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We develop an exact analytical approach to the optical response of a two-level system coupled to a
microcavity for arbitrary excitation strengths. The response is determined in terms of the complex
amplitudes of transitions between the rungs of the Jaynes-Cummings ladder, explicitly isolating
nonlinearities of different orders. Increasing the pulse area of the excitation field, we demonstrate the
formation of a quantum Mollow quadruplet (QMQ), quantizing the semiclassical Mollow triplet into a
coherent superposition of a large number of transitions between rungs of the ladder, with inner and outer
doublets of the QMQ formed by densely lying inner and outer quantum transitions between the split rungs.
Remarkably, a closed-form analytic approximation for the QMQ of any order of nonlinearity is found in the
high-field low-damping limit.
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The strong coupling regime of cavity quantum electro-
dynamics (QED), in which light-matter interaction domi-
nates over any dissipation processes, is of both fundamental
and technological interest. It gives rise to a formation of
mixed states of light and matter, called polaritons [1], and to
observation of characteristic vacuum Rabi splitting [2,3].
The latter, being recently observed also in semiconductor
quantum dots (QDs) coupled to an optical cavity mode
(CM) [4,5], is often referred to as linear classical effect
which can be studied by linear optics. In a widely used two-
level model of a QD, localized excitons are treated as
fermions coupled to a bosonic CM. This coupling intro-
duces a quantum nonlinearity [6,7], which results in an
effective photon-photon interaction [8] that can naturally be
observed in nonlinear optical spectroscopy [9,10].
The interaction of a two-level system with a single

bosonic CM is described by the Jaynes-Cummings (JC)
model [11]. The eigenstates of the system form a JC ladder,
with a splitting of the polariton-like doublet within each
rung proportional to the square root of the rung number.
The increasing higher rung splitting is evidence for
quantum nonlinearity and quantum strong coupling. The
latter was observed [10,12] for QD excitons and also in
other systems, such as superconducting circuits [6].
A culmination of the quantum strong coupling is a quantum
Mollow triplet (MT) forming in optical spectra of QDs with
increasing optical excitation. The classical MT [13] has
been recently demonstrated in the coherent emission of
QDs [14–18]. A theoretical study of the QD emission
spectrum under incoherent optical excitation demonstrated
a quantum MT formed due to a superposition of higher-
rung transitions [19–21]. This incoherent quantum MT in a
QD-cavity system was shown [21] to be different from the
classical MT, but is hard to observe due to the short cavity
lifetime in presently available structures, preventing the

excitation of large photon numbers by the QD. The non-
linear optical response of a coherently excited QD-cavity
system is the observable in experimental reach suited for
studying the quantum MT.
We focus here on the four-wave mixing (FWM) and

higher-order optical nonlinearities, which can be measured
by heterodyne spectral interferometry [22]. For excitation
with average photon numbers much lower than one,
only the first two rungs of the JC ladder are relevant in
the FWM response, with six optical transitions fully
describing the dynamics of the system, as demonstrated
by a good agreement with experiment [10,23,24]. At higher
excitations, deviations between theoretical predictions and
experimental data have been attributed to higher-rung
contributions to nonlinear spectra, where also some sig-
natures of a MT have been reported [23]. This experiment
has been recently extended [25] to larger photon numbers
and simulated using a time-domain master equation.
In this Letter, we present an exact analytical approach to

the nonlinear optical response of a two-level system (TLS)
coupled to a cavity excited by a sequence of ultrashort
pulses introducing an arbitrary number of cavity photons.
A coherent optical pulse brings a cavity from its ground
state into a Glauber coherent state, and its subsequent
dynamics is rigorously represented by a superposition of
optical transitions between the states of the JC ladder. At
higher excitations, the interference of a large number of
these transitions gradually transforms the nonlinear spec-
trum into a coherent quantum Mollow quadruplet (QMQ).
To demonstrate this, we calculate the quantum dynamics
with multiple precision arithmetic (see Sec. S.VII of the
Supplemental Material [26]). We provide a visualization of
QMQ formation in the coherent dynamics involving an
increasing number of rungs with increasing excitation.
We furthermore present an analytic approximation in the
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low-damping limit, providing a closed-form solution for
the nonlinear optical response of any order. It proves that
the line splitting and the linewidth of the outer (inner)
doublet of the QMQ observed in nonlinear spectra are
given, respectively, by 4

ffiffiffi
n

p
g (g=

ffiffiffi
n

p
) and 4g (g=n), where n

is the average number of excited cavity photons and g is the
TLS-cavity coupling strength.
Let us start with the TLS-cavity dynamics described

[10,24,35] by the master equation (taking ℏ ¼ 1)

i_ρ ¼ L̂ρþ ½VðtÞ; ρ�; ð1Þ

where ρ is the density matrix (DM) and the Lindblad super-
operator L̂ is given by

L̂ρ ¼ ½H; ρ� − iγXðd†dρþ ρd†d − 2dρd†Þ
− iγCða†aρþ ρa†a − 2aρa†Þ: ð2Þ

Here, H is the JC Hamiltonian of the TLS (e.g., a QD
exciton) coupled to a cavity, and γX and γC are, respec-
tively, the TLS and CM decay rates (for discussion of the
parameters of the JC model see the Supplemental Material
[26], Sec. S.II),

H ¼ ΩXd†dþ ΩCa†aþ gðd†aþ a†dÞ; ð3Þ

d† and d are the creation and annihilation operators of the
TLS, while a† and a are those for the CM, having complex
eigenfrequencies ωX ¼ ΩX − iγX and ωC ¼ ΩC − iγC,
respectively. The dipole coupling of the CM to the external
classical electric field EðtÞ is described in the rotating wave
approximation (consistent with the JC model) by the
operator

VðtÞ ¼ −μ · EðtÞa† − μ� · E�ðtÞa; ð4Þ

in which μ is the effective dipole moment of the CM. For
the TLS-cavity system excited by a sequence of ultrashort
pulses, this interaction is well described by a series of δ
functions,

μ · EðtÞ ¼
X
j

Ejδðt − tjÞ; ð5Þ

where Ej is the complex amplitude, known as pulse area,
of the pulse arriving at time tj. Excitations by longer
pulses and even finite wave packets can be approximated
with Eq. (5), as shown in Sec. S.I of the Supplemental
Material [26].
For excitations in the form of Eq. (5), the evolution of

the DM is given by a time-ordered product of operators
acting on the DM, each such operator consisting of a pulse
operator X̂ðEjÞ due to pulse j and a subsequent Lindblad
dynamics during time τ between pulses (i.e., τ⩽tjþ1 − tj):

ρðtj þ τÞ ¼ e−iL̂τX̂ðEjÞρðtj − 0þÞ; ð6Þ

where 0þ is a positive infinitesimal. The pulse operator has
the explicit form

X̂ðEÞρ ¼ eiðEa†þE�aÞρe−iðEa†þE�aÞ; ð7Þ

in which eiðEa†þE�aÞ ¼ e−jEj2=2eiEa†eiE�a is a displacement
operator transforming the cavity ground state into a
Glauber coherent state [36] with the eigenvalue iE, as
shown in Sec. S.I of the Supplemental Material [26]. Hence
the average number of photons in such a coherent state,
given by the expectation value of a†a, is jEj2. Due to the
presence of multiple pulses, the system is in general not in
the ground state at pulse arrival. To solve this problem
analytically, we introduce an extended basis of Fock states
jν; ni with the occupation numbers ν ¼ 0, 1 for the TLS
and n ¼ 0; 1; 2;… for the CM. Using this basis, the DM
can be written as

ρ ¼
X
νν0nn0

ρνν
0

nn0 jν; nihν0; n0j; ð8Þ

so that the total optical polarization takes the form

PðtÞ ¼ TrfρðtÞag ¼
X
νn

ρννn;n−1ðtÞ
ffiffiffi
n

p
: ð9Þ

Furthermore, as we show in Sec. S.I of the Supplemental
Material [26], the pulse operator X̂ðEÞ with a complex
pulse area E ¼ jEjeiφ transforms the elements ρνν

0
nn0 of the

DM according to

½X̂ðEÞρ�νν0nn0 ¼
X
kk0

eiφðn−k−n0þk0ÞCnkC�
n0k0ρ

νν0
kk0 ð10Þ

with the transformation matrix having the analytic form

Cnk ¼ in−kjEjn−k
ffiffiffiffiffi
k!
n!

r
Ln−k
k ðjEj2Þe−jEj2=2; ð11Þ

where Lp
k ðxÞ are the associated Laguerre polynomials.

The phase factor in Eq. (10) determines the phase Φ of
the optical response, which in turn fixes the number of steps
S ¼ νþ n − ðν0 þ n0Þ between the rungs involved in the
coherent dynamics. Even starting from the ground state
ρ0 ¼ j0; 0ih0; 0j, an optical pulse distributes the excitation
across all rungs of the JC ladder. However, choosing a
particular phase Φ ¼ φS, the subsequent Lindblad evolu-
tion does not mix elements of the DM corresponding to
different S.
Similarly, with a number J of pulses exciting the system,

all phase channels can be treated independently, so that one
can select a phase Φ ¼ P

J
j¼1 Sjφj of the optical polari-

zation, determining the transitions between rungs present in
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the coherent dynamics following the pulses. These rungs of
the JC ladder are separated by a distance

P
J
j¼1 Sj. In the

standard FWM polarization, excited by a sequence of three
pulses, the selected phase channel after all pulses is given
by Φ ¼ φ2 þ φ3 − φ1, corresponding to S1 ¼ −1 and
S2 ¼ S3 ¼ 1, and thus involving transitions between
neighboring rungs only. The evolution of the system
between pulses (t < 0) and after pulses (t > 0) keeps phase
selection and can also be described by explicit analytic
expressions. Introducing a vector ρ⃗ comprising all relevant
elements of the DM, i.e., those involved in the coherent
dynamics for the selected phase, the time evolution after
pulses is given by

ρ⃗ðtÞ ¼ e−iL̂tρ⃗ð0þÞ ¼ Ûe−iΩ̂tV̂ ρ⃗ð0þÞ; ð12Þ

where the matrices Û and V̂ diagonalizing the Lindblad
matrix L̂ ¼ Û Ω̂ V̂ take an analytic form (see the
Supplemental Material [26], Sec. S.III) in terms of 2 × 2
matrices YN diagonalizing the complex Hamiltonian HN of
the Nth rung,

HN ¼
�
ωX þ ðN − 1ÞωC

ffiffiffiffi
N

p
gffiffiffiffi

N
p

g NωC

�

¼ YN

�
λ−N 0

0 λþN

�
YT
N; ð13Þ

where λ�N are the complex eigenvalues ofHN . The diagonal
matrix Ω̂ in Eq. (12) consists of the eigenvalues of L̂ which
are given by ωr ¼ λsNþS − ðλs0NÞ�, with a fixed S and all
possible sign combinations of s; s0 ¼ � and rung numbers
N, including the case of the ground state with λ0 ¼ 0.
Consequently, the optical polarization in Eq. (9) and its
Fourier transform take the analytic form

Pðt > 0Þ ¼
X
r

Are−iωrt; P̃ðωÞ ¼
X
r

iAr

ω − ωr
ð14Þ

with the amplitudes Ar ¼
P

i;jða⃗ÞiðÛÞirðV̂Þrjðρ⃗Þj, accord-
ing to Eqs. (9) and (12).
We consider below a general case of N -wave mixing

(NWM) cavity polarization and nonlinear spectrum given
by Eq. (14). While the formalism described above is
developed for any number of excitation pulses and arbitrary
delay times between them, we focus here on degenerate
NWM, generated by two optical pulses with complex
pulse areas E1 and E2, so that N ¼ jS1j þ jS2j þ 1 with
S ¼ S1 þ S2 ¼ 1. The optical response of the system
carries a phase Φ ¼ S1φ1 þ S2φ2 (FWM corresponds to
Φ ¼ 2φ2 − φ1, with N ¼ 4) and in the low-excitation
regime is proportional to a factor ieiΦjE1jjS1jjE2jjS2j which
we drop in all the results presented below. We assume for
simplicity zero delay between the pulses and focus on the

case of jE2j ≪ 1, arbitrary E1, and zero detuningΩX ¼ ΩC.
The cases jE1j ≪ 1 and arbitrary E2, and jE1j ¼ jE2j,
as well as nonzero detuning, are considered in the
Supplemental Material [26], Sec. S.IX. In the below
analytics we use ΩC ¼ 0 for brevity.
The FWM spectrum P̃ðωÞ calculated for γC ¼ g=2 is

shown in Fig. 1(a) as a phase-amplitude color map for
the pulse area 0⩽jE1j⩽10, exciting an average of up to
100 photons. jP̃ðωÞj is displayed in Fig. 1(c) for selected
jE1j, and the optical transitions between neighboring
rungs which contribute to these spectra are shown in
Figs. 1(d)–1(f) in terms of the complex transition ampli-
tudes Ar and their frequencies ωr. In the low-excitation
regime (jE1j ¼ 10−3), only the first two rungs contribute,
and the spectrum in Fig. 1(c) shows a doublet due to the
lowest-rung transitions, studied in detail in Ref. [10]. For
jE1j ¼ 2, the spectrum is wider, having a central peak and
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FIG. 1. FWM response calculated for jE2j ¼ 0.001 and varying
jE1j, with ΩX ¼ ΩC, γC ¼ g=2, and γX ¼ g=10 corresponding to
the experiments reported in Refs. [10,23–25]. (a) FWM spectrum
P̃ðωÞ in a color plot with the hue giving the phase (see color
scale) and the brightness giving the amplitude jP̃j1=4. (b) Spec-
trally integrated power I ¼ R jP̃ðωÞj2dω versus jE1j (For more on
power see the Supplemental Material [26], Sec. S.VIII).
(c) jP̃ðωÞj normalized to 1, for selected jE1j as labeled. (d)–(f)
Optical transition frequencies ωr and their complex amplitudes
Ar in P̃ðωÞ [see Eq. (14)], for different jE1j as given in (c). ωr and
Ar are shown, respectively, by crosses in the complexω plane and
by circles centered at ωr with area proportional to jArj and color
given by the phase of Ar, according to the scale in (a).
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sidebands, formed by a range of transitions strongest for
rungs 1–5. For jE1j ¼ 6, an outer doublet of increased
separation and strength develops, the inner doublet reap-
pears, and a large number of rungs are involved.
The transition frequencies are given by ωr ¼ �Δσ

n −
ið2nγC þ γXÞ, where σ ¼ o, i, and n is the rung number.
For each rung n > 1, there are two “inner” and two “outer”
transitions, corresponding to Δi

n ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
−

ffiffiffi
n

p Þg and
Δo

n ¼ ð ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þ ffiffiffi
n

p Þg, respectively (for γX ¼ γC).
Neglecting relaxation, the system excited with jE1j2 pho-
tons has a dominant contribution coming from rungs with
n ∼ jE1j2. This implies that as E1 increases, the spectrum
can consist of an inner doublet due to the inner transitions
at ω ≈�Δi

n, close to zero, and an outer doublet at
ω ≈�Δo

n ≈�2gjE1j, thus forming the QMQ. Such a
spectrum differs from the MT observed in a two-level
system continuously driven by a classical light [13], by the
formation of the inner doublet and the intrinsic linewidths,
as we will see later. The separation of the outer doublet of
P̃ðωÞ in Fig. 1(a) grows almost linearly with jE1j, similar to
the sidebands in the MT. However, the observed splitting is
somewhat smaller than 4gjE1j. A closer look into the
complex transition amplitudes (see the Supplemental
Material [26], Sec. S.VI.) reveals a Poisson-like distribu-
tion peaked at a rung number lower than excited
(n ¼ jE1j2 ¼ 36), which is caused by relaxation, and a
significant destructive interference between the transitions.
To better understand the observed QMQ, we develop

an analytic approach to the NWM response with S1 ¼
1 −N =2 and S2 ¼ N =2≡m in the limit of low damping
(γX; γC ≪ g), as detailed in the Supplemental Material [26],
Sec. S.V. In the limit of large pulse area, λ≡ jE1j2 ≫ 1, the
Poisson distribution with λ in Eq. (10) becomes approxi-
mately Gaussian, with the mean rung number given by the
mean photon number, hni ¼ λ, and the mean square
deviation hn2 − λ2i ¼ λ. Around the maximum of this
distribution, the Laguerre polynomials are approximated
byHermite polynomials, and the frequencies of the inner and
outer transitions by

Δo
n ≈ 2

ffiffiffi
λ

p
gþ z

ffiffiffi
2

p
g; Δi

n ≈
g

2
ffiffiffi
λ

p − z
g

2
ffiffiffi
2

p
λ
; ð15Þ

where z ¼ ðn − λÞ= ffiffiffiffiffi
2λ

p
(see the Supplemental Material

[26], Secs. S.IV and S.V.) This allows us to replace the
transition frequencies in Eq. (14) withωr¼sΔσ

n≈ωσsþzγσs,
where the frequencies ωσs and the linewidths γσs are defined
by Eq. (15), and s ¼ �: Note that the linewidth γσs is
produced by a coherent superposition of many inner or outer
transitions and is thus determined by their frequency
dispersion with respect to the rung number n. The coherent
dynamics after pulses can then be treated analytically,
replacing

P
n →

ffiffiffiffiffi
2λ

p R
dz in Eq. (9), which results in the

explicit form of the NWM polarization:

PðtÞ ¼
X
σ¼i;o

X
s¼�

1

2
AðmÞ
σ ðγσstÞme−iωσst−ðγσstÞ2=4; ð16Þ

where AðmÞ
o ¼ ð−iÞm=½4m!ð ffiffiffiffiffi

2λ
p Þm� and AðmÞ

i ¼ 4λAðmÞ
o .

Fourier transforming Eq. (16) gives an analytic NWM
spectrum

P̃ðωÞ¼ ð−iÞm
4m!ð ffiffiffiffiffi

2λ
p Þm ½P̄ðωÞþP̄�ð−ωÞ�;

P̄ðωÞ¼wm

�
ω−

ffiffiffiffiffi
4λ

p
gffiffiffi

2
p

g

�
þ16λ2wm

�
4λ

ωþg=
ffiffiffiffiffi
4λ

p
ffiffiffi
2

p
g

�
; ð17Þ

where wmðzÞ¼ 1
2

R∞
0 tmeizte−t

2=4dt is a generalized Faddeeva
function. Equation (17) also holds for the case of small E1
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FIG. 2. Analytic approximation Eq. (17) (red curve)
and exact FWM spectrum for different γC as given, for
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tion and FWHM of the spectral lines produced by the inner and
outer transitions.
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FIG. 3. NWM spectra jP̃ðωÞj of the response detected at Φ ¼
φ1 (N ¼ 2, black), 2φ2 − φ1 (N ¼ 4, red), 3φ2 − 2φ1 (N ¼ 6,
blue), and 4φ2 − 3φ1 (N ¼ 8, green), for jE1j ¼ 10 and
γC ¼ g=5. Inset: spectral line of the outer doublet of the QMQ
for N up to 12, calculated using the analytic approximation
Eq. (17). All spectra are multiplied by jE1jN =2.
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and largeE2, by using instead λ ¼ jE2j2,m ¼ N =2 − 1, and
dividing P̄ðωÞ by λ.
Figure 2 illustrates the analytic approximation Eq. (17)

for jE1j ¼ 6, in comparison with the full calculation at
different values of γC, demonstrating good agreement for
small damping. Note that the value of γC ¼ g=10 has been
recently observed in a QD-cavity system [32]. The first
term in P̄, produced by the outer transitions, describes the
outer doublet of the QMQ, with a maximum at ω ¼ffiffiffiffiffi
4λ

p
g ¼ 2gjE1j and a linewidth of

ffiffiffi
2

p
g, corresponding

to a full width at half maximum (FWHM) of about 4g. The
linewidth is independent of the pulse area, which is also
seen in the full calculation even for a rather large damping.
This can be understood from the dispersion of the outer
transitions, with the peak frequency at ∼2g

ffiffiffi
λ

p
and the

Gaussian distribution of transition amplitudes with the root-
mean-square width of

ffiffiffi
λ

p
, leading to spectral width of ∼g,

independent of λ. The inner transitions are in turn respon-
sible for the inner doublet of the QMQ, which is replacing
the central line of the MT. Its peak position g=

ffiffiffiffiffi
4λ

p
and

FWHM g=λ both decrease with pulse area. Notably, the
relative amplitude of inner to outer doublet scales as λ2, so
that the inner doublet dominates at high pulse areas.
Let us now consider higher-order NWM presented in

Fig. 3. The inset shows the analytic spectrum of the outer
transitions for N ¼ 2, 4, 6, 8, 10, and 12. While the
FWHM almost does not change with N , the spectral tails
are increasingly suppressed, which can be seen in the time
domain as a tN =2 rise of the polarization at short times [see
Eq. (16)]. The increase withN of the rise time is due to the
fact that the optical nonlinearity requires the excitation to
be transferred from the CM to the TLS and then back to the
cavity, with the number of such loops increasing with N .
The outer doublet is prominent in the FWM spectrum, and
dominates over the central band starting from 6WM (for the
chosen parameters).
In conclusion, we find that a dramatic interference of the

spectrally dense transitions of a Jaynes-Cummings ladder
results in a remarkable effect in nonlinear optical spectra:
the formation of a quantum Mollow quadruplet.

The supporting data for this article are openly available
from [37].
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