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Statistics and Its Interface () 1

Online change-point detection for a transient

change

Jack Noonan

We consider a popular online change-point problem of
detecting a transient change in distributions of independent
random variables. For this change-point problem, several
change-point procedures are formulated and some advanced
results for a particular procedure are surveyed. Some new
approximations for the average run length to false alarm
are offered and the power of these procedures for detecting
a transient change in mean of a sequence of normal random
variables is compared.

AMS 2000 subject classifications: Primary 60G50,
60G35; secondary 60G70, 94C12, 93E20.

Keywords and phrases: Change-point detection, Statis-
tical quality control, Boundary crossing probabilities.

1. INTRODUCTION

The subject of change-point detection (or statistical qual-
ity control) is devoted to monitoring and detecting changes
in the structure of a time series. This paper considers a pop-
ular online change-point problem of detecting a change in
distribution of a sequence of independent random variables.
Online change-point problems are concerned with monitor-
ing the structure of a random process(es) whose observations
arrive sequentially. For these problems, any good monitor-
ing procedure should reliably alert the user to unexpected
changes as soon as possible or with highest probability, sub-
ject to a tolerance on false alarms. In this paper, we will as-
sume the distributions before and after a change-point have
explicit probability density functions. This is a common as-
sumption in the field, see for example [1, 2].

Let y1, y2, . . . be a sequence of independent random vari-
ables arriving sequentially. The purpose of this paper is to
discuss tests for the hypothesis that yi (i = 1, 2 . . .) are iden-
tically distributed with some probability density function
(pdf) f(y) against the alternative that at some unknown
change point 0 ≤ ν < ∞, the random variables y1, y2, . . . , yν
and yν+l+1, yν+l+2, . . . are identically distributed with den-
sity f(y) and yν+1, yν+2, . . . , yν+l are identically distributed
with pdf g(y) such that g(y) 6= f(y). Here, l is length of
the change-point period (signal) and can be known or un-
known. Under a standard hypothesis testing framework, the
null hypothesis is H∞ : ν = ∞ and hence the pdf f(y) is the

density of yi for all i = 1, 2, . . .. The alternative hypothesis
is Hν : 0 ≤ ν < l ≤ ∞ and therefore

Hν :

{

yi have density f(y) if i ≤ ν or i > ν + l
yi have density g(y) if ν < i ≤ ν + l

with i = 1, 2, . . .. Under Hν , the arrival time of the signal
is ν + 1 (it is unknown). Most classical results assume f
and g are known completely; by this, we mean no nuisance
parameters are present in the distributions. In later sections,
we will briefly discuss tests designed to approach the change-
point problem in the presence of nuisance parameters.

A thorough introduction to the field of online (quick-
est) change-point detection mainly for the case of l = ∞
can be found in, for example, [3, 1, 4, 5]. Some of the
most popular online change-point algorithms used in prac-
tice are Shewhart’s X̄-chart [6], the CUSUM algorithm [7],
the Shiryaev-Roberts procedure [8, 9] and the Exponentially
Weighted Moving Average (EWMA) chart [10]. The case of
l = ∞, and hence when a change in distribution occurs it
does so permanently, is by far the most popular scenario
considered in the change-point literature; a number of in-
fluential papers are [11, 12, 13, 14, 15, 16]. The CUSUM
and Shiryaev Roberts procedures benefit with their simplic-
ity and proven optimality under suitable optimality criteria;
these two procedures will be the focus of discussion for the
case l = ∞. The case of finite l, and hence when a change
occurs it does so temporarily, has seen considerable atten-
tion in the past, see [17, 18, 19, 20, 21, 22, 23, 24]. More
recently it has been the focus of attention in the papers
of [25, 26, 27]. Examples of areas where detecting a tran-
sient change in distributions is extremely important can be
found in radar and sonar [28, 29, 30], nondestructive testing
[31], and medicine [32]. Non-parametric online change-point
detection methods have also become very popular [33, 34].
For the state of the art techniques for multiple change-point
detection, see [35, 36, 37, 38]. For sequential change-point
detection in high-dimensional time series, a likelihood ratio
approach can be found in [39, 40].

This survey is organised as follows. In Section 2, we sur-
vey results for l = ∞ and discuss known optimality results
for the CUSUM and Shiryaev-Roberts procedures. This sec-
tion contains well known classical results but is included to
introduce the reader to change-point concepts that will be
used when considering the transient change-point problem.
In Section 3, we assume l < ∞ and discuss a number of



online tests for transient changes; the likelihood ratio test
providing the inspiration behind all tests. In this section, we
compare procedures when applied for detecting a temporary
change in mean of a sequence of Gaussian random variables.
We also apply tests for monitoring stability of components
used in the Oil and Gas industry.

Throughout this survey we shall use the notation Pr∞
and E∞ to denote probability and expectation under H∞.
Under the alternative Hν , we shall use the notation Prν
and Eν to denote probability and expectation assuming the
change-point occurs at ν < ∞.

2. PERMANENT CHANGE IN

DISTRIBUTIONS

In this section, we assume l = ∞; if a change occurs, it
does so permanently. Suppose y1, y2, . . . , yn have been sam-
pled. The likelihood ratio for testing H∞ against Hν is

Λν,n =

n
∏

i=ν+1

g(yi)

f(yi)

assuming ν < n, otherwise Λν,n = 1.

2.1 The CUSUM and Shiryaev-Roberts

procedures

By maximising the statistic Λν,n over all possible loca-
tions of ν, we obtain the cumulative sum (CUSUM) statistic

Vn := max
0≤ν≤n−1

Λν,n, n ≥ 1 .(2.1)

The CUSUM stopping rule (when to alert the user to a
potential change-point) is

τV (H) := inf{n ≥ 1 : Vn > H} .(2.2)

An appealing property of statistic (2.1) is the recursive prop-
erty

Vn = max{Vn−1, 1} ·
g(yn)

f(yn)
, V0 = 1 .

The threshold H in τV (H) is chosen on the users tolerance
to false alarm risk. Page [7] and Lorden [11] measured false
alarm risk through the Average Run Length to false alarm
(ARL). The ARL criterion corresponds to choosing H such
that E∞τV (H) = C, where C is a pre-defined value chosen
by the user but is typically large. How to compute E∞τV (H)
will be discussed later in this section.

The famous CUSUM chart of Page [7] introduces a re-
flective barrier at zero. This procedures is defined as:

Pn := max

{

Pn−1 + log
g(yn)

f(yn)
, 0

}

,(2.3)

P0 = 0 .

The statistics (2.3) and log Vn are equivalent on the pos-
itive half plane and hence the rule

τP (log(H)) = inf{n ≥ 1 : Pn > logH} ,

and τV (H) are equivalent for H > 1. The stopping rule τV is
more general than τP as thresholds H ≤ 1 are permissable.
An approximation for E∞τP (H) for general distributions f
and g was derived in [41]. Let If := −E∞(log(g(y1)/f(y1)))
and Ig = E0(log(g(y1)/f(y1))) (to compute Ig we assume
the change-point occurs at time zero). Then

E∞τP (H) ≃ eH

Igζ2
− H

If
− 1

Igζ
.(2.4)

Here the constant ζ is called the limiting exponential over-
shoot. Let Zn =

∑n
i=1 log(g(yi)/f(yi)) be a random walk

process. For a non-negative barrier a, define the stopping
rule τa := inf{n ≥ 1 : Zn > a} and define the excess over
the barrier by κa := Zτa − a. Then ζ := lima→∞ E0[e

−κa ].
It was shown in [42, Ch. VIII] that

ζ =

1

Ig
exp

{

−
∞
∑

k=1

1

k
[Pr∞(Zk > 0) + Pr0(Zk ≤ 0)]

}

.

The approximation (2.4) seems extremely accurate. For ex-
ample, suppose pre-change observations are i.i.d. N(0, 1)
random variables and post-change observations are i.i.d.
N(A, 1) for some known A > 0. We have

f(y) =
1√
2π

exp(−y2/2),(2.5)

g(y) =
1√
2π

exp(−(y −A)2/2) .

For A = 1, Monte Carlo simulations with 100, 000 iterations
provide E∞τP (4.39) = 500. Application of the approxima-
tion in (2.4) provides 498. The draw back of the approxima-
tion in (2.4) is that ζ requires expensive numerical evalua-
tion.

To construct the Shiryaev-Roberts (SR) procedure, define
the generalised Bayesian detection statistic as:

Rn :=
n
∑

ν=0

Λν,n .(2.6)

Then the SR test is:

τR(H) := inf{n ≥ 1 : Rn > H} ,

where H is the solution of E∞τR(H) = C for some pre-
determined C. The SR statistic (2.6) satisfies the following
recurrence:

Rn = (1 +Rn−1) ·
g(yn)

f(yn)
, n ≥ 1, R0 = 0 .
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2.2 Evaluating ARL for CUSUM and SR

tests

Explicit expressions for E∞τV (H) and E∞τR(H) are
not known. However, they can be numerically obtained by
numerically solving particular Fredholm integral equations
as proved in [43]. Here it was shown that E∞τV (H) and
E∞τR(H) can be computed by a unified approach for gen-
eral Markov statistics. Set H > 0. For a sufficiently smooth
positive valued function ξ and s ∈ [0, H], let

Sn = ξ(Sn−1) ·
g(yn)

f(yn)
, n ≥ 1, S0 = s ∈ [0, H] ,

be a Markov detection statistic with stopping rule

τS(H) := inf{n ≥ 1 : Sn > H} .

Let φ(s) = E∞(τS(H)) be the ARL (note the dependence on
S0 = s) and set F (x) = Pr∞(g(y1)/f(y1) ≤ x). Then φ(s)
is the solution of the following Fredholm integral equation:

φ(s) = 1 +

∫ H

0

φ(x)

[

d

dx
F

(

x

ξ(s)

)]

dx .(2.7)

For the CUSUM and SR procedures we have ξ(s) =
max(1, s) and ξ(s) = 1 + s, respectively. To solve this in-
tegral equation, see [43].

Approximations for ARL of the CUSUM and SR proce-
dures have been specifically developed for the problem of
detecting the change in mean of normal random variables.
Here we operate under (2.5). To approximate ARL for both
the CUSUM and SR procedures or to narrow the domain of
search and more efficiently numerically solve the Fredholm
equation (2.7), one could use the following simple approxi-
mations developed in [44] and [45] respectively:

E∞τV (H) ≃ 2H/(Aκ2(A)) ,(2.8)

E∞τR(H) ≃ H/κ(A) ,(2.9)

where

κ(A) =
2

A2
exp

{

−2

∞
∑

ν=1

1

ν
Φ

(

−A

2

√
ν

)

}

and Φ(x) =

∫ x

−∞

f(y)dy .

The approximations in (2.8) and (2.9) are very accurate,
particularly for large H. In Table 1, one can observe the
high accuracy of approximation (2.8) for different thresh-
olds H. In fact, (2.9) is remarkably accurate and frequently
leads to exact values of ARL. The only slight inconvenience
of both approximations is the numerical evaluation required
to compute κ(A). This quantity is frequently approximated,
see [42, Ch. IV], with κ(A) ≃ exp(−ρ · A), where the con-
stant ρ is defined later in (3.17) but can be approximated to

three decimal places by ρ ≃ 0.583. Using this approximation
for κ in (2.8) and (2.9) still results in excellent approxima-
tions and can be recommended. In this table, E∞τV (H) has
been approximated Monte Carlo simulations with 100, 000
repetitions.

2.3 Optimality criteria

Denote by ∆(C) the set of all stopping times of change-
point procedures with ARL of at least C. More precisely,
∆(C) := {τ : E∞τ ≥ C}, C > 1, where τ = τ(H) is a stop-
ping time for a sequential change-point procedure. A com-
mon criterion for comparing change-point procedures when
l = ∞ is the supremum Average Delay to Detection (ADD)
introduced by Pollak [13]. Define ADDν(τ) := Eν(τ−ν|τ >
ν). Then

SADD(τ) := sup
0≤ν<∞

ADDν(τ) .(2.10)

An optimal change-point procedure would satisfy
SADD(τopt) = infτ∈∆(C) SADD(τ) for all C > 1.
Finding an optimal procedure for this criterion is very
difficult, where in general only asymptotic optimality as
C → ∞ (low false alarm rate) is known [13]. Another
popular criterion is the worst-case minimax scenario of
Lorden [11] defined as

L(τ) := sup
ν≥0

ess supEν [(τ − ν)+|y1, y2, . . . , yν ] .

(2.11)

In other words, the conditional ADD is first maximized over
all possible trajectories of observations up to the change-
point and then over the change-point. We refer the reader to
Section 6.3.3 of [1] for further discussions regarding this cri-
terion. Asymptotic optimality (as C → ∞) of the CUSUM
chart of Page was proved in [11]. It was subsequently proved
in [12] that the CUSUM chart of Page is in fact optimal un-
der this criterion for every C > 1. We refer the reader to
Section 6.3.3 of [1] for further discussions regarding this cri-
terion.

The SR procedure is optimal for every C > 1 under the
Stationary Average Delay to Detection (STADD) criterion.
The STADD criterion rewards detection procedures that de-
tect the change as quickly as possible, at the expense of rais-
ing many false alarms (using a repeated application of the
same stopping rule). Formally, the STADD criterion is de-
fined as follows. Let τ1, τ2 . . . be a sequence of independent
copies of the stopping time τ . Let Tj = τ1+τ2+. . .+τj be the
time the jth alarm is raised. Let Iν = min{j > 1 : Tj > ν};
this is the index of the first alarm which is not false after
Iν − 1 false alarms. Then

STADD(τ) := lim
ν→∞

Eν [TIν − ν] .

It was proved in [46] that the STADD criterion is equiv-
alent to the Relative Integral Average Detection Delay (RI-

Online change-point detection for a transient change 3



H 9.32 17.33 80.65 159.35 788.00

E∞τV (H) 50 100 500 1000 5000
Approximation (2.8) 59 110 513 1014 5018

(2.8) with κ(A) ≃ exp(−ρ ·A) 60 111 517 1023 5058

Table 1. Approximations for E∞τV (H) with A = 1.

ADD) measure (see [43]):

RIADD(τ) :=

∑∞

ν=0 Eν [(τ − ν)+]

E∞[τ ]
.

It is discussed in [43] for both CUSUM and the
Shiryaev–Roberts procedure Lorden’s essential supremum
measure (2.11) and Pollak’s supremum measure SADD de-
fined in (2.10) are attained at ν = 0, that is:

L(τV (H)) = SADD(τV (H)) = E0τV (H) ,

L(τR(H)) = SADD(τR(H)) = E0τR(H) .

Similarly to the computation of E∞τV (H) and E∞τR(H),
to obtain E0τV (H) and E0τR(H) one can numerically solve
a Fredholm equation. Instead of setting φ(s) = E∞(τ(H)),
let φ(s) = E0(τ(H)). Also set F (x) = Pr0(g(y1)/f(y1) ≤
x). Then from [43], φ(s) is the solution of the Fredholm
integral equation given in (2.7). The computation of STADD
requires solving a slightly more difficult integral equation,
see [43] for more discussions.

For the Gaussian example considered in (2.5), the findings
of [43] indicate that for small values of A, say A = 0.01 , the
CUSUM noticeably outperforms the SR procedure under
Lordens criterion. Vice versa, the SR procedure noticeably
outperforms CUSUM under the STADD framework. When
the change in A becomes large, say A = 1, the benefits a
procedure has over the other diminishes.

3. TRANSIENT CHANGE IN

DISTRIBUTIONS

In this section, we assume 1 ≤ l < ∞ and therefore study
procedures aimed at detecting a transient change in distri-
butions. Suppose y1, y2, . . . , yn have been sampled. The log
likelihood ratio for testing H∞ against Hν is

Γν,ν+l := log Λν,ν+l =
ν+l
∑

i=ν+1

log
g(yi)

f(yi)
.(3.1)

3.1 A collection of procedures

For l unknown, the log likelihood ratio statistic is ob-
tained by maximising (3.1) over all possible change point
locations ν and transient change lengths:

Kn := max
0≤ν<ν+l≤n

Γν,ν+l ,(3.2)

with the stopping rule

τK(H) := inf{n ≥ 1 : Kn > H} .

Note that in (3.2), we are maximising over l too. If there are
no nuisance parameters present in f and g that require es-
timation, the statistic (3.2) satisfies the recursive property:

Kn = max{Kn−1, max
0≤ν≤n−1

Γν,n}, K0 = 0 .(3.3)

For large n, the statistic (3.2) is very expensive to com-
pute despite the recursive property given in (3.3). This is be-
cause in max0≤ν≤n−1 Γν,n, one has to maximise over all pos-
sible change-point locations which is expensive for large n.
For offline change-point problems, this large computational
expense may be an inconvenience but it is not a fundamen-
tal problem as time is often not an issue. However, for online
procedures that require calculations in real time, the statis-
tic Kn is not practical. The assumption of no prior knowl-
edge about the transient change length is unlikely. One can
imagine that some knowledge about the length of transient
change is likely, for example it may be bounded l0 ≤ l ≤ l1.
From here on, this assumption will be made. The log likeli-
hood ratio statistic is:

Zn = Zn(l0, l1) := max
0≤ν<ν+l≤n

l0≤l≤l1

Γν,ν+l ,(3.4)

with the stopping rule

τZ(H) := inf{n ≥ l1 : Zn(l0, l1) > H} .(3.5)

If no nuisance parameters require estimation, the statistic
Zn satisfies the following recursive property:

Zn = max

{

Zn−1, max
n−l1≤ν≤n−l0

Γν,n

}

,(3.6)

Zl1 = max
0≤ν<ν+l≤l1

l0≤l≤l1

Γν,ν+l .

This is much easier to compute than (3.2) for n large. If
we make the additional assumption that l is known exactly
and is completely contained within the sample of size n,
i.e. ν + l ≤ n, then the MOSUM statistic is obtained by
maximising (3.1) over all valid change-point locations ν:

Mn := max
0≤ν≤n−l

Γν,ν+l .(3.7)

4 J. Noonan



The MOSUM statistic can be obtained by setting l0 =
l1 = l in (3.4). For this reason, the statistic Zn can be called
the generalised MOSUM procedure.

The stopping rule associated with MOSUM procedure is:

τM (H) := inf{n ≥ l : Mn > H} .

In what follows, we define the MOSUM test for a general
window length L, with L a fixed positive integer. The reason
for doing so is we will be interested in studying quantities
like the loss of power, when incorrect information is provided
for the true l. Results for the likelihood ratio test can still
be obtained by setting L = l. Define the moving sums

Sn,L := Sn,L,L =

n+L
∑

j=n+1

log
g(yi)

f(yi)
(n = 0, 1, . . .) .

Then the stopping rule τM (H) for a given window length L
can be expressed as

τM (H) = τS,L(H) + L, where(3.8)

τS,L(H) := inf{n ≥ 0 : Sn,L > H}

and therefore E∞τM (H) = E∞τS,L(H) + L. The moving
sum Sn,L provided the motivation for the MOSUM name.

For the transient change-point problem, the false alarm
risk can be measured through ARL. However, this is not the
only approach taken in the change-point literature. In [18]
and [47] , the false alarm risk is measured through:

sup
k≥1

Pr∞(k ≤ τ < k +mα) ≤ α ,

where τ is a stopping rule, α is your false alarm tolerance
(type 1 error) and lim infmα/| log(α)| > I−1

g but logmα =
o(| logα|) as α → 0; recall Ig = E0(log(g(y1)/f(y1))). An-
other alternative to the usual ARL constraint has been pro-
posed in [44, 48]. Here, the suggested criterion is

sup
k≥1

Pr∞(τ < k +mα|τ ≥ l) ≤ α .

From here on in, we measure false alarm risk through
ARL E∞τ and simply refer to [18, 47, 44, 48] for more dis-
cussions on other approaches. The majority of research has
focused on detecting transient changes in the mean of a se-
quence of Gaussian random variables. The next section is
devoted solely to this problem.

3.2 Detecting a transient change in

Gaussian random variables

Consider the problem of detecting the change in mean of
normal random variables. Suppose pre-change observations
are i.i.d. N(µ, 1) random variables and post-change obser-
vations are i.i.d. N(µ+A, 1) for some A > 0. The values of

µ, l and A may be known or unknown, with µ and A playing
the roles of nuisance parameters if unknown. We have

f(y) =
1√
2π

exp(−(y − µ)2/2) ,(3.9)

g(y) =
1√
2π

exp(−(y − µ−A)2/2) .

The offline version of this change-point problem is
devoted to testing for change-points in a sample of fixed
length and has seen significant attention in the past, see
[49, 50, 51, 52, 53]. An excellent survey of several statistics
aimed at addressing the offline problem can be found in [2].
Despite the fact Zn defined in (3.4) is a generalisation of
Mn given in (3.7), we will initially discuss recent results for
Mn. These results will provide inspiration for addressing
the much more complicated problems associated with Zn.

3.2.1 The MOSUM statistic

The MOSUM stopping rule given in (3.8) specialised for
this Gaussian example is

τ ′M (H ′) = τ ′S,L(H
′) + L ,

τ ′S,L(H
′) = inf{n ≥ 0 : S′

n,L > H ′} ,

S′
n,L = A

n+L
∑

j=n+1

(yj − µ−A/2) .

Knowledge of A is required to set the ARL constraint
E∞τ ′M (H ′) = C. However, if we consider the stopping rule:

τM (H) = τS,L(H) + L ,(3.10)

τS,L(H) = inf{n ≥ 0 : Sn,L > H} ,

Sn,L =

n+L
∑

j=n+1

yj ,

then one can show that τ ′M (H ′)
d
= τM (H ′/A+ µL+AL/2).

As a result, the stopping rules τ ′M (H ′) and τM (H) are equal
in distribution provided that E∞τ ′M (H ′) = E∞τM (H) = C.
The stopping rule τM (H) has the benefit of not requiring
knowledge of A to set the ARL constraint. We will refer
to the stopping rule τM (H) as the MOSUM test in this
Gaussian setting.

The problem of approximating E∞τS,L(H) assuming µ is
known was considered in [26]. Here will recall the main steps
in the construction. Define

h =
H − µL√

L
so that H = µL+ h

√
L

Online change-point detection for a transient change 5



and consider the standardised versions of Sn,L:

ξn,L :=
Sn,L − E∞ Sn,L
√

Var∞(Sn,L)
=

Sn,L − µL√
L

, n = 0, 1, . . . .

Then the stopping time τS,L(H) is equivalent to the stop-
ping time

τξ(h) := inf{n ≥ 0 : ξn,L ≥ h}(3.11)

and hence E∞τξ(h) = E∞τS,L(H).
For any integer M ≥ 0, the discrete time process

ξ0,L, ξ1,L, . . . , ξM,L is approximated by a continuous time
analogue S(t) on [0, T = M/L]. The process S(t) is a zero
mean, stationary Gaussian process with correlation func-
tion R(t) = max{0, 1−|t|}. The ARL E∞τξ(h) then has the
continuous-time approximation

E∞τξ(h) ∼= −L

∫ ∞

0

s dFh(s) ,(3.12)

where Fh(T ) := P∞(S(t) < h for all t ∈ [0, T ]).
Explicit formulas for the probability Fh(T ) with T ≤ 1

were first derived in [54]. Here it was shown

Fh(T ) =

∫ h

−∞

Φ

(

h(Z+1)−x(−Z+1)

2
√
Z

)

ϕ(x)dx

− 2
√
Z

Z + 1
ϕ(h)

[

h
√
Z Φ(h

√
Z)+

1√
2π

(
√
2πϕ(h))Z

]

.

For T = 1 this reduces to

Fh(1) = Φ2(h)− ϕ(h)
[

hΦ(h) + ϕ(h)
]

.(3.13)

For T > 1, formulae for Fh(T ) were first derived in [55];
these expressions take different forms depending on whether
or not T is integer. The result of [55, p.949] states that if
T = n is a positive integer then

Fh(n) =

∫ h

−∞

∫

Dx

det[ϕ(yi − yj+1 + h)]ni,j=0

dy2 . . . dyn+1dx ,(3.14)

where y0 = 0, y1 = h − x, Dx = {y2, . . . , yn+1 | h − x <
y2 < y3 < . . . < yn+1}. For non-integer T ≥ 1, the exact
formula for Fh(T ) is even more complex (the integral has
the dimension ⌈2T ⌉ + 1) see [55, p.950]. For T = 2, (3.14)
yields

Fh(2) = Φ3(h)− 2hϕ(h)Φ2(h)

+
h2−3+

√
πh

2
ϕ2(h)Φ(h) +

h+
√
π

2
ϕ3(h)

+

∫ ∞

0

Φ(h− y)[ϕ(h+ y)Φ(h− y)

−
√
πϕ2(h)Φ(

√
2y) ]dy .(3.15)

The complicated nature of these expressions for Fh(T )
made them impractical for the use in the ARL approxima-
tion (3.12). One simple yet still very accurate approximation
has the form (see [56]):

Fh(T ) ≃ Fh(2) [θ(h)]
T−2

,(3.16)

where θ(h) = Fh(2)/Fh(1) and the probabilities Fh(1) and
Fh(2) are given in (3.13) and (3.15) respectively. Here, ϕ(x)
and Φ(x) are the standard normal density and distribution
functions respectively. The approximation given in (3.16)
applied to (3.12) results in the following continuous-time
ARL approximation:

E∞τξ(h) ≃ − L · Fh(2)

θ(h)2 log(θ(h))
.

This approximation was then corrected in [26, Section 7] for
discrete time to improve results for small L. This amounted
to correcting the probabilities Fh(1) and Fh(2) for discrete
time; this was performed by specialising results of D. Sieg-
mund; primarily on expected overshoot a discrete time nor-
mal random walk has the first time it crosses a threshold.
From [42, p. 225], this expected overshoot was computed as

ρ := −
∫ ∞

0

1

πλ2
log{2(1− exp(−λ2/2))/λ2} dλ

≃ 0.582597 .(3.17)

Define the probability

Fh(M ;L) := Pr

(

max
n=0,1,...,M

ξn,L < h

)

.(3.18)

From [26, p. 18]:

E∞τS,L(H) = E∞τξ(h) ≃ − L · Fh(2L;L)

θL(h)2 log(θL(h))

with θL(h) =
Fh(2L;L)

Fh(L;L)
,

(3.19)

where, for hL := h+ ωL with ωL =
√
2ρ/

√
L, the probabil-

ities Fh(L;L) and Fh(2L;L) can be approximated by:

Fh(L;L) ≃ Φ(h)Φ(hL)− ϕ(hL)[hΦ(h) + ϕ(h)] ,

(3.20)

Fh(2L;L) ≃
ϕ2(hL)

2
[(h2−1+

√
πh)Φ (h)

+ (h+
√
π)ϕ (h)]

− ϕ (hL) Φ (hL) [(h+hL) Φ (h)+ϕ (h)]

+ Φ (h) Φ2(hL)
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Table 2. Approximations for E∞τξ(h) with L = 10.

h 2 2.25 2.5 2.75 3 3.25 3.5

(3.19) 126 217 395 759 1551 3375 7837
E∞τξ(h) 127 218 396 757 1550 3344 7721

+

∫ ∞

0

Φ(h−y)[ϕ(hL + y)Φ(hL − y)

−
√
πϕ2(hL)Φ(

√
2y) ]dy .(3.21)

Only a one-dimensional integral has to be numerically eval-
uated for approximating Fh(2L;L). Tables 2 and Tables 3
demonstrate that (3.19) using (3.20) and (3.21) is extremely
accurate.

For approximating the boundary-crossing probability
Fh(M ;L) for all M , the discrete time corrected form of
(3.16) suggests using the approximation

Fh(M ;L) ≃ Fh(2L;L) [θL(h)]
M/L−2

.(3.22)

One could then approximate Fh(2L;L) and θL(h) using
(3.20) and (3.21); the high accuracy of the resulting ap-
proximation was comprehensively studied in [26].

3.2.2 MOSUM and scan statistics

We remark that the moving sum process Sn,L forms the
basis of a number of change-point detection algorithms and
the stopping rule τM (H) is used even when the r.v.’s yj are
not necessarily Gaussian, see for example [57, 58, 59, 60];
the moving sum Sn,L is sometimes called a ‘scan statistic’.
In [57, 58, 60] and [p.45, p.187][59] the authors consider the
application of scan statistics for either monitoring a Poisson
process or monitoring a sequence of i.i.d. Bernoulli trials
(among others). In [57, 58, 59], approximations of a sim-
ilar form to (3.22) are made, where Fh(2L;L) and θL(h)
can be computed exactly in certain non-Gaussian settings.
The robustness of approximation (3.19) and formulas (3.20)
and (3.21) to non-normality was studied in Sections 6.2 and
6.3 of [26]. Here it was demonstrated with non-Gaussian yj
and potentially non-uniform weights associated with each
yj , that these formulas remain very accurate for suitably
large L.

3.2.3 The stopping rule τZ(H)

Here, we assume l is not known exactly but can be
bounded between l0 and l1. We will initially assume µ and
A are known. The stopping rule given in (3.5) specialised
for this Gaussian example is tantamount to:

τZ(H) = inf







n ≥ l1 : max
0≤ν<ν+l≤n

l0≤l≤l1

Zn(l0, l1)







,

with Zn = Zn(l0, l1) = A

ν+l
∑

j=ν+1

(

yj − µ− A

2

)

.

(3.23)

Using the recursive property outlined in (3.6), for n > l1
the statistic Zn satisfies:

Zn = max {Zn−1, Sn,l0,l1} , with

Sn,l0,l1 := max
n−l1≤ν≤n−l0

A
n
∑

j=ν+1

(

yj − µ− A

2

)

,

Zl1 = max
0≤ν<ν+l≤l1

l0≤l≤l1

A

ν+l
∑

j=ν+1

(

yj − µ− A

2

)

.

The short memory of the MOSUM statistic is paramount
to the form of the approximation given in (3.22). This short
memory is also present within the generalised moving sum
statistic Zn if one considers its recursive definition above.
After the initialising value Zl1 , Zn essentially becomes a
moving sum process given by Sn,l0,l1 . The process {Sn,l0,l1}
exhibits a short memory, where dependence between two
values is lost after l1 observations i.e. Sn,l0,l1 and Sn+l1,l0,l1

are independent for all n. This suggests that stationary be-
haviour of the combined process (Zl1 , {Sn,l0,l1}), under the
condition of not crossing the barrier H, should be achieved
quickly. One would then anticipate that the form of approx-
imations (3.19) and (3.22) would also be suitable when ap-
plied to Zn.

For M ≥ 0, introduce the probability:

Fl0,l1(H,M) := Pr∞(ZM+l1 < H)

= Pr∞{Zl1 < H,Sj,l0,l1 < H

∀ j = l1 + 1, . . . l1 +M} .

Then one would anticipate the following approximation to
be accurate:

Fl0,l1(H,M) ≃ Fl0,l1(H, 2l1) [θl1(H)]
M/l1−2

(3.24)

with θl1(H) =
Fl0,l1(H, 2l1)

Fl0,l1(H, l1)
,

E∞τZ(H) ≃ l1−
l1Fl0,l1(H, 2l1)

[θl1(H)]2 log(θl1(H))
.(3.25)
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Table 3. Approximations for E∞τξ(h) with L = 50.

h 2 2.25 2.5 2.75 3 3.25 3.5

(3.19) 471 791 1392 2587 5099 10695 23918
E∞τξ(h) 472 792 1397 2588 5085 10749 24131

Unfortunately, the probability Fl0,l1(H;M) is complex and
to the author’s knowledge no formula or approximations
are known. The probabilities Fl0,l1(H; 2l1) and Fl0,l1(H; l1)
can be approximated via Monte Carlo; this is not too cum-
bersome as at most 3l1 random variables need to be simu-
lated at each iteration. As commonly E∞τZ(H) = C with
C large, the right tail of the distribution of the random
variable max{Zl1 ,maxj=0...M Sj,l0,l1} is of the most inter-
est. Large deviation theory, see [51, 53, 61], could be used to
approximate the right tail of this distribution, however nu-
merical results indicate approximations of these kind would
not be accurate enough for general l0 and l1 (those that
are not astronomically large). If the prior knowledge that
1 ≤ l ≤ l1 is known, and an explicit formula to approximate
F1,l1(H;M) or E∞τZ(H) is desired, the following heuristic
argument could be used. Using inspiration from [49], a con-
tinuous time analogue of the probability F1,l1(H;M) that
allows for the application of existing large deviation results
is:

Pr







max
0≤s<t≤M+l1

0≤t−s≤l1

[

W (t)−W (s)− A

2
(t− s)

]

<
H

A







,

(3.26)

where W (t), 0 ≤ t < ∞, is the standard Brownian motion
process. Ideally, a large deviation approximation for (3.26)
should be computed explicitly. However, for M = l1, M =
2l1 and A large, say A ≥ 1, simulation studies indicate that
the additional maximisation constraint in (3.26) of 0 < t−
s < l1 has very little influence on this probability. If this
constraint is ignored, the following large deviation result of
[49] can be applied.

Lemma 1. Suppose γ > 0, m → ∞ and u → ∞ such that

mγu−1 is some fixed number in (1,∞). Then

Pr

{

max
0≤s<t≤m

[W (t)−W (s)− γ(t− s)] > u

}

= [2γ(mγ − u) + 3 + o(1)] exp(−2γu) .

To subsequently correct this result for discrete time, it is
recommended in [49] to increase the barrier H by 2ρ, where
ρ is defined in (3.17).

This results in the approximations

F1,l1(H, l1) ≃ 1−
(A(Al1 −H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}

F1,l1(H, 2l1) ≃ 1−
(A(3Al1/2−H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)} .

As a result, using the approximations given in (3.24) and
(3.25):

F1,l1(H,M) ≃ 1− (A(3Al1/2−H/A− 2ρ) + 3)

× exp{−A(H/A+ 2ρ)}
[

θ̂l1(H)
]M/l1−2

,(3.27)

with

θ̂l1(H) =

1− (A(3Al1/2−H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}

1− (A(Al1 −H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}
.

Also

E∞τZ(H) ≃ l1 −

l1[1− (A(3Al1/2−H/A− 2ρ) + 3) exp{−A(H/A+ 2ρ)}]

[θ̂l1(H)]2 log(θ̂l1(H))
.

(3.28)

The accuracy of the approximation in (3.24) is demon-
strated in Figures 1-2 for different l0, l1,M and A as a
function of H. In this approximation, Fl0,l1(H, 2l1) and
Fl0,l1(H, l1) have been approximated using Monte Carlo sim-
ulations with 100, 000 repetitions. In these figures, the prob-
ability Fl0,l1(H;M) is depicted with a thick dashed black
line and is obtained from simulations. The approximation
in (3.24) is depicted with a solid blue line. From these fig-
ures the high accuracy of approximation (3.24) is clearly
demonstrated. In Figures 3-6, we assess the accuracy of the
approximation in (3.27). In these figures, for A = 1 and var-
ious M , the probability F1,l1(H;M) is depicted with a thick
dashed black line whereas the approximation provided in
(3.27) is shown with a solid red line. The number present on
the figure is used to show the value of l1 used. From these
figures, we see for large H the approximation in (3.27) is
adequate. In Tables 4-5 the accuracy of the approximations
provided in (3.25) and (3.28) are assessed for different H.
We see the approximation in (3.25) is extremely accurate
for all H. For large H, the approximation in (3.28) is fairly
accurate and has the benefit of explicit evaluation. For small
H and small A, the accuracy of (3.28) should deteriorate.
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Table 4. Approximations for E∞τZ(H) with l0 = 25, l1 = 50, A = 1.

H -5 -4.5 -4 -3.5 -3 -2.5 -2

(3.25) 126 145 166 196 228 268 319
E∞τZ(H) 127 144 167 194 229 272 323

Table 5. Approximations for E∞τZ(H) with l0 = 1, l1 = 10, A = 1.

H 2 2.25 2.5 2.75 3 3.25 3.5

(3.28) 30 42 59 81 111 148 195
(3.25) 41 53 70 91 120 156 205

E∞τZ(H) 41 54 70 91 120 157 207

Figure 1: Empirical probabilities of reaching the barrier H
(dashed black) and approximation (3.24) (solid blue): A = 1,
M/l1 = 4 with l0 = 25 and l1 = 50.

Figure 2: Empirical probabilities of reaching the barrier H
(dashed black) and approximation (3.24) (solid blue): A =
0.5, M/l1 = 25 with l0 = 10 and l1 = 20.

Figure 3: Empirical probabilities of reaching the barrier H
(dashed black) and corresponding versions of approximation
(3.27) (solid red): A = 1, m/l1 = 1 with (a) l1 = 10 and (b)
l1 = 50.

Figure 4: Empirical probabilities of reaching the barrier H
(dashed black) and corresponding versions of approximation
(3.27) (solid red): A = 1, m/l1 = 2 with l1 = 10 and (b)
l1 = 50.
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Figure 5: Empirical probabilities of reaching the barrier H
(dashed black) and corresponding versions of approximation
(3.27) (solid red): A = 1, m/l1 = 10 with l1 = 10 and (b)
l1 = 50.

Figure 6: Empirical probabilities of reaching the barrier H
(dashed black) and corresponding versions of approximation
(3.27) (solid red): A = 1, m/l1 = 5 with (a) l1 = 10 and (b)
l1 = 50.

3.2.4 The presence of nuisance parameters

Here we briefly consider statistics aimed at detecting a
transient change when certain nuisance parameters require
estimation. The brevity of this discussion is because (in the
authors opinion) in practice for online change-point prob-
lems, the behaviour of the time series under the null hy-
pothesis of no change-point is often observed for a lengthy
period of time. This allows for the accurate estimation of
certain nuisance parameters and they can therefore be as-
sumed known. The counterargument to this is that small
trend changes or small undetectable changes may contami-
nate estimates. For the situation of small trend changes, the
use of singular spectrum analysis (SSA) could be used to

extract the trend allowing for the study of only the resid-
uals, see Section 3.5 where an approach similar to this is
discussed. Many of the following statistics appear in some
form in [2] when addressing the offline change-point prob-
lem, and a number of approximations for the false alarm
error are provided. The log likelihood ratio given in (3.1),
where f and g are given in (3.9), is

Γν,ν+l = A

ν+l
∑

j=ν+1

(

yj − µ− A

2

)

.

Using motivation from [50], if µ is unknown, l is unknown
but bounded l0 ≤ l ≤ l1 and A is known, then one can
replace µ with its maximum likelihood estimator under H∞;
µ̂ :=

∑n
i=1 yi/n to obtain:

Z1
n := max

0≤ν<ν+l≤n
l0≤l≤l1

A

ν+l
∑

j=ν+1

(

yj − µ̂− A

2

)

.

In [51], µ was replaced with its average over the null and
alternative hypotheses to obtain the true likelihood ratio
statistic:

Z2
n :=

max
0≤ν<ν+l≤n

l0≤l≤l1

A

ν+l
∑

j=ν+1

(

yj − µ̂− A

2

(

1− l

n

))

.

If µ and A are both unknown, the square root of the log
likelihood ratio statistic is:

Z3
n := max

0≤ν<ν+l≤n
l0≤l≤l1

(

∑ν+l
j=ν+1 yj

)

− lµ̂
√

l(1− l
n )

.

The statistic Z3
n is also studied in [62, p. 497] for detecting

a transient change in mean of random variables in an offline
setting. Here the statistic is formulated without likelihood
arguments and is therefore used when yj are not necessarily
Gaussian. In [62], the authors view the change-point statistic
as a discretizations of some Holder norms or semi-norms
allowing them to obtain limiting distributions under the null
hypothesis of no change in mean.

Instead of testing for the existence of a single tran-
sient change in the mean, the problem of detecting multiple
changes in the means of i.i.d. random variables has been
studied in [63]. Here, a MOSUM-like statistic is used for de-
tecting any possible number of changes in a sample of fixed
length n and the values of the mean after the change-point
do not necessarily have to be known. This can be seen as a
significant generalisation of the problems considered in this
paper and in [2], if one considers only the offline setting.
The statistic studied in [63] is proportional to the following
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quantity:

max
L≤ν≤n−L

|Tν,n(L)| ,(3.29)

with

Tν,n(L) =
1√
2L

(

ν+L
∑

i=ν+1

yi −
ν
∑

i=ν−L+1

yi

)

.

The statistic Tν,n(L) has a simple interpretation of com-
paring at every time point L ≤ ν ≤ n − L the mean of the
subsample yν−L+1, . . . , yν with the mean of the subsample
yν+1, . . . , yν+L. Naturally, a large difference between the two
means (the sign is irrelevant because of the absolute value in
(3.29)) would indicate a change at this point. As mentioned
in [63], at a point ν this statistic is similar to the likelihood
ratio statistic for the sample yν+1, . . . , yν+L at the potential
change-point ν. The asymptotic behaviour of a normalised
form of the statistic in (3.29) as n → ∞ is given Theorem 2.1
of [63] (here we are ignoring a number of technical details)
and is shown to follow a Gumbel extreme value distribution.

For the statistics considered in this section, it is not obvi-
ous how one can translate the offline change-point results of
[63, 49, 50, 62, 51, 52, 53] to address the online change-point
problem in the presence of nuisance parameters.

3.3 Optimality criteria

For online detection of transient changes, optimality cri-
teria like (2.10) and (2.11) do not have much meaning as
the change in distributions is not permanent (signal can be
missed). Instead, optimality involving the maximisation of
the probability of detection under a constraint on the false
alarm risk is more applicable, see [64, 65]. One could use a
worst-case criterion of the form:

inf
ν
Pν{τ(H)− ν <T | τ(H)>ν} ,(3.30)

where T > 1 is the maximum length of time after the
change-point occurs that it must be detected; this is problem
specific and is therefore chosen by the user. By imposing the
condition of a long run with no false alarms, another possible
criterion is

lim
ν→∞

Pν{τ(H)− ν <T | τ(H)>ν} .(3.31)

Using ARL as the measure of false alarm risk, a stopping
rule τ ∈ ∆(C) is then optimal for a given C if it maximises
(3.30) or (3.31); recall ∆(C) = {τ : E∞τ ≥ C}, C > 1.

3.3.1 MOSUM procedure

For the MOSUM procedure given in (3.10), the quantity
(3.31) was the focus of study in [25] and built on the
continuous time results of [27]. For T = l + L, the quantity
(3.31) is equivalent to:

PS(H,A,L) := lim
ν→∞

Pν{Sn,L>H(3.32)

for some n∈ [ν′+1, ν+l−1] | τS,L(H)>ν′} ,

with ν′ := ν − L .
Formally, we require ν → ∞ in (3.32). This is to ensure

that the sequence of moving sums {Sn,L}n reaches the sta-
tionary behaviour under the null hypothesis and given that
we have not crossed the threshold H. However, as discussed
[25, 27], this stationary regime is reached very quickly and
in all approximations it is enough to only require ν ≥ 2L.

The reasoning behind the choice T = l + L is as follows.
Assume Hν with ν < ∞, and that ν is suitably large. If the
barrierH is reached for any sum Sn,L with n ≤ ν′ then, since
there are no parts of the signal in the sums S0,L, . . . Sν′,L,
we classify the event of reaching the barrier as a false alarm.
Each one of the sums Sν′+1,L, . . . , Sν+l−1,L has mean larger
than Lµ as it contains at least a part of the signal. Reaching
the barrier H by any of these sums will be classified as
a correct detection of the signal. If neither of these sums
reaches H, then we say that we failed to detect the signal
and further events when Sn,L ≥ H with n ≥ ν+ l will again
be classified as false alarms. In Figure 7 we display the values
EνSn,L as a function of n.

Define the function

Q(n;A,L, ν′) :=















0
A(n− ν′)
Amin(l, L)

A(L+ l + ν′ − n)

for n ≤ ν′ or n ≥ ν + l
for ν′ < n ≤ ν′ +min(l, L)

for ν′+min(l, L) < n ≤ ν′+max(l, L)
for ν′ +max(l, L) < n ≤ ν + l − 1 .

Then Figure 7 is also a plot of µL + Q(n;A,L, ν′). By
subtracting EνSn,L from the threshold H and standardising
the random variables Sn,L the power of the test given in
(3.32) can be expressed in terms of probability under H∞:

Pξ(h,A,L) :=

lim
ν→∞

Pr∞

{

ξn,L>h−Q(n;A,L, ν′)

σ
√
L

for some n∈ [ν′+1, ν+l−1]

∣

∣

∣

∣

τξ(h)>ν′
}

,

where PS(H,A,L) = Pξ(h,A,L). Recall the relation H =

µL+h
√
L. To approximate Pξ(h,A,L), the approach taken

in [25] was similar to the approach taken to approximate
ARL in Section 3.2.1. The approach is as follows. We firstly
approximate the problem in the continuous-time setting and
compute probabilities for the Gaussian process S(t). Then,
use the results of D. Siegmund to correct the continuous
time probability for discrete time. Fix γ = A

√
L, κ = ν′/L,
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µL

(A+µ)min(l, L)

ν′ ν+l

ν′+max(l,L)ν′+min(l,L)

n

Figure 7: EνSn,L as a function of n

λ = l/L and define the function

Q(t; γ, κ, λ) =















0
γ(t− κ)

γmin(1, λ)
γ(1 + λ+ κ− t)

for t ≤ κ or t ≥ κ+ 1 + λ.
for κ < t ≤ κ+min(1, λ)

for κ+min(1, γ) < t ≤ κ+max(1, λ)
for κ+max(1, λ) < t ≤ κ+ 1 + λ .

The diffusion approximation for the power of the test is

P(h,A) :=(3.33)

lim
κ→∞

Pr∞{S(t) > h−Q(t; γ, κ, λ)

for some t ∈ [κ, κ+ 1 + λ] | τ̃(h) > κ} ,

where τ̃(h) = inf{t > 0 : S(t) > h}. We refer to Lemma 4.1
in [25] for more details about this approach. That is, by
assuming L → ∞, we make the approximation

Pξ(h,A,L) ∼= P(h,A) .

The complexity of computation of the diffusion approx-
imation P(h,A) and its discrete-time corrected version de-
pends on the choice of L in comparison to l. Here, we will
only consider the scenario of λ = l/L = 1 which corresponds
to the case of l known at the MOSUM construction stage.
The two other cases of λ > 1 and λ < 1 are studied in [25].

For λ = 1, the diffusion approximation for Pξ(h,A,L)
given in (3.33) reduces to

P(h,A)= lim
κ→∞

P∞{S(t) ≥ h−Q(t; γ, κ)(3.34)

for some t∈ [κ, κ+ 2]
∣

∣ τ̃(h) > κ} ,

where Q(t; γ, κ) = γmax {0, 1− |t− (κ+ 1)|}. The barrier
h−Q(t; γ, κ) is depicted in Figure 8.

The probability (3.34) was considered in [27], where ap-
proximations accurate to more than 4 decimal places were

developed. Define the following two conditional probabili-
ties:

Fh,0(1|x) := P∞(S(t) < h for all t ∈ [0, 1]

| S(0) = x) ,

Fh,0,−γ,γ(3|x) := P∞(S(t) < B(t;h, 0,−γ, γ)

for all t ∈ [0, 3] | S(0) = x) ,

where the barrier B(t;h, 0,−γ, γ) is defined as

B(t;h, 0,−γ, γ) =















h, 0 ≤ t ≤ 1
h− γ(t− 1), 1 < t ≤ 2
h− γ + γ(t− 2), 2 < t ≤ 3
0 otherwise ,

and is depicted in Figure 9. From [27] we obtain

P(h,A) ∼= 1− Fh,0,−γ,γ(3|0)
Fh,0(1|0)

,(3.35)

where

Fh,0(1 |x) = Φ(h)− exp
(

−(h2 − x2)/2
)

Φ(x)(3.36)

and

Fh,0,−γ,γ(3 |x) =
eγ

2/2

ϕ(x)

∫ ∞

−x−h

∫ ∞

x2−h+γ

e−γ(x3−x2)

× det









ϕ(x) ϕ(−x2−h)
ϕ(h) ϕ(−x−x2)

ϕ(x2+2h+x) ϕ(h)
ϕ(x3+3h−γ+x) ϕ(x3+2h−γ−x2)

ϕ(−x3−2h+γ) Φ(−x3−2h+γ)
ϕ(−x−x3−h+γ) Φ(−x−x3−h+γ)
ϕ(x2−x3+γ) Φ(x2−x3+γ)

ϕ(h) Φ(h)









dx3dx2 .

To compute the approximation (3.35) one needs to nu-
merically evaluate a two-dimensional integral which is a rou-
tine problem for modern computers.
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h

κ+1 κ+2κ

h−γ(t−κ) (h−γ)+
γ(t−κ−1)

h−γ

t

Figure 8: Barrier h−Q(t; γ, κ) for λ = 1.

h

1 2 30

h+γ−γt h−3γ+γt

h−γ

t

Figure 9: Barrier B(t;h, 0,−γ, γ).

Correcting approximation (3.35) for discrete time can be
performed in the same manner as correcting the ARL ap-
proximations in Section 3.2.1. This results in the approxi-
mation

Pξ(h,A,L) ∼= 1− FhL,0,−γ,γ(3|0)
FhL,0(1|0)

,

where hL := h+ ωL .(3.37)

The quantity ωL =
√
2ρ/

√
L corresponds to the spe-

cialised discrete time correction of D. Siegmund, see [25].
In Figures 10-11, the thicker black dashed line corre-

sponds to the empirical values of the BCP Pξ(h,A,L) com-
puted from 100, 000 simulations with different values of L
and γ, where µ = 0 and σ = 1. The solid red line cor-
responds to the approximation in (3.37). The dot-dashed
blue line corresponds to the diffusion approximation given
in (3.35). The axis are: the x-axis shows the value of γ.
The y-axis denotes the probabilities of reaching the barrier.
The graphs, therefore, show the empirical probabilities of
Pξ(h,A,L) and values of approximation (3.37).

From Figures 10-11, we see that approximation (3.37) is
very accurate even for a very small L = 5. We also see the
significance of the discrete-time correction; whilst the dif-
fusion approximation provides sensible results should you
compare it with L = 100, for L = 5 the diffusion approxi-
mation is very far off.

3.4 Comparison of tests

In this section, we compare the power of the MOSUM test
in (3.10) against the generalised MOSUM statistic (3.23)
and the CUSUM test given in (2.2) specialised for this Gaus-
sian example when used to detect a transient change. The
CUSUM statistic in (2.1) can be expressed as:

Vn = max
0≤ν≤n−1

n
∏

j=ν+1

exp

(

(yj − µ)2 − (yj − µ−A)2

2

)

,

Figure 10: Empirical probabilities of Pξ(h,A,L) (thick
dashed black) and its approximations (solid red and solid
blue) for h = 3.

Figure 11: Empirical probabilities of Pξ(h,A,L) (thick
dashed black) and its approximations (solid red and solid
blue) for h = 4.
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with the CUSUM test being

τV (H) = inf{n ≥ 1 : Vn > H} .

(The choice of H will be discussed shortly.) Secondly, but
also simultaneously, we compare the power of the MOSUM
test as λ = l/L varies in [0.5, 2]; the purpose is to demon-
strate when the generalised MOSUM statistic becomes ben-
eficial when the exact value of l is unknown and we make
a potentially poor guess in the MOSUM test. This corre-
sponds to a reasonable choice of l/l0 = 2 and l/l1 = 0.5.
Here, we shall consider the power criterion given in (3.31)
and set T = 2l. That is, we want to detect the presence of
the change point within 2l − 1 after its occurence. For the
MOSUM test, the power is then

PS(H1, A, L) :=

lim
ν→∞

Prν{Sn,L>H1 for some

n∈ [ν − L+1, ν− L+2l−1] | τS,L(H1)>ν − L} .

For the generalised MOSUM test, the power is

PZ(H2, A, l0, l1) :=

lim
ν→∞

Prν{Zn(l0, l1)>H2 for some

n∈ [ν +1, ν+2l−1] | τZ(H2)>ν} .

The power of the CUSUM test for the transient change con-
sidered in then equivalent to

PV (H3, A) :=

lim
ν→∞

Prν{Vn>H3 for some

n∈ [ν +1, ν+2l−1] | τV (H3)>ν} .

To compare the three tests, the thresholds H1, H2 and
H3 have been set such that E∞τM (H1) = E∞τZ(H2) =
E∞τV (H3) = 500. Determination of H1 for MOSUM has
been computed using the accurate approximation in (3.19).
For the generalised MOSUM procedure, H2 is found via
Monte Carlo simulations with 50, 000 repetitions. Determi-
nation of H3 for CUSUM was obtained using tabulated val-
ues given in [43, p. 3237].

In the first example shown in Figure 12, we have set
A = 1 and l = 10. For the MOSUM test, we consider values
of L ∈ [5, 20] to ensure λ ∈ [0.5, 2]. For each λ, the val-
ues of PS(H1, A, L) can be accurately approximated using
the results of [25] or via Monte Carlo methods and are dis-
played with a solid black line. The dashed orange line depicts
PZ(H2, A, 5, 20) which corresponds to prior knowledge that
l is between [5, 20]. The shorter dashed blue line corresponds
to PV (H3, A) which has been obtained via Monte Carlo sim-
ulations. In Figure 13, we set A = 0.5 and l = 20. For the
MOSUM procedure, we consider values of L ∈ [10, 40] to
ensure λ ∈ [0.5, 2]. In this figure, the dashed orange line

depicts PZ(H2, A, 10, 40) which corresponds to prior knowl-
edge that l is between [10, 40]. The shorter dashed blue line
corresponds to PV (H3, A) obtained via Monte Carlo simu-
lations. In all Monte Carlo simulations, we have used 50,000
repetitions.

Figure 12: Power of three tests with A = 1 and l = 10 and
ARL= 500.

Figure 13: Power of three tests with A = 0.5 and l = 20 and
ARL= 500.

From Figures 12-13, one can observe the advantage of
knowing l since the largest value of PS(H1, A, L) is the
largest power of all three tests and is obtained for λ =
l/L = 1. In these figures, the values of λ = l/L such
that PS(H1, A, L) exceeds PZ(H2, A, 5, 20) (Figures 12) and
PZ(H2, A, 10, 40) (Figures 13) shows the freedom in the
choice of L such that when l is unknown, you still bene-
fit over only assuming l is bounded (similarly for CUSUM
case when considering the dashed blue line). From these fig-
ures it is clear that unless you are very fortunate in choosing
L close to l for the MOSUM test, you should use the gener-
alised MOSUM test if A is known. Unfortunately, there are
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no convenient analytic results for this test. Moreover, both
the generalised MOSUM procedure and CUSUM procedures
require the additional knowledge of A; this is not true for
MOSUM. For the choice of parameters considered in both
examples, the additional knowledge of a transient change
leads to obvious benefits in power; those is seen by com-
paring the generalised MOSUM orange lines with the blue
CUSUM lines. Of course, PZ(H2, A, l0, l1) → PS(H1, A, l)
as l0, l1 → l.

3.5 An application to real world data

Hydrostatic pressure testing is important safety precau-
tion for the Oil and Gas industry, see [66]. Pressure testing is
performed to confirm a pressure containing system is struc-
turally sound and not leaking. Tests are performed by in-
creasing the pressure in the system, expanding the pressure
body, until the pressure reaches a pre-defined value typically
equal to or larger than the body rated design pressure, then
holding it there for a long enough time period to confirm
there are no leaks, until eventually releasing the pressure.
When performing tests offshore on floating Vessel/Drilling
Rigs (Rig) this is complicated by the Rig’s movement due
to the ocean waves, which introduce nearly sinusoidal fluc-
tuations in pressure. Many of these tests are performed in
real time and in parallel. Locating automatically when a
test has been performed is essential for pressure analysis to
determine if a leak is present and this is not obvious when
noise is large. Typical example data is shown in Figure 14.
When performing pressure tests, the hold periods can differ
in length and amplitudes (pressure).

Figure 14: Typical oil pressure data

A sensible way of modelling the data under the null hy-
pothesis of no pressure test could be zt = st + yt, where st
represents the signal introduced by the wave motion and yt
can be modelled as i.i.d. N(µ, σ2) and reflects the random
noise that is present in the system. In most scenarios, there
is significant pre-test data so st, µ and σ can be estimated
with great accuracy and therefore assumed known. How to

estimate st or in general how to remove all main components
of a signal leaving only noise can be performed using Sin-
gular Spectrum Analysis, see [67, 68]. When a pressure test
begins, this can be reflected with a change in mean of the yt;
that is, under a pressure test Eyt = µ+A. The value of A is
often constant, but can differ between tests and is generally
unknown. Each test can differ in duration but typical lengths
vary between l ∈ [50, 100] units of time. One has to detect
a transient change in mean of yt = zt − st. The behaviour
of zt − st is shown in Figure 15. In Figure 16, we depict the
MOSUM statistic setting L = 75. The horizontal line in this
figure corresponds to the threshold required for an ARL of
5000. The MOSUM statistic indicates the location of three
performed pressure tests and has the great advantage of not
requiring knowledge A when determining the ARL threshold
unlike the generalised MOSUM and CUSUM procedures. A
similar example is shown in Figures 17-18, where L = 150
has been selected; three tests have been clearly located. Note
that in Figure 16 and Figure 18, the MOSUM statistic is de-
picted with a shift in time by L (t → t − L). This explains
the early exceedance seen in Figure 18.

Figure 15: Behaviour of yt.
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epidemic change. Journal of statistical planning and inference,
126(2):495–520, 2004.

[63] B. Eichinger and C. Kirch. A MOSUM procedure for the estima-
tion of multiple random change points. Bernoulli, 24(1):526–564,
2018.

[64] C. Han, P. Willett, and D. Abraham. Some methods to evaluate
the performance of Page’s test as used to detect transient signals.
IEEE transactions on signal processing, 47(8):2112–2127, 1999.

[65] B. Bakhache and I. Nikiforov. Reliable detection of faults in mea-
surement systems. International Journal of adaptive control and
signal processing, 14(7):683–700, 2000.

[66] S. McAleese. Operational aspects of oil and gas well testing. El-
sevier, 2000.

[67] N. Golyandina, V. Nekrutkin, and A. Zhigljavsky. Analysis of
Time Series Structure: SSA and related techniques. Chapman &
Hall/CRC, 2001.

[68] N. Golyandina and A. Zhigljavsky. Singular Spectrum Analysis
for time series. Springer, 2020.

Jack Noonan

School of Mathematics, Cardiff University, Cardiff, CF24 4AG,

UK

E-mail address: Noonanj1@cardiff.ac.uk

Online change-point detection for a transient change 17


	Introduction
	Permanent change in distributions
	The CUSUM and Shiryaev-Roberts procedures
	Evaluating ARL for CUSUM and SR tests
	Optimality criteria

	Transient change in distributions
	A collection of procedures
	Detecting a transient change in Gaussian random variables
	The MOSUM statistic
	MOSUM and scan statistics 
	The stopping rule Z(H) 
	The presence of nuisance parameters

	Optimality criteria
	MOSUM procedure

	Comparison of tests
	An application to real world data

	Acknowledgements
	References
	Author's addresses

