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a b s t r a c t 

Diffusion MRI (dMRI) provides unique insights into the neural tissue milieu by probing interactions between diffusing molecules and tissue microstructure. Most 

dMRI techniques focus on white matter (WM) tissues, nevertheless, interest in gray matter characterizations is growing. The Soma and Neurite Density MRI (SANDI) 

methodology harnesses a model incorporating water diffusion in spherical objects (assumed to be associated with cell bodies) and in impermeable “sticks ” (assumed 

to represent neurites), which potentially enables the characterization of cellular and neurite densities. Recognising the importance of rodents in animal models of 

development, aging, plasticity, and disease, we here employ SANDI for in-vivo preclinical imaging and provide a first validation of the methodology by comparing 

SANDI metrics with cellular density reflected by the Allen mouse brain atlas. SANDI was implemented on a 9.4T scanner equipped with a cryogenic coil, and in-vivo 

experiments were carried out on N = 6 mice. Pixelwise, ROI-based, and atlas comparisons were performed, magnitude vs. real-valued analyses were compared, and 

shorter acquisitions with reduced the number of b-value shells were investigated. Our findings reveal good reproducibility of the SANDI parameters, including the 

sphere and stick fractions, as well as sphere size (CoV < 7%, 12% and 3%, respectively). Additionally, we find a very good rank correlation between SANDI-driven 

sphere fraction and Allen mouse brain atlas contrast that represents cellular density. We conclude that SANDI is a viable preclinical MRI technique that can greatly 

contribute to research on brain tissue microstructure. 
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. Introduction 

The development of non-invasive imaging biomarkers which can re-
ect microscopic tissue properties, for instance the size and density of
ells and/or neurite projections ( Alexander et al., 2017 ; Novikov et al.,
019 ), is an active research topic for neuroimaging in general and dif-
usion Magnetic Resonance Imaging (dMRI) in particular. In dMRI, the
ignal is sensitized to micron-scale displacements of water molecules
n the tissue, which are strongly influenced by microscopic bound-
ries imparted by cellular and subcellular structures ( Stejskal and Tan-
er, 1965 ). Various approaches have been proposed for analysis of
MRI signals and a detailed discussion can be found in several ex-
ellent recent reviews ( Alexander et al., 2017 ; Novikov et al., 2019 ;
ovikov et al., 2018 ; Ghosh et al., 2018 ; Jelescu et al., 2020 ; De Luca
t al., 2021 ). Among these approaches, biophysical modeling aims to
isentangle signal contributions from two or more water pools, usu-
lly assigned to different tissue components, such as intra- and extra-
ellular space ( Alexander et al., 2017 ; Novikov et al., 2019 , 2018 ;
hosh et al., 2018 ; Jelescu et al., 2020 ; Panagiotaki et al., 2012 ). For

nstance, some techniques ( Behrens et al., 2003 ; Jespersen et al., 2010 ,
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007 ; Zhang et al., 2012 ; Fieremans et al., 2013 ) model the signal as-
ribed to the intra-neurite space (i.e. axons and dendrites) by diffusion
nside impermeable cylinders, usually considered to have zero radius
i.e. “sticks ” ( Behrens et al., 2007 )). Other studies, consider the axon
iameters finite and aim to estimate them, usually including measure-
ents with high diffusion weighting ( Stanisz et al., 1997 ; Assaf et al.,
008 ; Alexander et al., 2010 ; Kakkar et al., 2018 ; Huang et al., 2020 ;
an et al., 2020 ; Veraart et al., 2020 ). Nevertheless, in most cases
he extra-neurite tissue signal is assumed to comprise both spins in
xtra-cellular space as well as spins inside cell bodies, which are both
odeled as a single, Gaussian diffusion system ( Novikov et al., 2018 ;
anagiotaki et al., 2012 ; Jespersen et al., 2010 , 2007 ; Fieremans et al.,
013 ; Behrens et al., 2007 ; Sotiropoulos et al., 2012 ; Kaden et al., 2016 ;
erizi et al., 2014 ). To better capture the signal decay over a wide range
f diffusion weightings up to high b-values, other techniques include an
dditional component comprising slow Gaussian diffusion ( Olesen et al.,
021 ; Palombo et al., 2018 ; Tax et al., 2020 ). In some cases, the slow
iffusion component is represented by restricted diffusion ( Stanisz et al.,
997 ) in spheres ( Palombo et al., 2018 ) and has been proposed
o represent the signal from cell bodies (and other quasi spherical
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tructures), with a significant contribution especially in gray matter
GM) ( Stanisz et al., 1997 ; Palombo et al., 2020 ; Afzali et al., 2021 ;
yori et al., 2021 ). 

The recently-introduced Soma and Neurite Density Imaging (SANDI)
ethodology ( Palombo et al., 2020 ) aims to characterise such spheri-

al object contributions using standard single diffusion encoding (SDE)
MRI, acquired with several shells (usually ≥ 5) up to (very) high b-
alues and powder-averaged data ( Callaghan et al., 1979 ). The SANDI
odel relies on a three-compartment model consisting of sticks, spheres

nd isotropic Gaussian diffusion fitted to the powdered averaged data.
nsofar, SANDI has been applied to in-vivo human brain imaging on a
igh-performance scanner, as well as ex-vivo in the mouse brain, where
 preliminary comparison with histology data showed a good correla-
ion between the soma signal fraction and signal intensity of DAPI stain,
 marker for cell nuclei ( Palombo et al., 2019 ). Nevertheless, estimating
he signal fractions of diffusion restricted in sticks and spheres is chal-
enging due to signal-to-noise and contrast-to-noise limitations as well
s bias due to Rician noise floor ( Fan et al., 2020 ; Afzali et al., 2021 ;
anus et al., 2020 ). 

In this study we aim to address several gaps in the evaluation and ap-
lication of the original SANDI approach based on SDE acquisitions: (i)
e investigate the stability of SANDI metrics in the mouse brain, in-vivo

t 9.4T; (ii) we utilize the complex dMRI data to assess experimentally
he effects of Rician noise floor on the SANDI parameters; and perhaps
ost importantly, (iii) we assess the correspondence of SANDI parame-

ers to a histological proxy of cell density based on the Allen mouse brain
tlas; (iv) lastly, we also investigate the possibility of fitting SANDI to a
horter protocol with less shells and a lower maximum b-value, and its
mpact on the estimated parameters. 

. Methods 

.1. In-vivo MRI experiments 

All animal studies were approved by the competent institutional
nd national authorities and performed according to European Direc-
ive 2010/63. 

In-vivo dMRI data was acquired from N = 6 C57BL/6 J mice (34 ± 5
eeks on a 9.4T Bruker Biospec scanner equipped with an 86 mm
uadrature transmission coil and 4-element array reception cryocoil.
riefly, mice were induced with 5% isoflurane and maintained at 1.5–
%, and their temperature and breathing rate were continuously moni-
ored. 

Diffusion MRI datasets for SANDI were acquired using a PGSE-EPI
equence with the following parameters: TE = 36.8 ms, TR = 4 s,
 averages, slice thickness = 0.4 mm, 35 slices, in plane resolu-
ion = 0.12 × 0.12 mm 

2 , FOV = 14.2 × 12 mm 

2 , matrix = 118 × 100,
artial Fourier = 1.35, per-slice triggering and with fat suppression. The
PI acquisition bandwidth was 375 kHz and data were acquired in a sin-
le shot. 

Diffusion data has 8 shells with b-values of 1, 2.5, 4, 5.5, 7, 8.5,
0 and 12.5 ms/ 𝜇m 

2 and 40 directions each, uniformly distributed
n a hemisphere following the directions from the manufacturer. The
iffusion time Δ = 20 ms was chosen to provide sensitivity for map-
ing apparent soma density according to previous simulation studies
 Ianus et al., 2020 ), and the gradient duration 𝛿 = 5.5 ms was chosen
ased on the maximum diffusion weighting given the hardware con-
traints (G max ∼ 660 mT/m). Acquisition time was ∼ 2.5 h. 

.2. Data pre-processing 

Complex data for each of the four receiver channels was pro-
essed in Matlab® (The MathWorks, Natick, MA, USA), unless other-
ise specified. Complex data was denoised per channel using the MP-
CA approach ( Veraart et al., 2016 ) (step 1) and corrected for ghosts
2 
 Buonocore and Gao, 1997 ) (step 2). Then, different channels were com-
ined using an adaptive approach ( Walsh et al., 2000 ) (step 3), real val-
ed data was calculated based on low-pass filtering ( Fan et al., 2020 ;
ichner et al., 2015 ) (step 4), and images were corrected for Gibbs ring-
ng ( Kellner et al., 2016 ) (step 5). The last step was to rigidly register
mages to the first set of b0-values (step 6). A detailed description of
ach step is presented in SI. 

Finally, data was normalized by the mean b0 image and was aver-
ged over directions for each shell. 

.2. SANDI analysis 

The SANDI model assumes three compartments, namely intra-
eurite signal modeled as diffusion inside impermeable sticks, intra-
oma signal modeled as restricted diffusion inside spheres, and extra-
ellular signal modeled as Gaussian diffusion, as illustrated in Fig. 1 b.
he powder-averaged normalized diffusion signal has thus the following
xpression: 

�̃� ( 𝑏 ) 
𝑆 ( 0 ) 

= 𝑓 𝑠𝑡𝑖𝑐𝑘 �̃� 𝑠𝑡𝑖𝑐𝑘 ( b ) + 𝑓 𝑠ℎ𝑒𝑟𝑒 �̃� 𝑠𝑝ℎ𝑒𝑟𝑒 ( b ) + 𝑓 𝑏𝑎𝑙𝑙 �̃� 𝑏𝑎𝑙𝑙 ( b ) , (1)

here f stick + f sphere + f ball = 1; �̃� 𝑠𝑡𝑖𝑐𝑘 and �̃� 𝑠𝑝ℎ𝑒𝑟𝑒 are the normalized, di-
ectionally averaged signals for restricted diffusion within neurites and
oma, respectively and �̃� 𝑏𝑎𝑙𝑙 is the normalized, directionally averaged
ignal of the extra-cellular space. The specific expressions are given in SI.

The parameters estimated from the direction-averaged data are
 𝑠𝑡𝑖𝑐𝑘 , 𝐷 𝑏𝑎𝑙𝑙 , 𝑅 𝑠𝑝ℎ𝑒𝑟𝑒 as well as the signal fractions subject to the con-

traint f stick + f sphere + f ball = 1. The bulk diffusivity inside the sphere is
xed to 𝐷 𝑠𝑝ℎ𝑒𝑟𝑒 2 𝜇m 

2 /ms ( Harkins et al., 2011 ). The parameters are fit-
ed using a Random Forest regression algorithm ( TreeBagger Matlab®)
ith 200 trees and default parameters, trained on simulated data. De-

ails are provided in SI. 
This model formulation assumes negligible exchange between com-

artments and it does not explicitly account for size distributions or
ntra-compartment kurtosis, which is neglected in the Gaussian Phase
istribution approximation for the spherical compartment. 

.4. Magnitude vs real data 

The Rician noise distribution in magnitude data can lead to parame-
er biases especially when including measurements with very high diffu-
ion weighting ( Fan et al., 2020 ; Afzali et al., 2021 ), as typically reached
n SANDI. One way to reduce this bias is to model the Rician noise
 Alexander et al., 2010 ) or, when complex data is available, to use the
eal part of the data instead ( Fan et al., 2020 ; Eichner et al., 2015 ). In
he first analysis, we investigate the effect of using magnitude or real
ata on the SANDI parameters. Subsequently, to minimize the effect of
ician noise ( Fan et al., 2020 ; Eichner et al., 2015 ), we use parameters
erived from real data. 

.5. ROI analysis 

For each animal, representative regions of interest (ROI) were man-
ally delineated in gray matter (GM) (cortex, thalamus, striatum, hip-
ocampus), white matter (WM) (corpus callosum, internal capsule) and
erebrospinal fluid (CSF) regions, as illustrated in Fig. 1 c. 

The ROI analysis was employed to (i) analyse differences of SANDI
arameters derived from magnitude and real data and to (ii) investi-
ate parameter distributions across different ROIs and variability across
nimals. 

.6. Comparison with the Allen Brain Atlas 

The next analysis focused on comparing SANDI parameters with the
llen mouse brain atlas ( Wang et al., 2020 ). In the atlas, which is based
n serial two-photon tomography, the image intensity generally reflects
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Fig. 1. (a) Powder-averaged raw diffusion weighted images using either magnitude or real data, from one representative animal. The data are presented for 6 different 

b values increasing left to right. Clearly, the signal to noise of the powder averaged data is high even at the highest b-value used in this study ( b = 12.5 ms/ 𝜇m 

2 ), 

enabling the downstream processing of the SANDI model. The average SNR of the raw data across the entire brain was 37.9 ± 8.2, with higher values in GM, for 

instance SNR = 50.1 ± 12.7 in the cortex, and lower in WM, for instance SNR = 31.1 ± 5.2 in the internal capsule. After denoising the SNR increased by a factor of 

∼1.3. (b) SANDI parameter maps derived from magnitude (top) and real (bottom) data in one representative animal. Note the lower, but non-zero f sphere in WM, and 

higher f sphere in GM. The opposite is observed for f stick . In the ventricles, f ball is close to 1. Sphere radii are quite uniform across GM, and are lower in WM, while the 

diffusivity in sticks is between free diffusion (e.g. ventricles in D ball ) and the other Gaussian diffusion processes in the brain (D ball in the brain parenhcyma). 

3 
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ell density ( Wang et al., 2020 ), with the exception of some highly cellu-
ar areas with large nuclei, such as the pyramidal layer of the hippocam-
us, a region excluded from the analysis. 

.6.1. Registration 

To create the template, the P56 Mouse Brain Atlas in NIFTY format
 https://scalablebrainatlas.incf.org/mouse/ABA_v3 ) was downsampled
o match the resolution of the dMRI data, namely 0.12 × 0.12 × 0.4 mm.

To compare the atlas intensity with SANDI parameters, we per-
ormed a 2D non-rigid registration (ANTs package ( Avants et al., 2014 ))
n manually chosen slices to avoid interpolation between MRI slices
uring the registration process. We tested registrations both using
 = 0 ms/μm 

2 images as well as the f soma maps, and the latter pro-
ided better outcomes. Then, the transformations were applied to all
ther parameters. The registered maps were then averaged over the 6
nimals. 

.6.2. Correlation analysis 

To study the link between the MRI derived parameters and the image
ntensity of the atlas, we considered WM and GM ROIs in three repre-
entative slices, covering the cerebrum and the cerebellum as illustrated
n Fig. 4 . Then, for all the voxels in the ROIs we computed the Spearman
ank correlation coefficient ( 𝜌) between the dMRI parameters and the
tlas intensity, a metric that reflects a monotonic relationship between
ariables, rather than a linear relationship. The correlation coefficient
as computed separately for WM and GM voxels, as well as for all voxels

ogether. 

.7. Shorter acquisition protocols 

The last analysis investigated how reducing SANDI’s number of
hells and maximum b-value affects the extracted metrics, aiming both
o reduce the acquisition and to mimic weaker gradients, such as in
ore standard clinical scanners. Thus, we progressively excluded the

ast shells (higher b-values) from the full protocol employed in this
tudy, which consists of 8 shells with a maximum b-value of 12.5 ms/
m 

2 . We have analysed data for 7 shells (b max = 10 ms/ 𝜇m 

2 ), 6 shells
b max = 8.5 ms/ 𝜇m 

2 ), and 5 shells (b max = 7 ms/ 𝜇m 

2 ). Protocols with
ess than 5 shells were not tested as this is the number of free parameters
n the current SANDI implementation. The RF regressors were retrained
or each protocol. 

. Results 

.1. Data quality assessment 

Fig. 1 a depicts the registered, normalized and directionally aver-
ged raw data. The maps show faster signal attenuation in GM com-
ared to WM and clear white matter delineation at very high b -values
 b > 7 ms/ 𝜇m 

2 ). Moreover, at high b-values we observe most differences
etween real and magnitude data due to the Rician noise floor. Fig. S1
resents similar plots for slices in the entire brain and Fig. S2 presents
NR maps. The observed superior-inferior image gradient is due to the
ensitivity profile of the receiver cryoprobe (a 4-element arrayed surface
oil). 

.2. SANDI parameter for magnitude and real data 

Fig. 1 b presents SANDI parameter maps for real and magnitude pre-
rocessed data, in one representative animal. Overall, a good correspon-
ence between parameters derived from real and magnitude data is ob-
erved, with better GM/WM contrast for real data. Maps of SANDI pa-
ameters for the entire brain are shown in Fig. S4 in Supplementary
nformation. 
4 
Fig. 2 depicts the correlation between parameters derived from mag-
itude and real data in different WM and GM ROIs. Overall, a good cor-
elation was noted, especially for f stick and D ball with correlation coeffi-
ients r > 0.8. For f sphere we also see high correlations in WM ( r > 0.85),
nd slightly lower in GM (0.5 < r < 0.8). For R sphere and f ball the corre-
ation strength is lower, especially in GM. In terms of bias, parameters
stimated from magnitude data are slightly higher for f stick and R sphere 

nd slightly lower for f sphere , while other parameters show little bias,
s also illustrated in the Bland-Altman diagrams in Fig. S3 in SI. The
rends are consistent with simulations based on SANDI parameters from
M and WM when Gaussian or Rician noise was added ( Fig. 2 b). 

.3. SANDI parameter distributions within the ROIs 

Next, we analyse SANDI metrics within similar GM, WM and CSF
OIs across the animals. Fig. 3 a shows the powder-averaged signal de-
ay from one voxel in each ROI, the prediction from the estimated
ANDI parameters, as well as their difference, indicating a good model
t. Fig. 3 b presents boxplots of the estimated SANDI parameters from
OI averaged signals and Fig. 3 c presents the ROI distributions of
ANDI parameters across animals, showing consistent values. Higher
 sphere values were observed in GM than in WM, while the f stick con-
rast is reversed, consistent with previous results ( Palombo et al., 2020 ;
fzali et al., 2021 ; Gyori et al., 2021 ). In CSF, both f sphere and f stick are
lmost 0 and f ball is close to 1. The other parameters vary less across
issue ROIs. In CSF, D ball approaches the diffusivity of free water. Table
1 in supplementary information presents the mean parameter values
n each ROI. 

The variability across animals was quantified by the coefficient of
ariation (CoV), calculated for the ROI averaged parameters as the ratio
etween the standard deviation and mean across animals. We found that
 sphere and f stick have CoV values up to ∼12% in tissue ROIs and higher
n CSF due to the very low f sphere and f stick mean values. R sphere and
 stick have low CoVs across animals ( < 3.1% in tissue ROIs), while D ball 

as higher values (6.4–15.4%). Intra-subject variability quantified from
 bootstrapping analysis resulted in CoVs < 1.3% for all parameters, as
etailed in SI. 

.5. Comparison of SANDI parameters with the Allen Brain Atlas 

We then strived to compare SANDI parameters ( f sphere , f stick and
 sphere ) with the image intensity of the P56 Allen mouse brain atlas,
hich reflects cell density (among other things) ( Wang et al., 2020 ).
ig. 4 shows the results for different ROIs in three representative slices
overing the cerebrum (a) and cerebellum (b). 

Group f sphere maps qualitatively followed the intensity patterns ob-
erved in the downsampled Allen atlas in both cerebrum and cerebel-
um, with higher values in GM. Although group f sphere does not exhibit
he same dynamic range as the atlas image intensity in gray matter,
t does provide contrast between different regions, for example it has
ower values in striatum and amygdala compared to the cortex. When
onsidering voxels in both GM and WM, the scatterplots show that there
s a strong positive rank correlation between group f sphere and the at-
as intensity with Spearman correlation coefficients of 𝜌t = 0.71, 𝜌t = 0.72
nd 𝜌t = 0.69, for ROIs in the three different slices. When considering
he tissue types separately, we see lower correlation coefficients in GM
ompared to WM with 𝜌GM 

= {0.53, 0.45, 0.59} and 𝜌WM 

= {0.77, 0.69,
.62} for the three different slices. Moreover, in two slices, the overall
orrelation coefficient is higher than the one measured for each tissue
eparately, showing that, as expected, the differences in f sphere between
M and GM play an important role in the measured correlations. 
When considering both GM and WM ROIs, we also see moderate

egative correlations with f stick ( 𝜌t = -0.47, 𝜌t = -0.54, 𝜌t = -0.53) and weak
ositive correlations with R sphere ( 𝜌t = 0.37, 𝜌t = 0.27, 𝜌t = 0.52). When
nalysing GM and WM ROIs separately, stronger correlations are usually
bserved for white matter voxels. 

https://scalablebrainatlas.incf.org/mouse/ABA_v3
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Fig. 2. (a) Scatter plots of SANDI parameters estimated based on real and magnitude data for the ROIs defined in Fig. 1 c. The data is shown for GM ROIs (cortex, 

striatum, thalamus and hippocampus) depicted with dark gray, WM ROIs (corpus callosum and internal capsule) depicted with light gray, and CSF depicted with light 

blue. While correlations are generally good, some bias is observed in the magnitude data. All correlations are significant with p << 0.01. (b) Boxplots of estimated 

SANDI parameters based on simulated signals when either Gaussian or Rician noise is considered. The simulated signals are based on the average parameters values 

in the one GM ROI (cortex) and one WM ROI (internal capsule). To better mimic the effect of noise, the data was simulated for the different gradient directions, 

assuming a Watson distribution of sticks with concentration parameter of 0 in GM (i.e. isotropically distributed) and 10 in WM. Then Gaussian or Rician noise was 

added with an SNR of 50 in GM and 35 in WM, similar to the values we measured in vivo . 

5 



A. Ianu ş , J. Carvalho, F.F. Fernandes et al. NeuroImage 254 (2022) 119135 

Fig. 3. (a) Decay curve as a function of b -value of the powder averaged signal, predicted signal from the estimated SANDI model parameters, as well as their 

difference for one voxel in GM, WM and CSF ROIs. The curves are presented for one representative animal and show a good fit of the SANDI model to the data. (b) 

Boxplots of estimated SANDI parameters across the six animals in the different ROIs calculated from the mean ROI signal. (c) Histograms of SANDI parameters in 

the different ROIs. The six animals are presented by different colours. The CoV across animals is calculated for the mean parameter values in each ROI. Excellent 

stability of the SANDI parameters is observed between the animals. 

6 
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Fig. 4. Comparison between SANDI parameters and the downsampled Allen mouse brain atlas for three slices in the (a) cerebrum and (b) cerebellum. For each 

region, the top row shows the parameter maps derived from SANDI (f sphere , f stick and R sphere ) averaged over the 6 animals, after registration to the template as 

described in Section 2.6.2 . The bottom row shows voxelwise scatter plots of the same parameters versus the image intensity of the atlas, for different GM and WM 

ROIs depicted on the downsampled atlas. The legend presents the Spearman correlation coefficients, derived for all voxels in the ROIs, for GM voxels and for WM 

voxels. All correlations with | 𝜌| > 0.1 are significant with p << 0.01. Strikingly, f sphere exhibits a very good rank correlation with the Allen brain contrast in both 

cerebrum and cerebellum. 
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Similar patterns were observed in individual mice, as illustrated in
ig. S5. 

.7. Shorter SANDI protocols 

Finally, we investigated the potential of using SANDI acquisitions
ith less shells and lower maximum b-values. Fig. 5 illustrates the
ANDI parameters estimated from protocols with 8, 7, 6 and 5 shells,
7 
evealing that the values are overall stable, both in terms of median val-
es and interquartile ranges, which reflect variability within the ROIs as
ell as between animals. In most cases presented in Fig. 5 , the median
alues estimated from the 5-shell protocol are within 10% of the val-
es estimated from the full protocol (dotted green lines). In other cases,
here is a small change in parameter values, for instance, an increase in
he estimated R sphere , which is more pronounced in the WM ROIs, as well
s an increase in f stick in the GM ROIs. For R sphere , the median values are
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Fig. 5. Boxplots of estimated SANDI parameters for protocols with varying number of shells in GM, WM, and CSF ROIs. The parameters are estimated voxelwise and 

aggregated over different animals for the voxels in each ROI. The rows present different model parameters and the columns different ROIs. The dotted black lines 

show the values estimated from the full, 8-shell, protocol, while the green lines show a variation of ± 10% from this value. The b-values employed in the different 

protocols are the following: full protocol (8 shells): b = {1, 2.5, 4, 5.5, 7, 8.5, 10, 12.5} ms/ 𝜇m 

2 ; 7-shells: b = {1, 2.5, 4, 5.5, 7, 8.5, 10} ms/ 𝜇m 

2 ; 6-shells: b = {1, 2.5, 

4, 5.5, 7, 8.5} ms/ 𝜇m 

2 and 5-shells: b = {1, 2.5, 4, 5.5, 7} ms/ 𝜇m 

2 . Overall, all SANDI parameters are stable as the protocol is reduced from 8 shells with maximum 

b-value of 12.5 ms/ 𝜇m 

2 to 5 shells with maximum b-value of 7 ms/ 𝜇m 

2 . 
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till within 10% difference, while for f stick the absolute differences are
mall, i.e. median value differences < 0.03, although in GM this change
s larger than 10% due to the overall small values of the parameters. 

. Discussion 

In this work, we assessed the SANDI methodology for characterising
ouse brain tissue microstructure, in-vivo . Specifically, we investigated

he effect of Rician noise on the estimated parameters, the reproducibil-
ty across animals, the feasibility of using shorter protocols, as well as a
rst level validation by comparing the SANDI metrics with the intensity
f the Allen Mouse Brain Atlas. 
m  

8 
From a methodological perspective, we note that real valued data
rovides a robust and reproducible assessment of the SANDI param-
ters, even for shorter protocols. Our findings are in good agree-
ent with previous ex-vivo SANDI-driven maps in the mouse brain

 Palombo et al., 2020 , 2019 ), and in-vivo SANDI maps in the human
rain ( Palombo et al., 2020 ; Afzali et al., 2021 ; Gyori et al., 2021 ). No-
ably, the sphere fraction is close to zero in CSF (especially when using
eal-valued data) and intermediate ( ∼0.3) in WM, likely reflecting the
on-negligible ( Palombo et al., 2019 ; Sampaio-Baptista and Johansen-
erg, 2017 ) WM cell body population (neurons, astrocytes, microglia)

n WM. The largest f sphere estimates were observed in GM with values
etween 0.45 and 0.65. When considering the cell densities and sizes
easured from histology ( Keller et al., 2018 ; Palombo et al., 2021 ), a
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ower bound on cell body volume fraction can be considered in the range
2–40% for different GM areas. The higher f sphere values estimated by
ANDI ( ∼45–65%) can also be explained by the fact that f sphere is a sig-
al fraction and not a volume fraction, hence also affected by relaxation
ffects (e.g., T1, T2). Although previous ex-vivo SANDI data acquired
ith much higher spatial resolution (0.05 × 0.05 × 0.25 mm 

3 ) was able
o capture f sphere differences between GM cortical layers ( Palombo et al.,
019 ), here, such differences were not as obvious, likely due to the lower
patial resolution (0.12 × 0.12 × 0.4 mm 

3 ). Furthermore, the coefficients
f variation of the mean f sphere values across animals were small, < 8%
oth in GM and WM, suggesting a good reproducibility of SANDI met-
ics. 

SANDI-driven R sphere values exhibited lower values in WM compared
ith GM. Overall, the estimated R sphere values are between 6 and 9 𝜇m,
pproximately consistent with values derived from histology ( Erö et al.,
018 ), considering that the apparent effective radii are tail-weighted
alues of the underlying distribution of sizes ( Palombo et al., 2021 )
c.f. Fig. S7 for simulations). Larger R sphere values can also be observed
n regions known to have larger cells, such as the granular and pyra-
idal layer of the hippocampus or the piriform cortex ( Paxinos and

ranklin, 2019 ) (Fig. S6). Nevertheless, for a detailed analysis of R sphere 

nd soma sizes, further experiments comparing MRI and histology are
eeded. The choice of sequence parameters, especially the gradient du-
ation and diffusion time, can also play a role on the sensitivity to dif-
erent cellular sizes and might influence the estimated R sphere values,
specially in the presence of exchange. 

Neurites in SANDI are modeled as cylinders with zero radius (i.e.
ticks) ( Jespersen et al., 2010 , 2007 ; Zhang et al., 2012 ; Fieremans et al.,
013 ; Behrens et al., 2007 ). When considering the possibility of non-
ero cylinder radii, the estimated f stick and D stick values are stable for
 cyl < 1.5 𝜇m, which is plausible for most WM, although, the param-
ters can become biased for larger axons as illustrated in Fig. S7 and
onsistent with previous literature ( Fan et al., 2020 ; Drobnjak et al.,
015 ). The coefficient of variation for f stick is also relatively small <
2% and the patterns and values of f stick measured here are in line with
revious works estimating the signal fraction of sticks from directional
ata ( Jespersen et al., 2010 , 2007 ; Zhang et al., 2012 ; Fieremans et al.,
013 ), as well as powder averaged data ( Palombo et al., 2020 , 2019 ;
fzali et al., 2021 ; Gyori et al., 2021 ). The other SANDI parameters,
amely D ball and D stick were also quite reproducible across animals, al-
hough their fits seem to better capture imaging artifact effects, for in-
tance Gibbs ringing around the ventricles, that were not fully corrected
ue to the partial Fourier acquisition, as also observed before with dif-
usion metrics ( Guglielmetti et al., 2016 ). 

From a more biological perspective, we attempted to correlate the
ANDI contrasts with the Allen mouse brain contrast which reflects to
ome extent cell density ( Wang et al., 2020 ). Interestingly, SANDI-driven
 sphere was the only parameter that was strongly correlated with the Allen
ouse brain atlas image intensity, suggesting that – whether directly or

ndirectly – f sphere is influenced, at least in part, by cell body density.
imilar correlation patterns were observed even in individual animals
Fig. S5) which bodes well for future individual animal characterizations
n health and disease. 

Although we find a strong rank correlation between f sphere and the
llen mouse brain atlas when including both white matter and gray mat-

er voxels, we observe only a moderate correlation in gray matter, where
he atlas exhibits a wider dynamic range of intensity values compared
o f sphere . This is likely due to the different contrast mechanisms of the
wo imaging modalities. In Allen atlas’ two-photon tomography, the im-
ge intensity is related to the amount of cytoplasm, while f sphere reflects
he amount of dMRI signal arising from water molecules restricted in
pherical environments. While both metrics are considered to reflect to
ome extent cell density, their contrast is inherently different. One ex-
mple is the hippocampus, where the pyramidal layer has highly packed
ells, as illustrated by stains such as Nissl ( Paxinos and Franklin, 2019 ).
owever, in the Allen Brain Atlas, the pyramidal layer appears dark,
9 
ue to the large and densely packed cell nuclei. Nevertheless, SANDI’s
 sphere is high in this region as expected. These findings are encouraging
or future studies more directly correlating specific aspects of the mi-
rostructure with more refined SANDI theory, e.g., including exchange
 Olesen, 2022; Jelescu et al., 2021 ) (see below). 

.1. Limitations 

As any study, several limitations can be identified in our work. First,
he SANDI model assumptions include non-exchanging compartments,
pherical structures, sticks, and a well-mixed extracellular environment
haracterised by Gaussian diffusion. These assumptions are likely overly
implified and do not account for the tissue’s complexity. Variations in
ell sizes and shapes, finite neurite sizes, intracellular organelles, mem-
rane permeability and exchange across different compartments, etc.,
an all bias SANDI’s estimations and the interpretation of its metrics.
urther, kurtosis of each compartment is assumed negligible, in con-
rast with recent clinical and pre-clinical Correlation Tensor MRI stud-
es ( Henriques et al., 2020 , 2021 ; Novello et al., 2022 ). In addition,
ecent studies suggest that water exchange across compartments can be
aster in GM and can influence the dMRI signal at this diffusion time
 Olesen et al., 2022 ; Jelescu et al., 2021 ; Lee et al., 2020 ), while others
ave shown that the intra-cellular residence time of water is on the order
f 500 ms ( Yang et al., 2018 ), a timescale that would not render an im-
ortant mechanism at the diffusion time considered here (20 ms). Future
ork should aim at incorporating exchange to the model ( Olesen et al.,
022 ), and harnessing multiple diffusion times, e.g. between 10 and
0 ms for pre-clinical acquisition, to disentangle the effects. 

The comparison of SANDI metrics with the Allen mouse brain atlas
ontrast is clearly confounded by the different sources of information,
he usage of averaged-brain templates, and different inherent spatial
esolution. Future studies should be performed using individual-level
omparisons, where SANDI maps will be compared to maps derived from
irectly targeted histology mapping cell body density. 

ata availability 

The data sets generated and analysed during the current
tudy are available on OpenNeuro: https://openneuro.org/datasets/
s003959/versions/1.0.1 . 

ode availability 

SANDI code is available on GitHub at https://github.com/
alombom . 

redit authorship contribution statement 

Andrada Ianu ş : Conceptualization, Data curation, Formal analysis,
unding acquisition, Investigation, Methodology, Project administra-
ion, Resources, Software, Supervision, Visualization, Writing – original
raft, Writing – review & editing. Joana Carvalho: Software, Funding
cquisition, Writing – review & editing. Francisca F. Fernandes: Fund-
ng acquisition, Writing – review & editing. Renata Cruz: Funding ac-
uisition. Cristina Chavarrias: Funding acquisition, Project administra-
ion. Marco Palombo: Conceptualization, Funding acquisition, Method-
logy, Software, Writing – review & editing. Noam Shemesh: Conceptu-
lization, Funding acquisition, Investigation, Methodology, Project ad-
inistration, Resources, Software, Supervision, Visualization, Writing –

eview & editing. 

cknowledgments 

This study was funded by the European Research Council (ERC) un-
er the European Union’s Horizon 2020 research and innovation pro-
ramme (Starting Grant, agreement No. 679058). The authors acknowl-

https://openneuro.org/datasets/ds003959/versions/1.0.1
https://github.com/palombom


A. Ianu ş , J. Carvalho, F.F. Fernandes et al. NeuroImage 254 (2022) 119135 

e  

i  

(  

s  

r  

d  

c  

a  

a  

a  

l

S

 

t

R

A  

A  

A  

A  

A  

B  

B  

B  

C  

 

D  

 

D  

E  

E
F  

F  

F  

G  

 

G  

 

G  

H  

 

H  

H  

 

H  

 

I  

J  

J  

 

J  

J  

 

K  

K  

 

K  

K  

L  

N  

 

N  

N  

O  

O  

P  

 

P  

 

P  

P  

 

P  

P  

S  

S  

S  

S  

T  

 

V  

V  

W  

W  

Y  

Z  
dge the vivarium of the Champalimaud Center for the Unknown, a facil-
ty of CONGENTO financed by Lisboa Regional Operational Programme
Lisboa 2020), project LISBOA01-0145-FEDER-022170. AI and RC are
upported by ”la Caixa ” Foundation (ID 100010434) and from the Eu-
opean Union’s Horizon 2020 research and innovation programme un-
er the Marie Sk ł odowska-Curie grant agreement No 847648, fellowship
ode CF/BQ/PI20/11760029. JC is supported by ERC (Starting Grant,
greement No. 679058) and by European Union’s Horizon 2020 research
nd innovation programme under the Marie Sklodowska-Curie grant
greement No 101032056. MP is supported by UKRI Future Leaders Fel-
owship grant no. MR/T020296/2. 

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.neuroimage.2022.119135 . 

eferences 

fzali, M. , et al. , 2021. SPHERIOUSLY? The challenges of estimating sphere radius non-in-
vasively in the human brain from diffusion MRI. Neuroimage 237, 118183 . 

lexander, D.C. , et al. , 2010. Orientationally invariant indices of axon diameter and den-
sity from diffusion MRI. Neuroimage 52 (4), 1374–1389 . 

lexander, D.C. , et al. , 2017. Imaging brain microstructure with diffusion MRI: practicality
and applications. NMR Biomed. 32 (4), e3841 . 

ssaf, Y. , et al. , 2008. AxCaliber: a method for measuring axon diameter distribution from
diffusion MRI. Magn. Reson. Med. 59, 1347–1354 . 

vants, B.B. , et al. , 2014. The insight ToolKit image registration framework. Front. Neu-
roinform. 8, 44 -44 . 

ehrens, T.E. , et al. , 2003. Characterization and propagation of uncertainty in diffu-
sion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 . 

ehrens, T.E. , et al. , 2007. Probabilistic diffusion tractography with multiple fibre orien-
tations: what can we gain? Neuroimage 34 (1), 144–155 . 

uonocore, M.H. , Gao, L. , 1997. Ghost artifact reduction for echo planar imaging using
image phase correction. Magn. Reson. Med. 38 (1), 89–100 . 

allaghan, P.T. , Jolley, K.W. , Lelievre, J. , 1979. Diffusion of water in the endosperm tis-
sue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance.
Biophys. J. 28 (1), 133–141 . 

e Luca, A., et al., On the generalizability of diffusion MRI signal representations across
acquisition parameters, sequences and tissue types: chronicles of the MEMENTO chal-
lenge. bioRxiv, 2021: p. 2021.03.02.433228. 

robnjak, I. , et al. , 2015. PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI:
insight from a simulation study. Magn. Reson. Med. 75, 688–700 . 

ichner, C. , et al. , 2015. Real diffusion-weighted MRI enabling true signal averaging and
increased diffusion contrast. Neuroimage 122, 373–384 . 

rö, C. , et al. , 2018. A cell atlas for the mouse brain. Front. Neuroinform. 12, 84 . 
an, Q. , et al. , 2020. Axon diameter index estimation independent of fiber orientation

distribution using high-gradient diffusion MRI. Neuroimage 222, 117197 . 
erizi, U. , et al. , 2014. A ranking of diffusion MRI compartment models with in vivo human

brain data. Magn. Reson. Med. 72 (6), 1785–1792 . 
ieremans, E. , et al. , 2013. Novel white matter tract integrity metrics sensitive to

Alzheimer disease progression. AJNR Am. J. Neuroradiol. 34 (11), 2105–2112 . 
hosh, A. , Ianus, A. , Alexander, D.C. , 2018. Advanced diffusion models. Quantitative MRI

of the Brain, Principles of Physical Measurement, 2nd ed. M. Cercignani, N.G. Dowell,
and T.P. S, Editors . 

uglielmetti, C. , et al. , 2016. Diffusion kurtosis imaging probes cortical alterations and
white matter pathology following cuprizone induced demyelination and spontaneous
remyelination. Neuroimage 125, 363–377 . 

yori, N.G. , et al. , 2021. On the potential for mapping apparent neural soma density via
a clinically viable diffusion MRI protocol. Neuroimage 239, 118303 . 

arkins, K.D. , et al. , 2011. Changes in intracellular water diffusion and energetic
metabolism in response to ischemia in perfused C6 rat glioma cells. Magn. Reson.
Med. 66 (3), 859–867 . 

enriques, R.N. , Jespersen, S.N. , Shemesh, N. , 2020. Correlation tensor magnetic reso-
nance imaging. Neuroimage 211, 116605 . 

enriques, R.N., et al., 2021. Evidence for microscopic kurtosis in neural tissue revealed
by correlation tensor MRI. Magnetic Resonance in Medicine 86 (6), 3111–3130.
doi: 10.1002/mrm.28938 . 

uang, S.Y. , et al. , 2020. High-gradient diffusion MRI reveals distinct estimates of axon
diameter index within different white matter tracts in the in vivo human brain. Brain
Struct. Funct. 225 (4), 1277–1291 . 
10 
anus, A., et al., Mapping complex cell morphology in the grey matter with double diffu-
sion encoding MRI: a simulation study. arXiv, 2020: p. 2009.11778. 

elescu, I.E. , et al. , 2020. Challenges for biophysical modeling of microstructure. J. Neu-
rosci. Methods, 108861 . 

elescu, I.E., et al., Neurite exchange imaging (NEXI): a minimal model of diffusion in gray
matter with inter-compartment water exchange. https://arxiv.org/abs/2108.06121 ,
2021. 

espersen, S.N. , et al. , 2007. Modeling dendrite density from magnetic resonance diffusion
measurements. Neuroimage 34 (4), 1473–1486 . 

espersen, S.N. , et al. , 2010. Neurite density from magnetic resonance diffusion measure-
ments at ultrahigh field: comparison with light microscopy and electron microscopy.
Neuroimage 49 (1), 205–216 . 

aden, E. , et al. , 2016. Multi-compartment microscopic diffusion imaging. Neuroimage
139, 346–359 . 

akkar, L.S. , et al. , 2018. Low frequency oscillating gradient spin-echo sequences improve
sensitivity to axon diameter: an experimental study in viable nerve tissue. Neuroimage
182, 314–328 . 

eller, D. , Erö, C. , Markram, H. , 2018. Cell densities in the mouse brain: a systematic
review. Front. Neuroanat. 12 . 

ellner, E. , et al. , 2016. Gibbs-ringing artifact removal based on local subvoxel-shifts.
Magn. Reson. Med. 76, 1574–1581 . 

ee, H.H. , et al. , 2020. In vivo observation and biophysical interpretation of
time-dependent diffusion in human cortical gray matter. Neuroimage 222, 
117054 . 

ovello, L., et al., 2022. In vivo Correlation Tensor MRI reveals microscopic
kurtosis in the human brain on a clinical 3T scanner. NeuroImage, 119137
doi: 10.1016/j.neuroimage.2022.119137 . 

ovikov, D.S. , Kiselev, V.G. , Jespersen, S.N. , 2018. On modeling. Magn. Reson. Med. 79
(6), 3172–3193 . 

ovikov, D.S. , et al. , 2019. Quantifying brain microstructure with diffusion MRI: theory
and parameter estimation. NMR Biomed. 32 (4), e3998 . 

lesen, J.L. , et al. , 2021. Beyond the diffusion standard model in fixed rat spinal cord with
combined linear and planar encoding. Neuroimage 231, 117849 . 

lesen, J.L. , et al. , 2022. Diffusion time dependence, power-law scaling, and exchange in
gray matter. Neuroimage, 118976 . 

alombo, M. , et al. , 2018. Abundance of cell bodies can explain the stick model’s failure in
grey matter at high bvalue. In: Proceedings of the Joint Annual Meeting ISMRM-ESM-
RMB. Paris, France . 

alombo, M. , et al. , 2019. Histological validation of the brain cell body imaging with diffu-
sion MRI at ultrahigh field. In: Proceedings of the ISMRM Annual Meeting. Montreal,
Canada . 

alombo, M. , et al. , 2020. SANDI: a compartment-based model for non-inva-
sive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215, 
116835 . 

alombo, M. , Alexander, D.C. , Zhang, H. , 2021. Large-scale analysis of brain cell mor-
phometry informs microstructure modelling of gray matter. Proc. Int. Soc. Mag. Re-
son. Med. 29 . 

anagiotaki, E. , et al. , 2012. Compartment models of the diffusion MR signal in
brain white matter: a taxonomy and comparison. Neuroimage 59 (3), 2241–
2254 . 

axinos, G. , Franklin, K. , 2019. The Mouse Brain in Stereotaxic Coordinates, 5th ed. Aca-
demic Press . 

ampaio-Baptista, C. , Johansen-Berg, H. , 2017. White matter plasticity in the adult brain.
Neuron 96 (6), 1239–1251 . 

otiropoulos, S.N. , Behrens, T.E. , Jbabdi, S. , 2012. Ball and rackets: inferring fiber fanning
from diffusion-weighted MRI. Neuroimage 60 (2), 1412–1425 . 

tanisz, G.J. , et al. , 1997. An analytical model of restricted diffusion in bovine optic nerve.
Magn. Reson. Med. 37, 103–111 . 

tejskal, E.O. , Tanner, J.E. , 1965. Spin diffusion measurements: spin echoes in the pres-
ence of a time-dependent field gradient. J. Chem. Phys. 42 288–+ . 

ax, C.M.W. , et al. , 2020. The dot-compartment revealed? Diffusion MRI with ultra-strong
gradients and spherical tensor encoding in the living human brain. Neuroimage 210,
116534 . 

eraart, J. , et al. , 2016. Denoising of diffusion MRI using random matrix theory. Neuroim-
age 142, 394–406 . 

eraart, J. , et al. , 2020. Noninvasive quantification of axon radii using diffusion MRI. Elife
9, e49855 . 

alsh, D.O. , Gmitro, A.F. , Marcellin, M.W. , 2000. Adaptive reconstruction of phased array
MR imagery. Magn. Reson. Med. 43 (5), 682–690 . 

ang, Q. , et al. , 2020. The allen mouse brain common coordinate framework: a 3D ref-
erence atlas. Cell 181 (4), 936–953 e20. . 

ang, D.M. , et al. , 2018. Intracellular water preexchange lifetime in neurons and astro-
cytes. Magn. Reson. Med. 79 (3), 1616–1627 . 

hang, H. , et al. , 2012. NODDI: practical in vivo neurite orientation dispersion and density
imaging of the human brain. Neuroimage 61 (4), 1000–1016 . 

http://dx.doi.org/10.13039/501100000781
https://doi.org/10.1016/j.neuroimage.2022.119135
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0029
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0029
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0029
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0017
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0017
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0017
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0001
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0001
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0001
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0016
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0016
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0016
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0041
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0041
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0041
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0009
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0009
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0009
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0014
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0014
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0014
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0035
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0035
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0035
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0031
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0031
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0031
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0031
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0047
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0047
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0047
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0037
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0037
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0037
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0045
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0045
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0045
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0020
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0020
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0020
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0024
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0024
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0024
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0013
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0013
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0013
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0005
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0005
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0005
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0005
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0048
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0048
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0048
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0030
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0030
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0030
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0039
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0039
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0039
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0051
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0051
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0051
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0051
https://doi.org/10.1002/mrm.28938
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0019
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0019
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0019
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0006
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0006
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0006
https://arxiv.org/abs/2108.06121
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0011
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0011
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0011
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0010
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0010
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0010
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0023
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0023
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0023
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0018
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0018
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0018
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0043
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0043
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0043
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0043
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0038
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0038
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0038
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0054
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0054
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0054
https://doi.org/10.1016/j.neuroimage.2022.119137
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0004
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0004
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0004
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0004
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0002
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0002
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0002
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0025
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0025
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0025
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0049
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0049
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0049
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0026
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0026
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0026
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0032
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0032
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0032
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0028
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0028
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0028
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0044
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0044
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0044
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0044
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0008
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0008
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0008
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0046
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0046
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0046
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0042
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0042
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0042
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0022
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0022
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0022
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0022
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0015
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0015
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0015
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0003
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0003
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0003
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0027
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0027
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0027
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0034
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0034
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0034
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0021
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0021
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0021
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0036
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0036
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0036
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0036
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0040
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0040
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0040
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0055
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0055
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0055
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0012
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0012
http://refhub.elsevier.com/S1053-8119(22)00263-4/sbref0012

	Soma and Neurite Density MRI (SANDI) of the in-vivo mouse brain and comparison with the Allen Brain Atlas
	1 Introduction
	2 Methods
	2.1 In-vivo MRI experiments
	2.2 Data pre-processing
	2.2 SANDI analysis
	2.4 Magnitude vs real data
	2.5 ROI analysis
	2.6 Comparison with the Allen Brain Atlas
	2.6.1 Registration
	2.6.2 Correlation analysis

	2.7 Shorter acquisition protocols

	3 Results
	3.1 Data quality assessment
	3.2 SANDI parameter for magnitude and real data
	3.3 SANDI parameter distributions within the ROIs
	3.5 Comparison of SANDI parameters with the Allen Brain Atlas
	3.7 Shorter SANDI protocols

	4 Discussion
	4.1 Limitations

	Data availability
	Code availability
	Credit authorship contribution statement
	Acknowledgments
	Supplementary materials
	References


