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ABSTRACT 
The exact removal of material in abrasive belt grinding 

determines the final machining quality of the workpiece. 
However, it is difficult to determine the removal state of materials 
in actual processing, which is affected by factors such as 
abrasive belt wear and processing errors. Therefore, a multi-
scale attention convolutional neural network for material 
removal state prediction method is proposed based on the 
analysis of displacement data. First, the first-order difference 
and sliding-window expansion methods for displacement data 
are adopted, making it possible to use displacement data for deep 
learning, which is the premise of material removal state 
prediction. Then, the multi-scale convolutional neural network is  
Employed to extract important features of the displacement data.  
Due to the different importance of different features, Squeeze-
and-Excitation Networks is used to independently assign the 
importance of features based on the loss function, so that the 
model pays more attention to those main features and ignores the 
secondary features, which can improve the convergence speed 
and prediction accuracy of the model. The K6 cross-validation 
of experiment results shows that this method can accurately 
predict the material removal state with an average prediction 
accuracy of 87.9%, which can be practically applied to the 
online prediction of the material removal state in industrial 
processing to further control the processing quality. 

Keywords: material removal, displacement data, multi-scale 
feature extraction, attention  

 

NOMENCLATURE 
 

MSACNN multi-scale attention convolutional neural network 
1D CNN one-dimensional convolutional neural networks 
SENet squeeze-and-excitation networks 
PReLU parametric rectified linear unit 
BN batch normalization 
MSFE multi-scale feature extraction 
FU fully connected 

 
1. INTRODUCTION 

Different from rigid contact in wheel grinding, abrasive belt 
grinding is widely used for material removal of complex curved 
surfaces due to the advantages of elastic contact between the 
abrasive belt and the workpiece [1]-[3]. Due to the random 
distribution of the grain size, height, and direction of the abrasive 
belt cutting edge, abrasive belt grinding is a grinding method 
with an indeterminate amount of removal [4]. In addition, due to 
the influence of abrasive belt wear and errors, it is difficult to 
achieve ideal results of material removal in actual grinding, so 
the material removal detection of workpieces is particularly 
important [5][6]. 

The detection of material removal state is usually divided 
into direct measurement and indirect measurement. The main 
methods of direct measurement are three-coordinate measuring 
machines and surface profiler, but all have cumbersome 
measurement procedures, which greatly increases the time cost 
and affects the processing efficiency[7][8].  
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Indirect measurement can be divided into mechanism model 
prediction and learning model prediction. It is difficult to predict 
the material removal state by establishing a data model or a 
simulation model [9][10]. Artificial intelligence algorithms can 
establish complex nonlinear mapping relationships between 
sensor signals and targets, so it can be used for target prediction 
under complex conditions in the industry [11]. Benefiting from 
the rapid development of big data intelligent algorithms, indirect 
prediction methods for material removal prediction based on 
analysis of collected signal data have been extensively studied. 

Ren et al. proposed a method for monitoring the material 
removal rate of belt grinding by spark field measurement, the 
correct rate of grinding depth recognition can reach 95%, which 
is an effective method for monitoring the material removal rate 
of belt grinding [12]. Zhong et al. Zhong et al. proposed a back-
propagation artificial neural network. This method improves the 
accuracy of predicting the material removal rate of ultrasonic 
machining [13]. Shen et al. applied Support Vector Fuzzy 
Adaptive Network as a parameter-free nonlinear regression 
technique to model material removal rate. The algorithm retains 
the advantages of fuzzy adaptive network and support vector 
machine, and it is a more effective modeling algorithm for 
complex manufacturing processes [14]. A material removal 
model for Inconel 718 robotic belt grinding based on acoustic 
sensing and machine learning is proposed [15]. A method 
utilizing discrete wavelet decomposition and fast Fourier 
transform is used to identify system idle operating cycles and 
eliminate noise. The results show that the method based on 
acoustic signal and ensemble learning model can effectively 
predict the material removal rate in the complex grinding 
environment. To obtain practical material removal, Wang et al. 
proposed a new method for monitoring material removal using 
multi-sensors and a two-dimensional convolutional neural 
network learning algorithm [16]. To obtain an accurate force 
control model and realize the uniformity of material removal, a 
new method was proposed to monitor the material removal rate 
and corresponding wear state of the abrasive belt online only by 
using the grinding sound signal [17]. This method can provide a 
good basis for the monitoring of material removal rate and 
abrasive belt wear during abrasive belt grinding. These methods 
all use deep learning models to establish a nonlinear relationship 
between signal data and material removal, to predict material 
removal. The superiority of deep learning for predicting material 
removal is proved. 

Although the above research has achieved certain results, 
the collected signals are susceptible to interference and the cost 
is high, which limits its industrial application. Displacement 
sensors have the advantages of easy layout and low cost. 
Therefore, this paper uses the displacement data collected by the 
eddy current displacement sensor to predict the removal state of 
the workpiece. Based on the analysis of displacement data, a 
multi-scale attention convolutional neural network (MACNN) is 
proposed for the prediction of workpiece removal status. This 
method requires relatively little data volume and can achieve 
accurate prediction of material removal status. The main 
contributions of this paper are as follows: 

(1) The method of predicting the state of material removal 
by displacement data is proven feasible. Not only the 
feasibility of predicting material removal using 
displacement data is demonstrated but also the 
feasibility of data augmentation. The first-order 
difference and overlapping sliding window 
enhancement processing are performed on the 
displacement data, which increases the amount of data 
and solves the contradiction between the difficulty of 
collecting a large amount of data and the large demand 
for model data. 

(2) The combination of multi-scale convolutional neural 
network and attention mechanism achieves accurate 
prediction of material removal state. Using parallel 
convolution kernels of different sizes can extract the 
feature data of different frequency bands of the data, 
and combine the attention network to assign different 
weights to the features to achieve accurate extraction 
of important features and improve the prediction 
accuracy of the model. 

The rest chapters of this paper are organized as follows. The 
second section introduces the use of related theories in this paper, 
including one-dimensional convolutional neural networks (1D-
CNN) and Squeeze-and-Excitation Networks (SENet). Section 3 
introduces the data preprocessing method. It mainly includes 
first-order difference, mean normalization processing, and data 
enhancement methods, which are also the premise for the deep 
learning model to achieve good performance. Section 4 is 
experiment and analysis, which introduces the built experimental 
platform and the prediction results of the proposed prediction 
method. Section 5 is the conclusion, which illustrates the 
achievements of this paper. 

 
2. RELATED THEORY APPLICATIONS 

For the feature extraction target of displacement data, this 
paper adopts 1D CNN, attention network Senet, and fully 
connected neural network respectively. 1D CNN is mainly used 
for noise reduction and feature extraction, and SENet is used to 
assign weights to the extracted multi-scale features so that the 
model pays more attention to important features and ignores 
secondary features. The fully connected neural network mainly 
classifies the extracted features and realizes the judgment of 
whether the material removal is qualified. 

 
2.1 1D CNN 

CNN is widely used in fault diagnosis, tool wear, and other 
applications, and has achieved good results [18][19]. 1D CNN is 
mainly used to process one-dimensional signal data, and its 
convolution kernel and pooling kernel are both one-dimensional. 
It has the same structure and properties as CNN. 

CNN has excellent feature extraction ability and can extract 
key features in signal data. The CNN network includes 
convolutional layers and pooling layers. CNN networks can be 
freely combined to build models with better performance [20]. 

The convolution layer is the core layer of CNN, which 
mainly performs convolution operations on the data. The sliding 
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window convolution operation is performed on the data through 
convolution checks of different lengths to extract key features in 
the data. Unlike the fully connected neural network, the neurons 
in the convolution operation have the characteristics of 
parameter sharing, which effectively reduces the complexity of 
the network on the premise of ensuring feature extraction. The 
calculation announcement is as follows. 

 
𝑦𝑦𝑙𝑙 = 𝑘𝑘𝑙𝑙 ∗ 𝑦𝑦𝑙𝑙−1 + 𝑏𝑏𝑙𝑙                           (1) 

 

𝑦𝑦𝑙𝑙′ = 𝑓𝑓(𝑦𝑦𝑙𝑙) = �𝑦𝑦𝑙𝑙    𝑖𝑖𝑓𝑓 𝑦𝑦𝑙𝑙 > 0
𝑎𝑎𝑦𝑦𝑙𝑙    𝑖𝑖𝑓𝑓 𝑦𝑦𝑙𝑙 ≤ 0                     (2) 

 
Where yl-1 is the output of the l-1-th layer, which is the input 

of the lth convolutional layer. yl is the result of the convolution 
calculation, kl is the size of the convolution kernel, and bl is the 
bias. f is the parametric rectified linear unit (PReLU) activation 
function, and a is a fixed value. 

Compared with the rectified linear unit (ReLU), the PReLU 
improves model fitting ability by considering negative values, at 
the same time, almost no additional computational cost is added, 
and the risk of overfitting is smaller [21].  

It is worth noting that BatchNorm (BN) processing is 
required after the convolution operation, that is, before the 
activation function. The role of the BN layer is to keep the input 
of each layer of the network, that is, yl in Equation 1, to maintain 
the same distribution. If BN is not used, when training data with 
different distributions in each batch, the network must adapt to 
different distributions, which will greatly increase the learning 
difficulty of the model and reduce the network training speed. 
The role of BN is equivalent to whitening in image processing, 
that is, to transform the input data distribution to a normal 
distribution with 0 mean and unit variance [22]. BN has the 
advantages of improving model training speed and preventing 
overfitting, and it is widely used in intelligent network models 
[23]. 

The pooling layer is connected to the PReLU layer, and by 
down-sampling the extracted features, the computational 
complexity is greatly reduced on the premise of ensuring that no 
features are lost. The pooling layer does not change the number 
of channels in the network, but only reduces the initial 
characteristics of the data. The pooling layer is not a necessary 
network layer. When the number of data features is significantly 
small, the pooling layer is usually chosen to be canceled. It is 
divided into average pooling and max pooling. Its calculation 
formula is as follows: 

 

𝑦𝑦𝑙𝑙+1
𝑃𝑃𝑎𝑎 = 1

𝑘𝑘
∑ 𝑦𝑦𝑙𝑙,𝑖𝑖′𝑛𝑛
𝑖𝑖=1                         (3) 

𝑦𝑦𝑙𝑙+1
𝑃𝑃𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑦𝑦𝑙𝑙,1′ ,𝑦𝑦𝑙𝑙,2′ . . .𝑦𝑦𝑙𝑙,𝑘𝑘′ �              (4) 

 
Where l+1 represents the l+1-th layer. 𝑦𝑦𝑙𝑙+1

𝑃𝑃𝑎𝑎  and 𝑦𝑦𝑙𝑙+1
𝑃𝑃𝑚𝑚  are the 

outputs of average pooling and max pooling, respectively. k is 
the kernel of the pooling layer. 

The application of CNN in this paper includes denoising and 
multi-scale feature extraction. 

 
2.1.1 DENOISING LAYER 

Because the actual processing situation is complicated, the 
collected signals often inevitably contain noise. Combined with 
the excellent feature extraction ability of convolution, the use of 
a wide-kernel convolution kernel can effectively denoise the data 
[24]. The average pooling process can effectively smooth and 
denoise the data, reduce the influence of noise. The parameters 
used in this paper are that the convolution kernel is 32, the stride 
is 9, and the pooling kernel is 4. The output channel of the 
denoising layer is 8. Its structure is shown in FIGURE 1. The 
preprocessed data is processed by the denoising layer, which can 
not only reduce the interference factors of the data but also map 
the data to a multi-dimensional feature space, which is 
convenient for the subsequent network to further extract features. 

 
Processed Data

·
Convolution
Channels=8
Kernel=32
Stride=9

·

BN PReLU

Average Pooling
Channels=8

Kernel=4

Denoising Layer

 
FIGURE 1: THE FRAMEWORK OF DENOISING LAER 
 
2.1.2 MULTI-SCALE FEATURE EXTRACTION LAYER 

The multi-scale feature extraction (MSFE) layer consists of 
one layer of 1D CNN and three parallel 1D CNNs. Due to the 
complexity of the collected data signals and the use of sliding 
window data enhancement processing in this paper, simple and 
fixed single-scale convolution processing cannot extract diverse 
features. This paper adopts three multi-scale parallel 
convolutional networks. A variety of effective feature layers can 
be extracted. The convolution kernels are 4, 6, and 12 
respectively. Each convolutional layer is followed by BN, 
PReLU, and max pooling. where the pooling kernel is 2. Its 
network structure is shown in FIGURE 2.  

First, a convolutional layer with a channel of 4 is used to 
reduce the number of channels in the noise reduction layer, and 
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further filter the features to remove the initially unimportant 
common features. There is no pooling layer here. Then three 
parallel convolution layers with different convolution kernels 
can filter the features at different scales and extract features in 
different frequency bands. Finally, three parallel pooling layers 
are used to highlight the extracted multi-scale features. 
Similarly, the BN layer and PReLU are sequentially connected 
after each convolutional layer. 
 

BN PReLU

Denoising Layer

·
Convolution
Channels=4

Kernel=3

Max Pooling
Channels=2

MSFE Layer

Kernel=4 Kernel=6 Kernel=12

Kernel=2 Kernel=2 Kernel=2

Convolution
Channels=2

BN PReLU BN BNPReLU PReLU

 
FIGURE 2: THE FRAMEWORK OF THE MSFE LAYER 

 
2.2 ATTENTION LAYER 

Although the multi-scale network can extract features at 
different levels, it also brings the diversity and complexity of 
features. The importance of these features is different, so these 
extracted features need to be screened. The attention layer can 
help the network pay attention to those important features. This 
is similar to when people identify the content of a painting, they 
will focus on representative features and ignore those common 
secondary features. Thus, this paper builds an attention network 
layer to identify those important features. The attention layer 
consists of a one-layer output 6-channel 1D CNN and a SENet. 
Because the extracted features are more complex, a layer of the 
convolutional neural network is used for initial attention 
extraction, and then the SENet network is used for final attention. 
The framework of the attention layer is shown in FIGURE 3. 
Unlike the previous convolutional layers, both the input and 
output channels of the convolutional layer in the attention layer 
are 6. The convolution does not change the channels of the 
original multi-scale layer. This is because the convolution 
operation here is only to integrate the original multi-scale 
features. The same is that the convolution is followed by BN, 
ReLU, and pooling. The decisive role in the attention layer is 
SENet.  

Unlike CNN, SENet is a functional sub-network that can be 
combined with other networks to achieve better results. SENet 
was first proposed by Hu et al, and it has been used in 
combination with various networks and achieved good results 
[25]. The main purpose of SENet is to learn the weights under 
different features and assign different importance, which is 
automatically realized according to the loss value. The 
application of SENet is also very simple and flexible, and it can 
be directly applied to various existing network structures. In this 
paper, SENet is used in conjunction with CNN, applied to the 
multi-scale feature extraction layer, and it is followed by a 
classification fully connected (FC) layer. SENet itself also 
includes a two-layer FU neural network. First, perform the global 
average pool operation on each pass of the input c channels to 
obtain c scalars, and obtain c scalars of 0-1 through FC-ReLU-
FC-Sigmoid, which is the weighted value of the channel. It is 
then weighted corresponding to the original input channel, and 
the feature importance of different channels is learned. The 
action principle of Senet is shown in FIGURE 4. Where y 
represents the features extracted by the multi-scale layers 
integrated by the convolutional neural network. 𝑦𝑦� represents the 
weighted result of y and the importance calculated by SENet. It 
is the final feature value extracted, and it is also the result of the 
combined action of the denoising layer, the MFFE layer, and the 
attention layer. It is the goal of these networks.  

 
MSFE Layer

Convolution
Channels=6

Kernel=3

BN PReLU

Max Pooling
Channels=6

Kernel=2

Attention Layer

SENet

 
FIGURE 3: THE FRAMEWORK OF ATTENTION LAYER 
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Global Average Pooling

FC

FC

Sigmoid

Classification Layer
 

FIGURE 4: THE PRINCIPLE OF SENet 
 

2.3 CLASSIFICATION LAYER 
The classification layer is actually a layer of FC neural 

network. The main function of the above layers is to extract the 
corresponding features of the target, but the classification based 
on these features is the function of the classification layer [26]. 
In this paper, the material removal status is divided into two 
categories: qualified and unqualified. A single input of 800 data 
points is extracted to 24 key features through the denoising layer, 
multi-scale layer, and attention layer. And the purpose of this 
paper is to predict two states of material removal. Therefore, a 
FC neural network with 24 input neurons and 2 output neurons 
is used to output the final goal of this paper. The structure of the 
classification layer is shown in FIGURE 5. To ensure that the 
data output features of each batch obey the same distribution, 
similarly, the feature data is first processed by BN before 
connecting to the FC neural network. 
 
3. DATA PREPROCESSING 

The original data usually has interference factors such as 
noise and errors, so it is necessary to preprocess the data first. In 
this paper, the material removal criteria for different positions of 
the workpiece are the same, and the position of the displacement 
sensor is fixed, resulting in different displacements at different 
positions. The displacement data used in this paper not only 
contains interference factors but also error factors. Direct 
analysis of the displacement data is bound to fail to obtain ideal 
results. This is because the material removal criterion is the same 
for different positions of the workpiece, and the position of the 

displacement sensor is fixed. Thus, the displacement data of 
different positions of the workpiece is different even under the 
same material removal state. 

 
Attention Layer

BN

...

Classification Layer

Removal State
 

FIGURE 5: THE FRAMEWORK OF THE CLASSIFICATION 
LAYER 

 
To eliminate this error, the change data of displacement is 

used as the analysis object, because although the displacement 
data of different positions are different, the changing trend of the 
displacement is similar. In this paper, first-order difference 
processing is performed on the displacement data, and the 
change of displacement is taken as the object of analysis. The 
first-order difference is to subtract the previous data from the 
next data of the time series displacement data in turn to form new 
displacement change data. Its calculation formula is as follows: 

 

�𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖+1′ − 𝑦𝑦𝑖𝑖′   𝑖𝑖 = 1,2,3. . .𝑛𝑛
𝑦𝑦 = [𝑦𝑦1,𝑦𝑦2, 𝑦𝑦3 . . . 𝑦𝑦𝑛𝑛]

𝑛𝑛 = 𝑙𝑙𝑙𝑙𝑛𝑛�𝑦𝑦 ′� − 1 

(5) 
where 𝑦𝑦𝑖𝑖′ represents the i-th data of the original data 𝑦𝑦′. y is 

the displacement change data, n represents the total number of 
data of y. 

It is well known that the performance of deep learning 
networks is proportional to the size of the dataset [27]. In actual 
processing, it is time-consuming and labor-intensive to collect a 
large amount of processing data, which is difficult to achieve. To 
solve this contradiction, this paper uses sampling and sliding 
window enhancement to expand the dataset, which is often used 
in the fault diagnosis of rotating machinery [28]. In actual 
processing, the rotation of the abrasive belt is periodic, which is 
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also the reason for using data expansion. Different amounts of 
sampled data were compared experimentally. The experimental 
results show that when a single sample has 800 data points and 
the number of overlapping data is 20, a good prediction effect 
can be obtained. The data augmentation method is shown in 
FIGURE 6. With this data augmentation method, the source data 
set is augmented from 168 to 29520. Considering that the 
acquisition time of displacement data during actual processing is 
longer than the actual processing time, it is necessary to intercept 
the data first. In this paper, 4901 data from 100 to 5000 were 
extracted.  

 

800

20 20

Start Point:100 End Point:5000

...

 
FIGURE 6:  DATA AUGMENTATION METHODS 

 
Differential preprocessing and denoising layer also have 

limitations on noise control. If the differential data is directly 
analyzed, the local noise features contained in the data will also 
be concerned by the model, which will cause interference. To 
prevent the local features of the extracted sample data from being 
too obvious, mean normalization is performed on the data before 
data enhancement. And normalization processing can not only 
speed up the convergence of the model but also improve the 
model accuracy. Its calculation formula is as follows: 

 

�
𝑚𝑚𝑖𝑖 = 𝑦𝑦𝑖𝑖−𝜇𝜇

𝜎𝜎
𝑚𝑚 = [𝑚𝑚1, 𝑚𝑚2 … 𝑚𝑚𝑛𝑛]   

                             (6) 

 
Where 𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation of the 

data y, respectively. x is the normalized data and is the final data 
used in this paper to predict the material removal status 

The part of data after difference and normalization 
successively are shown in FIGURE 7. It can be seen that the data 
before and after the difference are quite different. It also 
illustrates the necessity of differential processing. Although the 
data trends before and after normalization in FIGURE 7 do not 
change, the value of the data has changed. The minimum and 
maximum values of unnormalized data are -0.01868 and 
0.015503, respectively.  The minimum and maximum values of 
normalized data are -1.78883 and 1.485467, respectively.  That 
is, the value of the data has changed by normalization. Although 
this change is not visible,  these changes can be recognized by 
the model and have a huge impact on the convergence effect of 
the model. It helps to improve model convergence and 
generalization when experimentally validated.  

Raw Data Differential
Data

Normalized
Data

 
FIGURE 7:  DATA PREPROCESSING EXAMPLE  
 
4. EXPERIMENT AND VALIDATION 

In this section, the prediction method MSACNN proposed 
in this paper is used to predict the material removal state, and the 
experimental results show the feasibility of using displacement 
data for prediction. The model training hardware is a high-
performance computer with an NVIDIA GeForce 3060 graphics 
processing unit. 

 
4.1 DATA COLLECTION 

An experimental platform was built using NI-CRIO data 
acquisition system and 2M554D CNC abrasive belt grinder, as 
shown in FIGURE 8.  The 2M554D CNC abrasive belt grinder 
is used to grind the circular workpiece, and the eddy current 
displacement sensor is responsible for collecting the 
displacement data of the workpiece during the machining 
process.  

 

 
FIGURE 8: EXPERIMENT PLATFORM 
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The experimental processing position and the position of 
the displacement sensor are shown in FIGURE 9: SCHEMATIC 
DIAGRAM OF THE EXPERIMENTAL LAYOUT It can be seen that 
the abrasive belt is directly above the workpiece, and the 
displacement sensor is directly below the workpiece. 

 

 
FIGURE 9: SCHEMATIC DIAGRAM OF THE EXPERIMENTAL 
LAYOUT 
 

The experimental processing object is 20CrMnTi alloy steel 
with a length of 30cm and a diameter of 24mm. A displacement 
sensor is used to collect the displacement change data of the 
workpiece during the processing. To increase the amount of 
machining data for a single workpiece and improve the 
practicality of the experiment, the workpiece was repeatedly 
machined 11 times with an interval of 20 mm. Since this paper 
explores the relationship between workpiece removal rate and 
displacement data, an alumina abrasive belt with a larger 
removal rate is used, and its properties are shown in TABLE 1. 

 
TABLE 1: BELT PROPERTIES 

Belt model Sharpen granularity width 

VSM-XK870F  Alumina 
oxide 120# 10 mm 

 
In this paper, the removal state of the material is studied, 

and the workpiece is a round bar, so ∆𝑑𝑑 is used to represent. The 
material removal calculation formula is as follows. 

∆𝑑𝑑 = 𝑑𝑑1 − 𝑑𝑑2 
Where d1 and d2 are the data before and after processing, 

respectively. 
In this paper, the workpiece with ∆𝑑𝑑  less than 0.5mm is 

regarded as unqualified. Based on this, the collected 
displacement data samples can be divided into 70 qualified and 
89 unqualified, a total of 159 pieces of data. 159 sets of data are 
expanded to 29520 sets of data by the expansion method. Due to 
the randomness of the data division, the prediction results of one 
time are not representative. The traditional way of dividing the 
data into training datasets and test datasets according to a certain 
proportion cannot accurately reflect the performance of the 
model. K-fold cross-validation is a way of dividing data sets. 
Different from traditional data division, it can avoid the 
limitations and particularities of fixed division data sets, and is 
widely used in modeling applications [29]. K-fold cross-
validation means that the data is divided into K sub-samples, K-
1 samples are used as the training dataset, and another sample is 
used as the test dataset.  

In order to further prove the reliability of the method, the K6 
cross-validation method is used. The dataset is divided into 6 
parts K1, K2, K3, K4, K5, K6. The division of the dataset is 
shown in FIGURE 10. The average of the six prediction results 
is used as the final prediction result.  
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FIGURE 10: DATA DIVISION ACCORDING TO 6-FOLD CROSS 
VALIDATION 

 
4.2 METHOD VALIDATION 

The material removal state prediction method MSACNN 
proposed in this paper consists of five parts. The first part is the 
data preprocessing part. Through the first-order difference, mean 
normalization, and data enhancement processing of the data, it is 
the premise that the data can be used for deep learning prediction. 
The second part is the noise reduction part, which uses a wide-
kernel convolutional neural network to perform noise reduction 
processing on the data. The third part is the multi-scale feature 
extraction part, which is mainly composed of three parallel 
convolutional neural networks with different convolution 
kernels, which can propose the features of different frequency 
bands of the data. The fourth part is the attention mechanism 
part, which is mainly composed of a convolutional neural 
network and senet. A convolutional neural network pre-extracts 
multi-scale features, and then SENet assigns the importance of 
the extracted features to help the model pay more attention. 
important features. The fifth part is the classification part. There 
is a single-layer neural network to classify the extracted features 
and realize the prediction and judgment of the removal state. It 
is the joint action of these five parts that ensures the predictive 
ability of the model. 

The hyperparameter learning rate and batch size of the 
model are 0.0001 and 768, respectively. And Adam optimizer is 
used to optimize training[] . The datasets were trained 100 times 
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separately under k6 cross-validation. The loss function for model 
training is shown in FIGURE 11. The loss function curve is only 
to verify whether the model converges, so this paper only draws 
the loss function curve for one verification, instead of drawing 
all the six loss function curves. It can be seen from the figure that 
the loss function converges to around 0.21, and does not 
converge to 0. As can be seen from the figure, although the loss 
function does not converge to 0, it converges to around 0.21. This 
not only proves that the model has learned specific features but 
also avoids overfitting the model to the training dataset. This is 
provable in the accuracy of the test dataset. 
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FIGURE 11：THE LOSS CURVES OF THE MSACNN 
 

It can be seen from the loss function curve of the model that 
the prediction model has fitted the nonlinear relationship 
between the displacement data and the material removal state. 
Therefore, the learned model is used for validation on the test 
dataset. To eliminate the chance of prediction results and validate 
the robustness of the model, prediction validation was performed 
on the K1, K2, K3, K4, K5, and K6 datasets of K6 cross-
validation respectively. The predicted curves of K1 to K6 are 
shown in FIGURE 12: It can be seen that although the final 
prediction accuracy is different, the accuracy curve from k1 to 
k6 converges well.  There are slight fluctuations in the prediction 
accuracy of different datasets. The main reason is the problem 
with the dataset. Due to the dataset being small, it cannot be 
directly used for the establishment of deep learning models. 
Therefore, this paper expands the dataset. This results in a certain 
imbalance in the dataset. However, the overall prediction 
accuracy of the model is still very well. The average of the 6 
predictions is used as the final material removal state prediction 
accuracy.  

The average precision curve is shown in FIGURE 13. In this 
paper, the average prediction curve is taken as the final model 
performance curve. It can be seen that the average prediction 
accuracy curve is very smooth, indicating that the model has 

good prediction performance and can accurately identify the 
features of different states of material removal.  
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FIGURE 12: PREDICTION CURVES FROM K1 TO K6 
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FIGURE 13: THE ACCURACY CURVE OF THE MSACNN 
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The prediction accuracies of k1 to k6 are shown in TABLE 
2. The prediction accuracy of the material removal state is a 
minimum of 85.5% and a maximum of 91.0%. The average 
prediction accuracy of material removal status is 87.9%. It can 
be seen that the model prediction precision of K1, K2, and K4 
data sets is basically the same, while the model prediction 
precision of K2, K5, and K6 data sets has little difference. That 
is to say, the prediction accuracy of models under different data 
sets is different, which means that the single accidental 
prediction accuracy cannot be used as the final prediction result. 
It proves the necessity and rationality of k6 cross validation in 
this paper.  

 
TABLE 2: PREDICTION ACCURACY OF EACH PART OF THE 
DATASETS 

Datasets Accuracy 
k1 85.5% 
k2 86.9% 
k3 89.0% 
k4 85.6% 
k5 91.0% 
k6 89.1% 

Average 87.9% 
 

The average prediction results curve of the 6 predictions is 
shown in FIGURE 14. 
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FIGURE 14: THE AVERAGE PREDICTION RESULTS 
 

It can be seen that although the prediction result of the 
removal rate prediction method proposed in this paper has 
fluctuations, the overall fluctuation of the curve is not obvious 
and can be accepted. There should be two reasons for the 
fluctuation. On the one hand, interference errors are inevitably 
introduced when data expansion is adopted. For example, there 

are differences between single samples in the same removal 
state. On the other hand, the material removal state is defined 
according to the diameter difference of the workpiece. Human 
error is inevitable in measurement. For example, because the 
workpiece surface is not smooth after grinding, a slight deviation 
of the measuring point will lead to the difference in measured 
diameter. These factors are hard to avoid entirely. Therefore, the 
prediction method proposed in this paper can solve the 
contradiction between the small amount of data and the complex 
model parameters, and it can predict the removal rate to a certain 
extent, which can be applied to the actual processing prediction, 
and effectively reduce the defective rate of products. 
5. CONCLUSION 

This paper proposes a new method to remove state 
prediction, named MACNN. The experimental results show that 
the average prediction accuracy of the prediction method is 
87.9%, it can be used to determine the material removal state 
during processing, which is beneficial to the online monitoring 
of the processing quality.  

In this paper, using displacement data to predict material 
removal status proved feasible. The difference and sliding 
window processing of displacement data solves the contradiction 
between the large amount of data required by the deep learning 
model and the difficulty of collecting a large amount of data. 
Then, the combination of multi-scale CNN and SENet improves 
the attention of important features, which improves the 
prediction accuracy of the model. 
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