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Abstract— Under the net-zero carbon transition, lithium-ion 

batteries (LIB) plays a critical role in supporting the connection 

of more renewable power generation, increasing grid resiliency 

and creating more flexible energy systems. However, poor useful 

life and relatively high cost of batteries result in barriers that 

hinder the wider adoption of battery technologies e.g., 

renewable resources storage. Furthermore, the useful life of a 

battery is significantly affected by the materials composition, 

system design and operating conditions, hence, made the control 

and management of battery systems more challenging. 

Digitalisation and artificial intelligence (AI) offer an 

opportunity to establish a battery digital twin that has great 

potentials to improve the situational awareness of battery 

management systems and enable the optimal operation of 

battery storage units. An accurate estimation of the state of 

charge (SOC) can indicate the battery's status, provide valuable 

information for maintenance and maximise its useful life. In this 

paper, a digital twin-driven framework based on a hybrid model 

that connects LSTM (long short-term memory) and EKF 

(extended Kalman filter) has been proposed to estimate the SOC 

of a li-ion battery. LSTM provides more accurate initial SOC 

estimations and impedance model data to EKF. According to 

experimental results, the developed battery digital twin is 

considered less dependent on the initial SOC conditions and is 

deemed more robust compared to traditional means with a 

lower RMSE (root mean squared error). 

Keywords—digital twin, lithium-ion battery, battery 

management system, state of charge. 

I. INTRODUCTION 

Lithium-ion batteries (LIB) play an important role in the 
net-zero carbon transition, which enables applications ranging 
from electric vehicles to grid-scale energy storage due to their 
wide temperature range, high power density and low memory 
effect [1, 2]. Maximising battery life is a challenge due to the 
impact of operating conditions on batteries degradation, such 
as over-charging and over-discharging, low energy utilisation 
attributed to inconsistent pack configuration; high and low-
temperature working conditions, etc. [3, 4]. To ensure 
working safety and maximise working life, the battery 
management system (BMS) is usually indispensable for 
understanding, quantifying and predicting battery 
performance in real-world conditions [5]. State of Charge 

(SOC), as one of the most important parameters of batteries, 
represents the remaining available capacity of the battery and 
plays an important role in health management and remaining 
usefel life prediction (RUL) [6]. Accurate and reliable SOC 
can not only indicate the remaining available capacity of the 
battery but also provide guidance for avoidance of 
overcharge/over-discharge [7]. However, existing external 
electrical sensors cannot measure it directly. As such, accurate 
SOC estimation is still a popular area of research and a variety 
of researchers dedicated to exploring efficient, accurate and 
robust SOC estimation algorithms [8].    

While there are many methods to create digital models of 
batteries, the models usually have lacked accurate real-world 
data to back them up. In addition, there are not the same 
batteries that are treated equally throughout their life. Batteries 
degrade at different rates, subject to different operations 
conditions and charging/discharging methods. This further 
emphasises the need for real-world data to be combined with 
machine learning. Although the concept of Digital Twin (DT) 
technology was first introduced by Michael Grieves [9] in 
2002, researchers have been limited in their exploration of DT 
technology. Since 2015, with breakthroughs in technologies 
such as wireless communications, machine learning and cloud 
computing, DT technology has developed in leaps and bounds 
[10, 11]. Integrating machine learning and the digital twin, not 
only could estimate batteries SOC utilizing real-world data but 
could be used to update BMS via the cloud to change 
algorithms or parameters to optimise the performance of the 
battery as the cells age and maximise battery life [12].  

This paper proposed a digital twin framework of the 
battery for more accurate state-of-charge estimation. In 
Section 2, the existing studies on SOC estimation and the 
researches of battery digital twin are reviewed, and the battery 
digital twin framework is proposed. In Section 3, the proposed 
method and algorithms are demonstrated, where the LSTM 
calibrates the SOC status and impedance model accuracy 
before the EKF estimates the online SOC. Section 4 presents 
a case study on the Li-ion battery datasets for validating the 
proposed framework and illustrates the results and discussion 
of the experiment. Finally, the benefits and restrictions of the 
method are concluded in Section 5.  
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II. SOC ESTIMATION AND BATTERY DIGITAL TWIN 

A. State of Charge Estimation 

As one of the most important values of batteries, SOC 
provides information about the charge level of the battery 
[13]. As the internal state of the battery cannot be measured 
directly, researchers use a state estimation mechanism to 
obtain the information.  

To now, SOC estimation methods can be simply classified 
into three major types [8, 14, 15]: a) traditional feature and 
integral methods, such as ampere-time integration (Ah), open-
circuit voltage method (OCV) and Electrochemical 
Impedance Spectroscopy (EIS); b) model-driven methods, 
such as Kalman filter class (KF), particle filter class and HIF 
filter; c) data-driven methods, such as random forest (RF), 
support vector machines (SVM) and neural networks (NN). 

The Ah integration method only needs to integrate the 
battery current, but it requires a higher initial value [16]. It is 
simple and widely implemented in practice [17]. However, it 
is difficult to guarantee the accuracy and reliability of the 
estimated value as it relies heavily on the precision of the 
measurement noise and the initial value of the SOC. Open 
circuit voltage (OCV), is a nonlinear function of SOC of Li-
ion battery [18]. However, it requires a long residence time 
and is easily affected by temperature, ageing, and current [19]. 
By collaboration with the Ah integration method and OCV 
method, the filter-driven methods are proposed and applied to 
estimate SOC with the support of offline built electric models 
[20]. Filtering algorithms are widely used in SOC estimation 
due to their fast response and high accuracy, but they do not 
consider the effect of battery ageing on SOC. Data-driven 
algorithms require large amounts of training data and long 
training times rather than exact mathematical models [21, 22]. 

B. Battery Digital Twin 

Digital twins exploit refined physical models, intelligent 
sensor data, and operation and maintenance history data and 
integrate multidisciplinary knowledge for a multi-physical 
quantity, multi-temporal scale, multi-probability simulation 
process. Digital twins realise the true mapping of smart local 
energy systems in a virtual space, which can be updated and 

dynamically evolved in real-time, thereby reflecting the entire 
lifecycle process of the corresponding energy system. 

Although battery research has become more extensive and 
sophisticated in recent years, there are still many issues that 
need to be addressed. State estimation of Li-ion batteries is not 
only the main basis for battery management systems and 
battery balance management but can also be used to prevent 
overcharging or overdischarging of the battery. However, 
accurately modelling lithium-ion batteries is still a particular 
challenge due to the highly non-linear and strong coupling of 
the internal battery relationships [23]. DT has made excellent 
performance in the aerospace field, especially in SOC 
estimation and RUL prediction and optimal control[4]. This 
indicates that DT could be used to solve battery management 
problems of state. 

The application of DT technology in BMS started in the 
last two years, and BMS can be optimised by applying cloud 
computing and Internet of Things (IoT) technologies [24]. The 
current research on battery digital twin mainly focuses on the 
three major problematic issues of the current BMS: difficult 
data sharing and fusion from different BMS manufacturers, 
limited computational capacity of the embedded system, and 
limited data storage capacity. The battery management system 
applying digital twin technology and their functionality and 
reported methods in existing studies are summarised in 
Table Ⅰ.  

For instance, as the challenge of data sharing, Li [10] 
combined the DT technology and transferred all battery data 
to the cloud platform for building the DT of the battery 
management system. As the number of battery data increases, 
the amount of computation and data storage required by the 
BMS grows exponentially. Machine learning algorithms such 
as data starvation models are used to predict and optimise 
system states and will even change the understanding of 
battery ageing mechanisms. Reference [25] used a Health 
Indicator (HI) and Long short-term memory (LSTM) 
algorithm to effectively estimation of the battery discharge 
capacity. However, the above work still has room for 
improvement: the real-time and self-evolving characteristics 
of digital twins. In the next section, the methodology of digital 
twin-driven SOC estimation is illustrated. 

TABLE I.  BATTERY DIGITAL TWIN IN LITERATURE 

The years of 

previous studies 
The functionality of applying DT Related methods and algorithms 

2018 [26] 
Monitoring cell voltage and temperature for decision 

making 

Cloud-connected BMS; electric-thermal model and 

empirical ageing model 

2019 [27] 
Assessment of spacecraft lithium-ion battery pack 

degradation based on low-cost modules and software 

ECM with SVM and filter algorithms; LabVIEW for 

visualisation 

2019 [28] Estimation of SOC  ECM and EFK algorithm 

2020 [25] Estimation of the battery discharge capacity Health indicator and LSTM algorithm 

2020 [10] Estimation of SOC and SOH 
AEHF-based SOC estimation algorithm and PSO-based 

SOH estimation algorithm 

2021 [29] 
Estimation of cell voltage, anode/cathode bulk SOC and 

surface SOC 
Sparse-Proper Generalized Decomposition (s-PGD) and 

dynamic mode decomposition technique 

2021 [30] Estimation of SOC, capacity and internal resistance 
ECM model parameter fitting, curve fitting and SOC-OCV 

curve 

2021 [12] 
Estimation of SOC and monitoring and visualisation of real-

time voltage and current 
ECM and joint HIF-PF online estimation of SOC 
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Fig. 1. The battery digital twin framework 

III. DIGITAL TWIN-DRIVEN  SOC ESTIMATION  

This section describes in detail the virtual end part of the 
framework, including the model-driven and data-driven 
algorithms and their interoperability. Also, a rolling learning 
method is incorporated for updating the model parameters 
when the battery capacity decreases to enable self-evolving of 
the digital twin.  

A. The Battery Digital Twin Framework 

The digital twin framework mainly contains three major 
features: hierarchical, bidirectional and self-evolving. 
Different models can be built for different purposes (e.g. state 
estimation, RUL prediction, energy management, etc.). In the 
meanwhile, data should be able to interact between different 
hierarchical structures even though it is multi-dimension.  

The objective of this study is to utilise the digital twin to 
find the hidden transformation law between the SOC and the 
measured variables. As shown in Fig. 1, to attain a robust 
design, a battery digital twin framework is proposed which is 
the basis of the whole system. The specific elements of the 
digital twin system include six sections as follows:  

• Physical End: entities of the system in the real world, 

including battery packs, motors, BMS systems and 

sensors. Parameters such as open-circuit voltage, 

current and temperature can be measured in real-time. 

• Virtual End: the digital replica of real-world objects 

can reflect real-world systems to some extent 

depending on the set of objectives. The kernel consists 

of different algorithms, such as model-driven and data-

driven algorithms, and works in conjunction with each 

other for the integration of objectives at multiple 

hierarchies and different time scales. 

• Cloud End: storage of system initialisation data and 

historical data; set up optimisation targets and time 

scales for the entire digital twin. 

• Designers: external technicians who can perform 

operational tests on the virtual end and cloud end of the 

system 

• Output: providing objectives such as cell status 

monitoring, SOC estimation and providing reliability 

recommendations with technicians for supporting 

decision making. 

• Information flow: Communication among the three 

major parts of physical end, virtual end, cloud end. 

And the bidirectional data flow enables the digital twin 

self-evolving. 

B. Battery Modelling 

There are several model-driven methods: internal 
resistance model, n-RC model, PNGV model, GNL model [31, 
32]. In this paper, the Thevenin model, also called the 2-RC 
model, is chosen as the battery equivalent circuit model, while 
it can better simulate the steady-state and transient 
characteristics of the battery [33]. In addition, it is unnecessary 
to select more complex models with an increase in the 
computational burden as the errors caused by model 
uncertainty will be offset by the LSTM [34].  

Fig. 2 presents the 2-RC equivalent circuit model, where 
Uoc is the open-circuit voltage; R0 is the ohmic resistance; R1 
and C1 circuits are electrochemical polarisation resistance and 
capacitance and used to simulate the process of the rapid rise 
of the discharge voltage; R2 and C2 circuits are concentration 
polarisation resistance and capacitance and used to simulate  
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Fig. 2. The 2nd ECM structure 

the process of slow stabilisation of the discharge voltage; R1, 
R2,  C1 and C2 can reflect the polarisation of the battery. Ut is 
terminal voltage. 

In theory, these parameters are changed dynamically by 
various factors, such as SOC state, temperature and ageing 
state, and these changes cause the estimation error. However, 
within the digital twin, these errors could be compensated by 
the LSTM neural network.  

C. Long Short-term Memory for SOC estimation 

Long short-term memory (LSTM) is a special recurrent 
neural network (RNN) network. The RNN network structure 
differs from other neural networks in that it adds a ring that 
points to itself, passing the information processed at one time 
to the next in a self-perpetuating loop. This structure allows 
RNNs to have a memory function and to process sequential 
information better.  The disadvantage is that when the time 
series is long, the gradient of the RNN will disappear. The 
LSTM uses hidden units as a gate to control the weights of the 
self-loop, which allows past data to be reflected in the current 
state decisions. In this case, the gradients form a path that can 
flow for a long time. In other words, the gradient does not 
vanish.  

As shown in Fig. 2, the LSTM network mainly consists of 
cell states, forget, input and output gates. The forget gates 
decide which redundant information from the upper layer is 
discarded. Depending on the output of the last moment and the 
current input, a value from 0 to 1 is generated by the forget 
gate. The upper value 1 means the value should be retained 
totally; and on the contrary, the lower boundary 0 indicates 
discarding the information completely. Input gates are used to 
update the input information to the network, working in 
conjunction with the output information from the forget gates 
to update the cell state. The output gates are used to help 
process the network information to get the output of the cell 
structure. 

 

Fig. 3. Internal structure of the long short-term memory(LSTM) cell 

D. SOC Estimation with Collaborating EKF and LSTM 

The traditional extended Kalman filter (EKF) SOC 
estimation method has the advantages of simplicity and fast 
response to meet the real-time requirements of digital twin 
systems [34]. Although the calculation time is short, its 
accuracy is very dependent on the initial SOC and impedance 
model. Therefore, there is a high demand for the correctness 
of the initial SOC level and the accuracy of the sensor. To 
alleviate this problem, the LSTM algorithm is incorporated to 
correct the initial SOC before the EKF estimation stages. The 
LSTM algorithm can accurately estimate the battery charge 
state even when the initial charge state is uncertain [7]. 
However, this comes at the cost of being computationally 
intensive and therefore too costly in terms of time. 

The overall process of the virtual end for SOC estimation 
is shown in Fig. 3. An LSTM network is built to map the non-
linear relationship between SOC and current, voltage and 
temperature, and to correct the initial SOC to provide support 
for online SOC estimation by the EKF. Also, to improve 
adaptation to the environment, a rolling learning approach [35] 
is used to adjust the model parameters of the LSTM so that the 
model can be updated. 

Choosing the inputs to an estimation algorithm is not an 
easy task. However, current, temperature and voltage are 
directly measured parameters, and they have also been shown 
to play an important role in the estimation of the state of a 
battery [36]. Therefore, these three parameters are extracted 
as inputs for the ECM and LSTM in this study. To improve 
accuracy, the LSTM is initialised and pre-trained using the 
drive data from the first few operating cycles of the battery. 
Afterwards, the EKF is used for the final correction of the 
SOC. Compared to the traditional EKF estimation method, 
this method provides better SOC estimation performance and 
mitigates the uncertainty of the initial battery state data. 

As a battery digital twin, real-time updating is necessary 
due to the significant impact of battery ageing on the 
estimation of the battery charge state. As a consequence, a 
rolling learning approach is introduced to update the model 
parameters of the LSTM to address the impact of ageing on 
SOC. Specifically, when the battery digital twin works, real-
time data is continuously collected, and when the cumulative 
runtime t is greater than a preset length of time T, another 
LSTM network is used in the cloud for retraining and 
calibration, and the LSTM network on the virtual end is 
updated with the new layer parameters. Through a rolling 
learning mechanism, the battery digital twin is self-evolving 
and able to take into account historical influences.  

  

Fig. 4. Flowchart of the SOC estimation in Virtual End 
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E. Validation of the Predictive Model 

Root Mean Square Error (RMSE) is used as a reflection of 
the deviation between the predicted value and the actual value. 
RMSE is calculated as::  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑆𝑂𝐶𝑒𝑖 − 𝑆𝑂𝐶𝑡𝑖)

2𝑛
𝑖=1                       (1) 

where n denotes total the number of observation values, 

SOCpi and SOCti are the ith estimated SOC and true SOC, 

respectively. 

IV. EXPERIMENTAL VALIDATION AND DISCUSSION 

In this section, experimental validations and discussions 
are conducted to validate the feasibility of the proposed 
framework. 

A. Data Preprocessing 

In the case study, battery data collected on the Panasonic 
18650PF Li-ion battery is used to validate the digital twin [37]. 
Due to an issue with the battery tester's logging, many drive 
cycles were saved in a single long file so that some drive cycle 
data was included twice. However, duplicates in the dataset 
may indicate data-logging errors and so should be removed 
from the dataset to ensure consistent and accurate results. As 
LSTM is supervised learning, the capacity loss is determined 
by Ah, and thus the reference SOC is inferred. 

Based on the calibrated battery digital twin model 
described above, several highly accurate and robust state 
estimation algorithms can be deployed in the virtual end, as 
described in the previous section. Fig. 4 presents the 
estimation process. Firstly, the V, I and T are input, and then 
the ECM parameters R0, R1, R2, C1 and C2 are identified. Then 
the equation of state and the measurement equation of the 
equivalent circuit model are determined. In the next step, the 
LSTM algorithm is adopted for error correction, and then the 
final SOC is estimated by EKF. In the loop, the LSTM 
network will be retrained and updated with real-time data at 
every time interval T. 

B. Results and Discussion 

This case study applied the Jupyter notebook with a deep 
learning environment. The LSTM network is constructed with 
an input layer consisting of one time series and three features 
(voltage, current and temperature), and the output layer for 
estimating the value of SOC and the hidden layer with 150 
nodes. Mean absolute error (MAE) loss function and Adam 
optimiser are used with a batch size of 32. The role of the loss 
function and optimiser is to optimise the model by making the 
loss as close to 0 as possible. Fig. 5 shows the model loss of 
LSTM at training and test. It is clear that after 20 epochs, the 
loss in both training and testing stabilises to no more than 0.04, 
and the training set is below 0.005. This indicates that the 
model is robust. Indeed, the validation loss (test loss) is 
slightly greater than the training loss, which implies that 
overfitting occurs in the training process.  

Fig. 6 shows the SOC estimated by the EKF after the final 
LSTM correction and the reference SOC. Three different 
coloured lines represent the reference value, the estimated 
value at training time and the estimated value at test time, 
respectively. It can be seen that the model fits the training data 
very well. However, it still has some errors in the SOC 
estimated for the fresh data. And the RMSE for training and 

testing are 1.7% and 3.4%, respectively. The smaller the 
RMSE, the better the model's estimation of SOC.  

 

Fig. 5. The model loss of LSTM at training and test 

 

Fig. 6. The SOC estimation by EKF-LSTM 

TABLE II.  THE COMPARISON OF SOC ESTIMATION FOR DIFFERENT 

METHODS 

Methods RMSE 

EKF 3.9% 

SVM 3.2 % 

Neural Network 2.23 % 

EKF-LSTM 1.7 % 

 

The reason is due to a certain amount of overfitting of the 
model, which does not process some of the untrained data 
correctly. Therefore the RMSE for training is smaller than for 
testing. However, from the results of the comparison of the 
error analysis shown in Table Ⅱ, it can be seen that the 
proposed algorithm has the smallest RMSE of the four 
algorithms. Thus its accuracy is still the highest, especially 
after solving the over-fitting problem. 

V. CONCLUSION 

In light of the challenges, this paper has proposed an 
LSTM-EKF estimation approach of SOC in order to lower the 
EKF dependence on the initial value of SOC. Different from 
existing methods, the initial SOC is estimated by LSTM and 
then corrected by an EKF estimator. Furthermore, a battery 
digital twin and a rolling learning method are introduced for 
online model refinement. The structure of the proposed DT 
framework and the key steps established in learning have been 
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detailed. The experimental study has demonstrated the 
feasibility of the joint online SOC estimation approach. 
Simulation results have shown the applicability and merits of 
the algorithm for the SOC estimation of battery digital twin. 
Future work aims to maximise battery life by establishing a 
hierarchical structure of digital twin which will incorporate 
the prediction of RUL in conjunction with SOC estimation. 
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