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Abstract

This work focuses on obtaining a more general diffusion magnetic resonance imaging (MRI) signal representation that
accounts for a longitudinal T1 and transverse T⋆

2 relaxations while at the same time integrating directional diffusion
in the context of scattered multi-parametric acquisitions, where only a few diffusion gradient directions and b-values
are available for each pair of echo and inversion times. The method is based on the three-dimensional simple harmonic
oscillator-based reconstruction and estimation (SHORE) representation of the diffusion signal, which enables the esti-
mation of the orientation distribution function and the retrieval of various quantitative indices such as the generalized
fractional anisotropy or the return-to-the-origin probability while simultaneously resolving for T1 and T⋆

2 relaxation
times. Our technique, the Relax-SHORE, has been tested on both in silico and in vivo diffusion-relaxation scattered
MR data. The results show that Relax-SHORE is accurate in the context of scattered acquisitions while guaranteeing
flexibility in the diffusion signal representation from multi-parametric sequences.

Keywords: diffusion MRI, diffusion-relaxation, multi-parametric sequence, brain, microstructure

1. Introduction

Diffusion and relaxation are two complementary mech-
anisms that allow the in vivo examination of the brain
tissue microstructure in a non-invasive way with magnetic
resonance imaging (MRI). The former provides informa-
tion about the diffusive motion of water molecules on a
microscopic level and is sensitive to the geometry of the tis-
sue’s microstructure. The latter is summarized by the lon-
gitudinal and transverse relaxation times, T1 and T2/T⋆

2,
which are a result of the physicochemical interactions of
water molecules with their surroundings.

The diffusion process can be represented in many dif-
ferent ways depending on the chosen acquisition scheme.
These include the apparent diffusion coefficient (ADC),
which reflects the mean diffusion inside a voxel (Le Bihan
et al., 1986), diffusion tensor imaging (DTI) (Basser et al.,
1994), high angular resolution diffusion imaging (HARDI)
(Tuch, 2004), diffusion kurtosis imaging (DKI) (Jensen
et al., 2005), and the q-space methods designed to re-
trieve the apparent ensemble-average propagator (EAP)
from densely sampled data (Wedeen et al., 2005; Wu and
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Alexander, 2007) eventually collected on multiple “shells”
(Özarslan et al., 2013b).

The linear expansion of the diffusion signal in basis
functions such as simple harmonic oscillator based recon-
struction and estimation (SHORE) (Özarslan et al., 2009)
has revealed useful in research and clinical scenarios. Once
the basis coefficients are known it is possible to analyt-
ically approximate both the diffusion signal and the ap-
parent EAP. Knowledge of this enables the calculation of
various quantitative indices that are related, through the
diffusion process, to the geometry of the brain’s tissue mi-
crostructure. These are, for instance, the return-to-origin
probability (RTOP), return-to-axis probability (RTAP),
and return-to-plane probability (RTPP) which are related,
in the context of pore theory (Callaghan et al., 1992), to
the pore’s mean volume, cross-sectional area, and length
respectively (Özarslan et al., 2013b). These quantitative
indices are of interest to research and clinicians as they
provide insights into tissue heterogeneity (Brusini et al.,
2018), alterations in ischemic stroke (Brusini et al., 2016;
Boscolo Galazzo et al., 2018), cognitive impairment de-
tection (Pitteri et al., 2021), aging and dementia (Moody
et al., 2021), and multiple sclerosis affecting gray matter
areas (Brusini et al., 2021).

The complexity of biological material makes the pre-
cise assessment of tissue properties challenging (Beaulieu
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and Allen, 1994; Jones et al., 2013; Afzali et al., 2021). To
gather more information about the tissue, multi-parametric
acquisitions have been used to simultaneously characterize
diffusion and relaxation phenomena. In these acquisitions
(Hutter et al., 2018; Leppert et al., 2021), the inversion
time (TI) and/or echo time (TE) are changed while apply-
ing a diffusion weighting, generally described by a b-value.
By varying TI it is possible to estimate the longitudinal
relaxation time, T1, while the use of multiple TEs allows
estimating the transverse relaxation time, T2, or the effec-
tive one T⋆

2.
Multi-parametric acquisitions typically include an ex-

tensive collection of measurements at different b-values,
TIs, or TEs, which entails long acquisition times that are
unpractical in a typical clinical routine. To cope with this,
multi-parametric strategies like slice-shuffled inversion- re-
covery (Leppert et al., 2021), MESMERISED (an acronym
for Multiplexed Echo Shifted Multiband Excited and Re-
called Imaging of STEAM Encoded Diffusion) (Fritz et al.,
2021) or ZEBRA (acronym for Z-location shuffling, mul-
tiple Echos and B-interleaving for Relaxometry-diffusion
Acquisitions) (Hutter et al., 2018) have been developed
to sample the acquisition parameter space determined by
echo time, inversion time, and b-values in a scattered way.
In particular, ZEBRA consists of a simultaneous multislice
interleaved acquisition strategy to acquire MRI volumes
with unique combinations of TE, TI, b-value, and gradient
direction where it is not possible to find any two volumes
that share the same TE and TI for a distinct b-value and
gradient direction.

To simultaneously analyze the diffusion and relaxation
processes, in general, three main approaches are employed,
namely continuum modelling, cumulant expansion of the
signal, and biophysical modelling (Slator et al., 2021). Con-
tinuum models provide information about the diffusion-
relaxation correlation spectra. However, many measure-
ments are required due to the ill-posedness of the inverse
Laplace transform estimation procedure. The correlation
spectra alternatively can be obtained by combining simi-
lar neighbouring voxels spectra (Kim et al., 2017) or as-
suming that spectra along one dimension are the result of
marginalization of higher-dimensional spectra (Benjamini
and Basser, 2016). Approximation of the diffusion-relaxation
signal by its cumulant expansion is another possibility that
enables computation of the joint diffusion-relaxation mo-
ments (Ning et al., 2019). Lastly, the diffusion-relaxation
signal can be characterized with biophysical models that
allow distinguishing distinct compartments that contribute
to the signal (Panagiotaki et al., 2012). More recently,
(Martin et al., 2021) proposed a more general formulation
of the multidimensional problem, which includes the use of
diffusion encodings based on free waveforms. In this work,
we do not follow any of the three approaches mentioned
above as we assume the single compartment signal model.
We focus mainly on modelling the data in the context of
scattered acquisitions, which is not a trivial task per se,
rather than representing the whole multidimensional spec-

trum.
Although scattered acquisitions are more efficient from

a sampling perspective, the calculation of quantitative dif-
fusion indices, such as the RTOP, requires a continuous
representation of the diffusion signal across b-values and
directions (Özarslan et al., 2013b; Fick et al., 2016). In-
deed, indices like RTOP, RTPP, and RTAP are integral
measures of the signal that ideally require the knowledge
of the diffusion signal continuously and towards infinite b-
values. Therefore, since for each combination of TI and TE
only a few diffusion gradient encodings (b-values and di-
rections) are available, scattered acquisitions pose relevant
challenges for the estimation of these continuous represen-
tations, such as the SHORE.

We propose an estimation strategy for continuously
representing the signal comprising relaxation and diffu-
sion decays that is robust for use in the context of scat-
tered acquisitions strategies. We base the representation
of the diffusion directional decay on SHORE to guarantee
the fidelity of the reconstructed signal on a wide range of
b-values and to retain the directional information of the
diffusion process. In particular, the proposed estimation
strategy consists of alternately repeating two estimation
procedures: one for relaxation, based on a nonlinear opti-
mization procedure, and one for the diffusion part of the
signal based on linear regression. We show that this strat-
egy allows us to robustly estimate the microstructural dif-
fusion indices and the relaxation times from scattered data
such as that collected for the Multidimensional Diffusion
(MUDI) challenge (Pizzolato et al., 2020) based on ZE-
BRA (Hutter et al., 2018).

2. Theory

2.1. Non-directional diffusion-relaxation scattered MR sig-

nal representation

Considering a simple single-compartment model the
signal coming from a multi-parametric sequence can be
represented as

S(b,θ) = PD

(
1− IE exp

(
−
TI

T1

)
+ exp

(
−
TR

T1

))

× exp

(
−
TE

T⋆
2

)
exp (−bADC) , (1)

where S(b,θ) is the signal parametrized by the sequence
variables θ = (TE, TI, TR) namely, echo time TE, inver-
sion time TI and repetition time TR, b is the diffusion
weighting, ADC is the apparent diffusion coefficient, PD
is the proton density, and IE is the inversion efficiency.
Assuming a full inversion and TR ≫ T1, and inversion
efficiency to be IE = 2 we can simplify Eq. (1) as follows

S(b,θ) = R(ρ|θ) exp (−bADC) , (2)

where R(ρ|θ) is the relaxation part defined as

R(ρ|θ) = PD

(
1− 2 exp

(
−
TI

T1

))
exp

(
−
TE

T⋆
2

)
(3)
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with ρ = (PD,T1,T
⋆
2) and the parameter θ simplified

to θ = (TE, TI). The signal representation specified by
Eq. (2) is referenced as Relax-ADC as it assumes the ADC
to represent the diffusion part in the diffusion-relaxation
MR signal. Assuming that the diffusion coefficient is mod-
elled using the gamma distribution one can present the

diffusion signal as S(b) = S(0) (1 + (KDb)/3)
−3/K

with K
being the kurtosis term and diffusion coefficient D modeled
using the gamma distribution (Jensen and Helpern, 2010).
A further extension of Relax-ADC thus is the gamma kur-
tosis diffusion-relaxation MR recently introduced by Bo-
gusz et al. (2020)

S(b,θ) = R(ρ|θ)

(
1 +

KDb

3

)−3/K

. (4)

Henceforth, we refer to the representation given in Eq. (4)
as to Relax-Kurtosis. However, the representations speci-
fied by Eqs. (2) and (4) take no account of the direction-
ality of the diffusion process and are valid mostly for low
or/and moderate b-values. In the next section, we thus
discuss a generalization of these representations that take
into account also directionality as well as the non-Gaussian
nature of the signal at high b-values.

2.2. Directional diffusion-relaxation scattered MR signal

representation via a diffusion tensor

To obtain the information about the direction of the
diffusion process with a diffusion-relaxation MR acquisi-
tion, a signal representation based on DTI has been intro-
duced by De Santis et al. (2016a,b)

S(b,θ,u) = R(ρ|θ) exp
(
−buTDu

)
, (5)

where S(b,θ,u) is the diffusion-relaxation MR signal ac-
quired in direction u being a unit vector and D is the
diffusion tensor algebraically represented by a symmetric
positive-definite matrix of size 3 × 3. This is approach is
similar to that presented in Pizzolato et al. (2020). The
signal representation in Eq. (5) is referenced as Relax-DTI.
This formulation, however, is valid mostly under the low
b-value regime and entails all the limitations of DTI Mori
and Zhang (2006). Note, however, in the formulations
originally presented by De Santis et al. (2016a,b), multi-
ple second-order tensors are used to represent the diffusion
part for each fibre separately via a mixture model.

2.3. Directional diffusion-relaxation scattered MR signal

representation using functional bases

The diffusion MR signal attenuation can be decom-
posed linearly via basis functions that represent the ra-
dial information, i.e. across b-values, and the angular in-
formation, i.e. over directions, of the diffusion process.
One example of radial profile representation is the so-
called one-dimensional SHORE that aggregates orthogonal
Hermite polynomials to decompose the diffusion MR sig-
nal (Özarslan et al., 2009, 2013a). The three-dimensional

SHORE (hereinafter referred to as the 3D-SHORE) ex-
tends the one-dimensional version to account for the angu-
lar/directional information (Özarslan et al., 2013b; Avram
et al., 2016). Although various other functional represen-
tations have been proposed so far (e.g., Assemlal et al.
(2009); Cheng et al. (2010); Descoteaux et al. (2011); Ning
et al. (2015)), 3D-SHORE attracted particular attention
in the community as it is characterized by a relatively high
reproducibility of quantitative measures (Avram et al.,
2016), possibilities in handling outliers (see for example
Fick et al. (2016); Koch et al. (2019); Varela-Mattatall
et al. (2020) in the case of MAP-MRI basis) and exten-
sions to time-dependent diffusion MRI (Fick et al., 2018;
Filipiak et al., 2019). In this paper, however, we use 3D-
SHORE as it enables us to represent the directionality of
the signal in a fibre crossing scenario more robustly than
other solutions (e.g. Fick et al. (2015)) and to avoid the
estimation of the anisotropic scaling factor that is required
with MAP-MRI.

The 3D-SHORE basis incorporates the product of a
radial oscillator and angular spherical harmonics to repre-
sent the normalized diffusion MR signal (Özarslan et al.,
2009; Cheng, 2012)

E(q) =
L∑

l=0,even

(L+l)/2∑

n=l

l∑

m=−l

anlmΦnlm(q), (6)

where q is the wave vector, anlm are the coefficients related
to the basis functions Φnlm(q) given in the form

Φnlm(q) = Gnl(q)Y m
l (u) (7)

with radial Gnl(q) and angular Y m
l (u) parts, defined re-

spectively as

Gnl(q) =

[
2(n− l)!

ζ3/2Γ(n + 3/2)

]1/2 (
q2

ζ

)l/2

× exp

(
−
q2

2ζ

)
L
l+1/2
n−l

(
q2

ζ

)
(8)

with Γ(·) being the gamma function, n is the radial order,
ζ is scale parameter estimated from the data, Lα

k is the
associated Laguerre polynomial defined in formula repre-
sentation (Gradshteyn and Ryzhik, 2014)

Lα
n(x) =

n∑

k=0

(−1)k
(n + α)!

(n− k)! (α + k)! k!
xk.

and Y m
l (u) is the spherical harmonics function of degree l

and order m, u = q/∥q∥ is a unit vector, and q = ∥q∥.
Note that, since diffusion is a real and symmetric pro-

cess, only even order spherical harmonics components are
considered.

Hence, in this work, we represent the diffusion-relaxation
signal as:

S(q,θ) = R(ρ|θ)

L∑

l=0,even

(L+l)/2∑

n=l

l∑

m=−l

anlmΦnlm(q). (9)
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We refer to the representation in (9) as to the Relax-
SHORE. This representation describes both relaxation and
diffusion while allowing us to account for the directionality
of the diffusion process and for the non-Gaussianity that
needs to be taken into account at high b-values.

2.4. Numerical optimization of directional diffusion-relaxation

scattered MR signal representations

By assuming homogeneous compartments for relaxation
the signal representations defined in Eqs. (5) and (9) can
be rewritten by separating the relaxation and diffusion
terms as follows:

S(q,θ) = R(ρ|θ)E(q). (10)

To fit a signal representation given by Eq. (5) or (9), we
use a two-step alternating method. This approach in-
cludes fitting the relaxation part once fixing the diffusion
part to be constant and then fitting the diffusion part
leaving the relaxation part untouched. However, in the
case of Relax-ADC and Relax-Kurtosis, we estimate all re-
laxation and diffusion parameters with a single optimiza-
tion scheme using the mean squared differences between
the data and fitted representation that is solved via the
Levenberg-Marquardt algorithm. Below, we present the
numerical procedures used to fit both directional repre-
sentations, namely the Relax-DTI and Relax-SHORE.

Relax-DTI: In order to estimate the unknown param-
eters of the signal represented by Eq. (5), we start by fit-
ting the Relax-Kurtosis representation (4) to the diffusion-
relaxation scattered MR signal using a non-linear least-
squares cost function optimized via the Levenberg-Marquardt
algorithm. In particular, we are interested in the unknown
parameters of R(ρ|θ), i.e. T1, T⋆

2, and PD. By using these
values as initial estimates, the next step consists of fitting
a diffusion part expressed by a diffusion tensor D. This is
done by a non-linear least-squares method over the resid-
uals defined between the data and a signal representation
modified by the relaxation part

rk = Sk −R(ρ|θk) exp
(
Wkγ

T
)
, (11)

where rk is the residual between the diffusion-weighted
signal Sk from k-th acquisition direction over a fixed sin-
gle b-value, Wk = [−bku

2
kx,−bku

2
ky,−bku

2
kz,−bkukxuky,

−bkukxukz,−bkukyukz] is the row from the design matrix
for k-th acquisition, γ = [Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]
presents the elements of a second-order tensor, and R(ρ|θk)
is the estimated relaxation contribution to the k-th sam-
ple. In short, we estimate three relaxation parameters (i.e.
T1, T⋆

2, and PD) and six elements of the diffusion tensor
D.

Relax-SHORE: To fit the representation given by Eq. (9),
we first fit the Relax-Kurtosis formula (4) using the non-
linear least-squares method solved by the Levenberg-Marquardt
algorithm. Once the model is fitted to the signal, i.e. the
set of parameters T1, T⋆

2, PD, D and K are obtained, we

calculate the relaxation part R(ρ|θ) and multiply it with
the 3D-SHORE basis

Φ′
nlm(q) = R(ρ|θ)Gnl(q)Y m

l (u) (12)

where Φ′
nlm(q) we call the modified 3D-SHORE basis.

Next, we estimate the coefficients of the bases (12) via
the ordinary least-squares method â′ = (Φ′TΦ′)−1Φ′TS

with â′ being the vector of estimated 3D-SHORE coeffi-

cients, â′nlm, Φ′ ∈ RN×M is a design matrix with each col-
umn presenting the modified basis function Φ′

nlm(q) with
M being the number of basis atoms (e.g. for the radial
order of L = 4/6 the number of functions is 22/50) and
S ∈ RN is the vector of data samples used to fit the rep-
resentation. Finally, the signal is reconstructed via the

estimated coefficients â′nlm and we optimize the relaxation
part via the Levenberg-Marquardt algorithm. In compar-
ison to the initial step, this time, we optimize only the
relaxation component, i.e., we look for the parameters T1,
T⋆

2 and PD.
This iterative algorithm is repeated unless the maxi-

mum norm of relative changes (MNRC) in estimated rep-
resentation parameters between two consecutive iterations
is smaller than or equal to ϵ, fixed in advance, i.e.

MNRCj =

∥∥∥∥
xj − xj−1

xj−1

∥∥∥∥
∞

≤ ϵ (13)

with xj = [PDj ,T1j ,T
⋆
2j ,a

′
j ] being the parameter vector

estimated in j−th iteration, the division between two vec-
tor parameters is carried out on a point-by-point basis and
|| · ||∞ is the maximum norm of the vector.

The optimization scheme presented here is compactly
summarized in Algorithm 1. Note that the procedure is
flexible as it enables to use other functional bases (Özarslan
et al., 2013a; Ning et al., 2015), or even regularized-based
solutions (Fick et al., 2016; Koch et al., 2019; Varela-
Mattatall et al., 2020).

Once estimated the Relax-SHORE signal representa-
tion, we obtain PD, T1 and T⋆

2 relaxation times and com-
pute the generalized fractional anisotropy (GFA) from the
coefficients of the ODF (Tuch, 2004), as well as the EAP-
related indices including RTOP, RTAP, RTPP and mean
squared displacement (MSD), all computed analytically

from the estimated basis coefficients â′nlm.

3. Materials and methods

3.1. In vivo diffusion-relaxation scattered MR data

We use the diffusion-relaxation scattered MR datasets
from the MICCAI 2019 MUltidimensional DIffusion (MUDI)
challenge (Pizzolato et al., 2020) that includes acquisitions
from five healthy volunteers (2F, 3M, 19-46 years old). The
subjects were scanned with a clinical 3T Philips Achieva
scanner (Best, Netherlands) equipped with a 32-channel
head coil. The single-shot PGSE EPI sequence was used
with ZEBRA modifications as indicated by Hutter et al.
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Algorithm 1: Relax-SHORE fitting procedure

Input: Initial parameters: T1, T⋆
2, PD, D, K.

Output: T1, T⋆
2, PD, SHORE coefficients a′nlm.

Variables: j ← 1

1 Fit the Relax-Kurtosis (4) to the scattered data
via the Levenberg-Marquardt algorithm. Output:
PD0, T10, T⋆

20, D0, K0

2 Set x0 with estimated parameters and 0 vector for
SHORE coefficients: x0 ← [PD0,T10,T

⋆
20,0]

3 do

4 Calculate R(ρ|θ) part with T1j , T⋆
2j , PDj .

5 Modify the SHORE basis via Eq. (12).
Output: Φ′

j ,

6 Estimate the coefficients of the modified

SHORE basis: â′j = (Φ′T
j Φ′

j)
−1Φ′T

j S.

7 Calculate the diffusion part with estimated
modified SHORE coefficients â′j

8 Optimize the relaxation part R(ρ|θ). Output:
PDj+1, T1j+1, T⋆

2j+1,

9 xj ← [PDj ,T1j ,T
⋆
2j ,a

′
j ]

10 j ← j + 1

11 while

∥∥∥xj−xj−1

xj−1

∥∥∥
∞

> ϵ

(2018). The acquisition incorporated the following pa-
rameters: 28 inversion times (TI ∈ [20, 7322] ms), three
echo times (TE ∈ {80, 105, 130}ms), four b-value diffusion
shells (b ∈ {500, 1000, 2000, 3000} s/mm2) and 105 differ-
ent gradient directions leading to 1344 volumes in total.
Other acquisition parameters were as follows: TR = 7500
ms, resolution = 2.5 × 2.5 × 2.5 mm3, pulse separation
time/diffusion gradients length ∆/δ = 39.1/24.2 ms, FOV
= 220× 230× 140 mm, parallel accelerated reconstruction
via SENSE = 1.9, halfscan = 0.7, and multiband factor 2.
Total scan time for a single subject was about 52 minutes.

3.2. In silico diffusion-relaxation scattered MR data

The ball and stick model (Behrens et al., 2003) was
used to represent the diffusion part of the signal. Two
sticks contribute each with the 35% of the signal, both with
axial diffusivity λ∥ = 1.5 × 10−3 mm2/s and crossing at
different angles are fixed, i.e. {90◦, 75◦, 60◦, 45◦, 30◦, 15◦}.
The remaining 30% of the signal, is modelled as free water
diffusion with diffusivity set to 1.5 × 10−3 mm2/s. The
relaxation part is modelled using Eq. (3). The distribu-
tion of TIs, TEs, b-values and gradient directions were
retrieved from the in vivo diffusion-relaxation scattered
MR data. Other simulation parameters were as follows:
PD = 100, T1 in the range [400, 3600] ms with a step size
of 200 ms, T⋆

2 in [10, 110] ms with a step size of 20 ms
and IE = 2. Rician noise (Gudbjartsson and Patz, 1995)
with the signal-to-noise ratio SNR ∈ [10, 30], defined in
terms of the baseline acquisition (b = 0), was added to the
ground-truth data.

3.3. Experimental setup

The Relax-SHORE method is compared with Relax-
ADC (2), Relax-Kurtosis (4) and Relax-DTI (5). The ini-
tial parameters used for the non-directional methods are
as follows: PD = PDmax with PDmax being the maximum
value of the signal over all acquisitions, T1 = 800 ms,
T⋆

2 = 60 ms, ADC = 10−3 mm2/s, and in the case of
Relax-Kurtosis – D = 10−3 mm2/s and K = 0.5. These
initial values are adopted for all voxels over the in vivo

brain data. For synthetic experiments we fixed the initial
PD parameter to be PD = 100. For all experiments, the
radial order for Relax-SHORE is set to L = 4 unless other-
wise specified and the scale ζ in Eq. (8) is computed using
the formula ζ = 1/(8π2τMD) where MD is the mean diffu-
sivity retrieved from the diffusion tensor with τ = ∆−δ/3
being the effective diffusion time.

4. Results

This section presents the numerical evaluations of diffusion-
relaxation scattered MR signal representation fitting meth-
ods using both in silico and in vivo data.

4.1. In silico experiments

We first check the convergence of the iterative fitting
process in the Relax-SHORE algorithm under varying signal-
to-noise ratios (SNRs) and with various acquisition pa-
rameters (i.e. TE, TI, and b-value). In this experiment,
we fit the signal representation (9) using all 1344 vol-
umes and evaluate the changes in the Relax-SHORE rep-
resentation, i.e. the changes in the vector x in function
of iteration number. We varied the SNR (i.e. SNR ∈
{10, 15, 20, 25, 30}) and calculated the maximum norm of
the relative changes of model parameters with Eq. (13)
including all 1344 volumes. These maximum norms were
averaged over all noise instances within a specific SNR
and relaxation times (i.e. T1 in the range of [400, 3600]
ms with a step size of 200 ms, T⋆

2 belonged to the in-
terval of [10, 110] with a step size of 20 ms) and angles
defined between two sticks in the ball & stick model in-
cluded 90◦, 75◦, 60◦, 45◦, 30◦ and 15◦. The results of this
experiment are shown in Fig. 1. The maximum norm of
relative changes of the representation vector x decreases
with the iteration number, which means that the solution
converges. With only five iterations, the Relax-SHORE
method was able to reach a maximum norm of relative
changes below 10−5 with all evaluated SNR levels.

We present now two experiments on the robustness of
T1 and T⋆

2 estimation from diffusion-relaxation scattered
MR data as a function of the SNR. In the first experi-
ment, we compared the four methods mentioned before,
i.e. Relax-ADC, Relax-Kurtosis, Relax-DTI, and Relax-
SHORE, and evaluated the mean relative error (MRE)
calculated between the ground-truth relaxation values and
the estimated ones from the noisy data at a specified SNR.
The MRE is reported in %. Again, the error is averaged
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Figure 1: The maximum norm of relative changes of the Relax-
SHORE parameters in function of iteration number under different
SNRs. The Relax-SHORE model was fitted to synthetically gener-
ated data using the ball & stick model with different ground truth
parameters including T1 ∈ [400, 3600] ms with a step size of 200 ms,
T⋆

2
∈ [10, 110] with a step size of 20 ms and angles defined between

two sticks 90◦, 75◦, 60◦, 45◦, 30◦ and 15◦.

including all combinations of simulated T1, T⋆
2 and angles

defined between two sticks. The results of this experiment
are illustrated in Fig. 2. In general, the estimation error
decreases with increasing the SNR. For the Relax-SHORE,
the T1 estimation error is the lowest among other tested
methods used to retrieve the relaxation parameters, while
in the case of T⋆

2, we observe a comparable MRE for all
tested techniques. In a second experiment, for which re-
sults are illustrated in Fig. 3, we report the distribution
of absolute errors of T1 and T⋆

2 estimates using Relax-
SHORE from diffusion-relaxation scattered MR data un-
der two fixed SNR, i.e. SNR ∈ {10, 20}. The configuration
used to generate the synthetic data for this experiment
strictly follows the scheme used previously. Contrary to
the previous experiment, this one focuses on the absolute
differences between the original and the estimated relax-
ation times from the noisy data at a given SNR. In the
figure we present the first, second (median), and third
quartiles of the absolute error and whiskers showing the
minimal and maximal absolute errors. Note that the abso-
lute error also depends on the simulated relaxation times,
i.e. the median and the variability of the error increase for
higher relaxation times.

We now analyze the accuracy of the Relax-SHORE in
describing the directional information of the diffusion pro-
cess from diffusion-relaxation scattered MR data. Specif-
ically, we analyze the capabilities to distinguish the main
fibre direction in a two-sticks crossing scenario. To this
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Figure 2: Mean relative error (MRE) of T1 and T⋆

2
estimations com-

puted for different diffusion-relaxation scattered MR signal repre-
sentations (i.e. Relax-ADC, Relax-Kurtosis, Relax-DTI, and Relax-
SHORE) in function of SNR. The MRE was calculated between the
ground-truth values and the estimated ones from the noisy data at a
specified SNR, and aggregated over all combinations of T1, T⋆

2
and

angles given between two sticks.
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Figure 3: Absolute errors of T1 and T⋆

2
estimation with Relax-

SHORE and under different experimental T1 and T⋆

2
values, all eval-

uated under SNR ∈ {10, 20}. The box plots present the quartiles
(i.e. first, second and third), while the whiskers show the minimal
and maximal absolute errors.

end, we generate the diffusion-relaxation scattered MR sig-
nals with longitudinal relaxation T1 = 800 ms and trans-
verse relaxation T⋆

2 = 90 ms combining different SNRs and
angles given between two fibres, and estimate the ODFs
using the Relax-SHORE representation with radial order
L = 6. In this experiment, the ODFs were estimated for
11554 equally spaced points on a unit sphere generated
with the repulsion algorithm using Diffusion Imaging in
Python (DIPY) package (Jones et al., 1999; Garyfallidis
et al., 2014). The results presented in Fig. 4 show that
two fibres can be distinguished once the angle between
them is defined to be at least 45◦. For smaller angles, the
method determines only one single direction representing
two fibres. Note the technique exhibits robustness regard-
ing the SNR level of the baseline signal (b = 0), producing
only slightly deteriorated results at SNR = 20, which is a
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Figure 4: The ODFs computed from the estimated Relax-SHORE
representation of diffusion-relaxation scattered MR synthetic signal
under different SNRs and crossing angles fixed between two sticks.

typical value in diffusion MRI acquisitions.

4.2. In vivo experiments

We now present the results for in vivo diffusion-relaxation
scattered MR data acquired from healthy subjects (see sec-
tion 3.1). We start with a prediction experiment that aims
at signal reconstruction from a selected subject (cdmri0011)
using the four methods mentioned above, namely Relax-
ADC, Relax-Kurtosis, Relax-DTI and Relax-SHORE. The
model was fitted to the 536 selected samples, while the
prediction was made for the remaining 808 unseen sam-
ples (1344 acquisitions in total). The subsampling scheme
considers all b-values, reducing also the amount of infor-
mation in terms of TE and TI. To subsample the data, we
choose the volumes with the highest coefficient of variation
(CV)

CVi =
σi

µi
, i = 1, . . . , 1344 (14)

with CVi being the coefficient of variation calculated for
i-th volume out of 1344, µi and σi are the sample mean
and sample standard deviation of i-th volume in the fore-
ground area. For each volume characterized by a differ-
ent acquisition parameter set we computed the mean and
the standard deviation of the data within the whole brain
area. That allowed to compute the CVi of each volume.
Then, we sorted the CVi decreasingly and chose the first
536 corresponding acquisition parameter sets. The exper-
iment is illustrated in Fig. 5, where the predicted axial
slices are compared to the actual ones at b = 1000, 2000
and 3000 s/mm2. We observe both the Relax-ADC and

Relax-Kurtosis provide significantly increased errors com-
pared to Relax-DTI and Relax-SHORE. The regions of
the superior corona radiata and the splenium of the cor-
pus callosum (see yellow arrows in Fig. 5) have been un-
derestimated at b = 2000 and b = 3000 s/mm2 with the
non-directional diffusion representations, i.e. Relax-ADC
and Relax-Kurtosis, while they are recovered with Relax-
DTI and Relax-SHORE (see cyan arrows in Fig. 5).
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Figure 5: The predictions (top rows) and absolute errors (bottom
rows) between the predicted signal from unseen acquisition and the
original in vivo MR data. The fitting procedure for each method
is based on the 536 chosen volumes. The absolute errors are pre-
sented between a prediction and original data from a selected volume
at a specified configuration given in TE [ms], TI [ms] and b-value
[s/mm2]. The arrows show the superior corona radiata and sple-
nium of the corpus callosum where the signal has been diminished
by Relax-ADC and Relax-Kurtosis methods (marked in yellow) while
preserved with Relax-DTI and Relax-SHORE (cyan arrows).

In the next experiment, we quantify the diffusion-relaxation
scattered MR signal prediction over the white matter (WM),
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Table 1: Averaged mean square error (MSE in [a.u.]) of diffusion-relaxation scattered MR signal prediction calculated over all five subjects
including four models, namely Relax-ADC, Relax-Kurtosis, Relax-DTI and Relax-SHORE. The fitting procedure for each method employs
536 volumes. The MSE parameter is provided within the white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) areas for
the acquisitions under different configuration setup specified by the echo time (TE in [ms]), inversion time (TI in [ms]) and b-value (b in
[s/mm2]), and it is calculated between original and predicted data for unseen acquisitions.

TE = 130, T I = 2649.4, b = 1000 TE = 80, T I = 1059.7, b = 2000 TE = 130, T I = 4062.4, b = 3000

WM GM CSF WM GM CSF WM GM CSF

Relax-ADC 3.299 3.554 2.909 4.080 4.098 3.224 1.531 0.910 1.614

Relax-Kurtosis 2.749 3.100 2.425 4.158 4.123 2.796 1.326 0.945 0.812

Relax-DTI 2.801 3.592 3.307 2.870 3.654 2.999 0.799 0.783 1.513

Relax-SHORE 2.352 3.212 2.907 2.601 3.551 2.719 0.707 0.811 1.695

gray matter (GM), and cerebral spinal fluid (CSF) areas.
We predict the signal using the same configuration setup
as used in the previous experiment and calculate the aver-
age MSE over all five subjects. To calculate the prediction
MSE over the WM/GM/CSF, we register the fractional
anisotropy, retrieved from the DTI at b = 1000 s/mm2,
to the standard space using a non-linear transformation
preceded by a linear initialization with seven degrees-of-
freedom, correlation ratio cost function and spline-based
interpolation using the FSL (Analysis Group, FMRIB, Ox-
ford, UK.; Smith et al. (2004)) and retrieve WM/GM/CSF
labels from the MNI152 standard-space T1-weighted aver-
age structural template (Grabner et al., 2006). The results
of this experiment are included in Table 1. We observe
the proposed Relax-SHORE method exhibits the lowest
error amongst all tested methods within the WM region
across all three configurations while still being compara-
ble in the GM region. This suggests that Relax-SHORE
can correctly reproduce complex neuroarchitecture lead-
ing to significantly lower average MSE in comparison with
the methods representing the diffusion using scalar values
such as the Relax-ADC or Relax-Kurtosis. In CSF, the
Relax-SHORE gives comparable or slightly worse results
than other solutions.

In the next experiment, we estimate relaxation and dif-
fusion scalar maps using the Relax-SHORE approach with
fully-sampled data and a subsampled case. The quantita-
tive maps were estimated both considering all the avail-
able samples (1344) and a subsampled scenario (i.e. 500
volumes). We selected all available non-diffusion volumes
(i.e. b = 0, while in the case of diffusion-weighted data, we
selected 28 (b = 500 s/mm2), 84 (b = 1000 s/mm2), 138
(b = 2000 s/mm2) and 166 volumes (b = 3000 s/mm2),
every shell covering all available TI and TE values. Three
relaxation maps, i.e. PD, T1, T⋆

2, and five diffusion in-
dices including the GFA and EAP-based measures (i.e.
RTOP, RTAP, RTPP, MSD) were retrieved in both sce-
narios (i.e. 1344 and 500 volumes) and depicted together
in Fig. 6 along with the relative errors computed for the
subsampled case. The relative errors of the measures re-
trieved from 500 samples were calculated with respect to
the fully-sampled case (i.e. 1344 volumes) and multiplied
by 100%. Note that the EAP-based indices were retrieved

from the signal representation without any regularization
(see Fick et al. (2016); Koch et al. (2019); Varela-Mattatall
et al. (2020) for some regularization methods).

In the following two in vivo experiments, we evalu-
ate the accuracy of Relax-SHORE with respect to the
anisotropy of diffusion and the robustness of the method
in the case of a reduced number of samples used to fit the
representation.

The results of the first experiment are illustrated in
Fig. 7(left), where we compare the MSE of the signal rep-
resentation estimated by the Relax-SHORE with Relax-
ADC, Relax-Kurtosis, and Relax-DTI as a function of the
GFA. We divided the brain into eight clusters, each char-
acterized by a different range of anisotropy of diffusion
as a function of GFA. For each cluster, we calculated the
MSE between the original data and the fitted representa-
tion. The results show that Relax-SHORE outperforms all
other methods when GFA > 0.1.

The next experiment evaluates the robustness of Relax-
SHORE under a limited number of samples used to fit the
representation. We fit the representation using a decreas-
ing number of samples and calculate the MSE between the
prediction for unseen acquisition and original data.

In this experiment, we employ the subsampling scheme
following the Eq. (14). For each subsampling level, the
volumes characterized by the highest CV are used in the
estimation process. The results of this experiment are
presented in Fig. 7(right). For all of the tested mod-
els, the highest MSE is obtained with the lowest num-
ber of samples as expected. Overall, the Relax-SHORE
is characterized by the lowest MSE. We recall that the
Relax-SHORE method needs 25 (3+22) parameters (relax-
ation+diffusion) for radial order of L = 4 to be estimated
in comparison to 4 (3+1) and 5 (3+2) coefficients required
by the Relax-ADC and Relax-Kurtosis, respectively.

In the last in vivo experiment, we fit Relax-ADC, Relax-
Kurtosis, and Relax-SHORE to the original diffusion-relaxation
scattered MR data using all 1344 volumes. Then, we cal-
culate the normalized MSE (NMSE) between the original
signal and fitted representations and check how the NMSE
changes across unique parameters used to acquire the data
(i.e. TI, TE, and b).

In Fig. 8, we show three plots presenting the NMSE
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Figure 6: Relaxation and diffusion measures (PD, T1, T2
⋆, GFA, RTOP, RTAP, RTPP, MSD) derived from in vivo diffusion-relaxation

scattered MR data using Relax-SHORE method (top). Each measure is computed in a fully-sampled case using all available information
(i.e. 1344 samples) and in a reduced scenario only considering 500 samples, both cases including different echo times, inversion times and
diffusion acquisition parameters (b-values and gradient directions). The bottom row reports the relative error of the measures retrieved from
500 samples in comparison to the fully-sampled case. Mean relative errors of the measures over the brain area estimated from subsampled
data: PD 4.15%, T1 4.29%, T⋆

2
7.37%, GFA 12.45%, RTOP 1.14%, RTAP 1.38%, RTPP 1.12%, MSD 8.41%.

between fitted representations and the volumes character-
ized by different TI, TE, and b-values, respectively. No-
tice the NMSE at a single TI uses all available informa-
tion throughout TE and b-value to calculate the error, the
NMSE at a single TE uses all available volumes acquired
at different TI and b-values, and eventually the NMSE at
a single b-value – all volumes acquired at different TE and
TI.

All the methods manifest the lowest NMSE above TI =
2000 ms with a peak value visible around TI = 800 ms
that is related to the inversion of the signal. Next, in
Fig. 8(middle), we present the NMSE of a predicted sig-
nal as a function of a varying TE parameter. Again, the
NMSE is calculated at a fixed TE using all information
available throughout TI and b-value. Here, the NMSE
of all four methods increases consistently with TE, and
the Relax-SHORE is discriminated with the lowest error
among the three other techniques. In the last experiment
(see Fig. 8(right)), we check how the NMSE of a recon-
structed signal versus the original depends on the b-value.
The Relax-SHORE technique reaches the lowest NMSE in
contrast to other methods in all examined b-values. That

result is expected since Relax-SHORE is intended to have
a high fidelity to the data at all b-values.

5. Discussion

5.1. Synthetic results

An iterative estimation technique for Relax-SHORE
has been introduced, which alternately optimizes the re-
laxation and diffusion parts of the signal. The analysis for
synthetic diffusion-relaxation scattered MR data indicates
that the procedure stabilizes quickly for a range of tested
SNRs and acquisition parameters (Fig. 1). Note that the
relative changes of the parameter values are small after
just four iterations which means that acceptable results
are achieved over a few iterations. Although we have no
formal proof of the convergence, we did not observe a di-
vergent behaviour of the optimization scheme.

Results presented in Fig. 2 indicate that introducing a
full propagator based approach, like Relax-SHORE, pro-
vides the more precise estimation of T1 relaxation time.
The absolute error in estimation of both relaxations de-
pends on the SNR of the signal (see Fig. 3). The error and

9



0-
0.

1

0.
1-

0.
2

0.
2-

0.
3

0.
3-

0.
4

0.
4-

0.
5

0.
5-

0.
6

0.
6-

0.
7

0.
7-

0.
8

GFA

15

20

25

30

35

M
S
E

200 300 400 500
Number of samples

20

22

24

26

28

30

32

M
S
E

Figure 7: The MSE between the original in vivo diffusion-relaxation
scattered MR signal and a prediction applying four representations,
namely the Relax-ADC, Relax-Kurtosis, Relax-DTI, and Relax-
SHORE. The left figure presents the MSE of a predicted signal as
a function of the anisotropy level of diffusion process revealed using
the GFA measure, while the right one shows the MSE in terms of
the number of samples used in the estimation procedure. For the
experiment evaluating the MSE as a function of the GFA measure,
all 1344 volumes are used to fit representations, while in the case
of the subsampling experiment all four methods consistently use a
reduced number of samples.

its variability do not change significantly with the change
of the T1 value. However, we observe that T⋆

2 estima-
tion error and its variability increases with increasing the
transverse relaxation time. It is an expected behaviour as
in the case of higher transverse relaxations, the relative

changes of the function f(TE; T⋆
2) = exp

(
−TE

T⋆
2

)
between

two T⋆
2 values are rather small. Therefore the difference

in solutions for long T⋆
2 times (e.g. 100 and 110 ms) pro-

duces relative low changes in f , while the same absolute
difference in two short T⋆

2 relaxations (e.g. 20 and 30 ms)
produces high f value relative change.

The proposed approach enables to estimate the ODFs
from scattered acquisitions and under a relatively low SNR
of the baseline signal, as shown in Fig. 4. However, in
this study, we assumed only a two-crossing fibre scenario.
Relax-SHORE enables to distinguish two fibres once the
angle between them is defined to be at least around 45◦

which is consistent with the previous report on 3D-SHORE
basis (Fick et al., 2015).

5.2. In vivo data

In general, the proposed Relax-SHORE method is char-
acterized by a relatively low error in a signal prediction
task compared to Relax-ADC, Relax-Kurtosis, and Relax-
DTI methods over the WM area (see Table 1). The scalar
Gaussian-like and non-Gaussian-like techniques (i.e. Relax-
ADC, Relax-Kurtosis) introduce errors in highly anisotropic
structures such as the superior corona radiata or the sple-
nium of the corpus callosum (see the yellow arrows in
Fig. 5). However, the error of the signal predicted with
Relax-SHORE in CSF is typically amplified compared to
that obtained with Relax-Kurtosis (Table 1). This be-
haviour is mainly due to the isotropic nature of the dif-
fusion profile inside the CSF and a relatively low SNR

compared to WM/GM regions. In CSF, Relax-SHORE is
therefore an over-complicated model to represent the sig-
nal. All in all, Relax-SHORE can better characterize dif-
fusion in WM/GM regions than the previous techniques
when considering a vast range of b-values.

The added value of the Relax-SHORE is the ability
to estimate the diffusion microstructural indices from the
scattered diffusion-relaxation dataset.

However, one must bear in mind that introducing com-
plex models characterized by a larger number of degrees
of freedom might be more problematic in scattered ac-
quisitions such as ZEBRA (Hutter et al., 2018), leading
to potential instabilities in the estimation process. The
experiment depicted in Fig. 7(right) confirms that with
Relax-SHORE, though more coefficients are required to
be estimated, we observe no increase in the MSE of a pre-
dicted signal for a low number of samples compared to
scalar-based diffusion representations such as the Relax-
ADC or Relax-Kurtosis.

We observe a consistent reduction in the MSE for all
methods with the increase in the sample number used to
predict the signal.

Finally, we discuss the effects of acquisition parame-
ters (i.e. TI, TE and b-value) on the fitted signal rep-
resentation. Concerning TI, one can notice a peak value
in the NMSE depicted in Fig. 8(left) around TI = 800
ms that is consistently observed for all tested representa-
tions. This error is located in the correspondence of the
signal inversion point. This effect has been recently men-
tioned by Pieciak et al. (2021) for DTI and MAP-MRI
techniques, and in the case of biophysical models by Ciu-
pek et al. (2021). About the TE, we can observe a de-
crease in the NMSE for shorter TEs that results from a
higher SNR of the signal. The last of the three experi-
ments discussed here is the functional dependence of the
NMSE with the b-value. Relax-SHORE outperforms both
Relax-ADC and Relax-Kurtosis, especially under a higher
b-value regime. In the middle, the Relax-Kurtosis arises
as it catches both Gaussian and non-Gaussian diffusion
profiles (Jensen and Helpern, 2010), but still, two scalars
are not enough to fully present the anisotropic nature of
diffusion in the brain.

5.3. Study limitations and future directions

The multi-parametric sequences such as the ZEBRA
(Hutter et al., 2018) introduce a new possibility to quickly
acquire a large amount of diffusion-relaxation scattered
MR data, significantly reducing the scan time at once.
These versatile sequences open new opportunities and chal-
lenges in modelling combined information from relaxation
and diffusion components. We proposed to modify the
functional basis to include both the relaxation and dif-
fusion parts and then iteratively optimize the signal rep-
resentation. Although the presented solution can retrieve
the quantitative EAP-related measures robustly, it uses an
ordinary least-squares approach to fit the functional basis.
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Figure 8: The normalized mean square error (NMSE) between the original in vivo diffusion-relaxation scattered MR signal and fitted
representations under selected acquisition parameters: TI (left), TE (middle) and b-value (right). In all cases, the fitting procedure is applied
to all 1344 volumes.

One could extend the fitting procedure including a regu-
larization term, as suggested in Fick et al. (2014); Koch
et al. (2019), or apply various constraints on the propa-
gator (Haije et al., 2020). Despite this, our goal behind
the methodology presented here was not to take all these
recent advances in propagator modelling into account but
instead, to introduce a general approach to engage the
relaxation and diffusion parts mutually. Note we used a
non-linear least-squares fitting procedure to optimize the
relaxation part but one could go a step further and inves-
tigate more advanced optimization techniques.

In the present work, we consider a single relaxation
compartment. Consequently, the T1 and T2 values aggre-
gate all information coming from different compartments.
Such an assumption may be regarded as a limitation, as
recent advances in biophysical modelling aim at the rep-
resentation of diffusion and relaxation properties for each
tissue compartment independently Jelescu et al. (2020);
Topgaard (2020).

However, the multicompartment diffusion-relaxation spec-
tra estimation requires a large number of measurements.
Common approaches of such detailed signal analysis are
based on the predefined dictionaries designed for a dis-
crete number of possible parameter values (Slator et al.,
2021). The values are positioned into the kernel func-
tion that models diffusion-relaxation process. Each ad-
ditional parameter significantly increases the complexity
of the problem. For example the T1-T2

⋆-relaxation dic-
tionary comprising information about 50 different T1 and
50 different T2

⋆ values is made of 2500 atoms. Adding a
simple diffusion model based only on the apparent diffu-
sion coefficient, i.e. S(b) = exp(−bD), adds another level
of complexity and produces an even larger dictionary.

6. Conclusion

We have presented a compact signal representation method
that can handle diffusion-relaxation scattered MR signals

acquired under different echo times, inversion times, and
b-values. The proposed Relax-SHORE method allows opti-
mizing the relaxation and diffusion parts alternately in an
iterative process thus enabling the representation of relax-
ation while guaranteeing the fidelity to the diffusion signal
and the estimation of indices provided by long-established
diffusion propagator methods. The proposal can better
represent the properties of diffusion-relaxation scattered
MR signal, including its directional nature, and model the
quantitative characteristics of the brain tissue from con-
siderably reduced acquisition schemes.
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Haije, T.D., Özarslan, E., Feragen, A.. Enforcing necessary non-
negativity constraints for common diffusion MRI models using
sum of squares programming. NeuroImage 2020;209:116405.

Hutter, J., Slator, P.J., Christiaens, D., Teixeira, R.P.A., Roberts,
T., Jackson, L., Price, A.N., Malik, S., Hajnal, J.V.. Integrated
and efficient diffusion-relaxometry using ZEBRA. Scientific re-
ports 2018;8(1):1–13.

Jelescu, I.O., Palombo, M., Bagnato, F., Schilling, K.G.. Chal-
lenges for biophysical modeling of microstructure. Journal of Neu-
roscience Methods 2020;:108861.

Jensen, J., Helpern, J.. MRI quantification of non-Gaussian
water diffusion by kurtosis analysis. NMR in Biomedicine
2010;23(7):698–710.

Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K..
Diffusional kurtosis imaging: the quantification of non-Gaussian
water diffusion by means of magnetic resonance imaging. Magnetic
Resonance in Medicine 2005;53(6):1432–1440.

Jones, D.K., Horsfield, M.A., Simmons, A.. Optimal strategies for
measuring diffusion in anisotropic systems by magnetic resonance
imaging. Magnetic Resonance in Medicine: An Official Journal
of the International Society for Magnetic Resonance in Medicine
1999;42(3):515–525.
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