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A B S T R A C T

This study introduces a novel computational framework for Robust Topology Optimization (RTO) considering
imprecise random field parameters. Unlike the worst-case approach, the present method provides upper and
lower bounds for the mean and standard deviation of compliance as well as the optimized topological layouts
of a structure for various scenarios. In the proposed approach, the imprecise random field variables are
determined utilizing parameterized p-boxes with different confidence intervals. The Karhunen–Loève (K–L)
expansion is extended to provide a spectral description of the imprecise random field. The linear superposition
method in conjunction with a linear combination of orthogonal functions is employed to obtain explicit
mathematical expressions for the first and second order statistical moments of the structural compliance.
Then, an interval sensitivity analysis is carried out, applying the Orthogonal Similarity Transformation (OST)
method with the boundaries of each of the intermediate variable searched efficiently at every iteration using
a Combinatorial Approach (CA). Finally, the validity, accuracy, and applicability of the work are rigorously
checked by comparing the outputs of the proposed approach with those obtained using the particle swarm
optimization (PSO) and Quasi-Monte-Carlo Simulation (QMCS) methods. Three different numerical examples
with imprecise random field loads are presented to show the effectiveness and feasibility of the study.
1. Introduction

At the early stages of design, topology optimization (TO) offers an
opportunity to achieve creative structural configurations by pushing
the material distribution to the limit within prescribed design con-
straints. In comparison to conventional shape and size optimization,
topology optimization has a more powerful capability to determine
the optimal material layout without depending on the designer’s prior
knowledge. Inspired by Bendsœand Kikuchi [1], a number of methods
have been successfully developed over the last two decades, includ-
ing solid isotropic material with penalization (SIMP) [2,3], evolution-
ary structural optimization (ESO) [4,5] and level set-based methods
(LSMs) [6–9]. These methods have greatly promoted the application of
TO in structural engineering (e.g., aerospace, electronics, biomedical,
automotive and civil engineering) in both scientific and industrial
fields. Although studies using currently available TO methods have led
to significant improvements in structural design, it is noted that the
results are in most cases, underpinned by deterministic assumptions
based on nominal material properties and loading conditions as well as
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the predetermined geometries. For a more representative approach, it is
essential to consider the influences of stochastic variables on structural
performance to achieve robust and reliable designs.

Studies incorporating uncertainties into topology optimization have
therefore, attracted increased attention in the past few years. Generally,
TO problems with uncertainties can be classified into two categories:
reliability-based topology optimizations (RBTO) [10–13] and robust
topology optimizations (RTO) [14–20]. RBTO aims at designing for a
given risk at the expected probability level and thus ensuring that cir-
cumstances that can lead to catastrophic failure are impossible. Maute
and Frangopol [12] studied RBTO problems relating to micro-electro-
mechanical systems by considering uncertainties in loading, boundary
conditions and material properties. First order reliability analysis meth-
ods were employed to determine structural performance. Utilizing the
same method, Jung and Cho [10] investigated the RBTO design of
three-dimensional Mindlin plate structures with results demonstrating
that RBTO exhibits better performance than both the safety factor
and worst-case approaches. A non-probabilistic RBTO framework was
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proposed by Kang and Luo to study the effect of geometrical nonlinear-
ities [11]. Unlike RBTO methods, RTO methods attempt to minimize
the mean [16,17] and/or the combination of mean and standard devi-
ation [14,15,18–20] of the compliance, while reducing the sensitivity
of the objective function with respect to the random variables si-
multaneously. Alvarez and Carrasco [21] demonstrated the RTO of a
truss structures by considering minimum expected compliance under
stochastic loadings. An efficient and accurate approach for RTO was
introduced by Dunning et al. [14–16]. In this study, the mean and
standard deviation of the expected compliance were derived explicitly
based on probability density functions for both stochastic loading mag-
nitudes and directions. Besides the use of RTO for static problems, its
application to vibration/dynamic problems has also become popular.
Zhang et al. [22] studied the dynamic compliance of structures sub-
jected to uncertain harmonic excitations. They also [23] presented the
use of RTO for structural dynamics problems considering diffuse-region
width uncertainty in which random responses were represented by a
polynomial chaotic expansion.

Possible sources of uncertainty in TO problems are load conditions
and material properties as well as geometric variations due to ob-
servation errors, incomplete information, manufacturing defects, etc.
Among all of these, loading uncertainty is the most significant for two
reasons. Firstly, at the early conceptual design phase, the magnitudes,
directions, and positions of external loads on the design domain can-
not be specifically determined and secondly in engineering practice
applied loads are likely to experience variations during service lifetime.
Moreover, since these uncertain loads are directly transferred to the
design boundary they will in turn, lead to variations in structural
compliance. Thus, various methods have been introduced to investigate
the impact of loading uncertainties on structural topology optimization.
The traditional way of solving the RTO with loading uncertainties is
to use a nested double-loop optimization where the outer loop is used
to minimize structural compliance with respect to the design variables
and the inner loop identifies the worst-case load conditions for all
possible load sets. While such a method is time-consuming in terms
of computation effort, Zheng et al. [24–26] proposed a semi-analytical
method for solving a series of RTO problems by combining orthogonal
decomposition with uniform sampling. The method was efficient as the
calculation of the uncertain variables related to compliance was outside
the finite element analysis. Wu et al. [27] proposed the Chebyshev
interval inclusion function for RTO problems with interval uncertainty
for both load magnitudes and directions. In addition to the magnitude,
load positions/locations may also present degrees of uncertainty as a
change in loading environment, resulting in the relocation of forces
on a structure will affect its response dramatically. Liu and Wen [28]
introduced the cloud model to stimulate uncertainties in loading lo-
cations. A second-order Taylor series expansion was utilized by Wang
and Gao [29,30] to derive structural compliance due to load location
disturbance in which load position uncertainty was represented by an
uncertain-but-bounded interval variable.

Probabilistic topology optimization analysis [14,16–18,26,31–34]
has been widely applied by researchers for cases where complete
information on the structure is accessible, and the probability models
are well-established. In engineering practice, however, it is scarcely
possible to obtain sufficient samples to model probability and small
discrepancies may lead to large deviations in outcome. Consequently,
non-probabilistic approaches (i.e., interval analysis [35–38], fuzzy set
theory [39,40], and convex modelling [11,13]) have been recognized
as alternative methods for managing randomness with insufficient data.
The stochastic physical models found in engineering practices how-
ever, do not always follow clear cut ‘YES–NO’ logic; instead, they
are often vague, imprecise and indecisive. Under such circumstances,
using probabilistic or non-probabilistic models individually may not
fully illustrate the random characteristics of the physical problems.
In these cases the idea of imprecise randomness combining standard
probabilistic analysis with uncertain-but-bounded ranges was proposed
2

by Beer et al. [41]. This has led to the concept of the ‘imprecise random
field’ in uncertain computational mechanics [42]. In this approach
commonly utilized random variables can be replaced by continuous
random fields more suitable for simulating the stochastic properties of
physical models incorporating fluctuations in the spatial domain [43].
Whilst RTO problems considering random field loading or random
field material properties have been conducted in [19,33,44,45], the
study of imprecise stochastic-based uncertain fields has to the authors’
knowledge not been reported. The application of imprecise randomness
for spatially varying field parameters presented here will therefore
further enhance RTO problems to attain the optimal design using a
more generic approach which is consistent with the level of information
more commonly available in practical design.

Following this idea, a new framework for RTO problems under
polymorphic uncertainty of imprecise stochastic-based uncertain fields
is introduced to investigate the upper and lower bounds of the mean
and standard deviation of compliance as well as the final topological
layout of a structure. The spatial randomness of the external loads
in this study is generated using a parameterized p-box with various
confidence intervals. First, the traditional exponential function is em-
ployed to simulate the covariance function of the random field and a
significance check is performed to select suitable truncated terms from
the K–L expansion. The linear superposition method in conjunction
with a linear combination of orthogonal functions is employed to obtain
explicit mathematical expressions for both the mean and standard
deviation of the structural compliance with respect to the imprecise
random loads. Application of the combinatorial approach (CA) then
allows an efficient search for the boundaries of each intermediate
variable. Next an interval sensitivity analysis is carried out by applying
the Orthogonal Similarity Transformation (OST) method to further
improve the computational efficiency. Finally, the sensitivity is filtered
using improved Heaviside filtering and updated using the globally con-
vergent method of moving asymptotes (GCMMA) algorithm. Iterations
are performed until an optimal solution is obtained when the volume
constraint is satisfied and convergence is achieved. The validity and
accuracy, as well as the applicability of the proposed computational
framework are rigorously verified in three steps. First the use of the
linear superposition method is compared with the direct method (which
generates a large number of random variables) based on calculation of
the compliance. Implementation of the CA is then checked by carefully
examining the monotonic property of the stochastic system for the in-
terval variables. Finally, the accuracy of the proposed RTO algorithm is
examined by comparison with low-discrepancy sequences based on the
high-order nonlinear particle swarm optimization (LHNPSO) approach
and the Quasi-Monte-Carlo Simulation (QMCS) method, respectively.

The paper is organized as follows: Section 2 presents the theory and
formulations for the imprecise random field for uncertainty modelling.
The RTO of structures with imprecise random field loading is presented
in Section 3. The proposed sensitivity analysis for imprecise random
field loads is presented in Section 4 and the solution procedure for the
statistical responses of the present study is explained in Section 5. Some
numerical examples are demonstrated in Section 6 and finally, some
concluding remarks are drawn in Section 7.

2. Description of the imprecise random field for uncertainty mod-
elling

2.1. Imprecise random field

Generally, stochastic processes are mathematical models used to
represent random quantities evolving in time or space. For example, a
probability space is a triple (Ω,  , P), where Ω is the sample space, the
𝜎-algebra  is a collection of subsets of  and P denotes the probability

easure.
Unlike a traditional stochastic process {𝑋(𝑡, 𝜔)}𝑡∈𝑇 , which repre-

ents the varying of random values over time t where T is the time
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space, random field {𝐻(𝒙, 𝜔)}𝑥∈𝐷 takes values that are spatial coordi-
ates x in the topological space 𝐷 ∈ R𝑛 and D belongs to the real set,
hich is n-dimensional Euclidean space R𝑛. Therefore, a random field

an be identified as a generalization of the stochastic process with the
unction satisfying 𝐻(𝒙, 𝜔)∶𝐷 × 𝛺 ↦ R𝑛, which mean mapping the
tructural domain D into space domain 𝛺 to get the subset R𝑛,with
arameters 𝒙 ∈ 𝐷 and 𝜔 ∈ 𝛺. Consider an isotropic homogenous
andom field with mean 𝜇𝐻(𝒙,𝜃) = 𝐸 [𝐻(𝒙, 𝜔)], and autocovariance func-
ion 𝐶𝑜𝑣𝐻 (𝒙1,𝒙2) = 𝐸

[(

𝐻(𝒙1, 𝜔) − 𝜇𝐻(𝒙1 ,𝜔)

)(

𝐻(𝒙2, 𝜔) − 𝜇𝐻(𝒙2 ,𝜔)

)]

.
The mean of the random field 𝜇𝐻(𝒙,𝜔) is a constant in the domain and
the autocovariance function 𝐶𝑜𝑣𝐻 (𝒙1,𝒙2) only relies on the absolute
distance between adjacent points |

|

𝒙1 − 𝒙2|| with the standard deviation
of the random field 𝜎𝐻(𝒙,𝜔).

When the statistical information is complete and the autocovariance
function is known, one can easily make a fully objective estimate
for the given events. However, in engineering practice, such large,
thorough data sets are often not available, as experimental activities
are both time consuming and expensive. As a modification of the
strict requirement for precise representation of the quantities in the
probability framework, the concept of an imprecise random field, under
the background of probability boxes (p-box), is introduced. A p-box
models a class of non-decreasing functions with constraints on the
left and right-side bounds. Denoting the joint cumulative distribution
function as 𝐹𝐻 (𝒙, 𝜔), one can obtain

𝛯 =
{

𝐹𝐻 (𝒙, 𝜔)|
|

∀𝒙 ∈ R𝑛, 𝐹𝐻 (𝒙, 𝜔) ≤ 𝐹𝐻 (𝒙, 𝜔) ≤ 𝐹𝐻 (𝒙, 𝜔)
}

(1)

where 𝐹𝐻 (𝒙, 𝜔) and 𝐹𝐻 (𝒙, 𝜔) represent the lower and upper bounds
f the Cumulative Distribution Functions (CDFs) bounding the p-box
espectively. According to the concept of the parameterized p-box, a
ore general representation of the imprecise probability distribution
𝑝 ∼

([

𝜇
𝐻
, 𝜇𝐻

]

,
[

𝜎𝐻 , 𝜎𝐻
]

)

can be formulated as

𝛯𝑝 =
{

𝐹𝐻 (𝒙, 𝜔;𝜇𝐻 , 𝜎𝐻 )|
|

∀𝒙 ∈ R𝑛, 𝜇𝐻 ∈
[

𝜇
𝐻
, 𝜇𝐻

]

, 𝜎𝐻 ∈
[

𝜎𝐻 , 𝜎𝐻
]

}

(2)

where 𝛯𝑝 is the parameterized p-box with imprecise mean and standard
deviation. 𝜇

𝐻
, 𝜇𝐻 are the lower and upper bounds of the mean and

𝐻 , 𝜎𝐻 the lower and upper bounds of standard deviation respectively.

2.2. Discretization of the imprecise random field

As one of the key steps in modelling a random field, stochastic
discretization has a direct influence on the computational efficiency
and accuracy of a probability analysis. Several random field discretiza-
tion methods have already been proposed. There are two categories
based on the probability distribution of the random field, Gaussian
and non-Gaussian random fields. Compared with non-Gaussian, the
application of Gaussian random fields in stochastic analysis is much
wider. This is due to the fact that Gaussian random fields have the
following outstanding features: 1. They are characterized by second-
order statistics; 2. They are stable in linear combinations; 3. It is easy to
capture marginal and conditional distributions. Therefore, the present
study only considers Gaussian random fields.

The Karhunen–Loève (K–L) expansion is an efficient technique for
stochastic discretization using limited truncated terms. To represent the
spectral description of the imprecise random field, the Karhunen–Loève
expansion can be extended to

𝐻𝑝(𝒙, 𝜔) = 𝜇𝐼𝐻 +
∞
∑

𝑖=1

√

𝜆𝐼𝑖 𝜓𝑖(𝒙)𝜉𝑖(𝜔) (3)

where 𝜇𝐼𝐻 =
[

𝜇
𝐻
, 𝜇𝐻

]

is the imprecise mean. 𝜆𝐼𝑖 ∈ [0,∞) are the
mprecise eigenvalues, 𝜓𝑖(𝒙)∶𝐷 → R𝑛 are the corresponding orthogonal

eigenfunctions of the autocovariance kernel and 𝜉𝑖(𝜔) are mutually un-
orrelated random variables with zero mean and unit variance, which
ave the following properties:

(𝜉 (𝜔)) = 0 and 𝐸(𝜉 (𝜔)𝜉 (𝜔)) = 𝛿 (4)
𝑖 𝑖 𝑗 𝑖𝑗

3

here 𝛿𝑖𝑗 is the Kronecker delta function. An explicit expression for
𝑖(𝜔) can be obtained from Eq. (3) by multiplying by 𝜓𝑖(𝒙) and inte-
rating over the domain D, as follows

𝑖(𝜔) =
1

√

𝜆𝐼𝑖
∫𝐷

(

𝐻𝑝(𝒙, 𝜔) − 𝜇𝐼𝐻
)

𝜓𝑖(𝒙)𝑑𝒙 (5)

Utilizing Mercer’s theorem, the autocovariance function obeys the
spectral decomposition:

𝐶𝑜𝑣𝐻 (𝒙1,𝒙2) =
∞
∑

𝑖=0
𝜆𝐼𝑖 𝜓𝑖(𝒙1)𝜓𝑖(𝒙2) (6)

The set of eigenpairs
{

𝜆𝐼𝑖 , 𝜓𝑖
}

in Eq. (6) can be obtained using a
homogeneous Fredholm integral equation of the second kind, as

∫𝐷
𝐶𝑜𝑣𝐻 (𝒙1,𝒙2)𝜓𝑖(𝒙1)𝑑𝒙1 = 𝜆𝐼𝑖 𝜓𝑖(𝒙2) (7)

In practice, the random field 𝐻𝑝(𝒙, 𝜔) can be approximated by
�̃�𝑝(𝒙, 𝜔) after truncating the series at the M th term without sacrificing
oo much accuracy, as

𝑝(𝒙, 𝜔) ≈ �̃�𝑝(𝒙, 𝜔) = 𝜇𝐼𝐻 +
𝑀
∑

𝑖=1

√

𝜆𝐼𝑖 𝜓𝑖(𝒙)𝜉𝑖(𝜔) (8)

where M is determined by the significance check,

𝑠 =
𝑀
∑

𝑖=1
𝜆𝑖

/ ∞
∑

𝑖=1
𝜆𝑖 ≥ 𝑠0 (9)

where 𝑠0 is a predefined threshold value.

3. Robust topology optimization of structures with imprecise ran-
dom field loads

3.1. Robust topology optimization

A density-based method is utilized to perform robust topology opti-
mization for structures with loading uncertainty. Using this approach,
the given domain is discretized into a grid of finite elements each of
which is filled according to a density variable. To avoid the binary,
on-off problem, a continuous density distribution function is used for
each element. The modified SIMP interpolation scheme is as follows,

𝐸𝑒 = 𝐸min +
(

𝐸0 − 𝐸min
)

𝜌𝑃𝑒 (10)

where 𝜌𝑃𝑒 (0 ≤ 𝜌𝑃𝑒 ≤ 1) are the intermediate densities of element e. 𝐸0,
𝐸min are the Young’s moduli of the solid and void phases, respectively.
𝐸min is a small non-zero number. Intermediate densities are penalized
by power p. Typically, a penalization parameter p of 3 is chosen for the
objective function.

The robust topology optimization problem of this study can be
written in terms of the statistical moments of compliance

min
𝜌

∶ 𝐽 = 𝜇(𝑐(𝜔)) + 𝛽𝜎(𝑐(𝜔))

𝑠.𝑡.∶ 𝐊𝐮(𝜔) = 𝐟 (𝜔) (𝜔 ∈ 𝛩)
𝑁
∑

𝑒=1
𝜌𝑒𝑣𝑒 ≤ 𝑉

𝟎 ≤ ρ ≤ 𝟏

(11)

where 𝜇(𝑐(𝜔)) and 𝜎(𝑐(𝜔)) are the expected value and standard de-
viation of the structural compliance. 𝜔 denotes any realization in a
random sampling space 𝛩. 𝑣𝑒 is the volume of element e and the total
volume of the design is limited to 𝑉 . 𝛽 is a weight coefficient used
to balance the contribution of the mean and the standard deviation.
By increasing the value of 𝛽, the constraint on variability becomes
strengthened [46]; when 𝛽 = 0, the objective function corresponds to
calculating the minimum expected value of structural compliance. A
summary of different kinds of objective functions for robust topology
optimization has been presented in [18].
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Fig. 1. A square plate with imprecise random field loads.

The mean and standard deviation of the structural compliance can
be expressed as

𝜇(𝑐(𝜔)) = ∫𝛩
𝑐(𝜔)𝑃𝑑𝜔 (12)

𝜎2(𝑐(𝜔)) = ∫𝛩
[𝑐(𝜔) − 𝜇(𝑐(𝜔))]2 𝑃𝑑𝜔 (13)

where 𝑃𝑑𝜔 is the probability density function for a continuous random
variable in domain 𝛩.

.2. Realization of an imprecise random field load

As introduced in the previous sections, the traditional exponential
unction is employed to define covariance. To ensure the accuracy
f the truncated K–L expansion [19,33,44,45], a significance check
s conducted to choose the most appropriate value of M, after which

the eigenvalues and eigenfunctions of the corresponding terms are
calculated. The details of this procedure are described below.

Consider a structure subjected to an imprecise random field load,
such as Fig. 1. The random field load can be represented by the
truncated K–L expansion [47,48] from Eq. (8), as follows.

𝐻𝑝
𝑓 (𝒙, 𝜔) = 𝜇𝐼𝑓 +

𝑀
∑

𝑖=1

√

𝜆𝐼𝑖 𝜓𝑖(𝒙)𝜉𝑖(𝜔) (14)

The covariance function for the spatially varying random field is
again described by the commonly used exponential function as

𝐶𝑜𝑣𝑓 (𝒙1,𝒙2) =
(

𝜎𝐼𝑓
)2

exp
(

−
|

|

𝑥1 − 𝑥2||
𝐿

)

(15)

here 𝜎𝐼𝑓 is the interval standard deviation, |

|

𝑥1 − 𝑥2|| is the distance
etween any two points and L is the given correlation length. The
nfluence of the correlation length is shown in Fig. 2. Assuming the
omain of the random field is the 1D domain Ω = [−𝑎, 𝑎] ⊂ R𝑛,

the solution of the eigenfunctions and eigenvalues of the covariance
function from the integral equation, is as follows.
(

𝜎𝐼𝑓
)2

∫

+𝑎

−𝑎
exp

(

−
|

|

𝑥1 − 𝑥2||
𝐿

)

𝜓𝑖(𝒙2)𝑑𝒙2 = 𝜆𝐼𝑖 𝜓𝑖(𝒙1) (16)

where 𝒙1, 𝒙2 are the vectors of a series of 𝑥1 and 𝑥2.
Since the mean and standard deviation of the random field are

interval-valued, the eigenvalues and eigenfunctions are also interval-
valued and the explicit expressions for the eigenfunctions 𝜓 and the
𝑖

4

eigenvalues 𝜆𝐼𝑖 are given by,

For 𝑖 odd, 𝑖 ≥ 1 ∶ 𝜓∗
𝑖 (𝒙) =

sin
(

𝜛𝑖
∗𝒙

)

√

𝑎 − sin(2𝜛𝑖∗𝑎)
2𝜛𝑖∗

, 𝜆𝑖
∗𝐼 =

2
(

𝜎𝐼𝑓
)

2𝐿

1 +𝜛∗2
𝑖

(17)

For 𝑖 even, 𝑖 ≥ 2 ∶ 𝜓𝑖(𝒙) =
cos

(

𝜛𝑖𝒙
)

√

𝑎 + sin(2𝜛𝑖𝑎)
2𝜛𝑖

, 𝜆𝐼𝑖 =
2
(

𝜎𝐼𝑓
)2
𝐿

1 +𝜛2
𝑖

(18)

where 𝜛∗
𝑖 and 𝜛𝒊 are the natural frequencies of the eigenfunctions

which can be solved using the following equations, [49].
tan (𝜛∗𝑎)
𝜛∗𝐿

+ 1 = 0

tan (𝜛𝑎) − 1
𝜛𝐿

= 0
(19)

From Eq. (14), the imprecise random field load is represented by
linear combination of orthogonal functions. Assuming the loads are

pplied to the structure one by one and using the linear superposition
ethod we have,

𝐼
0 = 𝜇𝐼𝑓 ,𝒇

𝐼
1 =

√

𝜆𝐼1𝜓1(𝒙),𝒇 𝐼2 =
√

𝜆𝐼2𝜓2(𝒙),…,𝒇 𝐼𝑀 =
√

𝜆𝐼𝑀𝜓𝑀 (𝒙) (20)

where for each load case, the corresponding displacement fields are
𝒖𝐼0 , 𝒖

𝐼
1 , 𝒖

𝐼
2 ,… , 𝒖𝐼𝑀 , which are uniquely determined by

{

𝒖𝐼
}

= [𝑲]−1
{

𝒇 𝐼
}

where [𝑲] is the global stiffness matrix. This leads to the realization of
the imprecise random field loading based on the sum of all the loads
in Eq. (21). Fig. 3 illustrates the imprecise random field realization of
the load magnitude.

𝒇 𝐼 = 𝒇 𝐼0𝜉0(𝜔) + 𝒇 𝐼1𝜉1(𝜔) + 𝒇 𝐼2𝜉2(𝜔) +⋯ + 𝒇 𝐼𝑀 𝜉𝑀 (𝜔)

= 𝜇𝐼𝑓 𝜉0(𝜔) +
√

𝜆𝐼1𝜓1(𝒙)𝜉1(𝜔) +
√

𝜆𝐼2𝜓2(𝒙)𝜉2(𝜔) +⋯

+
√

𝜆𝐼𝑀𝜓𝑀 (𝒙)𝜉𝑀 (𝜔)

(21)

3.3. Calculation of the mean and variance of structural compliance

For any sample 𝜔 ∈ R𝑛, the stochastic compliance of a structure
under imprecise field loading 𝐻𝑝

𝑓 (𝒙, 𝜔) can be given as,

1(𝜔) = 𝒇𝑇 (𝜔)𝒖(𝜔) (22)

This is called the direct method. An alternative method is to derive
the compliance of the structure and represent the force and displace-
ment vectors as a linear combination of orthogonal functions 𝜉𝑖(𝜔),

𝑐2(𝜔) =

( 𝑀
∑

𝑖=0
𝜉𝑖(𝜔)𝒇𝑇𝑖

)( 𝑀
∑

𝑖=0
𝜉𝑖(𝜔)𝒖𝑖

)

=
𝑀
∑

𝑖=0

𝑀
∑

𝑗=0
𝜉𝑖(𝜔)𝜉𝑗 (𝜔)𝒇𝑇𝑖 𝒖𝑗

=
𝑀
∑

𝑖=0

𝑀
∑

𝑗=0
𝜉𝑖(𝜔)𝜉𝑗 (𝜔)𝑐𝑖𝑗

(23)

here 𝑐𝑖𝑗 = 𝒇𝑇𝑖 𝒖𝑗 denotes the inner product of vector 𝒇 𝑖 and vector 𝒖𝑗 .
The present study uses this second method based on the linear

superposition assumption. The efficiency and accuracy of the method
is carefully investigated in the following section.

The mean of the compliance from Eq. (23) can be written as,

𝜇𝑐 =
𝑀
∑

𝑖=0

𝑀
∑

𝑗=0

⟨

𝜉𝑖(𝜔)𝜉𝑗 (𝜔)
⟩

𝑐𝑖𝑗

=
𝑀
∑

𝑖=0

𝑀
∑

𝑗=0
𝛿𝑖𝑗𝑐𝑖𝑗

=
𝑀
∑

𝑖=0
𝑐𝑖𝑖 =

𝑀
∑

𝑖=0
𝒇𝑇𝑖 𝒖𝑖

(24)

Variance can be derived as, [18,31,44]

𝜎2(𝑐) = 𝐸(𝑐2) − 𝜇2(𝑐) (25)
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Fig. 2. Random field realizations generated by the Gaussian covariance kernel using different correlation lengths.
o
c
m

4

where the second term of Eq. (25) is the square of the sum of 𝑐𝑖𝑗 (not
the sum of the squares of 𝑐𝑖𝑗 as has been reported previously [19]),
which is expanded to give,

𝜎2(𝑐) = 𝐸(𝑐2) − 𝜇2(𝑐)

= 𝐸

( 𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝜉𝑖(𝜔)𝜉𝑗 (𝜔)𝜉𝑘(𝜔)𝜉𝑙(𝜔)𝑐𝑖𝑗𝑐𝑘𝑙

)

−

( 𝑀
∑

𝑖=0

𝑀
∑

𝑗=0
𝛿𝑖𝑗𝑐𝑖𝑗

)2

=
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝐸
(

𝜉𝑖(𝜔)𝜉𝑗 (𝜔)𝜉𝑘(𝜔)𝜉𝑙(𝜔)
)

𝑐𝑖𝑗𝑐𝑘𝑙 −
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝛿𝑖𝑗𝛿𝑘𝑙𝑐𝑖𝑗𝑐𝑘𝑙

=
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝛿𝑖𝑗𝑐𝑖𝑗𝛿𝑘𝑙𝑐𝑘𝑙 +

𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝑖≠𝑗

𝛿𝑖𝑘𝑐𝑖𝑗𝛿𝑗𝑙𝑐𝑘𝑙 +
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝑖≠𝑘

𝛿𝑖𝑙𝑐𝑖𝑗𝛿𝑗𝑘𝑐𝑘𝑙

−
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝛿𝑖𝑗𝛿𝑘𝑙𝑐𝑖𝑗𝑐𝑘𝑙

=
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝛿𝑖𝑗𝑐𝑖𝑗𝛿𝑘𝑙𝑐𝑘𝑙 + 2

𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝑖≠𝑗

𝛿𝑖𝑘𝑐𝑖𝑗𝛿𝑗𝑙𝑐𝑘𝑙 −
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝛿𝑖𝑗𝛿𝑘𝑙𝑐𝑖𝑗𝑐𝑘𝑙

= 2
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝑖≠𝑗

𝛿𝑖𝑘𝑐𝑖𝑗𝛿𝑗𝑙𝑐𝑘𝑙

= 2
𝑀
∑

𝑖,𝑗=0
𝑖≠𝑗

𝑐2𝑖𝑗

(26)

Verified using Isserlis’ theorem [50] and taking advantage of the
symmetry of the matrices,

𝜎2(𝑐) = 𝐸
{

[𝑐 − 𝐸 (𝑐)]2
}

= 𝐸

⎧

⎪

⎨

⎪

⎩

[ 𝑀
∑

𝑖=0

𝑀
∑

𝑗=0
𝜉𝑖(𝜔)𝜉𝑗 (𝜔)𝑐𝑖𝑗 −

𝑀
∑

𝑖=0
𝑐𝑖𝑖

]2⎫
⎪

⎬

⎪

⎭

= 𝐸

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

𝑀
∑

𝑖,𝑗=0
𝑖≠𝑗

𝜉𝑖(𝜔)𝜉𝑗 (𝜔)𝑐𝑖𝑗

⎤

⎥

⎥

⎥

⎦

2
⎫

⎪

⎬

⎪

⎭

= 𝐸

⎧

⎪

⎨

⎪

⎩

𝑀
∑

𝑖,𝑗=0
𝑖≠𝑗

𝑀
∑

𝑘,𝑙=0
𝑘≠𝑙

𝜉𝑖𝜉𝑗𝜉𝑘𝜉𝑙𝑐𝑖𝑗𝑐𝑘𝑙

⎫

⎪

⎬

⎪

⎭

=
𝑀
∑

𝑖,𝑗=0
𝑖≠𝑗

𝑀
∑

𝑘,𝑙=0
𝑘≠𝑙

𝑐𝑖𝑗𝑐𝑘𝑙𝐸
[

𝜉𝑖𝜉𝑗𝜉𝑘𝜉𝑙
]

=
𝑀
∑

𝑖,𝑗=0
𝑖≠𝑗

𝑀
∑

𝑘,𝑙=0
𝑘≠𝑙

𝑐𝑖𝑗𝑐𝑘𝑙
(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

= 2
𝑀
∑

𝑖,𝑗,𝑘,𝑙=0
𝑖≠𝑗

𝛿𝑖𝑘𝛿𝑗𝑙𝑐𝑖𝑗𝑐𝑘𝑙

= 2
𝑀
∑

𝑖,𝑗=0
𝑖≠𝑗

𝑐2𝑖𝑗

(27)

where 𝜉𝑖𝑗𝑘𝑙 = 𝐸
(

𝜉𝑖(𝜔)𝜉𝑗 (𝜔)𝜉𝑘(𝜔)𝜉𝑙(𝜔)
)

are the fourth order moments
of the random variables. There are two main ways to calculate these
moments, one is using the traditional Monte Carlo method [19], the
other, more efficient way is as follows. As 𝜉 (𝜔) are independent random
𝑖 𝐶

5

Fig. 3. Imprecise random field realizations of load magnitude.

variables with 𝜉𝑖(𝜔) ∼ 𝑁
(

0, 𝜎2𝑖
)

for 𝑖 ∈ R𝑛 [51], we can have,

𝐸
(

𝜉𝑖𝜉𝑗𝜉𝑘𝜉𝑙
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

3𝜎4𝑖 if 𝑖 = 𝑗 = 𝑘 = 𝑙

𝜎2𝑖 𝜎
2
𝑗 if 𝑖 = 𝑘, 𝑗 = 𝑙 or 𝑖 = 𝑙, 𝑗 = 𝑘 and 𝑖 ≠ 𝑗

𝜎2𝑖 𝜎
2
𝑘 if 𝑖 = 𝑗, 𝑘 = 𝑙 and 𝑖 ≠ 𝑘

0 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

(28)

4. Sensitivity analysis with imprecise random field loads

The mean and standard deviation of structural compliance are inter-
val uncertainties, leading to an imprecise objective function expressed
as
[

𝐽 𝐽
]

=
[

𝜇 𝜇
]

+ 𝛽
[

𝜎 𝜎
]

(29)

Authors such as Wu et al. [27] dealt with such uncertainty in
optimization by considering the worst case optimization, using the
upper bound of the objective function as the new objective function.
However, the numerical examples presented in their work show that
the optimization convergence was often unstable. In this study, we
present a novel method for a sensitivity analysis with a bounded
compliance

𝜕𝐽
𝜕𝜌

= 𝑤1
𝜕𝐽
𝜕𝜌

+𝑤2
𝜕𝐽
𝜕𝜌

(30)

where 𝑤1, 𝑤2 are weight coefficients used to balance the contribution
f the upper and lower bounds. When 𝑤1 = 0, 𝑤2 = 1, minimum
ompliance is considered, while when 𝑤1 = 1, 𝑤2 = 0, compliance is
aximum.

.1. Traditional sensitivity analysis

The deterministic structural compliance can be expressed as,

= 𝐅𝐓𝐔 = 𝐔𝐓𝐊𝐔 (31)
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where 𝐅, 𝐔 are the design-independent load vector and global dis-
placement vector respectively and 𝐊 is the global stiffness matrix.
Utilizing the well-known adjoint method, the sensitivity of the struc-
tural compliance with respect to the design variable 𝜌𝑒 can be derived
as,
𝜕𝐶
𝜕𝜌𝑒

= 𝜕
𝜕𝜌𝑒

[

𝐔𝐓𝐊𝐔 + χ (𝐊𝐔 − 𝐅)
]

= 2𝐔𝐓𝐊 𝜕𝐔
𝜕𝜌𝑒

+ 𝐔𝐓 𝜕𝐊
𝜕𝜌𝑒

𝐔 + χ
(

𝜕𝐊
𝜕𝜌𝑒

𝐔 −𝐊 𝜕𝐔
𝜕𝜌𝑒

) (32)

As χ can be any adjoint vector, we assume χ = −2𝐔𝐓. Eq. (32) can
hen be reformulated as,
𝜕𝐶
𝜕𝜌𝑒

= −𝐔𝐓 𝜕𝐊
𝜕𝜌𝑒

𝐔 (33)

For nondeterministic problems, a gradient-based method is applied
o the objective function in Eq. (11). Based on the chain rule, sensitiv-
ties with respect to physical variables can be given by,
𝜕𝐽
𝜕𝜌𝑒

=
𝜕𝜇𝑐
𝜕𝜌𝑒

+ 𝛽
𝜕𝜎(𝑐)
𝜕𝜌𝑒

=
𝜕𝜇𝑐
𝜕𝜌𝑒

+
𝛽

2𝜎(𝑐)
𝜕𝜎2(𝑐)
𝜕𝜌𝑒

=
𝑀
∑

𝑖,𝑗=0
𝛿𝑖𝑗
𝜕𝑐𝑖𝑗
𝜕𝜌𝑒

+
𝛽

2𝜎(𝑐)

[ 𝑀
∑

𝑖,𝑗,𝑘,𝑙=0

(

𝜉𝑖𝑗𝑘𝑙 − 𝛿𝑖𝑗𝛿𝑘𝑙
)

( 𝜕𝑐𝑖𝑗
𝜕𝜌𝑒

𝑐𝑘𝑙 +
𝜕𝑐𝑘𝑙
𝜕𝜌𝑒

𝑐𝑖𝑗

)

]

=
𝑀
∑

𝑖,𝑗=0
𝛿𝑖𝑗
𝜕𝑐𝑖𝑗
𝜕𝜌𝑒

+
𝛽
𝜎(𝑐)

[ 𝑀
∑

𝑖,𝑗,𝑘,𝑙=0

(

𝜉𝑖𝑗𝑘𝑙 − 𝛿𝑖𝑗𝛿𝑘𝑙
)
𝜕𝑐𝑖𝑗
𝜕𝜌𝑒

𝑐𝑘𝑙

]

=
𝑀
∑

𝑖,𝑗=0

[

𝛿𝑖𝑗 +
𝛽
𝜎(𝑐)

𝑀
∑

𝑘,𝑙=0

(

𝜉𝑖𝑗𝑘𝑙 − 𝛿𝑖𝑗𝛿𝑘𝑙
)

𝑐𝑘𝑙

]

𝜕𝑐𝑖𝑗
𝜕𝜌𝑒

(34)

Defining,

𝑤𝑖𝑗 = 𝛿𝑖𝑗 +
𝛽
𝜎(𝑐)

𝑀
∑

𝑘,𝑙=0

(

𝜉𝑖𝑗𝑘𝑙 − 𝛿𝑖𝑗𝛿𝑘𝑙
)

𝑐𝑘𝑙 (35)

nd substituting Eq. (29) into Eq. (30) and using the discrete linear
lasticity, this can be revised to,
𝜕𝐽
𝜕𝜌𝑒

=
𝑀
∑

𝑖,𝑗=0
𝑤𝑖𝑗

𝜕𝑐𝑖𝑗
𝜕𝜌𝑒

= −
𝑀
∑

𝑖,𝑗=0
𝑤𝑖𝑗𝐔𝐓

𝑖
𝜕𝐊
𝜕𝜌𝑒

𝐔𝑗

= −𝑝𝜌𝑝−1𝑒
(

𝐸0 − 𝐸min
)

𝑀
∑

𝑖,𝑗=0
𝑤𝑖𝑗𝐮𝐓𝑖𝑒𝐤𝑒𝐮𝑗𝑒

(36)

where 𝐮𝑖𝑒 is the nodal displacement of the 𝑒th element and 𝐤𝑒 is the
stiffness matrix of element e with solid material. To solve the above
equation, (𝑀 + 1)2 load cases need to be calculated for the sensitivity
analysis.

4.2. Interval sensitivity analysis with imprecise random field

The derivatives of the objective function for both the upper and
lower bounds can be expressed as,
𝜕𝐽
𝜕𝜌𝑒

= −𝑝𝜌𝑝−1𝑒
(

𝐸0 − 𝐸min
)

𝑀
∑

𝑖,𝑗=0
𝑤𝑖𝑗𝐮

𝐓
𝑖𝑒𝐤𝑒𝐮𝑗𝑒

𝜕𝐽
𝜕𝜌𝑒

= −𝑝𝜌𝑝−1𝑒
(

𝐸0 − 𝐸min
)

𝑀
∑

𝑖,𝑗=0
𝑤𝑖𝑗𝐮

𝐓
𝑖𝑒𝐤𝑒𝐮𝑗𝑒

(37)

here 𝐮𝑖𝑒, 𝐮𝑖𝑒 are the upper and lower nodal displacements of the
𝑖th element, respectively. As can be seen, for each of the load cases,
the corresponding displacement fields need to be solved, in addition
to the other parameters involved. Moreover, for each iteration of the
sensitivity analysis, such a step needs to be repeated. For example, if it
takes N steps to meet the convergence criteria, then a total (𝑀 + 1)2𝑁

steps will be needed, in addition to searching the upper and lower
bounds of the indispensable parameters.
 𝑤

6

In order to improve the computational efficiency, a number of tech-
niques are introduced as follows. The first is the Orthogonal Similarity
Transformation (OST) method which is used to reduce the computa-
tional cost of calculating 𝑤𝑖𝑗 . Observation of Eq. (35), reveals that the
elements of 𝑤𝑖𝑗 form a real symmetric matrix 𝑾 (𝑀+1)×(𝑀+1) and that
there exists an orthogonal matrix 𝑻 which makes 𝑾 into a diagonal
matrix,

𝑻 𝑇𝑾 𝑻 = 𝑻 −1𝑾 𝑻 = 𝑑𝑖𝑎𝑔
(

𝜆0, 𝜆1,… , 𝜆𝑀
)

(38)

where 𝑻 is an orthogonal matrix with column vectors
𝒒𝑖 and 𝜆1, 𝜆2,… , 𝜆𝑛 are the eigenvalues of 𝑾 . Introducing the following
matrix to simplify the derivation process,

𝒇 𝑡 =
[{

𝒇 0
}

,
{

𝒇 1
}

,… ,
{

𝒇𝑀
}]

𝑭 𝑡 =
[{

𝑭 0
}

,
{

𝑭 1
}

,… ,
{

𝑭𝑀
}]

= 𝒇 𝑡𝑻 (𝑀+1)×(𝑀+1)

𝐮𝑡 =
[{

𝐮0
}

,
{

𝐮1
}

,… ,
{

𝐮𝑀
}]

𝐮𝑡 =
[{

𝐮0
}

,
{

𝐮1
}

,… ,
{

𝐮𝑀
}]

= 𝐮𝑡𝑻 (𝑀+1)×(𝑀+1)

(39)

where 𝑡 = 0, 1,… ,𝑀 and 𝒇 𝑡, 𝐮𝑡 are the 1×(M + 1) matrices of the load
cases and the corresponding displacements for each degree of freedom.
Therefore, by substituting Eqs. (38) and (39) into Eq. (34), one can
obtain,
𝜕𝐽
𝜕𝜌𝑒

= 𝜕
𝜕𝜌𝑒

𝑀
∑

𝑖,𝑗=0

(

𝑤𝑖𝑗𝑐𝑖𝑗
)

= 𝜕
𝜕𝜌𝑒

𝑡𝑟
(

𝑾 𝒖𝑇𝑡 𝒇 𝑡
)

= 𝜕
𝜕𝜌𝑒

𝑡𝑟
(

𝒇 𝑡𝑾 𝒖𝑇𝑡
)

= 𝜕
𝜕𝜌𝑒

𝑡𝑟
(

𝒇 𝑡𝑻 𝑑𝑖𝑎𝑔
(

𝜆0, 𝜆1,… , 𝜆𝑀
)

𝑻 𝑇 𝒖𝑇𝑡
)

= 𝜕
𝜕𝜌𝑒

𝑡𝑟
(

𝑭 𝑡𝑑𝑖𝑎𝑔
(

𝜆0, 𝜆1,… , 𝜆𝑀
)

𝑼𝑇
𝑡
)

=
𝑀
∑

𝑡=0
𝜆𝑡

𝜕
𝜕𝜌𝑒

𝑡𝑟
(

𝑭 𝑡𝑼𝑇
𝑡
)

=
𝑀
∑

𝑖=0
𝜆𝑖
𝜕
(

𝑭 𝑇
𝑖 𝑼 𝑖

)

𝜕𝜌𝑒

= −𝑝𝜌𝑝−1𝑒
(

𝐸0 − 𝐸min
)

𝑀
∑

𝑖=0
𝜆𝑖𝐮𝐓𝑖𝑒𝐤𝑒𝐮𝑖𝑒

(40)

where 𝑡𝑟 (∙) denotes the sum of the diagonal elements, and the new
sensitivity analysis with a bounded compliance can be further derived
as,

𝜕𝐽
𝜕𝜌

= −𝑤1𝑝𝜌
𝑝−1
𝑒

(

𝐸0 − 𝐸min
)

𝑀
∑

𝑖=0
𝜆𝑖𝐮

𝑇
𝑖𝑒𝐤𝑒𝐮𝑖𝑒 −𝑤2𝑝𝜌

𝑝−1
𝑒

(

𝐸0 − 𝐸min
)

×
𝑀
∑

𝑖=0
𝜆𝑖𝐮

𝑇
𝑖𝑒𝐤𝑒𝐮𝑖𝑒 (41)

4.3. Improved Heaviside filtering

To avoid numerical instability and obtain black-and-white solutions,
the present paper adopts a volume preserving nonlinear density fil-
ter [52] which combines the Heaviside filter with a given volume,
resulting in the volumes being the same before and after filtering. This
formulation not only preserves the advantages of the filter but also
improves the convergence rate.

Using linear density filtering, the filtered density 𝜌𝑒 for the 𝑛th
element can be expressed as,

𝜌𝑒 =

∑

𝑖∈𝑁𝑒 𝑤(𝒙𝑖)𝑣𝑖𝜌𝑖
∑

𝑖∈𝑁𝑒 𝑤(𝒙𝑖)𝑣𝑖
(42)

here 𝜌𝑖 are the original design variables and 𝑣𝑖 denotes the volume
f the 𝑖th element. 𝑁𝑒 are the elements around e whose centres are
ocated within R, and the weighting coefficient can be defined as,

(𝒙 ) = 𝑅 − ‖𝒙 − 𝒙 ‖ (43)
𝑖 ‖ 𝑖 𝑒‖
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n

𝛯

[

The filtered density 𝜌𝑒 is further filtered by the volume preserving
onlinear density filter [52] and the physical density is,

�̃�𝑒 =

⎧

⎪

⎨

⎪

⎩

𝜂
[

𝑒−𝛼(1−𝜌𝑒∕𝜂) −
(

1 − 𝜌𝑒∕𝜂
)

𝑒−𝛼
]

(1 − 𝜂)
[

1 − 𝑒−𝛼(𝜌𝑒∕𝜂)∕(1−𝜂) + (𝜌𝑒 − 𝜂)𝑒−𝛼∕ (1 − 𝜂)
]

+ 𝜂

0 ≤ 𝜌𝑒 ≤ 𝜂

𝜂 ≤ 𝜌𝑒 ≤ 1

(44)

where 𝛼 is the smoothing parameter in the Heaviside function and 𝜂 is
the threshold value which controls the volume before and after filtering
and can be determined using the bisection method according to the
volume preserving condition. The sensitivities of the general function f
with respect to its original density 𝜌𝑒 can be obtained by the chain rule

𝜕𝑓
𝜕𝜌𝑒

=
∑

𝑖∈𝑁𝑒

𝜕𝑓
𝜕�̃�𝑖

𝜕�̃�𝑖
𝜕𝜌𝑖

𝜕𝜌𝑖
𝜕𝜌𝑒

(45)

The well-known globally convergent method of moving asymptotes
(GCMMA) [53] is utilized to solve the robust topology optimization
with imprecise random field loads. This is particularly suitable for large
scale optimization problems, decomposing them into several single
variable problems.

5. Solution procedure for statistical responses with imprecise ran-
dom field loads

5.1. Framework for robust topology optimization with imprecise random
field loads

The solution algorithm for robust topology optimization with im-
precise random field loads is summarized by the flowchart shown in
Fig. 4. The main steps are as follows.

Step 1. Initialization: The uncertain variables and the mean and
standard deviation of an external force are derived from 𝑛s samples.
Three different percentages of confidence interval (CI), for example
90%, 95% and 99% are then considered to compute interval bounds for
the mean and standard deviation. Small samples with unknown mean
and standard deviation are assumed as described in [54]. Then the
imprecise random model of the system is produced by introducing the
parameterized p-box feature into Eq. (21), and the imprecise probability
distribution 𝛯𝑝 ∼

([

𝜇
𝑓
, 𝜇𝑓

]

,
[

𝜎𝑓 , 𝜎𝑓
])

can be formulated as

𝑝 =
{

𝐹𝑓 (𝒙, 𝜔;𝜇𝑓 , 𝜎𝑓 )
|

|

|

∀𝒙 ∈ R𝑛, 𝜇𝑓 ∈
[

𝜇
𝑓
, 𝜇𝑓

]

, 𝜎𝑓 ∈
[

𝜎𝑓 , 𝜎𝑓
]}

(46)

Step 2. Discretization of the random field loading: Here, the tra-
ditional exponential function is employed to define the covariance
function. To ensure the accuracy of the truncated K–L expansion, a
significance check is conducted to choose the most appropriate value
of M using Eq. (47). Then the eigenvalues and eigenfunctions of the
corresponding terms are calculated, as described in Section 3.2.

𝑠 =
𝑀
∑

𝑖=1
𝜆𝑖

/ 𝑁
∑

𝑖=1
𝜆𝑖 (47)

Step 3. Boundary search: Using an FE analysis the displacement
of the corresponding realization of the imprecise random field load
is calculated. The mean and standard deviation of the compliance
are obtained based on each sampling using Eqs. (24) and (26); then
the bounds and output

[

𝑢 𝑢
]

,
[

𝐽 𝐽
]

,
[

𝜇 𝜇
]

,
[

𝜎 𝜎
]

,
[

𝑐𝑖𝑗 𝑐𝑖𝑗
]

,
𝜆 𝜆

]

are searched; Further detail on this step is discussed in the next
subsection.

Step 4. Interval sensitivity analysis: By substituting the bounded
parameters from Step 3, the upper and lower bounds of the objective
function are obtained using the OST method after which an interval
sensitivity analysis is performed by Eq. (41).

Step 5. Filtering of the sensitivities based on Section 4.3.
7

Step 6. Updating the density, checking the constraint and conver-
gence: If both the volume constraint and convergence are satisfied, stop
the loop and output the final robust design; if not, go back to Step 3.

5.2. Boundary search of important parameters

Three different methods for searching the boundaries of the im-
portant intermediate parameters namely QMCS, LHNPSO and CA are
detailed in this section.

∙ Quasi-Monte Carlo Simulation (QMCS)
The most straightforward approach used to obtain statistical infor-

mation on stochastic systems is the Monte Carlo sampling strategy.
By generating a large group of random field realizations of uncertain
variables and performing a deterministic analysis at each of these, a
user can get reliable results by using sufficient numerical computations.
This method however, presents a challenge for a large-scale analysis.
Quasi-Monte Carlo simulation possesses shorter computational times
and higher accuracy by utilizing quasi-random sequences rather than
random sampling. QMCS is employed here as the reference method. The
present QMCS approach adopts a low-discrepancy Sobol sequence by
skipping the first 1000 values and retaining every 101st point after that
to generate the uncertain variables. For each iteration of the topology
optimization, a QMCS is implemented in Step 3 of Fig. 4 to find the
bounded parameters.

∙ LHNPSO algorithm
The PSO method is a population based stochastic optimization

technique used to find the optimal solutions and paths within a given
interval. In this problem Step 3 can be transformed into an optimization
problem as follows:
min
𝜇𝑓 ,𝜎𝑓

∶ 𝑃min(𝜔) (𝜔 ∈ 𝛩)

max
𝜇𝑓 ,𝜎𝑓

∶ 𝑃max(𝜔)

𝑠.𝑡.∶

⎧

⎪

⎨

⎪

⎩

𝜇
𝑓
≤ 𝜇𝑓 (𝜔) ≤ 𝜇𝑓

𝜎𝑓 ≤ 𝜎𝑓 (𝜔) ≤ 𝜎𝑓

(48)

where 𝑃 is the bounded parameter in Step.3, i.e.
[

𝑢 𝑢
]

,
[

𝐽 𝐽
]

,
[

𝜇 𝜇
]

,
[

𝜎 𝜎
]

,
[

𝑐𝑖𝑗 𝑐𝑖𝑗
]

or
[

𝜆 𝜆
]

based on a collection of random

field realizations and the imprecise probability load distribution is 𝛯𝑝 ∼
([

𝜇
𝑓
, 𝜇𝑓

]

,
[

𝜎𝑓 , 𝜎𝑓
])

.

We adopt the low-discrepancy sequence initialized high-order non-
linear particle swarm optimization (LHNPSO) method by Yang et al.
[55]. Their results indicated that their PSO method could converge
faster and offered the more accurate solutions than the conventional
method. The velocity 𝑉 𝑒𝑙𝑡+1𝑣 and position vectors 𝑃𝑜𝑠𝑡+1𝑣 of sample 𝜈 at
step t + 1 can be derived by the following equations, respectively.

𝑉 𝑒𝑙𝑡+1𝑣 = 𝜛𝑉 𝑒𝑙𝑡𝑣 + 𝑐1𝑟1
(

𝑃𝑜𝑠𝑝𝑏𝑒𝑠𝑡𝑣 − 𝑃𝑜𝑠𝑡𝑣
)

+ 𝑐2𝑟2
(

𝑃𝑜𝑠𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑠𝑡𝑣
)

𝑃𝑜𝑠𝑡+1𝑣 = 𝑃𝑜𝑠𝑡𝑣 + 𝑉 𝑒𝑙
𝑡+1
𝑣

(49)

where 𝑃𝑜𝑠𝑝𝑏𝑒𝑠𝑡𝑣 and 𝑃𝑜𝑠𝑔𝑏𝑒𝑠𝑡 are the best local and global best solutions.
Parameters 𝑐1, 𝑐2 are equal to 2. 𝑟1, 𝑟2 are two random numbers.
Initial weight 𝜛 is selected based on Ref. [55]. By using the LHNPSO
algorithm, the computational time required to search the bounded
parameters in Step 3 is drastically reduced compared to the other two
methods.

∙ Combinatorial approach
The combinatorial approach was first presented by Rao and Berke

[35] for interval estimates and involved using a combination of the
extreme values. The success of this method is due to the monotonicity
of the properties of a stochastic system within the range of concern. A
k-dimensional interval vector [X], can be expressed as

[𝐗] =
[

𝐗,𝐗
]

=
{

𝑥 ∶ 𝑥 ≤ 𝑥 ≤ 𝑥 , 𝑖 = 1, 2,… , 𝑘
}

, [𝐗] ∈ ℜ𝑘 (50)
𝑖 𝑖 𝑖 𝑖
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Fig. 4. Flowchart of the solution procedure of topology optimization with imprecise random field.
where the notations 𝐗 =
[

𝑥1,… , 𝑥𝑖… , 𝑥𝑘
]𝐓 and 𝐗 =

[

𝑥1,… , 𝑥𝑖… , 𝑥𝑘
]𝐓

represent the lower and upper bound vectors of a set of interval
variables, respectively. Therefore, without loss of generality, for an ar-
bitrary function f with k-dimensional interval variables 𝑥𝑖, all possible
values of f can be described as

𝑓𝑟 = 𝑓
(

𝑥(1,2)1 ,… , 𝑥(1,2)𝑖 ,… , 𝑥(1,2)𝑘

)

; 𝑟 = 1, 2,… , 2𝑘 (51)

where 𝑥(1,2)1 ,… , 𝑥(1,2)𝑖 ,… , 𝑥(1,2)𝑘 denote the upper and lower bounds of 𝑥𝑖,
respectively. The system responses can then be obtained as

𝑓
𝑟
= min

{

𝑓 ∶ 𝑓
(

𝑥(1,2)1 ,… , 𝑥(1,2)𝑖 ,… , 𝑥(1,2)𝑘

)

, 𝑥𝑖 ∈ [𝐗]
}

, 𝑖 = 1, 2,… , 𝑘

𝑓 𝑟 = max
{

𝑓 ∶ 𝑓
(

𝑥(1,2)1 ,… , 𝑥(1,2)𝑖 ,… , 𝑥(1,2)𝑘

)

, 𝑥𝑖 ∈ [𝐗]
}

, 𝑖 = 1, 2,… , 𝑘

(52)

Verification of the monotonicity of the properties in this study
will be presented in the following section. The implementation of
CA for interval estimates can significantly improve the computational
efficiency.

6. Numerical examples

In this section, the validity, accuracy, as well as the applicability
of the proposed method are demonstrated based on three benchmark
examples by comparing the upper and lower bounds of the mean and
standard deviation of compliance and the topological layouts. The
initialization of the uncertain variables and the mean and standard
deviation of the external force are derived from 𝑛s samplings with a
system model then generated using the parameterized p-box introduced
in Eq. (20). Spatial fluctuations of the external loads are modelled as
imprecise random fields and a truncated K -L expansion is employed
to obtain the realization of the random field loading. A significance
check is conducted to choose an appropriate value of M using Eq. (47)
to capture 90% of the spatial fluctuations of the domain. First, the
linear superposition method is compared with the direct method. To
implement the CA, the monotonic property of the stochastic system
is carefully examined for the interval variables. Then, the accuracy
of the proposed RTO algorithm is examined by comparison with the
LHNPSO approach and the QMCS method, respectively. Finally, two
examples based on periodic structures are presented in detail to show
the effectiveness and feasibility of the proposed method. The results
8

demonstrate the method’s ability to obtain more robust optimal solu-
tions. Comparison with other methods also reveals that the algorithm is
faster, more efficient and more flexible. All of the presented numerical
examples were conducted utilizing a workstation with an Intel® Core™
i9-9900K CPU and 128 GB of RAM.

6.1. Numerical experiment 1: Carrier plate design

The carrier plate design problem is investigated, where a plate is
fixed along its bottom edge with an imprecise random field load applied
to the top edge, as shown in Fig. 1. The dimensions of the structure
are 200 × 200, and it is meshed using 200 by 200 linear quadrilateral
elements. The Young’s modulus of the solid and void materials are 1000
and 10−9, respectively. The Poisson’s ratio is 0.3. The improved Heav-
iside filtering uses a filter radius of 3 and the volume fraction is set to
0.3. The mean and standard deviation of the load magnitude are −1 and
1.5, respectively. Three different percentages of confidence interval,
i.e. 90%, 95% and 99% are chosen to represent the interval mean and
standard deviation as indicated in Section 5.1. The variation of the load
magnitude is modelled as a Gaussian random field and an exponential
function is employed to define the covariance function, Eq. (15). The
correlation length of the distributed loads in this experiment is 10. M
for the truncated K–L expansion is selected after the significance check
as 14, based on consideration of 90% of the energy field.

6.1.1. Verification of the linear superposition method
As discussed in Section 3.3, two methods are used to obtain the

stochastic compliance due to random inputs for comparison. The first
one, called the direct method, generates random variables and each of
the compliances is calculated. The second method represents the force
and displacement vectors of the compliance as a linear combination of
orthogonal functions with limited terms. The efficiency and accuracy
of the second method are investigated here:

The probability distribution functions (PDFs) and cumulative distri-
bution functions (CDFs) of the compliances are compared in Fig. 5. For
the direct method, 1000 samples were chosen to show the efficiency
and accuracy of the linear superposition method. As can be seen, the
PDFs and CDFs given by the linear superposition method match very
well with those obtained by the direct method with the difference
between them being around 2%. For the direct method, compliance is
obtained after 10 min; while for the linear superposition method, 1 min
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Fig. 5(a). Comparison of the upper and lower bounds of 𝑐1 and 𝑐2 for the PDF.

Fig. 5(b). Comparison of the upper and lower bounds of 𝑐1 and 𝑐2 for the CDF.

s needed. Thus, the efficiency and accuracy of the linear superposition
ethod are clearly demonstrated.

.1.2. Verification of the monotonicity assumption
To implement the combinatorial approach in this study, the as-

umption of the monotonic property of stochastic interval analysis is
erified in this subsection. Whilst this assumption has already been
ccepted by many scholars for linear static structural analysis in en-
ineering applications [35,42,56], it is difficult to obtain an explicit
athematical proof directly. In this study, a numerical examination of

he monotonic property is adopted. For an arbitrary interval variable,
tructural responses are thoroughly calculated across the whole range
ith other interval variables taking their mean values. Then the signs
f the derivatives of the target solutions are employed to check the
onotonic property. This step is repeated until all of the interval

ariables are validated. The objective function is influenced by two
nterval variables, the mean 𝜇𝑓 ∈

[

𝜇
𝑓

𝜇𝑓
]

and the standard deviation

𝜎𝑓 ∈
[

𝜎𝑓 𝜎𝑓
]

, and the corresponding responses are the mean 𝜇(c)
nd the standard deviation 𝜎(c) of the compliance. The derivative of a
unction can be expressed numerically as,

𝜕𝑓
𝜕𝑥

=
𝑓𝑎 − 𝑓𝑏
𝑥𝑎 − 𝑥𝑏

(53)

where 𝑥𝑎 and 𝑥𝑏 are the upper and lower bounds of the interval
variables, respectively. 𝑓𝑎 and 𝑓𝑏 denote the corresponding responses
at 𝑥𝑎 and 𝑥𝑏. As the number of sampling points from the interval range
increases, the derivative of the function or slope in Fig. 6 becomes more
 r

9

Table 1
The comparison of bounded parameters and computational times of different methods
at the first step.

Methods J(c) 𝜇(c) 𝜎(c) Computational
time (s)

Upper Lower Upper Lower Upper Lower

QMCS-10000 99.666 29.828 90.624 25.710 9.042 4.118 46 223.455
LHNPSO 100.079 29.635 91.017 25.528 9.062 4.108 144.565
CA 100.079 29.635 91.017 25.528 9.062 4.108 16.509

accurate. The following four cases are studied.

𝜇 (𝑐) 𝑉 𝑆 𝜇𝑓 ∶ 𝜎 (𝑐) 𝑉 𝑆 𝜇𝑓

(𝑐) 𝑉 𝑆 𝜎𝑓 ∶ 𝜎 (𝑐) 𝑉 𝑆 𝜎𝑓

Fig. 6 shows the monotonic properties of parameters 𝜇(c) and
(c). 𝜎𝑓 is taken at its midpoint according to the given ranges when

examining the influence of 𝜇𝑓 on 𝜇(c) and 𝜎(c), respectively. A series
of 𝜇𝑓 are carefully observed. A similar procedure is employed for the
influence of 𝜎𝑓 on 𝜇(c) and 𝜎(c), respectively. The results show that the
derivatives or the slopes of Fig. 6(c) and (d) are unchanged within the
range of 𝜇𝑓 and 𝜎 𝑓 . Hence the proposed CA can be applied to study
the imprecise random field, the mean 𝜇𝑓 ∈

[

𝜇
𝑓

𝜇𝑓
]

and the standard

deviation 𝜎𝑓 ∈
[

𝜎𝑓 𝜎𝑓
]

.

6.1.3. Comparison of QMCS, PSO, CA and DTO
As stated in Section 5.2, three different methods are proposed

to search the boundaries of important parameters, including
[

𝑢 𝑢
]

,
[

𝐽 𝐽
]

,
[

𝜇 𝜇
]

,
[

𝜎 𝜎
]

,
[

𝑐𝑖𝑗 𝑐𝑖𝑗
]

and
[

𝜆 𝜆
]

. The results obtained

using PSO and CA are verified by comparison with those from QMCS,
which utilizes a low-discrepancy Sobol sequence b to generate the
uncertain variables. Using this method, it can take hundreds of it-
erations for topology optimization to reach an optimal design. For
each step, a boundary search needs to be implemented. For a fair
and meaningful comparison, therefore, the first step of the topology
optimization process is investigated comparing the bounded parame-
ters and computational times of the different methods, as shown in
Table 1. Here, 10,000 samples from QMCS are considered. Statistical
information on the responses and computational effort are reported.
The results of both the PSO and CA match very well with the QMCS
method, although the upper bounds obtained by the QMCS are slightly
lower than those of the PSO or CA and the lower bounds of the QMCS
are slightly larger. Thus, the accuracy of PSO and CA are demonstrated
and the results from these two methods completely encompass the
results of the QMCS. By increasing the number of sampling points in
the QMCS, the final results are expected to approach those of the PSO
or CA methods. With regard to time, the proposed CA method takes 16 s
for one loop, while the QMCS needs approximately 13 h and the PSO
method takes over 2 min. Thus, CA exhibits a high level of accuracy
and efficiency.

The results of a deterministic topology optimization (DTO), LHNPSO
and CA are compared in Figs. 7, 8 and Table 2. Here 𝑤1 = 1, 𝑤2 =
0, reducing the CA method in this case to the minimax optimization
problem [27]. A 90% confidence interval is considered, and M is
aken as 14 for the truncated the K -L expansion, with the imprecise

probability load distribution modelled as a Gaussian random field,
that is 𝛯𝑝 ∼ (𝜇 ∈ [−1.356,−0.644] , 𝜎 ∈ [1.289, 1.803]). The robust final
esigns of the DTO, LHNPSO and CA are shown in Fig. 7. The robust
esigns of the LHNPSO and CA are almost the same, with an enhanced
entral section appearing in the robust designs but not in the DTO
esign. A comparison of the bounded PDFs and CDFs of the compli-
nces from DTO, LHNPSO and CA, is made in Fig. 8. Compared with
ure randomness resulting in a singular PDF and CDF, the imprecise
andomness introduced in this study incorporates random boundaries
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Fig. 6. The monotonicity of parameters 𝜇(c) and 𝜎(c).
Fig. 7. The final design of DTO, LHNPSO and CA.
encompassing all possible cases across the upper and lower bounds of
the compliances.

Under the same level of uncertainty, the objective function values,
means and standard deviations of compliances from both LHNPSO and
CA are nearly identical, as can be seen in Table 2. The values from
the DTO, such as the objective function values and the mean and
standard deviation of the compliance however, are greater than those
of LHNPSO and CA. For example, the upper bound of J(c) from DTO is
551.99, while by using the proposed method, the corresponding value
is 475.23. Although both the LHNPSO and the CA can provide sound
and reliable solutions, the computational cost of LHNPSO is much
higher than that for the CA, 26.5 h versus 1.4 h. The superior properties
of CA are clearly evident from these examples.

6.1.4. The influence of weight coefficients 𝑤1, 𝑤2 in Eq. (30)
To consider the contribution of both the lower and upper bounds of

he imprecise random parameters, two weighting coefficients 𝑤 , 𝑤
1 2

10
Table 2
The comparison of final results and computational times of different methods.

Methods J(c) 𝜇(c) 𝜎(c) Computational
time

Upper Lower Upper Lower Upper Lower

DTO 551.991 192.494 488.441 161.223 63.550 31.271 N/A
LHNPSO 475.014 149.201 444.944 135.957 30.070 13.244 26.5 h
CA 475.231 150.073 444.084 136.320 31.147 13.753 1.4 h

are introduced. In this subsection, the influences of 𝑤1, 𝑤2 are inves-
tigated. The results of six different scenarios with 𝑤1 and 𝑤2 taking
values from 0 to 1 with a 0.2 spacing are presented in Table 3. It can
be seen that as 𝑤1 increases and 𝑤2 decreases, both the upper and lower
bounds of the objective function value, mean and standard deviation of
compliance gradually decrease. There are two possible reasons for this:
Firstly, for different cases the parameters are monotonically changed.
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S

Table 3
Comparison of the objective function value, mean and standard deviation of compliance for different weighting coefficients.

Parameter Bound Case 1
(𝑤1 = 1, 𝑤2 = 0)

Case 2
(𝑤1 = 0.8, 𝑤2 = 0.2)

Case 3
(𝑤1 = 0.6, 𝑤2 = 0.4)

Case4
(𝑤1 = 0.4, 𝑤2 = 0.6)

Case 5
(𝑤1 = 0.2, 𝑤2 = 0.8)

Case 6
(𝑤1 = 0, 𝑤2 = 1)

J(c) Upper 475.231 474.892 473.655 466.618 449.321 437.679
Lower 150.073 149.856 148.771 144.998 136.525 129.707

𝜇(c) Upper 444.084 444.004 442.936 437.692 422.424 413.686
Lower 136.320 136.233 135.309 132.470 124.872 119.304

𝜎(c) Upper 31.147 30.888 30.719 28.926 26.897 23.993
Lower 13.753 13.623 13.463 12.528 11.653 10.403
Fig. 8. The upper bounds and lower bounds of the estimated PDF and CDF for DTO, LHNPSO and CA.
𝑋

w

Fig. 9. The upper bounds of estimated PDFs of different cases.

econdly, as the contribution of 𝑤2 increases, the influence of the lower
bounds of the imprecise randomness increases. This can be clearly
observed from the magnification of the peak in Fig. 9, which depicts
the upper bounds of the various cases.

For the sake of brevity, Figs. 10 and 11 show the iteration history
of the objective function and volume fraction for Case 1 and Case 6,
respectively. The structural volume decreases rapidly (the red dashed
line) and the objective value (the blue solid line) is satisfied after
100 iterations. Fig. 12 presents the possible optimized designs of the
Carrier plate with the imprecise random field. It should be noted
that the objective function values as well as the mean and standard
deviation of the compliance in each case are smaller than the DTO
values, as shown in Tables 2 and 3. Therefore, the proposed method
provides improved performance in achieving a robust solution as well
as options for topological layouts of a structure within a wide range of
uncertainties.
11
6.2. Numerical experiment 2: cantilever beam with uncertain tip forces

To show the application of the proposed method, a study of opti-
mization of periodic topologies under imprecise random field loads is
presented here. Considering the periodicity of a structure in the given
domain, for example, for a 2D structure, the design domain is divided
into X (k, l) = 𝑁𝑥×𝑁𝑦 unit cells where 𝑁𝑥, 𝑁𝑦 represent the number
of unit cells along the x and y directions, respectively. Each of the
unit cells, can be further separated into several smaller elements x (i,
j) = 𝑛𝑥×𝑛𝑦, as shown in Fig. 13, where 𝑛𝑥 and 𝑛𝑦 denote the number
of elements in the x and y directions, respectively. Therefore, the RTO
problem for periodic structures can be defined as:

𝑑𝑒𝑠𝑖𝑔𝑛 (𝑥,𝑋)

min 𝐽 (𝑥,𝑋) = 𝐽 (�̃�, �̃�)

𝑠.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐾(�̃�)𝑈 = 𝐹

�̃�(𝑘, 𝑙) ≥
∑

�̃�
∑

�̃� ≤ 𝑉

𝑥(𝑖, 𝑗) = 𝑥((𝑁𝑥 − 1)𝑛𝑥 + 𝑖, 𝑗) 𝑁𝑥 = 1 ∼ 𝑘

(𝑘.𝑙) = 𝑋(𝑘 +𝑁𝑥 − 1, 𝑙) 𝑁𝑥 = 1 ∼ 𝑘

(54)

here x(i, j) is an element design variable with i and j denoting the
element number along the two axes and X(k, l) is a cell design variable
where k and l are the unit cell number along the two axes. �̃�, �̃�
represent the variables after filtering.

A cantilever beam with imprecise random field tip forces is consid-
ered first. The dimensions of the beam are 300 × 90 with a load applied
over the first 40 elements on the left-hand side, as shown in Fig. 14.
The structure is divided into X (24, 6) unit cells each containing x
(15,15) elements. Users can adjust these parameters according to design
specifications. Filter radii of 1.5 for the element and 5 for the unit
cell are chosen for the improved Heaviside filtering process [3]. The
total structural volume fraction is set to 0.5. The mean and standard
deviation of the load magnitude are −1 and 0.5, respectively. The
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Fig. 10. Iteration history of Case 1 (𝑤1 = 1; 𝑤2 = 0).
Fig. 11. Iteration history of Case 6 (𝑤1 = 0; 𝑤2 = 1).
i
a
b
c

6
d

u
3
q
(

orrelation length of the distributed loads is 5 in this experiment. A
0% confidence interval is considered.

As discussed in Section 6.1.4, the topologies resulting from RTO as
ell as those obtained using DTO are introduced in Table 4. As can be

een, those from DTO are very similar to those for the proposed method,
lthough there are some minor differences. However, the statistical
ata (expected values and standard deviations) of the RTO solutions
re smaller than those of the corresponding DTO results, revealing that
he results from the RTO are more robust to imprecise randomness than
he deterministic structure. Fig. 15 presents the iteration history for
he cantilever beam, with both the objective value and volume fraction
llustrated. Three sharp peaks are seen to occur in the 22nd, 32nd and
4th iterations in both the objective value and the volume fraction
uring the topology optimization. After that, the results converge to
n optimal design at around the 120th loop.
 r

12
The influence of 𝛽 in Eq. (11) on the optimal topologies is presented
n Table 5. By increasing the value of 𝛽, the mean and standard devi-
tion increase simultaneously and the junctions between intersecting
races become thicker. Increases in 𝛽 will therefore strengthen the
onstraint on variability.

.3. Numerical experiment 3: Michell-type structure under imprecise ran-
om field loads

This section presents a Michell-type structure with periodic topology
nder imprecise random field loads. The dimensions of the domain are
60 × 120, as shown in Fig. 16. The structure is meshed using linear
uadrilateral elements. The periodic structures is assumed to have X
24, 8) unit cells each comprising x (15,15) small elements. The filter
adii of the elements and unit cells are same as in example 2. The
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Fig. 12. Robust design of Carrier plate with imprecise random field loads for different cases.
Table 4
The comparison of optimal topologies between DTO and RTO.

Scenarios Optimal design Part Statistical information

DTO 𝜇(c) = [597.176 972.647]
𝜎(c) = [256.929 456.228]

RTO
(𝑤1 = 1,
𝑤2 = 0)

𝜇(c) = [580.267 945.108]
𝜎(c) = [249.653 443.307]
13
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Table 5
The influence of 𝛽 on optimal topologies.
Fig. 13. A periodic structure with unit cells.

Fig. 14. Cantilever beam with the imprecise random field tip forces.

Fig. 15. Iteration histories for the cantilever beam (Case 1).
14
Fig. 16. Michell-type structure with the imprecise random field loads.

Fig. 17. The final design of Case1 (1/2 structure).

Fig. 18. Iteration histories of Michell-type structure (Case 1).
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Fig. 19. The upper lower bounds of the estimated PDFs and CDFs of the proposed method for different weightings.
Fig. 20. The influence of percentage confidence interval on (a) Objective values, (b) mean, (c) Standard deviation.
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ean and standard deviation of the load magnitude are −1 and 0.2,
espectively.

To demonstrate the effectiveness of the proposed method, Fig. 17
hows the resulting topology of the Michell-type structure with impre-
ise random field uncertainty and the corresponding iteration histories
or the objective value and volume fraction are given in Fig. 18. The
ollowing observations can be made from these two figures: Firstly,
s the boundaries of the Michell-type structure are constrained at
oth ends, the appearance of the diagonal braces helps the structure
ithstand the uncertain force. Secondly, if we examine the structure

rom top to bottom, there are 4 layers over which the diagonal braces
radually become thicker. Moreover, connections between vertical bars
nd the diagonal braces develop in the middle area to resist local
ollapse.
 d

15
Table 6 shows the comparison of optimal topologies between DTO
nd RTO. The RTO results are more robust and less sensitive to un-
ertain loads. The second significant difference between the RTO and
TO outcomes are that there are no connections between the vertical
ars and diagonal braces in the DTO solutions. For different robust
esign cases, the differences are quite small although we can observe
inor changes in the vertical bars, diagonal braces and the connections

etween them. This phenomenon is verified by Fig. 19, which gives
pper and lower bounds of the estimated PDFs and CDFs for different
ases.

Fig. 20 illustrates the influence of three different confidence levels
CIs), 90%, 95% and 99% on the objective values, means and standard
eviations of compliance. It is demonstrated that the increase in CI%
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Table 6
The comparison of optimal topologies between DTO and RTO.

Scenarios Optimal design Statistical information

DTO 𝜇(c) = [ 1048.040 1283.287]
𝜎(c) = [ 282.897 435.088]

RTO
(𝑤1 = 1, 𝑤2 = 0)

𝜇(c) = [1028.204 1258.880]
𝜎(c) = [277.514 426.804]
widens the range of the upper and lower bounds as the statistical
moments of the inputs increase.

7. Conclusion

A new computational method for RTO problems subject to imprecise
random fields is presented in this study. Imprecise random loading
is introduced into both continuum structures and periodic structures.
Compared with the worst-case approach of RTO, the present method
provides the upper and lower bounds of mean and standard deviation of
compliance as well as the corresponding alternative topological layouts
for various weightings. To consider the various confidence levels, the
imprecise random fluctuation is illustrated by adopting a parameterized
p-box feature and spectral description via the K -L expansion towards
the loading domain. Based on the assumptions of the linear superpo-
sition method and the linear combination of orthogonal functions, an
explicit mathematical expression of the statistical moments of struc-
tural compliance is rigorously proved. Then, an interval sensitivity
analysis is derived by applying the OST method and the boundaries
of each intermediate variable are efficiently searched for at every
iteration by CA. The validity, accuracy and effectiveness of the pro-
posed new method are comprehensively verified against the LHNPSO
and QMCS methods. Results show excellent agreements among CA,
LHNPSO and QMCS while CA obtains superior time-saving properties
for a monotonic system. Finally, three different numerical examples
with imprecise random field loads are presented to show the accuracy
and feasibility of the study. The proposed method provides a more
robust design with multiple topologies available under uncertain loads
and is capable of investigating extreme upper and lower bounds with
imprecise randomness.
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