  

𝑃𝑖 = pBqr
(	s,

	                                                                                                       (6.13) 

The relations given by (6.13) are known as the coordination equations. 

An analytical solution can be obtained by substitution for  𝑃𝑖 in (6.12) 

Then 		∑ pBqr
𝟐	𝜸𝒊

	= PD𝒏
𝒊[𝟏                                                                                    (6.14) 

To find the optimal scheduling of generation, the value of λ, Coordination 

equation is presented here  
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 λ =
𝑷𝑫f∑ gh

𝟐	𝜸𝒊		
𝒏
𝒊m𝟏		

∑ o
𝟐	𝜸𝒊		

𝒏
𝒊m𝟏		

                                                                                             (6.15)  

To demonstrate the concept of equal operating cost for optimal dispatch, Figure 

6-4 can be used to determine the operating cost dC/dP graphically for each 

generator on the same graph[178]. Obviously, the load on the generator with 

higher dC/dP will be reduced by increasing the load taken by the generator with 

the lower dC/dP. This change is beneficial until the values of dC/dP for all 

generator are equal ( 𝛌= d𝐶𝑖 /d𝑃𝑖 ). 

 

To obtain a result, various values of 𝛌 can be tried until one is found that produces 

∑ 𝑃𝑖		<
,[& = PD. The horizontal dashed-line shown in this graph is moved down 

and up until at the optimum value when ∑ 𝑃𝑖		<
,[& = PD. Hence, for each λ, if 

∑ 𝑃𝑖		<
,[& < PD, we increase λ otherwise, if  ∑ 𝑃𝑖		<

,[& > PD, we reduce λ. For 

example, at maximum load with PD =9900kW, the optimal dispatch for 

generators in Ge1, Ge2, Ge3, and Ge4 are 6X240kW, 6X470kW, 4X702kW and 

3X944kW respectively at λ =0.084£/kWh as shown in Figure 6-4 

 

 
Figure 6-4 Graphs of incremental fuel cost against output for four diesel generators 

sharing a load for Ziyounah/ Baghdad 
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The solution steps for obtaining the optimal cost-effective allocation of 

generations and their minimum operationg cost are summarized in Figure 6-5.  

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               
 

  
 

 
Figure 6-5 Flowchart for obtaining power schedule and minimum operation cost for 

diesel generators using Lagrange multipliers 

Read daily peak demand forecasted 

Calculate the required number of 
diesel generators to meet the 

demand 
 

Read coefficients for the 
generators cost equations αi, βi, 

and γi 

Print the result for 
Pi and Ct  

END 

START 

Read hourly peak demand 
forecasted for a required day 

Obtain λ for 24hour based on 
hourly peak demand forecasted 

λ	 =
𝑷𝑫f∑ gh

𝟐	𝜸𝒊		
𝒏
𝒊m𝟏		

∑ o
𝟐	𝜸𝒊		

𝒏
𝒊m𝟏		

   

 

Find the optimal scheduling of 
generation 
𝑃𝑖 = pBqr

(	s,
   

 

Total minimum operation cost    
Ct=   ∑ 𝛼𝑖 + 	𝛽𝑖𝑃𝑖	 + 	𝛾𝑖		𝑃𝑖(<

,[&  
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6.7   Optimal scheduling of generation using the Linear Programming  
 

The linear programming method is an optimisation technique for a problem 

of linear constraints and a linear objective function. The objective of linear 

programming is to find values of the variables that minimise or maximise the 

objective function. This technique has been considered widely to optimise the 

allocation of power resources[179]–[181]. In this section, the linear 

programming method is used for obtaining the optimum generation schedule for 

integrated generation units that minimises the total operation cost with given 

constraints.  

 

6.7.1 Methodology:  
  

To minimize cost of dispatching local generation  

  

• Use renewable energy sources with high priority and when are available. 

  

• Differentiate the four types of diesel generators by the cost of fuels 

1. The biggest size of generators can be generally considered cheaper  

2. The smaller size of diesel generators can be generally considered 

expensive  

  

• Input profiles 

1. Demand profile is considered from the previous chapter (chapter5) 

based on the forecasting analysis. 

2. 24-hour output profile as shown in appendix A. 

  

• Output profiles 

1. The optimal usage allocation of the five sources of generation as 

well as the optimal amount of grid import. 

2. The minimum operating cost of the five sources of generation as 

well as the optimal amount of grid import during the day. To reflect 

the environmental effect for diesel generators, the calculation of 
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CO2 emissions produced from diesel generators can be obtained at 

any output power by using the Equations (3.5) or (3.6).  

 

6.7.2 Mathematical formulation 
 
Problem description  

 

• Consider Hourly profile in one day – 24 data points 𝑡 ∈ [1,24]. 

• Input set: J = [1: PV, 𝑥&(𝑡); 2: G250, 𝑥((𝑡); 3: G500, 𝑥÷(𝑡); 4: G750, 

𝑥�(𝑡); 5: G1000, 𝑥!(𝑡)	6: grid import, 𝑥�(𝑡)]. 

• The cost of using 𝑥&(𝑡), 𝑥((𝑡), 𝑥÷(𝑡), 𝑥�(𝑡), 𝑥!(𝑡), 𝑥�(𝑡) is set up as 

[𝑐&(𝑡), 	𝑐((𝑡), 	𝑐÷(𝑡), 	𝑐�(𝑡), 	𝑐!(𝑡)] with 𝑐&(𝑡) the lowest and 𝑐!(𝑡) the 

highest. 

• The production capacity limit of the four types of generation is set as 

0 ≤ 𝑥&(𝑡) ≤ 𝑃𝑉(𝑡), 	𝐼𝑏2 ≤ 𝑥((𝑡) ≤ 𝑢𝑏2, 	𝑙𝑏÷ ≤ 𝑥÷(𝑡) ≤ 𝑢𝑏÷, 	𝑙𝑏� ≤ 𝑥�(𝑡) ≤

𝑢𝑏�, 𝑙𝑏! ≤ 𝑥!(𝑡) ≤ 𝑢𝑏!. 

 

Therefore, the optimisation problem can be written as follows: 

  

𝑚𝑖𝑛
WI

∑ 𝑐J(𝑡)𝑥J(𝑡)J∈K                                                                                     (6.16) 

s.t.: L
𝑙𝑏J ≤ 𝑥J(𝑡) ≤ 𝑢𝑏J
∑ 𝑥J(𝑡) = 𝐷(𝑡)J∈K

                                                       (6.17) 

 

6.1.1 Mathematical formulation translated into MATLAB 

 

Recall the standard linprog format in MATLAB as follows: 
 

𝑚𝑖𝑛
W
𝑓N ∗ 𝑥	 such that u

𝐴 ∗ 𝑥 ≤ 𝑏,
𝐴yz ∗ 𝑥 = 𝑏yz
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 

 

 

Step1: Equations (6.16), (6.17) can be written as: 
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min
Ço(²),	ÇÁ(²),	ÇM(²),	ÇN(²),	ÇO(²)	

∑ c&(t) ∗ x&(t) + c((t) ∗ x((t) + c÷(t) ∗ x÷(t) +(�
²[&

c�(t) ∗ x�(t) + c!(t) ∗ x!(t)                                                                      (6.18) 

  

Subject to: 

x&(t) + x((t) + x÷(t) + x�(t) + x!(t) + x�(t) = D(t) 

0 ≤ x&(t) ≤ PV(t) 

lb(	 ≤ x((t) ≤ ub( 

lb÷ ≤ x÷(t) ≤ ub÷ 

lb� ≤ x�(t) ≤ ub� 

lb! ≤ x!(t) ≤ ub! 

lb� ≤ x�(t) ≤ Inf 

 

Step2: Combine variables into one vector  

 

P
x& ⋯ x(�
⋮ ⋱ ⋮

x&(& ⋯ x&��
R 	
<== x&(t)

…
<== x�(t)

 

 
 
Step 3: Write the lower bounds vector (lb ≤ x) 
 

lb = zeros(144, 1) 

lb(49: 72) = lb÷ 

lb(73: 96) = lb� 

lb(97: 120) = lb! 

lb(121: 144) = lb� 

 
Step 4: Write the upper bounds vector (x ≤ ub) 
 

ub = zeros(144, 1) 

ub(1: 24) = PV 

ub(25: 48) = ub( 

ub(49: 72) = ub÷ 

ub(73: 96) = ub� 

ub(97: 120) = ub! 
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ub(121: 144) = Inf 

 

Step 5: Write linear equality matrix and vector (AîV ∗ x = bîV) 
 
 

⎩
⎪
⎨

⎪
⎧

x&(1) + x((1) + x÷(1) + x�(1) + x!(1) + x�(1) = D(1)
.
.
.

			x&(24) + x((24) + x÷(24) + x�(24) + x!(24) + x�(24) = D(24)

 

 
That is, 

⎩
⎪
⎨

⎪
⎧

x& + x(! + x�� + x$÷ + x�$ + x&(& = D(1)
.
.
.

x(� + x�[ + x$( + x�� + x&(/ + x&�� = D(24)

 

 
 
 
 AîV is a matrix of size 24X144 and bîV is a matrix of size 24X1. 
 
Hence, 
 

AîV = zeros(24,144) 

bîV = zeros(24,1) 

⎩
⎪
⎨

⎪
⎧

AîV(1, [1,25,49,73,97,121	]) = ones(1,6)
AîV(2, [2,26,50,74,98, 122]) = ones(1,6)

.

.

.
AîV(24, [24,48,72,96,120, 144]) = ones(1,6)

 

 

bîV = D 

 
 
Step 6: Write objective function vector 
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Cost =

⎣
⎢
⎢
⎢
⎡
c&(1)
.
.
.

c&(24)⎦
⎥
⎥
⎥
⎤

∗ [x& … x(�] +

⎣
⎢
⎢
⎢
⎡ c(

(1)
.
.
.

c((24)⎦
⎥
⎥
⎥
⎤

∗ [x(! … x�[] +

⎣
⎢
⎢
⎢
⎡ c÷

(1)
.
.
.

c÷(24)⎦
⎥
⎥
⎥
⎤

∗ [x�� … x$(] +

⎣
⎢
⎢
⎢
⎡ c�

(1)
.
.
.

c�(24)⎦
⎥
⎥
⎥
⎤

∗ [x$÷ … x��] +

⎣
⎢
⎢
⎢
⎡ c!

(1)
.
.
.

c!(24)⎦
⎥
⎥
⎥
⎤

∗ [x�$ … x&(/] + +

⎣
⎢
⎢
⎢
⎡
c�(1)
.
.
.

c�(24)⎦
⎥
⎥
⎥
⎤

∗ [x&(& … x&��] 

 

Hence, the objective function can be written as 
 

minimise	Cost = f� ∗ x = f(1) ∗ x& + ⋯+ f(144) ∗ x&�� 
 
Therefore, 

f = zeros(144,1) 

 

f(1: 24) =

⎣
⎢
⎢
⎢
⎡
c&(1)
.
.
.

c&(24)⎦
⎥
⎥
⎥
⎤

 

 

f(25: 48) =

⎣
⎢
⎢
⎢
⎡ c(

(1)
.
.
.

c((24)⎦
⎥
⎥
⎥
⎤

 

 

f(49: 72) =

⎣
⎢
⎢
⎢
⎡ c÷

(1)
.
.
.

c÷(24)⎦
⎥
⎥
⎥
⎤
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f(73: 96) =

⎣
⎢
⎢
⎢
⎡ c�

(1)
.
.
.

c�(24)⎦
⎥
⎥
⎥
⎤

 

 

f(97: 120) =

⎣
⎢
⎢
⎢
⎡
c!(1)
.
.
.

c!(24)⎦
⎥
⎥
⎥
⎤

 

 

f(121: 144) =

⎣
⎢
⎢
⎢
⎡
c�(1)
.
.
.

c�(24)⎦
⎥
⎥
⎥
⎤

 

 

 
Step 7: Call solver and obtain solution 
 

[x∗, fval,~] = linprog(f, A, b, AîV, bîV, lb, ub) 
 
Therefore, the optimal solutions are as follows, 
 

x&∗ = x∗(1: 24) 

x(∗ = x∗(25: 48) 

x÷∗ = x∗(49: 72) 

x�∗ = x∗(73: 96) 

x!∗ = x∗(97: 120) 

x�∗ = x∗(121: 144) 

 

 

6.8   Simulation results  
 

On the basis of the maximum hourly demand forecasted and the maximum 

available power generation of the diesel generators and PV, considering the 

operating constraints, we show the numerical results of the optimal dispatch using 

LM and LP techniques for the summer and winter seasons. 
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6.8.1 Summer result 
 

Figures 6-6 and 6-7 show the optimal allocation of the four sizes of diesel 

generation as well as PVs and grid import to match the demand hour by hour in a 

stacked bar using LM and LP methods respectively. At each hour, the sum of the 

coloured areas is equal to the load in that hour. Obviously, the big size of the 

generators with the lowest marginal costs are more likely to operate at a high 

loading to satisfy the demand at a minimum operating cost. The result of 

economic dispatch using both techniques LM and PL reveal that the power supply 

from 19 diesel generators (total 10,500kW) and 200 PV(10kW each) in Zyounah 

area can meet the forecasted hourly demand on hot summer days with minimum 

operational cost. 

 

 

 
 

Figure 6-6 Optimal hourly usage comparison of each generating source on 12 July 2020, 
summer season using LM method 
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Figure 6-7 Optimal hourly usage comparison of each generating source on 12th  July 

2020, summer season using LP method 

 
 

Figure 6-8 Compares the results of the total minimum operation cost of PVs, 

diesel generators, and grid import. It was found that the total operation cost for 

the total generation sources in 12th July 2020 using LM and LP methods is 

£77,955 and £78,814 respectively. However, between 13:00 to 17:00, electricity 

is the most expensive since the demand is at a maximum during this period.  
 

 
Figure 6-8 Comparison between LM and LP methods in total operation cost for 

generation supply in 12th July 2020 (summer) 
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6.8.2 winter result 
 
As mentioned in section 6.5, the required number of diesel generators in 15th 

January2020 are: 

G1= 0x250kW 

G2= 5x500kW 

G3= 4x750kW 

G4= 3x1000kW 

 

Figures 6-9 and 6-10 illustrate the optimal composition of each generating source 

at each hour in a stacked bar on 15th January 2020, highlighting the total available 

PV. The flexibility from these generating sources consists of the rest of the PV. 

This amount of flexibility can be exported to the grid, store in a battery energy 

storage system or participate in ancillary services in an optimal cost-effective 

manner. 

 

 
Figure 6-9 Optimal hourly usage comparison of each generating source in 15th January 

2020, winter season using LM method 
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Figure 6-10 Optimal hourly usage comparison of each generating source in 15th   

January 2020, winter season using LP method 

 

Figure 6-11 illustrates the comparison between the result of the total operation 

cost of all generation sources, including grid import for LM and LP methods 

during 24 hours on 11th July which was assumed as a representative day for the 

winter season. It was found that the results of the minimum operation cost for 

total generation sources in 12th July 2020 using LM and LP methods is £49,386 

and £49,904 respectively.  

 

The dispatch power using LM and LP succeed to obtain the approximate results 

of minimum operating cost while still meeting operators' constraints. Hence, the 

obtained results reveal the effectiveness of the LM and LP. 
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Figure 6-11 Comparison between LM and LP methods in total operation cost for 

generation supply in 15th January 2020 (winter) 

 

6.9   Conclusions  

Due to a severe shortage of generation in the Iraq power system (Ziyonah area 

of Baghdad), four groups of diesel generators with a10,500 kW total capacity 

and PV (200 systems 10kWeach) are assumed in section 6.4 to be integrated in 

the power system to overcome this problem. But The integrated generation units, 

including grid import need to be carried out by economics dispatch, which is how 

to get a minimum operating cost while still meeting operators' constraints. To 

solve this problem, it is necessary to design an optimisation tool for energy users 

or power operators to unlock their electricity flexibility of distrubuted generators 

and to assist in the decision-making process.  

This chapter has presented two solution methodologies of economic power 

dispatch problems concerning the integration of distributed generation into 

electric power systems that are of most interest to the stakeholders planners and 

operators, policymakers and regulators, particilarly for countries whose their 

power system facing a severe shortage of generation such as Iraq. 

Implementation is done using MATLAB programming, and the results of the 

optimal cost-effective allocation of generations and their total operation cost are 

presented.  
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LM and LP are optimasation tools that determine the optimal allocation of 

generation units are presented. The overall objective is to determine the optimal 

dispatch power for the diesel generators, taking into consederation that the bigger 

size of generators in the top priorty as their operating cost are cheaper, including 

PV and grid import to reduce the total operating cost for the integrated generation 

units to generate whenever is required to meet the peak during 24hour in the 

summer and winter season. 

The importance of emission reduction is paramount in terms of environmental 

perspective and, hence the reduction of CO2 emissions from diesel generators 

and penetration of more PV into the distribution network is encouraged. 

 

The chapter has also presented the models of fuel cost for diesel generators at 

any loading based on the coefficients equation α, β, and γ, which are obtained 

using regression analysis in section 6.3. 

Results demonstrate that the proposed for LM and LP is a highly suitable and 

simple approach to determining the optimal dispatch in the power system with 

various types of generator sources subject to several constraints.  
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7 Chapter 7 
 

Conclusions and recommendations for 
future work 

 
7.1   Introduction 
This chapter reviews the conclusions of this research and summarises the key 

findings that answer the research questions. It provides a number of 

recommendations for power operators and policymakers in the context of the 

case study in Iraq for future work. This chapter also summarises the main 

limitations and outlines the contributions of the work. 

 

7.2  Conclusions of the research  
 

This study presents a comprehensive assessment of the use of diesel generators 

in Iraq. These were introduced due to the lack of electricity supply for a country 

that has suffered several decades of wars and international sanctions. The results 

of the case study in Baghdad describe a realistic situation to provide a clear 

picture and to address multiple directions of solutions, including future planning 

vision and to address current and future conditions.  

 

In this research, existing off-grid diesel generators of the Zyounah region in 

Baghdad are investigated to provide an understanding of the challenges of these 

generators for the consumers in terms of their environmental and economic 

consequences. Models of both diesel fuel consumption and carbon emissions 

were created to determine the hourly fuel consumption, efficiencies and carbon 

emissions of a diesel generator during operation. The findings reveal that the 

efficiency of the diesel generator is inversely proportional to the fuel 

consumption rate, CO2 emissions and rated power of the diesel generator with 

constant load demand. In other words, if the load is less than the generator’s size, 

the generator’s efficiency will drop, and the generator will consume a large 
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amount of fuel and emit more CO2 emissions. Hence, the rated power of a diesel 

generator should be close to the required load demand. 
 

 
This study also presented an important challenge to the Iraqi power system and 

proposed the solution of integrating the diesel generators into the distribution 

network. The integration of distributed generation into electric power systems is 

of interest to the stakeholders; planners and operators, policymakers and 

regulators, particularly for countries whose power system faces a severe shortage 

of generation such as Iraq. It presents a methodology to find the best placement 

and the right size of the diesel generators in the distribution network of Ziyounah 

in the Baghdad area. The optimisation of their location and size has many 

advantages such as meeting the incremental demand, reducing the total real power 

losses and enhancing the network performance most effectively. The optimisation 

is solved by the combination of genetic algorithm (GA) techniques with power 

flow to evaluate the impact of the diesel generators on network performance, 

including through a reduction in real power loss and acoustic noise from the 

generators and improving the network voltage profile. The fitness evaluation 

function that drives the proposed method to the solution is the Network 

Performance Index (NPI).  

The results in Chapter 4 showed that the determination of the best locations for 

connection generators with the help of the proposed Network Performance Index 

(NPI) leads to savings in electricity due to real power loss reduction in the 

network.  

 

Load forecasting for maximum daily and hourly demand is implemented in this 

study using Linear Regression (LR) and ANN. Chapter 6 discusses minimising 

the operational cost of integrating the generators and accurately matching 

electricity production to consumption in the summer and winter seasons of 2020. 

A criterion of Mean Absolute Percentage Error (MAPE) was introduced to 

evaluate the model performance over the whole season. The finding reveals that 

the load forecasting using LR provides predictions of peak demand that are 

accurate enough to be used for planning the required generation units at peak 
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times to supply the area based on the maximum daily peak predicted demand 

during the month. However, the result for hourly peak demand using ANN is 

more accurate than the LR technique according to the MAPE. The forecasted 

results for 24-hour demand produced from ANN technique is more suitable 

compared to the result from LR technique. Load forecasting using LR to predict 

peak demand one month ahead (January 2020 and July 2020) and ANN to predict 

hourly peak demand for one day ahead (15 January 2020 and 11 July 2020) was 

undertaken. 

Due to the mismatch between generation and maximum demand (Ziyonah area 

of Baghdad), four groups of diesel generators with a 10,500kW total capacity 

and PV (200 systems 10kW each) are integrated into the power system to 

overcome this problem. The integrated generation units, including grid imports, 

were scheduled by economic dispatch, to get a minimum operating cost while 

still meeting operators' constraints. This research presented two solution 

methodologies of economic power dispatch, using Lagrange multiplier and linear 

programming methods. 

Implementation is done using MATLAB programming, and the results of the 

optimal cost allocation of generators and their total operation cost are presented. 

The overall objective is to determine the optimal dispatch power for the diesel 

generators, including PV and grid import to reduce the total operating cost for 

the integrated generation units to generate whenever is required to meet the peak 

during 24hour in the summer and winter season. Results demonstrate that the 

proposed Lagrange Multiplier  and Linear Programming  are suitable and simple 

approaches to determining the optimal dispatch in the power system with various 

types of generator subject to several constraints.  

7.3  Answering the research questions  
 

RQ1: How do the third parties sell electricity from the diesel generators to Iraqi 

consumers? 
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Chapter 3 answered RQ1 by comparing the electricity tariff for the government 

supply and neighbourhood generators for lower-class households, i.e. these 

customers with 1500kWh of monthly consumption. The finding revealed that the 

cost from diesel generators is 47 times more expensive than the electricity 

provided by the government. Therefore, the efforts to reduce the contribution or 

costs of neighbourhood diesel generators could improve electricity affordability 

for most, if not all, families., The household might pay as much as £ 3000 per 

year to the operator of the neighbourhood generator as the generator charges are 

as much as £15/month per Ampere of capacity. 

 

RQ2: How are carbon emissions and fuel consumption estimated for a diesel 

generator at any operating load? 

 

A study described in chapter 3 was conducted to obtain models for carbon 

emissions and fuel consumptions for a diesel generator used linear regression 

analysis with two independent variables, which are nominal capacity and power 

output of the diesel generator based on the collected data in this research. It was 

found that the results of both models depend on the size (rating) of the generator 

and the load at which the generator operates at, i.e. depend on the efficiency of 

the generator.  

 

RQ4: How would the integration of the stand-alone neighbourhood diesel 

generators into the Iraq power system provide technical and economic benefits 

with low environmental effect? 

 

To answer this question, a study in chapter 4 was conducted to show the 

advantages of integrating diesel generators in Iraq’s power system which is 

facing significant challenges due to the mismatch between generation and 

supply. The finding reveals that if these existing diesel generators were to be 

well-placed, they could provide benefits to the grid by helping to reduce the real 

power losses, stabilize the grid voltage, and improves the network performance. 

In addition, the integration of diesel generators in suitable locations in the power 
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system based on the optimization in chapter 4 contributes to minimizing the level 

of acoustic noise from existing diesel generators that are installed at the 

neighbourhood location.  

 

RQ5: Is there a strong relationship between the maximum power demand and 

the maximum temperature in Iraq during the days in the summer, winter and 

spring seasons?  

 

A study using correlation and regression analysis has been conducted to provide 

information on the strength of the linear relationship between the daily peak 

demand and maximum temperature by using a simple linear technique in chapter 

5. The finding reveals that the correlation indicates a strong relationship between 

maximum loads and maximum temperature in the summer season as the daily 

peak load is proportional directly to the ambient temperature during this season. 

In the winter season, the daily peak load is inversely proportional to the ambient 

temperature. In the spring season, the correlation has a weak relationship 

compared to the correlation coefficient in the summer and winter seasons. This 

means the spring load is not affected significantly by the fluctuation of 

temperature during this season. This is because the majority of consumers are 

not using either the air conditioner or water heaters on spring days.  

 

RQ6: What are the techniques considered to predict the daily and hourly peak 

demand, which is required for planning and operating, for Ziyonah area of 

Baghdad based on the historical data collected in this research? 

 

In chapter 5, Linear Regression (LR) and Artificial Neural Networks (ANN) 

techniques are implemented to improve a decision of the daily and hourly peak 

demand during the summer and winter days 2020. The models were trained using 

historical load data to determine the model parameters for the LR model and the 

weights of the network for ANN. Then, the use of the obtained weights or 

parameters allows the prediction of the output for a given input. Mean Absolute 

Percentage Error (MAPE) is considered to evaluate the model performance. 



 137 

After analysing the model prediction results, it was found that the LR technique 

offers a higher degree of prediction accuracy in daily peak load forecasting 

compared to the ANN technique, whilst, hourly peak load forecasting result was 

less accurate than the result from ANN.  

 

RQ7: Can the operator overcome the mismatch between demand and supply, i.e. 

what are the required numbers of diesel generators and PV to meet the peak daily 

demand for Ziyounah area of Baghdad in the summer and winter season of 2020? 

What is the method to calculate the number of diesel generators? 

 

Chapter 6 has presented the minimum number of diesel generators required for 

Ziyouna district/ Baghdad based on forecasting load. In the summer season, all 

the diesel generators, 19 generators with a total capacity of 10,500kW which are 

assumed in chapter 6, are required to be integrated into the distribution network 

of Ziyounah due to a severe shortage of generation during this time.  In the winter 

season, the number of diesel generators required varies and depends on the 

predicted maximum daily demand in chapter 5. This calculation is simple to the 

problem and it can be conducted to impose priority order, wherein the most 

efficient units (the bigger size of diesel generators) are loaded first to be followed 

by the less efficient units (the smaller size of diesel generators) in order as the 

peak load increases. Therefore, if < PD, we increase the number of units 

otherwise, if  > PD, we reduce the number of units. The best result occurs when 

= PD, taking into consideration that the bigger size of generators is the top 

priority. 

 

 

RQ8: In what ways can the operators for the Iraq power minimise the total 

operating cost for integrated generation sources during 24 hours while meeting 

the demand? 

 

To achieve this goal, a study of the economic dispatch problem has been 

conducted in chapter 6 to obtain the optimal cost allocation of diesel generator, 
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PV and Grid import power. In this research, economic dispatch analysis was 

carried out using Lagrange multiplier and linear programming methods and 

assisted by the MATLAB application to find forecast demand in the summer and 

winter seasons. It was found that this approach can allocate the power generation 

output so as to minimise the total operational cost while meeting the constraints 

of total load demand.  

 

7.4   Research limitations  
 

The most significant limitations shaping the scope of this study are as follows; 

• Detailed data for diesel generators and power systems in the Iraqi context are 

not available or are difficult to obtain. This lack of data limited the depth of 

the case study information.   

• The numerous interruptions and shutdowns in the national grid in most Iraqi 

regions was one of the major barriers that affect the accuracy of the collected 

data from the power operators or Ministry of Electricity in Iraq. 

• Because of the current problems in Iraq, especially in terms of security, 

safety, and political instability, it was difficult to achieve some plans and 

obtain relevant national reports on current and future strategies. In particular, 

the selection of formal leaders and experts in face to face interviews via the 

validation stage often required official approval and specific meetings, this 

impacted on the selection procedure.  

 

7.5   Contribution of the work   
 

This study describes, a realistic problem for the power systems in the context of 

the case study in Iraq. Due to the lack of published information regarding the 

diesel generators and power systems in Iraq, which is faced with challenges, this 

work provides valuable and clear information for planners and researchers to 

enhance current and future conditions and reduce the research gap between this 
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study and previous studies. This contributes to identifying multiple factors that 

must be considered by the study. The contribution of the work is summarised as: 

• The development of a model of diesel fuel consumption 

A model of fuel consumption was built for diesel generators whose capacities 

were in the range of 200kW to 1000kW. The proposed model was designed based 

on two variables (the rated and output power of a generator) to estimate the 

hourly fuel consumption of diesel generators during operation. The parameters 

of the model are found by using regression analysis. The model also can be used 

to estimate the hourly carbon emissions for the generators taking into 

consideration the carbon intensity or the emission factor for the fuel of the 

generator.  

 

• The development of optimisation tool of optimal locations for diesel 

generators in the distribution network 

 
The algorithm of the optimisation tool was developed to quantify the benefits of 

the integration of diesel generators in the real distribution network based on the 

Network Performance Index. This index was designed to represent a 

comprehensive improvement in the network performance such as real loss 

reduction, voltage profile improvement. In addition, the proposed algorithm was 

developed to consider the acoustic noise factor that affects the environment.  

 

• Investigating the correlation and regression between peak daily power 

demand and peak daily temperature 

Correlation and regression analysis were used for the case study of Iraq to 

describe the strong relationship between the daily peak residential demand and 

maximum temperature in the summer, winter and spring seasons. A 

mathematical model representing the correlation coefficient (R) and the 

regression coefficients B/ and B&was presented in this study.  
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• Build a method of daily and hourly peak demand forecasting for Iraq 

power system 

A model of predicting the daily and hourly peak demand was presented using 

simple linear regression analysis for the first time to provide the power operator 

for Ziyounah in Baghdad with valuable information that can be used for 

minimising the operational cost for integrated unit generations and accurately 

match electricity production to consumption in summer and winter seasons of 

2020. 

  

• Calculating the minimum number of generators required 

The calculation of the minimum number of the required diesel generators was 

presented to meet the peak daily demand and help avoid or reduce the number of 

blackouts for the Ziyounah area of Baghdad.  

• The development of a model of fuel cost for diesel generators  

A model of fuel cost was built for diesel generators to estimate the quantity of 

fuel consumption uses during operation. Therefore, the proposed model can be 

used for optimal scheduling of generation using the Lagrange multipliers to 

obtain the minimum operating cost for diesel generators. The model coefficients 

α, β, and γ were calculated using linear regression analysis as a quadratic 

function.  

• The development of an optimisation tool using Linear Programming 

A linear programming method for integrated diesel generators, PV and import 

grid was developed to obtain the optimal cost-effective allocation of generations. 

The proposed model was implemented using MATLAB programming to 

minimise the operation cost for the integrated generation sources while meeting 

the operating constraints for the Iraq power system.  
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7.6   Recommendation for future work 
 

The following future research work was identified to extend the work reported 

in this thesis: 

• In this study, the load demand of Ziyonah area of Baghdad was 

uncontrollable. It hits its peak on hot summer days because the majority of 

consumers use air conditioning. With rapid smart grid technology 

development, the customer can actively participate in mutual information 

communication between the power operation company and the smart devices 

including air-conditioning appliances in real-time. If the power operator uses 

controllable domestic loads during specific time, i.e. air condition appliances, 

the money spent to procure these services may be used as incentives to attract 

the residential consumers to load control schemes. Therefore, the number of 

controllable loads available from these appliances can reduce the gap between 

the demand and the generation supply.  
  
• In this work, diesel generators and PV are integrated into the Iraq power 

system to overcome the shortage of generation in the Iraq power system in 

cost-effective manner, but the outputs from these generation units are difficult 

to control in real time during the day. Therefore, it is necessary to develop 

other flexible solutions to manage the power system when integrating large 

amounts of small and dispersed generation sources. In this context, it is 

recommended to use a Virtual Power Plant to provide fast balancing services 

to the system in the active distribution system. To do this, each feeder in 

Zyounah distribution network (consists of 14 feeders) must have a control 

box and smart metering for collecting data from the consumers and automatic 

control of underlying devices. Control strategies of a Virtual Power Plant will 

be investigated, with a focus on active power control of distributed diesel 

generators, and the addition of renewable energy sources (PV plus storage 

systems) to support efficient and sustainable energy. Both economic and 

environmental objectives will be considered, e.g. minimise the operation 

costs of diesel and reduce CO2 emissions. Several parameters should be 

introduced into the controller design to consider the uncertainties of 
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intermittent generation and increase the lifetime of storage systems. Although 

the power system is state-owned and managed, the Iraqi ministry of electricity 

awarded several Independent Power Producer (IPP) contracts in recent years, 

which lay the foundation for Virtual Power Plant operators to contribute to 

reducing the power deficit.  
  
• Iraq has high solar irradiance values all year round, with Baghdad about 

3,300h of bright sunshine annually, and this clean energy is yet to be 

exploited. Therefore, it is very important to integrate more PV into the power 

system with the diesel generators for dispatch power generation because they 

are suitable for the environment and contribute to sustainability and energy 

security objectives. 
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9 Appendix A 
 
This appendix describes the collected data of forecasted maximum temperature 
for the winter and summer seasons provided by IMOS. 
 
 
Table 1: Forecasted maximum temperature in January 2020 for a winter season, 

providing by IMOS for Load forecasting   
Date Max 

temperature 
forecasted 

(input)  

Date Max 
temperature 
forecasted 

(input)   
01/01/2020 13 16/01/2020 13 

02/01/2020 12 17/01/2020 10 

03/01/2020 13 18/01/2020 14 

04/01/2020 14 19/01/2020 16.4 

05/01/2020 13.5 20/01/2020 15 

06/01/2020 14 21/01/2020 16.8 

07/01/2020 15 22/01/2020 14 

08/01/2020 19 23/01/2020 13 

09/01/2020 19 24/01/2020 12.6 

10/01/2020 17.5 25/01/2020 15 

11/01/2020 18 26/01/2020 12 

12/01/2020 20 27/01/2020 12 

13/01/2020 19 28/01/2020 12.5 

14/01/2020 17 29/01/2020 10.5 

15/01/2020 12 30/01/2020 13 

 

Table 2: Forecasted maximum temperature in September 2020 for a summer 
season, providing by IMOS  

Date Max 
temperature 
forecasted 

(input)  

Date Max 
temperature 
forecasted 

(input)   
01/09/2020 45 16/09/2020 41 

02/09/2020 43 17/09/2020 39.5 
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03/09/2020 42.5 18/09/2020 41 

04/09/2020 42 19/09/2020 40 

05/09/2020 42 20/09/2020 43 

06/09/2020 43 21/09/2020 40.5 

07/09/2020 42 22/09/2020 39 

08/09/2020 41.5 23/09/2020 39.5 

09/09/2020 40 24/09/2020 38 

10/09/2020 39.5 25/09/2020 39 

11/09/2020 40 26/09/2020 37 

12/09/2020 41 27/09/2020 39 

13/09/2020 42 28/09/2020 38 

14/09/2020 44 29/09/2020 37 

15/09/2020 42 30/09/2020 38 

 

10 Appendix B 
 
This appendix shows the training and testing data required for load forecasted 

in Zyounah for the summer and winter seasons. 
 
 

Table 3: The training data required for the summer season for Zyonah district 
for Load forecasting  

 Input data for training (MW) July 2019 (summer 
season) 

 

Target for 
training (MW) 

 
Hours (Day1) 

Sunday 
7 July19 

(Day2) 
Monday 
8 July19 

(Day3) 
Tuesday  
9 July19 

Day4) 
Wednesday  
10 July19 

Day4) 
Thursday 
11 July 19 

1 40.32 40.6 41.2 41 40.698 

2 38.4 38.64 38.72 38.9 39 

3 35.9 36.3 37.1 35.4 36.3 

4 35.52 35.742 34.4 35.89 35 

5 34.08 34.293 34.36 34.435 34 

6 33 33.327 35 33.465 33.5 

7 33.12 33.327 34 33.465 34.5 

8 33.6 33.81 33.88 33.95 33.91 
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9 35.52 35.742 34.9 35.89 36 

10 38.88 39.123 38.7 39.285 38 

11 41.28 41.638 42 41.71 41 

12 43.2 43.47 43.56 44 43.7 

13 44.64 44.919 45.3 45.10 44.9 

14 46.08 46.36 46.46 46.56 47 

15 47.52 47.81 47.91 48.015 47.96 

16 48 48.3 48.45 48.51 49 

17 48 48.3 49 48.5 48.45 

18 42.24 42.504 43 42.68 43 

19 43.68 43.953 44 45 44.08 

20 42.72 42.987 43.07 43.165 43 

21 42.24 42.504 42.59 42.68 41 

22 41.28 41.538 41.7 41.71 41.5 

23 41.3 41.7 40.2 41.71 40.6 

24 40.8 41.055 41.2 41.3 39.9 

 
 
Table 4: The testing data required for the summer season for Ziyounah district 

for Load forecasting 
 Input data for testing (MW) July 2020 

(summer season) 
 

Predicted 
demand (MW) 

 

Actual 
demand 
(MW) 

 
Hours (Day1) 

Sunday 
7 July20 

(Day2) 
Monday 
8July20 

(Day3) 
Tuesday  
9July20 

(Day4) 
Wednesday  
10 July20 

(Day5) 
Thursday 
11July20  

(Day5) 
Thursday 
11 July20 

1 41 41.4 42 42 41.5 40.488 

2 39.04 39.08 39.2 40 38.3 38.56 

3 36 36.5 36 37 36.4 37.114 

4 36.11 36.14 36.15 37 35 35.668 

5 34.64 34.68 34.68 35.5 34.91 34.222 

6 33.67 34.1 33.71 34.3 34.32 33.258 

7 33.67 33.70 33.71 34.5 34.5 33.258 

8 34.16 34.19 34.2 35 34.65 33.74 
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9 36.11 36.6 36.7 37 37 35.668 

10 38.2 39.56 39.57 40.5 39.45 39.042 

11 41.96 42.011 43 43 43.02 41.452 

12 43.92 42 43.97 45 45 43.38 

13 45.38 45.4305 45.43 46.5 46 44.826 

14 46.84 46.896 46.90 48 48.5 46.272 

15 48.31 49 48.5 49.5 48.78 47.718 

16 48.8 48.85 49 50 48.88 48.2 

17 48.8 49 48.85 50 48.88 48.2 

18 42.94 43 42.99 44 45 42.416 

19 44.40 44.45 45 45.5 45.93 43.862 

20 43.43 43.47 43.48 44.5 45.31 42.898 

21 42.94 42.98 42.99 44 44.68 42.416 

22 41.96 42.011 42.01 43 43.29 41.452 

23 40 42.011 40 40.9 40 41.452 

24 41.48 42 41.52 42.5 41.96 40.97 

 
 

Table 5: The training data required for the winter season for Zyonah district for 
Load forecasting 

 Input data for training (MW) July 2019 (winter 
season) 

 

Target for 
training (MW) 

 
Hours (Day1) 

11 Jan19 
(Day2) 

12 Jan19 
(Day3) 

13 Jan19 
Day4) 

14 Jan19 
Day4) 

15 Jan19 
1 21.7 22 22.4 22.75 22.8 

2 17.98 18.386 19 18.85 19.14 

3 16.43 16.801 16.96 17.225 17 

4 15.7 15.85 16 16.25 16.5 

5 14.88 14 15.36 15.1 15.84 

6 16.43 16.801 16.96 17.225 17 

7 19.84 20.288 20.48 20.8 20.9 

8 21.7 22.19 23 22.75 23.1 

9 20.305 20.7635 20.96 21.2875 21 
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10 20.46 21 21.12 21.45 21.78 

11 21.576 22.0632 22.272 22.62 21.9 

12 22.94 23.458 23.68 24.05 24 

13 24.8 25.36 25.7 26 27 

14 26.35 26.945 27.2 27 28.05 

15 27.9 28.53 28.8 29.25 29 

16 29 28.847 29.12 29.575 30.03 

17 28.52 29.164 29.44 29.9 30.36 

18 29.76 30.432 30.72 31.2 31.68 

19 31.5 31.7 32 32.5 33 

20 29.977 30.6539 30.944 31.4275 31 

21 29 30.115 30.4 30.875 31.35 

22 29.295 29.9565 30.24 30 31.185 

23 27.9 28.53 28.8 29 28.8 

24 25.42 24.8 26.24 26.65 27.06 

 
 
 
 

Table 6: The testing data required for the winter season for Zyonah district for 
Load forecasting 

 Input data for testing (MW) July 2020 
(winter season) 

 

Predicted 
demand (MW) 

 

Actual 
demand 
(MW) 

 
Hours (Day1) 

11 Jan20 
(Day2) 

12 Jan20 
(Day3) 

13 Jan20 
Day4) 

14 Jan20 
Day4) 

15 Jan20 
Day4) 

15 Jan20 
1 23.8 24.15 24.5 24.29 24.95 23.73 

2 19.72 20.01 20.3 20.126 20.34 19.662 

3 18.02 18.285 18.55 18.391 18.24 17.967 

4 17 17.25 17.5 17.35 17.33 16.95 

5 16.32 16.56 16.8 16.656 16.89 16.272 

6 18.02 18.285 18.55 18.391 18.24 17.967 

7 21.76 22.08 22.4 22.208 22.92 21.696 

8 23.8 24.15 24.5 24.29 24.95 23 

9 22.27 22.5975 22.925 22.7285 23.48 22.2045 
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10 22.44 22.77 23.1 22.902 23.66 22.374 

11 23.664 24.012 24.36 24.1512 24.83 23.5944 

12 25.16 25.53 25.9 25.678 26.20 25.086 

13 27.2 27.6 28 27.76 28.45 27.12 

14 28.9 29.325 29.75 29.495 30.29 28.815 

15 30.6 31.05 31.5 31.23 31.22 30.51 

16 30.94 31.395 31.85 31.577 31.32 30.849 

17 31.28 31.74 32.2 31.924 31.41 31.188 

18 32.64 33.12 33.6 33.312 31.69 32.544 

19 34 34.5 35 34.7 31.93 33.5 

20 32.878 33.3615 33.845 33.5549 31.73 32.7813 

21 32.3 32.775 33.25 32.965 31.63 32.205 

22 32.13 32.6025 33.075 32.7915 31.59 32.0355 

23 30.6 31.05 31.5 31.23 31.22 30.51 

24 27.88 28.29 28.7 28.454 29.26 27.798 

 

 
 


