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Highlights
Construction of complex memory
engrams requires subcortex as well
as cortex.

Hippocampus and prefrontal cortex are
connected via parallel ‘Papez’ circuits,
with the mamillary area a key waystation.

The parallel circuits have an onion-like
nesting, with each circuit connecting a
specific processing level of the areas
involved.

These circuits span from reflexive ‘sur-
The construction of complex engrams requires hippocampal–cortical interactions.
These include both direct interactions and ones via often-overlooked subcortical
loops. Here, we review the anatomical organization of a hierarchy of parallel
‘Papez’ loops through the hypothalamus that are homologous in mammals from
rats to humans. These hypothalamic loops supplement direct hippocampal–
cortical connections with iterative reprocessing paced by theta rhythmicity. We
couple existing anatomy and lesion data with theory to propose that recirculation
in these loops progressively enhances desired connections, while reducing inter-
ference from competing external goals and internal associations. This increases
the signal-to-noise ratio in the distributed engrams (neocortical and cerebellar)
necessary for complex learning and memory. The hypothalamic nodes provide
key motivational input for engram enhancement during consolidation.
vival circuits’, via the supramammillary
nuclei, to slow and sophisticated, via the
medial mammillary nucleus.

Circuits involving cerebellar cortex have a
similar organization to those involving
neocortex.

These parallel distributed circuits allow
iterative processing to integrate informa-
tion related to situation and motivation
in the construction of complex distrib-
uted engrams and enable their inclusion
in the perception–action cycle.
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What is memory for?
Memory is phylogenetically old. Important aspects of human memory are ancient: they are
present in simple invertebrate circuits [1]; well developed in fish; and strongly homologous
in birds [2]. Therefore, human cortical memory has emerged out of conserved [3] funda-
mental subcortical memory systems. While basic memory systems are present across
species, memory capabilities have expanded with evolution, requiring a more energy-
expensive brain. However, neural memory did not evolve to simply store data; its adaptive
functions are linked to motivation. The bringing to mind of past experience, and of past
goal–subgoal sequences [4], generates current goals and the means to achieve them.
Yet, many assume that memory control is in ‘cold’ neocortex rather than in ‘hot’ limbic [5–8]
cortex, and certainly not in ultra-hot ‘survival circuit’ [9–12] subcortex. We think these assumptions
need to be revisited.

Here, we argue that formation of even the most data-focused engrams† in the cortex depends
on a set of highly conserved nested cortical–subcortical–cortical closed loops that are essen-
tially a set of parallel Papez circuits [13]. These loops support iterative processing, paced by
inhibitory ‘theta’ rhythmicity – and are positioned to add motivational bias. Critically, wherever
activity is blocked within these loops, the outcome is similar neural and behavioral dysfunction.
The same Papez architecture can be seen across amniotes and, likely, monotremes and Theria
[14], with perhaps a single equivalent loop even in fish [15–18]. However, there is also evolu-
tionary progression. Relative to other mammals and primates, the most recent of the dience-
phalic Papez-like closed-loop components appears larger in humans alongside the relatively
neil.mcnaughton@otago.ac.nz
(N. McNaughton) and
vannsd@cardiff.ac.uk (S.D. Vann).† Weuse theword engram to refer to any one of the distributedHebbian cell assemblies that are thought to be basic units ofmemory [80].
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expanded telencephalon [19]. This Papez architecture is at least partially distinct from, and
more unidirectional than, the many other interactive loops that use a ‘hierarchical system of
brain oscillations’ [20] to support more global processing, including the ‘emergence of cogni-
tion from action’ and alternative event predictions (see Figure 1 in [21]).

How and why do old brain areas control recent ones?
A key to goal-oriented engram processing lies in the motivation-biased base of the brain. The
hypothalamus is a surprisingly important node in mnemonic loops [22]. At only 2% of brain
volume in rodents (0.3% volume in humans) [23,24], it is nonetheless key to a vast range of func-
tions. It controls not only low-level autonomic and homeostatic functions [25], but (often
overlooked) high-level cognitive ones [26]. It is small and, thus, must exert wide-ranging diffuse
control rather than supplying detailed computation. Importantly, hypothalamic nuclei can add
emotional bias to the loop processing of engrams, held in areas such as the cortex, and, thus,
have a major adaptive impact on memory.
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Figure 1. Overview of long and short loop connections from the hippocampus via mammillary area to the
frontal cortex and back present in mammals ranging from rodents to primates [27,50,70,121–126]. The
mammillary bodies (MBs) and supramammillary area (SuM) have aligned medial, mediolateral, and lateral parts. MBs target
prefrontal and anterior cingulate cortex, which target the hippocampal formation, completing the Papez circuit. Tonic
arousing reticular input to medial (p, parvicellular [27]) SuM is converted to phasic theta rhythmicity (θ), passed to
mediolateral (g, grandicellular) SuM, then to the diagonal band of Broca (DBB)/medial septum (MS) complex and then to
the hippocampal formation. Lateral (s, shell) SuM projects to entorhinal cortex (EC). The fimbria (fi), fornix (fx), and internal
capsule (ic) return hippocampal formation output to SuM/MB in onion-like, nested loops. EC, dentate gyrus (DG), CA3,
CA1, subiculum (SUB), and retrosplenial cortex (RSp) connect unidirectionally. Successive loops are similar, but outside
loops have greater delays and more highly processed information. There is a similar ‘onion’ with mammillothalamic tract
(mt) output from MBs and output from AMT/AVT/ADT to infralimbic (IFL), prelimbic (PRL), and anterior cingulate (ACC)
cortex. Dorsal and ventral prefrontal (PRFd, PRFv) then perirhinal (Peri) and parahippocampal (Para) cortex complete the
Papez circuit in EC. We have not included, for example, the AMT–CA1 connection [127], to keep the fundamental
architecture of the loop circuits clear. Abbreviations: ADT, AMT, AVT, anterior thalamus, dorsal, medial, ventral,
respectively; ML, MML, MMM, mamillary nucleus, lateral, medial pars lateralis, medial pars medialis, respectively.
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Two adjacent posterior hypothalamic areas are particularly linked to cognition: the mammillary
bodies (MB) and supramammillary area (SuM). Each was initially seen as homogenous, but both
have three distinct, matching parts [27]. The six parts differ in detailed anatomical connectivity
and, at first sight, functions. Discrete lesions, targeting of specific connections, and genetic models
(particularly in SuM) have separated contributions from subregions as well as structures [28–33].
For example, the medial MB and lateral SuM both contribute to hippocampal activity during
rapid eye movement (REM) sleep [34,35]. Lateral and medial MB lesions both impair performance
on spatial memory tasks, but the pattern of impairments is different [29,36]. Lateral SuM is thought
to have a greater role in spatial learning and memory [32], with medial SuM being more biased
toward inhibitory learning [37]. Nonetheless, all six parts have similar roles in the integration of
input from ascending activating (‘arousal’) systems and in the rhythmic pacing of processing in,
for example, the Papez circuit [13]. As noted above, SuM and MBs are physically adjacent, and
we suggest that they are also computationally similar, but as key nodes in distinct loops that
have more engaged subcortex and cortex, respectively (Figure 1). They provide subcortical
motivational input into parallel circuits that support hippocampocortical long-loop interactions.

Memory and emotion?
Papez [13] initially put forward his eponymous hypothalamically mediated hippocampus–cortex–
hippocampus circuit as the basis of emotion [22]. However, to later researchers, the role of the
hippocampus in amnesia (particularly obvious in Henry Mollaison [38]) made the circuit appear
more relevant to memory. However, memory versus emotion is a false dichotomy given that
goals require both, and hippocampal damage alters emotion [39–41]. Indeed, the hippocampus
is among the main structures controlling the level of stress (and other) hormones [42–44]. Current
descriptions of memory, and its processes, need to better reflect interdependence with emotion.

Lesions at any point within the Papez circuit (or its subloops) can impair memory.While the severity
and specificity of memory impairment can vary according to the site of pathology, a similar pattern
of impairments can be seen throughout the system. Importantly, in both humans and rodents,
many aspects of memory remain intact, such as in simple item discrimination tasks and procedural
tasks [45,46]. Rather than affecting a particular type of memory [47], impairment usually requires
that any type of paradigm has sources of interference, as when cues are combined into spatial
features, complex objects, or temporal contingencies (e.g., [48,49]). However, Papez circuit struc-
tures are also all implicated in stress, anxiety, and emotion, all of which can produce anxiolytic
effects in standard tests of anxiety, including approach–avoidance conflicts [50]. (Consistent with
this, HenryMollaison appeared to be unusually lacking in anxiety; J. Ogden, personal communication)
Benzodiazepine anxiolytics can produce amnesia; the high density of benzodiazepine receptors
within both the MBs and SuM could contribute to these amnestic effects [51,52].

The MBs and SuM receive external representations via inputs descending from limbic, temporal,
and prefrontal cortices. However, their key role is integrating these representations with ascending
somatic inputs. For instance, both regions have cells that are strongly responsive to running speed
and they moderate hippocampal speed–cell function [53–55]. They are also able, via inputs from
the dorsal tegmental nucleus, to provide wider hippocampocortical circuits with vestibular input
that is crucial for spatial memory (including hippocampal theta rhythm and ‘place fields’ [56,57]).

Lower-level input tomemory circuits is not functionally trivial. Simple peripheral vestibular receptor
damage disrupts emotion and memory: it is associated with hippocampal atrophy and may be a
risk factor for dementia [58]. Other low-level inputs (including from the ventral tegmental nucleus)
provide sensory, motor, autonomic, and arousal-related information and control the frequency of
hippocampal theta pattern activity. The theta pattern, per se, is important for neural plasticity [59]
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and spatial learning [60]. However, its disruption does not change the basic organization of place
fields [61], unlike disruption of head direction pathways in the antero- or laterodorsal thalamus
[62,63]. The theta system also responds strongly during threat-induced freezing [64].

In the context of goal processing, neocortex (particularly the interaction of anterior and posterior
neocortex) can maintain representations of the external world but, we argue, would need the
ascending inputs from the base of the Papez circuit to add key ‘contextual/emotional/internal’
information. In particular, if episodic memory (and mental time travel) depends on the cell assemblies
originally postulated by Hebb [65], spatial and temporal direction could be added by SuM/MB theta-
rhythmic control during circuit processing. The need for internal direction inputs for event processing
would explain the importance of simple vestibular input for ‘memory’. Therefore, the ascending inputs
to SuMwould inject position/emotion information into the base of the Papez circuit, while also having
more direct connections to higher levels, including the hippocampus.

Why is memory controlled by iterative loops?
The original circuit envisioned by Papez [13], while capturing the essence of a key unidirectional
loop around the various regions, does not give an accurate representation of the multiple parallel
Papez-architecture closed loops that it encompasses (Box 1 and Figure 1) and which all have
their lowest nodes in SuM/MB. The length and number of these closed loops likely explain the
fact that the range of frequencies of the (usually synchronous) theta rhythmicity covers the
round trip time from cortex to subcortex and back for these circuits [66,67]. One of the shortest
is SuM→hippocampus→MB→SuM, in which iteration has been clearly demonstrated and direc-
tional control of the rhythmicity shown to vary with its acceleration and deceleration [68]. Multiple
loops also fit with suggestions that the hippocampus uses ‘big loop’ iteration‡ for not only
episodic memory, but also ‘integration of information across experiences’ ([69] p. 1342) and likely
other forms of inferential processing.

On first glance, the circuits give an impression of redundancy. For each indirect two- or three-
synapse connection in a single pathway, there is usually a direct single-synapse connection,
with the direct and indirect paths often starting as collaterals of the originating neurons [70].

Why would this be, computationally? These multilevel connections provide a means for multilevel
processing. Each pathway is one part of a hierarchical onion-like layering, in which a simple direct
first pass through subcortical ‘survival circuits’ [9] (evolutionarily early, conserved, and likely more
linked to encoding and engram formation [71–73]) is followed by progressively more complex in-
direct cortical processing (evolutionarily late, expanding, and likely linked to recall,
consolidation, reconsolidation, and perhaps, more recently ,even imagination [74–76]). In evolu-
tionary terms, this subcortical/cortical hierarchy allows integration of fast but reflexive with slow
but sophisticated processing [77], achieving, phylogenetically, the most efficient processing
across a range of task urgencies.

We think there are two linked issues here. The prime issue for an evolved system is a form of
Cocktail Party Problem: how to separate signal (situation specific, not necessarily loud) from
noise (which may be loud and also situation related) via motivational bias. You must detect what
you most need, not what is most salient. This is analogous to the classic figure-background
problem, most easily solved in perceptual systems [78,79], in which within-circuit iteration is com-
putationally advantageous [78], but with added active motivational filtering. Second, is the issue of
recall. How is only one item retrieved against a background of similar competing remembered
‡ The circuits can be referred to as recurrent but, computationally, ‘recursion’ is a process different to iteration.
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Box 1. Connections of SuM and MBs: two hierarchies of iterative loops

Cortex–subcortex connections are complicated, involving sets of hierarchically organized parallel closed loops. The higher
functional levels of the hippocampus proper (area CA1 and the subiculum/SUB) send direct input only to evolutionarily old
parts of the frontal lobe (i.e., prefrontal allocortex). By contrast, the Papez circuit allows CA3 to control more evolutionarily
recent frontal isocortex [13] via the MBs→anterior thalamic nuclei (ATN)§1→frontal cortex path. This ATN projection also
allows theMBswide influence on temporal lobememory systems [119], including the entorhinal cortex, retrosplenial cortex
(RSp), and SUB (completing the Papez circuit). The MBs are much more than a ‘relay’, instead integrating hippocampal
outflow with independent mnemonic inputs from Gudden’s tegmental nuclei in the midbrain.

The nuclei of the MBs are connected by an onion-like series of nested loops to parallel levels of the hippocampal formation
(see Figure 1 in the main text). ‘The different levels are unlikely to exist simply so as to pass unaltered information on to one
another; eachmust allow some particular transformation or integration of its inputs.We propose that the hippocampus is a
system of logical gates which allows different types of information to progress to different points of the circuit and hence
to produce (or in many cases not produce) outputs from different levels of the system subject to different conditions.’
([50], p. 221). Importantly, the intrahippocampal connections are all in the same single direction. Thus, the hippocampal
formation is rectifying (forcing information to pass in only one direction in the loops), as are the connections fromSuM toMBs.

Important features of the hippocampal ‘onion’ are: (i) initial, partially processed, output is from area CA3, ‘relayed’ by the
lateral septum, to SuM; and (ii) the main final, highly processed, output is from SUB/RSp direct to MBs. The similarity of the
parallel loops suggests similar computational function, but the specific connections suggest that SuM mediates reflexive
[77] and SUB/RSp mediate sophisticated processing. That is, SuM controls subcortical processing, using partially
processed (CA3) information and with no neocortical efference copy. Fully processed information from SUB/RSp goes
directly to the higher (goal-processing) areas of prefrontal cortex and anterior cingulate, with an efference copy (often via
collaterals [70] and with similar cell-firing fields [120]) going directly to MBs as part of ‘slow and sophisticated’ processing.

The Papez circuit is also onion-like. Lateral, medio-lateral, and medial areas of MB primarily project to anterodorsal,
anteroventral, and anteromedial thalamus, respectively. Prefrontal cortex and perirhinal/parahippocampal cortex complete
the circuit in entorhinal cortex. All three thalamic areas make return projections to entorhinal cortex, SUB, and RSp.

Trends in Neurosciences
items? For both issues, there is a need to prevent percept-level interference and catastrophic
forgetting [47].

We suggest that each of the known parallel loops operates to separate key percepts and
engrams from interfering associations and alternatives in much the same iterative way as a figure
is separated from its ground [78] but by motivational filtering (at the SuM/MB nodes). Current
active memory, one of the earliest stages of processing, is known to hold information without
modification by simple iteration in frontoposterior loops (Figure 2). By contrast, we suggest that
Papez-architecture loops through MB/SuM modify engrams via iterative reprocessing. This
iterative reprocessing progressively enhances active circulation of target stimulus components,
while suppressing active circulation of interfering stimulus components, through application of
a motivational filter. This would, in the first instance, reduce confusing competing associations
with nontarget external stimuli.

An initial engram would usually be a simple cell assembly [65]. Both consolidation and repeated
experience will then add additional components to this original engram and generate distributed
engram ensembles [80]. The MBs provide theta pattern input that guides plastic engram forma-
tion, both in the hippocampus and the cortex [34,81,82]. Functionally, damage to the MBs, and
other regions within the basic Papez circuit, is associated with relative impairments in recollective
memory, while the ability to discriminate whether simple items have been previously experienced
(i.e., familiarity) is left intact (e.g., [48]). These dissociations are often couched within dual-
processing models: two functions that are distinct and dissociable. However, we suggest that
this pattern of impairments instead reflects differences in the current configuration of the cell
§ Loops through, for example, nucleus reuniens ,are also important [139] but beyond the scope of this article.
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Figure 2. Perception and action are
intertwined in a cycle in mammals,
sharing their neural circuitry
[128,129]. The will to act must start
with a goal, which is usually marked by
an external percept. The percept, itself,
may be fleeting, but then prefrontal
cortex uses iterative loops [130] to hold
information in posterior cortex in the
form of active memory [131]. The figure
illustrates these general principles with
a simple example based on a delayed
response working-memory task in
monkeys [130]. A target position is
briefly indicated on a screen and
registered by the retina (top left), which
passes information to visual cortex,
which in turn activates prefrontal cortex.
During a delay interval, activity from
prefrontal cortex refreshes visual cortex,
keeping the stimulus location in active
memory. When the end of the delay
interval is signaled, this location is read
out to circuits controlling eye movement
and the monkey then looks at the
position where the target was before

the delay. Unlike trace-conditioning tasks, delay tasks do not depend on hippocampal circuitry. Adapted, with permission,
from [50].
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assembly coding the engram, not in distinct processes. That is, for complex episodic information,
activation of the single correct associative representation is necessary for recall. By contrast, the
activation by perceptual input of a more impoverished engram would be sufficient to detect a
previously experienced item. As such, a nascent partial engram would be detectable as familiar
even when the final full engram is not yet sufficiently developed to be recalled against the
background of interference. Although it is implicit in the ideas of consolidation and reconsolidation,
we think that engrams are rarely seen as both unitary and dynamic to this extent. However, iteration
[78] (particularly via replay [83–86]) combined with more basic interactions between Hebbian
learning and single-cell homeostasis [87] can solve the problem of retaining viable (albeit labile)
memories in a dynamic world.

Anatomically, there are multiple loops. Each of these loops operates at its own hierarchical neural
level [note the increase in loop nodes as one goes from dorsal anterior thalamus (ADT) to ventral
anterior thalamus (AVT) to medial anterior thalamus (AMT) in Figure 1]. The brain uses parallel
reflexive versus slow complex processing in many systems [77] to balance urgency against
clarity. Papez looping can start in a shorter loop and then be accompanied by processing in
progressively longer loops (Figure 1). With sufficient time (via consolidation or repeated experience),
this would selectively enrich the engram by allowing more distributed cell assemblies. Such enrich-
ment could involve extension of the time across which traces can bemaintained [88] or later exten-
sion of the components of the engram with more experience, or consolidation, or reconsolidation
[86], during wake or sleep [34]. Simple repetition of information in each loop as in active memory
would enhance the strength of connections of a cell assembly through conventional Hebbian
processes [89,90] for both noise and signal. By contrast, active iterative reprocessing (combining
general enhancement with selective suppression of motivationally unwanted connections [91,92])
should allow complex (e.g., temporally and episodically related) engrams to become stabilized in
the cortex. Thus, improvement in signal-to-noise ratio would be through not only reduction in
Trends in Neurosciences, July 2022, Vol. 45, No. 7 555
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noise, but also creation of a richer signal through expansion of the engram by progressively more
sophisticated loops. Consistent with this, lesions of the mammillothalamic tract in rats reduce ex-
pression of plasticity markers in the retrosplenial cortex [81,93], and neurogenesis and spine den-
sity in the hippocampus; and they attenuate long-term gray-matter changes observed in both
hippocampus and cortex following spatial training [34].

What triggers iterative processing?
Cortex–subcortex loop-related integration is an adjunct to the distinct cortex–cortex looping that
maintains active memory. Active memory is refreshed by loops in which frontal and posterior
cortex can be seen as simple relays. (The refreshment cost is born by the fact that information
needs to be temporarily maintained for adaptive function.) However, cortical–subcortical loops
go beyond, and should not be confused with, the simplicity of loops underlying active memory.
The temptation is to see prefrontal cortex (highly expanded in humans relative to other species)
as a be-all and end-all. This is an (anthropocentric) error.

‘To give to our prefrontal cortex the role of the autonomous origin of all our decisions and actions
leads inevitably to an infinite regress that should be avoided (“What agency controls the prefrontal
cortex? What other agency controls that one?”...and so on ad infinitum). The only reasonable
solution to the quandary is to place the prefrontal cortex in the perception-action cycle, where
the action can originate anywhere, including the cerebral cortex, prefrontal or other.’ ([94] p. 7).

The perception–action cycle depends on the interaction of anterior with posterior cortex (for an
example, see Figure 2). However a goal requires not only situation (whether a local object or a
more complex context), but also motivation (a neutral object will not be a goal). To some extent,
motivation will be supplied by limbic cortex via its circuits with the prefrontal cortex. However,
output from these areas, via the Papez circuit, to the hippocampal formation then receives hippo-
campal and hypothalamic processing before returning in a modified form to the prefrontal cortex
via the thalamus [95]. Functional hippocampal output requires that it receives theta pattern input
from the medial septum, dependent on arousal-related reticular and cerebellar input via areas
such as SuM [60]. The passage of the resultant hippocampal output through the MBs appears
to depend on similar arousal-related inputs from the dorsal and ventral tegmental nuclei [96–98].
Thus, SuM/MB would provide arousal and interoceptive information to boost and bias iterative
processing, while prefrontal cortex would contain the cell assemblies that the process
enhances, with increased signal-to-noise ratio with each iteration. The result would be truly
iterative processing (unlike the simple echo of active memory), with all nodes in a loop able to
adjust their output.

Does iteration affect cerebellum as well as neocortex?
The hippocampus is connected by closed loops to not only neocortical areas, but also the cere-
bellum, as are the cerebellum and neocortex [99,100]. The contribution of the cerebellum to
memory was traditionally considered limited to motor learning. In this context, eye blink condition-
ing provides a well-studied example of both the cerebellar role in simple conditioning and its inter-
action with limbic structures in, for example, trace conditioning (Figure 3). However, there is
increasing evidence that cerebellum has a more widespread, cognitive and emotional role.

One proposal is that the cerebellum has a particular role in goal/reward learning, especially in
novel situations. Cerebellum supports this function using trial-by-trial error correction, similar to
its contribution to motor learning [101]; here, its involvement is akin to the interference reduction
seen with more cognitive engrams. Situation (coupled with motivation) is a key element of goals. It
is most easily understood by experimenters when a situation reflects a place. The hippocampus,
556 Trends in Neurosciences, July 2022, Vol. 45, No. 7
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Figure 3. The role of the
hippocampus (HPC) in eyeblink
conditioning in mammals, based
on [132–136]. HPC cells show firing
patterns, triggered by conditional (CS)
but not unconditional (US) stimuli, that
arise in training, progress during
conditioning, and often model the
conditioned eyeblink response (CR).
This combination of stimulus control
with response-related firing implies that
the hippocampal circuit is processing
complex goal information rather than
simple stimuli or actions. Hippocampal
lesions do not affect simple, or

delayed, or discriminative (CS+/CS–) conditioning. However, hippocampal lesions affect both trace conditioning and
discrimination reversal learning. Trace conditioning is mediated via output from delay-line activity from prefrontal cortex
(PFC) to lateral pontine nuclei (LPN), which inhibits activation of the eyeblink by the CS+ (in this case there is no CS–).
Reversal is mediated via output from the retrosplenial cortex (RSp), which inhibits activation of the eyeblink by the CS–
(which was the CS+ until reversal started). Hippocampal theta-related output from HPC, via the supramammillary area
(SuM), medial mammillary nucleus (MMM), and anterior thalamus (ATN) via pontine nuclei [137], impacts the rate of learning
[136]. In humans, ‘comparable delay and trace activation was measured in the cerebellum, whereas greater hippocampal
activity was detected during trace compared with delay conditioning’ [138] and there is good evidence for involvement of
such cerebellar circuits in working memory generally [99]. Abbreviation: IO, inferior olive; LTN, lateral tuberal nucleus; MS,
medial septum; RN, raphe nuclei; UR, unconditioned response.
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of course, has place (we would say goal) fields and the cerebellum contributes to the association
of hippocampal place fields with objects by updating the place fields when the objects are
relocated [102]. The synchronization of cerebellar-hippocampal interactions is also necessary
for appropriate spatial processing [103]. Overlapping similarities betweenMBs/SuM and cerebel-
lum include contributions to hippocampal processes for goal/spatial learning [102], involvement
of theta [103], and a bias for processing temporal information [49,104,105]. The unexpected
hippocampal role in eating [39–41] is also echoed by the cerebellum [106]. The direct connections
between MBs/SuM and the cerebellum form additional, remarkably similar, loops that provide
further inputs required for the development of representations to support long-term hippocampal-
dependent learning when, as with trace eyeblink conditioning, this involves the cerebellum.

More general computational features of interest in the cerebellum include (reviewed in [107]): (i) its
different implementations of learning at different timescales; (ii) its greater involvement during the
first hours after learning; (iii) extensive recurrent connections allowing iteration; and (iv) apparent
similarity of computations across areas, with differences in functional output depending on the
specific other brain areas providing input and receiving output. All of these features are reminis-
cent of extended hippocampal circuits.

‘A key difference between the cerebellum and other brain areas is the extraordinary amount of
neural hardware devoted to input preprocessing in the cerebellum, which is roughly equal to
the number of neurons in the rest of the brain combined. Yet the computational functions that
have been attributed to the cerebellar preprocessing stage are similar to those that have been
described for other brain areas — decorrelation, pattern separation, and the generation of tem-
poral basis sets.’ ([107] p. 244).

Importantly, while already clearly present in species such as sharks, which have no neocortex, the
cerebellum has steadily developed and expanded in phylogeny. In primates and humans, in par-
ticular, its expansion has been greater than that of the neocortex. Compared with baboons,
Trends in Neurosciences, July 2022, Vol. 45, No. 7 557
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Outstanding questions
There are many hippocampus↔cortex
and hippocampus↔cerebellum loops,
with widely varying architectures and
important mammillary connections
independent of hippocampus. How
do the architecturally different loops
through, for example, nucleus reuniens,
interact with the anterior thalamic
Papez-architecture circuits described in
the current article? How do the circuits
through the neocortex compare to
those through the cerebellum?

Other types of circuit exist for other
purposes. Papez-architecture circuits
are not required for learning and
memory in terms of simple stimuli and
simple motor responses (e.g., eyeblink
or freezing) but become involved when
interference from pre-emptive (trace
conditioning) or competing (water
maze, conditioning to ‘context’) re-
sponses must be suppressed. What
qualitatively and/or quantitatively deter-
mines the threshold for requiring
Papez-architecture processing? Is this
linked to the need for inhibition? Does
this vary across individuals?

Disruption ofMBs/SuMdisrupts several
electrophysiological signatures across
hippocampus and cortex. We know
that behavioral impairments can be
ameliorated with artificial stimulation
that reverses this disruption, but how
general is this? Would theta-frequency
stimulation be sufficient to reverse all
impairments due to Papez-circuit dys-
function or would the stimulation need
to be more nuanced, such as taking
into account gamma rhythmicity and
theta–gamma coupling?

Memory construction occurs across
different time frames: during the event,
immediately following the event, and
during subsequent periods of sleep.
MBs/SuM circuits have been implicated
in all stages. Is essentially the same
iterative integrative computation carried
out during these different stages or
does it vary according to state of the
constructed engram?
human cerebellum is 15% larger than would be expected from the expansion of neocortex; and
this cerebellar expansion is likely to have contributed to human cognitive evolution through
increased technical intelligence, advanced technological capacities, and preadaptation for
language [108]. Recent studies have also indicated a role for the cerebellum in both the perception
and action components of active memory [109]. As such, the perception–action cycle appears to
be supported by distributed networks from neocortex to cerebellum, including Papez-architecture
circuits that contribute both directly and indirectly [99,100].

Concluding remarks and future perspectives
Construction of complex memory engrams engages widespread cortical–subcortical networks.
Even simple engrams may require extended processing (consolidation and reconsolidation)
under conditions of extinction or reversal. Here, we have focused on the contribution of two
adjacent hypothalamic areas, MBs and SuM, to their Papez-architecture circuits.

We have reviewed data that demonstrate: (i) the presence of closed loops, which provides
the capacity for iterative processing (Figure 1); (ii) iterative looping in, for example, the
SuM→hippocampus→MB→SuM circuit, with evidence for driving of the circuit from
SuM→hippocampus during theta frequency acceleration and from hippocampus→MB→SuM
during deceleration (see [68]); (iii) the importance of the Papez-architecture circuits for interference
reduction (e.g., [48,49]); (iv) the contribution of the Papez-architecture circuits to the formation of
mnemonic representations in hippocampus and cortex (e.g., [34,110]); and (v) the integration of
motivational and situational information into the circuits at SuM/MB (Box 1).

We have combined these known features of the system to suggest that the Papez-architecture
circuits use their known capacity for iteration to progressively adjust signal and noise
[78,79] coded by cell assemblies and, thus, to both enhance engrams and reduce interference.
Both MBs and SuM have a driving role in the combining of representations of both internal
and external information that is needed to identify and prioritize engrams. Their component
nuclei are positioned so as to allow iteration within, and among, parallel distributed loops.
Iteration provides an ideal mechanism for integrating local and long-range inputs and,
thus, constructing and integrating elements of complex (e.g., episodic) engrams, while
also limiting the effects of external (e.g., competing objects) and internal (competing asso-
ciative retrieval) interference.

While the original Papez circuit has been associated with memory processing for over 80 years
[111], its precise role has been unclear. Many have seen it as a relay circuit, passively transferring
information; however, this ignores the massive energy cost of axons and nuclei. In addition, to
what ends would it simply relay information? The hippocampus and cortex already have direct
connections; thus, what use is an additional loop? Why are there, in fact, multiple, nested,
loops, including links to cerebellum that are similar to those to prefrontal cortex (with cerebellum
and cortex also highly interconnected)?

We argue that the extended parallel distributed system of Papez-architecture loops has two
adaptive functions. First, it enables the integration of internal cues, emotional and positional,
into hippocampocortical-dependent engrams. Second, the iteration of information around the
circuit allows representations to be fine-tuned and enhanced in terms of detail, while also increasing
the signal-to-noise ratio via a process analogous to figure-ground separation [78,79]. Iterative
reprocessing helps to construct memory representations that have sufficient contextual information
to reduce interference across similar overlapping experiences. However, beyond that, it also
provides additional gateways to influence and incorporate wider networks for learning, including
558 Trends in Neurosciences, July 2022, Vol. 45, No. 7
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the cerebellum. This adds further spatial and temporal processing with, again, its local iterative
looping enabling the formation of distinct, separable, representations.

Seeing memory networks as extended subcortically beyond primary hippocampal–cortical in-
teraction is essential if we are to properly model the dynamic widespread neural activity of
memory construction and consolidation (see Outstanding questions). This extension poses
new experimental challenges. Individual brain structures are only small windows into the pro-
cessing and storing of information. Detailed analysis of network level activity is needed to un-
derstand the dynamic interactions across memory circuits that vary with time and task
demand. The greatest insights will be obtained when complex circuit analysis and sophisti-
cated behavioral paradigms are combined. However, advances in behavioral analyses are
not developing at the same speed as the tools needed for circuit analyses. It is also important
to make use of tasks that can tap into cross-species processes, while capitalizing on the nat-
ural behavior of individual species.

One key future methodological challenge is that the subcortical structures of interest are small
and deeply located. This makes it hard to identify neural activity originating from them in humans.
Non-invasive recording of electrical activity (such as with EEG) does not pick up from deep
sources, while techniques such as functional magnetic resonance imaging (fMRI) are limited in
their spatial resolution, particularly for small deep structures. Invasive recordings (in patients
with implanted electrodes for neurological treatment) have been made of some structures, for
example, of the MBs and anterior thalamic nuclei [112,113]. These have identified cross-
species similarities in oscillatory mechanisms, but there are few studies to date, and these only
involve individuals with underlying pathology. Future improvements in human imaging should
address some of these outstanding issues, and combining techniques, such as fMRI and EEG,
could also be advantageous. Testing the hypotheses derived from animal work in humans,
coupled with detailed analysis of circuits and task phases, should elucidate the processing
implied by Figures 1–3. Critically, we think that analyses should assess the role of the multiple
parallel networks that we know exist in some form across a range of species. As with task
selection, a key to progress will be the use of appropriate comparative neural techniques [114]
that allow for species-specific (often cortical) expression while assessing species-general (often
subcortical) processes.

The extended Papez circuits, including the MBs and/or the anterior thalamic nuclei, have been
implicated in several neurological disorders associated with memory impairments, such as
Korsakoff’s syndrome, Alzheimer’s disease, Down syndrome, and hypoxic-ischemic enceph-
alopathy [115,116]. However, there is also increasing evidence for a role for the medial dien-
cephalon in psychiatric and neurodevelopmental disorders [98,117,118], in which not only
memory impairments, but also emotional dysregulation are present. Given the role we attribute
to the supramammillary and mammillary areas in Papez-circuit processing, we think that it is
time for a closer look into overlaps between memory and emotion across mnemonic,
neurodevelopmental, and psychiatric disorders.
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