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Highlights: 24 

 25 

1. Microplastic pollution in the central Beijing is more serious than in the northern and southern 26 

zones.   27 

2. Nine different compositions of microplastics were identified with polypropylene being the most 28 

abundant. 29 

3. The morphologies of microplastics include fragments, pellets, and fibers; with fragments being 30 

the most common. 31 

4. The presence of aged microplastics was recorded in the dustfall samples. 32 

  33 



4 

 

Abstract 34 

Airborne microplastics (MPs) pollution is an environmental problem of increasing concern, due 35 

to the ubiquity, persistence and potential toxicity of plastics in the atmosphere. In recent years, most 36 

studies on MPs have focused on aquatic and sedimentary environments, but little research has been 37 

done on MPs in the urban atmosphere. In this study, a total of ten dustfall samples were collected in 38 

a transect from north to south across urban Beijing. The compositions, morphologies, and sizes of the 39 

MPs in these dustfall samples were determined by means of Laser Direct Infrared (LDIR) imaging 40 

and Field Emission Scanning Electron Microscopy (FESEM). The number concentrations of MPs in 41 

the Beijing dustfall samples show an average of 123.6 items/g. The MPs concentrations show 42 

different patterns in the central, southern, and northern zones of Beijing. The number concentration 43 

of MPs was the highest in the central zone (224.76 items/g), as compared with the southern zone 44 

(170.55 items/g), and the northern zone (24.42 items/g). The LDIR analysis revealed nine 45 

compositional types of MPs, including Polypropylene (PP), Polyamide (PA), Polystyrene (PS), 46 

Polyethylene (PE), Polyethylene Terephthalate (PET), Silicone, Polycarbonate (PC), Polyurethane 47 

(PU) and Polyvinylchloride (PVC), among which PP was overall dominant. The PP dominates the 48 

MPs in the central zone (76.3%), and the PA dominates the MPs in the southern zone (55.86%), while 49 

the northern zone had a diverse combination of MPs types. The morphological types of the individual 50 

MPs particle include fragments, pellets, and fibers, among which fragments are dominant (70.9%). 51 

FESEM images show the presence of aged MPs in the Beijing atmosphere, which could pose a yet 52 

unquantified health risk to Beijing’s residents. The average size of the MPs in the Beijing samples is 53 

66.62 μm. Our study revealed that the numbers of fibrous MPs increase with the decrease in size. 54 

This pollution therefore needs to be carefully monitored, and methods of decreasing the sources and 55 

mitigations developed. 56 
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 58 

1. Introduction 59 

Microplastics (MPs), as an entirely anthropogenic type of pollution, are considered to be 60 

stratigraphic markers of the Anthropocene Epoch (Corcoran et al., 2018). MPs are plastics with small 61 

particle sizes, usually less than 5 mm (Arthur et al., 2009, Shao et al., 2022a), that originate from both 62 

primary and secondary sources (Cole et al., 2011, Shao et al., 2022a). Primary MPs are mainly 63 

sourced from common commercial products that contain microscopic plastics as part of their 64 

manufacture; such as personal care, cosmetics, cleaning, and medical products (Wang et al., 2019). 65 

Secondary MPs originate from the environmental degradation of larger-sized plastic products 66 

(Akhbarizadeh et al., 2017). Plastic is widely used in numerous fields, including packaging, 67 

construction, automotive, textile, medical, electronic, agriculture, sports, and safety equipment 68 

(Andrady, 2011; Brahney et al.. 2020; Gallagher et al.. 2016; Mohammadizadeh et al.. 2019). Plastic 69 

has advantages that include low price, lightweight, strength, practicality, and durability (Moore, 2008). 70 

Since the 1950s, approximately 8300 million metric tons of plastics have been manufactured 71 

worldwide (Geyer et al., 2017). By 2025, the accumulation of plastic in the environment could reach 72 

11 billion tons (Brahney et al., 2020). As the demand for plastics continues to grow, the rate of 73 

accumulation of MPs in the environment has increased dramatically (Serranti et al., 2018). MPs 74 

pollution is rapidly becoming a pressing global issue, which has attracted commercial, environmental 75 

and public concern. 76 

The accumulation of MPs in the environment can potentially exacerbate ecosystems and increase 77 

health risks (Kvale et al., 2021). Although water treatment plants can reduce the concentration of MPs 78 
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in wastewater by up to 98%, large volume of MPs are still discharged into the receiving waters every 79 

day (Murphy et al., 2016). Large amounts of MPs can be ingested by marine organisms with non-80 

selective filter-feeding behavior (Wang et al., 2021). In the scientific literature, MPs have been 81 

detected in fish (Ding et al., 2018), shellfish (Ding et al., 2020), bivalves (Van Cauwenberghe and 82 

Janssen, 2014), and earthworms (Jiang et al., 2020). Studies have confirmed that MPs can affect the 83 

feeding, multiple molting, reproduction, growth, mortality, immune responses, and oxidative stress 84 

of marine organisms (Bergami et al., 2016; Devriese et al., 2015; Jeong and Choi, 2019; Limonta et 85 

al., 2019; Qiao et al., 2019, Ward and Kach, 2009; Zhang et al., 2021b). MPs are by definition very 86 

small and therefore have a relatively large specific surface area; especially after aging and crushing 87 

(Mao et al., 2020). A large specific surface area and hydrophobic characteristics make MPs more 88 

susceptible to adsorption of toxic and hazardous substances, such as polycyclic aromatic 89 

hydrocarbons (PAHs) (Klasios et al., 2021), organochlorine pesticides (OCPs) (Zhang et al., 90 

2021a), polychlorinated biphenyls (PCBs) (Pastorino et al., 2021) and heavy metals (e.g., Cd, Pb, Cr, 91 

Cu, Zn) (Guo and Wang, 2021). Aged MPs can adsorb toxic and harmful substances, thus posing a 92 

potential threat to the human body. The possible dangers posed by MPs on ecosystems and human 93 

health needs to be better understood. 94 

Recently, most research on MPs has focused on different aquatic environments such as rivers, 95 

groundwater, lakes, and seawater (Bharath et al., 2021; Clayer et al., 2021; Kooi et al., 2021; 96 

Woodward et al., 2021), and sedimentary environments such as island sediments, terrestrial, river, 97 

and marine sediments (Braun et al., 2021; Saarni et al.,2021; Vermeiren et al., 2021; Yan et al., 2021; 98 

Zhou et al., 2021). In addition, there are also studies on long-distance MPs transport. The studies 99 

found that MPs can be transported to remote areas mostly unaffected by human influence, such as the 100 

Tibetan Plateau (Liang et al., 2022), Arctic (Hamilton et al., 2021), Himalayas (Yang et al., 2021) and 101 
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western Italian Alps (Parolini et al., 2021).    102 

In spite of the increasing studies on MPs, there is still a paucity of research on atmospheric MPs, 103 

especially in megacities. MPs are recognized as widespread atmospheric pollutants due to their small 104 

sizes and low densities (Revell et al., 2021). The distributions and characteristics of MPs in cities and 105 

their influencing factors are still unclear. Due to limitations of available analytical techniques, there 106 

is little information about the variations of concentrations, particle sizes and morphologies of MPs in 107 

the atmosphere.  108 

In this study, MPs in ten atmospheric dustfall samples were studied to elucidate the pollution 109 

role of MPs in Beijing atmosphere. The morphological characteristics and compositional types of 110 

MPs, and the regional distribution characteristics of MPs within Beijing were investigated. The 111 

variations in the number concentrations, particle sizes, and morphologies of MPs within the 112 

atmosphere are considered. The results of this study provide new insights into particulate pollution 113 

compositions in the urban atmosphere of megacities. 114 

2. Materials and methods 115 

2.1. Sample collection 116 

Samples were collected in urban areas of Beijing, China (Fig. 1). To understand the distribution 117 

of MPs in the atmosphere, ten sampling sites were selected and the samples were collected at 2-7 km 118 

intervals in a transect from the northern to the southern areas of the city. The atmospheric dustfall 119 

was mostly collected on a smooth surface (non-plastic component). To minimize contamination, the 120 

atmospheric dustfall was collected with an antistatic brush and dustpan, using a brush type that 121 

minimizes potential brush fiber contamination. The bulk samples were stored in a sealed aluminum 122 
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foil bag. The collection data detailing the local environment of the sampling sites, and wind direction 123 

is shown in Table 1.  124 

Separated by the Second Ring Road, the sampling sites are divided into three zones (Fig 1). The 125 

northern zone refers to the northern area outside of the northern Second Ring Road, including S1, S2, 126 

S3 and S4. The central zone refers the area within the Second Ring Road, including S5, S6, and S7. 127 

The southern zone refers to the southern area outside of the southern Second Ring Road, including 128 

S8, S9, and S10.  129 

2.2. MPs separation 130 

 In this study, ZnCl2 solution was used as heavy-liquid to separate MPs by density flotation from 131 

the bulk samples, which predominantly consisted of denser mineral particles. Previous research has 132 

shown that this method is effective (Bellasi et al., 2021; Liu et al., 2019b; Shao et al., 2022a). The 133 

steps are: (1) configure 1.7-1.8 g·cm−3 ZnCl2 (premium pure) solution; (2) place a measured amount 134 

of atmospheric fallout bulk dust into a 100 mL beaker, add 60 mL ZnCl2 solution, stir the mixture for 135 

two minutes, and then allow to stand over 72 hours; (3) transfer the surface floating component to 136 

another beaker and add 60 mL of 30% H2O2 to digest the organic matter, which includes agitating it 137 

on an oscillator for 10 min, and then standing for 24 hours to allow the H2O2 to fully digest the organic 138 

matter; (4) MPs are collected by vacuum extraction filtration using a filter membrane (silver 139 

membrane with a pore size of 0.45 μm), and then placed in a sterile petri dish for air-drying (5) place 140 

the dried filter in ethanol and extract the sample off the filter into the solution, aided by ultrasound; 141 

(6) remove the filter membrane from the ethanol and wash with ethanol several times until the filter 142 

is clean, The ethanol was allowed to evaporate down to a volume of 200 μL, then a drop of the ethanol 143 

is put on a glass coverslip. Once the ethanol has completely evaporated leaving the sample adhered 144 
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to the glass surface the samples are prepared for FESEM and LDIR analysis. 145 

2.3. FESEM analysis 146 

The projected image of the plastic particles provided by the LDIR imaging system is not clear, 147 

and the size is larger than 20 μm. Therefore, FESEM was used to observe the microscopic 148 

characteristics of the MPs (Li et al., 2020b). Studies have shown that FESEM is a very effective 149 

method for the characterization of atmospheric particles (Shao et al., 2022a, Shao et al., 2022b). The 150 

FESEM used in this study was a SUPRA 40 (Zeiss Germany) based at Henan Normal University. The 151 

prepared sample on the glass coverslip was placed on the stub using conductive double-sided tape 152 

and gold coated. The FESEM analysis was under 20 KV voltage and the working distance was less 153 

than 5 mm. 154 

2.4. LDIR analysis 155 

The LDIR (Agilent 8700) analyzer was used to characterize the types and sizes of MPs. The 156 

LDIR uses a Quantum Cascade Laser (QCL) as the light source, which has over 10,000 times the 157 

energy of traditional Fourier Transform infrared (FT-IR) spectroscopy. The collimating laser 158 

accurately aligns the light rays and directly irradiates the sample after optical path conversion (Li et 159 

al., 2021). Even for micron-scale samples the infrared spectrum has a sufficient signal-to-noise ratio 160 

to achieve accurate chemical characterization. Previous studies have confirmed that the LDIR 161 

Analyzer is an advanced and reliable method for detecting plastics (Li et al., 2021; Ng et al., 2021). 162 

In this study, fast single-wavelength (1800 cm−1) light can scan the MPs on the slide, and the image 163 

analysis software can measure the MPs sizes >20 µm. Once the MPs were located, the LDIR 164 

automatically moved around to scan particles on the slide, and the infrared median range spectrum of 165 
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each particle was collected, and compared with the standards in a plastics reference library (Li et al., 166 

2021). To ensure the reliability of the identification, only the results with a matching degree greater 167 

than or equal to 0.8 were selected.  168 

3. Results 169 

3.1. MPs number concentrations 170 

MPs were detected in all the samples. The number concentration in this study refers to the 171 

number of MPs particles (items) per gram of dustfall. The abundance of MPs at all the sample sites 172 

ranged from 7.25 items/g to 481.39 items/g, with an average of 123.6 items/g. The highest number 173 

concentration of MPs was found at the sampling site S6, at 481.39 items/g, followed by S8 (202.29 174 

items/g), S10 (197.03 items/g), S5 (172.73 items/g), S9 (115.19 items/g), S2 (38.85 items/g), S1 175 

(37.62 items/g), S7 (22.95 items/g), S4 (13.64 items/g), and S3 (7.25 items/g) (Fig. 2).  176 

The MPs distribution in the northern zone (S1, S2, S3, and S4), central zone (S5, S6, and S7), 177 

and southern zone (S8, S9, and S10) show different patterns. In the northern zone, the average number 178 

concentration was 24.42 items/g, in the central zone, the average number concentration was 224.76 179 

items/g, and in the southern zone, the average number concentration was 170.55 items/g. The central 180 

zone has the highest average concentration of MPs, 1.3 times that of the southern zone and 9.2 times 181 

that of the northern zone. In the central zone, S5 was collected in Nanluoguxiang (South Luogu Lane) 182 

with street food stalls, a developed fast-food service and a high population density. The S6 sample 183 

site is in the center of the city, close to the world cultural heritage site the Forbidden City and shopping 184 

centers. There are also many service sectors such as catering, hotels, and shops around the S6 185 

sampling site. The number concentration of MPs at the S7 sampling site was only 22.95 items/g, and 186 
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this low concentration may be due to that the sampling site is not in a residential area and has not 187 

been affected by road traffic (There are tall buildings between the sampling site and the road). The 188 

average number concentration of MPs in the southern zone was nearly seven times higher than in the 189 

northern zone. Sampling site S9 with the lowest number concentration (115.19 items/g) in the 190 

southern zone was higher than that at the S2 with the highest number concentration (38.85 items/g) 191 

in the northern zone (Fig. 2). In the northern zone, there are no other sources of MP pollution other 192 

than MPs created by the residents. Construction, traffic levels, and industries in the southern zone 193 

may be an important reason for the higher MPs number concentration in the southern zone compared 194 

to the northern zone. It appears that areas with high human activity levels will produce relatively 195 

higher number concentrations of MPs. 196 

3.2. MPs chemical types 197 

In our study, nine chemical types were recognized by LDIR, including Polypropylene (PP), 198 

Polyamide (PA), Polystyrene (PS), Polyethylene (PE), Polyethylene Terephthalate (PET), Silicone, 199 

Polycarbonate (PC), Polyurethane (PU) and Polyvinylchloride (PVC) (Fig. 3). The total samples 200 

statistics reveal the relative abundances of different types of MPs. The PP and PA were the major 201 

types, accounting for 56 items/g and 28.83 items/g respectively, followed by PE (8.82 items/g), PVC 202 

(8.48 items/g), PS (7.46 items/g), PET (5.67 items/g), PU (4.81 items/g), Silicone (3.05 items/g), and 203 

PC (0.48 items/g) (Fig. 4). 204 

Our study found that the central, southern, and northern zones have different patterns in the 205 

relative proportions of the different compositional types of MPs. In the central zone, PP was the 206 

dominant component, accounting for 76.3%. In the southern zone, PA was the main component, 207 

accounting for 58.86%, followed by PS (15.08%) and PE (7.36%). In the northern zone, PP was again 208 
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the dominant component at 32.4%, followed by PA (18.1%), PE (17.05%), PET (11.92%), and 209 

Silicone (9.42%) (Fig. 5). Therefore, PP was the major contributor to the MPs pollution in the central 210 

and northern zones, whereas PA was the main component of MPs pollution in the southern zone. In 211 

the northern zone, MPs pollution consisted of diverse types of MPs. 212 

3.3. MPs morphological types  213 

Three morphological types of MPs were observed in this study: pellets/spheres (Fig. 6a), 214 

fragments (Fig. 6b), and fibers (Fig. 6c). Pellet/Sphere refers to the morphology of individual MPs 215 

with a rounded morphology. Fragment describes the morphology of individual MPs that are neither 216 

rounded or fibers. Fiber describes the morphology of individual MPs that have a length: width aspect 217 

ratio greater than 3. The fragments were the most common in all the sample sites. The number 218 

statistics for all samples were fragments (70.9%), followed by pellets/spheres (19.53%) and fibers 219 

(9.57%) (Fig. 7).  220 

The study also identified that different chemical compositional types of MPs display different 221 

morphologies. PS had fragment and fiber morphologies, but no pellet/spheres, whereas PC was 222 

mostly pellets/spheres (Fig. 8). There was no apparent difference in the relative proportions of the 223 

different MPs morphological types in the central, southern, and northern zones of Beijing. 224 

3.4. MPs size distributions 225 

The size of the individual MPs particle in the Beijing samples ranged from 37.7 μm to 95.78 μm, 226 

with an average of 66.62 μm (Fig. 9). Different compositional types of MPs had different average 227 

sizes, with the PC being 95.78 μm, PP 78.08 μm, PET 69.7 μm, PE 63.23 μm, PS 66.18 μm, PVC 228 

56.35 μm, PA 52.15 μm, PU 38.42 μm and Silicone 37.7 μm in descending order.  229 
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The size distributions are also different, with the average size of MPs in the central zone as 59.3 230 

μm. In the southern zone, the average size of MPs is 57.52 μm. In the northern area, the average size 231 

of MPs is 70.67 μm. It is noted that the higher number concentrations of MPs were associated with 232 

the smaller average sizes in the central and southern zone. 233 

We divided the size of MPs into three segments, 20-100 μm, 100-200 μm, and >200 μm. The 234 

study found that MPs accounted for 84.63%, 13.34% and 2.83% in size range 20-100 μm, 100-200 235 

μm and >200 μm (Fig. 10) respectively. The results showed that the number concentration of MPs in 236 

the atmosphere increases with the decrease of size, with smaller MPs being associated with higher 237 

number concentration. The greater abundance of MPs in smaller sizes may be attributed to the rapid 238 

degradation of small plastic fragments (Zhang et al., 2016). In the >200 μm size segment, fibrous 239 

MPs accounted for 5.26%. In the 100-200 μm size segment, fibrous MPs accounted for 8.16%, and 240 

in the 20-100 μm size segment, fibrous MPs accounted for 10.39% (Fig. 11). The results indicate that 241 

the amounts of fibrous MPs in the atmosphere increases with the decrease of size. We also found that 242 

pellet/sphere, fragment, and fiber MPs are dominant in the 20-100 μm size segment (Fig. 12). These 243 

results indicate that the MPs in the atmosphere of Beijing mainly come from the degradation of large 244 

plastics.  245 

4. Discussion 246 

4.1. MPs aging and health risk 247 

The aging processes and resulting MPs characteristics have been the subject of scientific 248 

investigation (Lambert and Wagner, 2016). The formation of aged MPs is part of the processes that 249 

will eventually lead to the breakdown of the plastics in the environment into non-plastic end products. 250 
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(Liu et al., 2019a). This degradation process can involve environmental weathering, ultraviolet 251 

radiation, biodegradation, physical wear and chemical oxidation (Jahnke et al., 2017). MPs can age 252 

more rapidly in the atmosphere than in water because of the availability of oxygen and higher levels 253 

of ultraviolet radiation (Mao et al., 2020). The temperature, ultraviolet rays, ozone and other 254 

substances in the atmosphere will directly act on MPs, resulting in their aging. In the Beijing dustfall 255 

samples, we found that many of the MPs have undergone various degrees of recognizable aging. 256 

Visual damage in the form of collapses, cracks, and structural embrittlement were observed in the 257 

FESEM images of some MPs (Fig. 6).  258 

A study of remote lakeshore sediments on the Tibet Plateau found that damage to MPs might have 259 

resulted from collision with wind-mobilized sand grains (Zhang et al., 2016). Mineral particles are 260 

common in Beijing’s atmosphere (Wang et al., 2022). It is speculated that many of the damage 261 

features seen at a microscopic level could have been the result of impact with atmospheric mineral 262 

particles. However, cracking and embrittlement may not be the result of just mechanical weathering, 263 

but the damage is likely to be a combination of ultraviolet radiation, oxidation, as well as the physical 264 

weathering. As stated, a significant proportion of the MPs are secondary particles derived from larger 265 

plastic pieces. Therefore, the regular observation of microscopic damage features is to be expected as 266 

part of the process of converting the primary sources into secondary particles. As the particles become 267 

smaller, the mechanisms of weathering are likely to subtly change as the smaller particles are less 268 

prone to physical assault and become more brittle. Once the particles become exceedingly small it is 269 

likely that most of the weathering damage is no longer physical, but rather driven by ultraviolet 270 

radiation and atmospheric oxidation.  271 

Ultraviolet radiation and oxidation are important factors that cause carbon-carbon bond breaks in 272 

MPs as part of the plastic degradation process (Gewert et al., 2015). This change of chemical structure 273 
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and morphology will alter their macroscopic properties, with subsequent weathering leading to further 274 

embrittlement and disintegration of plastics (Halle et al., 2017). A study on the degradation of PS 275 

found that the size, surface morphology and microstructure will change with aging (Lambert and 276 

Wagner, 2016). The aging processes are generally believed to be capable of enhancing the sorption 277 

potential of MPs in soil, and mobility of the particles in groundwater (Ren et al., 2021). An isothermal 278 

adsorption model shows that aging can significantly increase the adsorption of heavy metals by PS 279 

(Mao et al., 2020).  280 

In recent years, Beijing has experienced frequent haze events, and this atmospheric particulate 281 

matter contains a large number of harmful substances (Feng et al., 2020; Li et al., 2020a; Shao et al., 282 

2021a). The dustfall samples have shown that the Beijing atmosphere contains MPs, which are part 283 

of the pollution cocktail. Human exposure to toxic substances can be through three different pathways: 284 

dermal, ingestion and inhalation (Cabral-Pinto et al., 2020). Dermal exposure is highly unlikely to 285 

present a health risk as the MPs levels are so low, and the skin presents an effective barrier to the 286 

MPs. Nanoparticles can cross the skin barrier, however the particles sizes recorded in this study are 287 

much larger than nanoparticles. It is however possible that some atmospheric MPs could exist as 288 

nanoparticles. Inhalation again depends upon the particle size, with PM2.5 (aerodynamic diameter less 289 

than or equal to 2.5 μm) commonly considered to be the size that determines whether the particles 290 

are capable of being respired into the deep lung (Shao et al., 2022b). The smallest of the MPs types, 291 

Silicone, had an average size of 37.7 μm, and therefore is much larger than what is normally 292 

considered to be the largest atmospheric particulate matter PM10 (10 μm equivalent spherical 293 

diameter). In this case the silicone particles would be considered to be a nuisance dust, which would 294 

be filtered-out in the nose and upper airways. However, we also find MPs smaller than 2.5 μm (Fig. 295 

6a) in this study. Although we cannot determine the type of MPs, these MPs have the same 296 
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aerodynamic characteristics as PM2.5 particles in the air, and they can reach deep lungs or alveoli 297 

through respiration (Enyoh et al., 2019). The most recent research has found MPs in human blood 298 

(Leslie et al. 2022). In the third potential pathway airborne MPs can be inadvertently ingested, causing 299 

physical damage to the body. Study have found that MPs can be absorbed by human tissues through 300 

phagocytosis and cell adsorption in the respiratory system and gastrointestinal tract, leading to 301 

inflammation, cell necrosis and tissue tearing (Enyoh et al., 2019). Research has shown that MPs can 302 

bioaccumulate by ingestion in a range of organisms (Prata et al., 2020), typically organisms such as 303 

aquatic filter-feeders. Airborne MPs can also enter the body by eating contaminated food (Khalid et 304 

al., 2020). Furthermore, recent study has found that Novel Coronavirus can be transmitted by aerosols 305 

(Shao et al., 2021b) and can survive on the surface of aerosols for up to 72 hours (Salimi et al. 2022). 306 

MPs are also a kind of particulate matter in the atmosphere, so MPs may also be used as a viral carrier. 307 

Based on the above discussion, we recognize that aged MPs in the Beijing atmosphere may adsorb 308 

toxic and harmful substances. Smaller MPs of undetermined component types in the study (Fig. 6b) 309 

may form part of PM2.5, therefore, MPs with smaller sizes could pose a yet unquantified health risk 310 

to Beijing’s residents. 311 

4.2. MPs possible original sources: proximal and distal 312 

The compositions and morphologies of MPs are controlled by the chemistry of the original 313 

plastics that were used in their manufactured sources. In this study, PP accounted for the highest 314 

concentration in MPs, and the central Beijing zone has a highest level. The size of the particles and 315 

their distribution across Beijing supports the view that a significant proportion of these MPs were 316 

created in central Beijing. In the central zone, numerous service industries produce large number of 317 

packaging products, such as foam plastic boxes, PP plastic cups, food packaging bags and other 318 
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similar products; these when degraded are likely to be an important component of PP aggregation at 319 

the S5 and S6 sample sites. In addition, PP is widely used in injection molded products (Li et al., 320 

2018), so injection molded domestic products may also be a source of PP. The overall second highest 321 

number concentration and proportion of MPs is PA in the dustfall samples, with southern zone having 322 

the highest number concentration. PA plastics are often found as fibers that are mixed with other types 323 

of fibers to improve the wear resistance of fabrics (Liu et al., 2019b). With the breakdown or daily 324 

wear of those fabrics the individual PA fibres would be released as MPs (Wright et al., 2020). 325 

Research into indoor air at schools in Barcelona, Spain, has shown that the children’s daily wear of 326 

clothing releases fibers into the school rooms, therefore this type of fibrous MP would be expected in 327 

any dense urban environment (Moreno et al., 2014). Investigations have shown that PA is widely used 328 

in many fields, including industries such as pharmaceutical, beverage, furniture, domestic machinery, 329 

transport, and clothing (Kasal et al., 2020; Welle et al., 2012). Since these industries are found in the 330 

southern zone, this area may be an important original source of PA. Given the distribution of the MPs 331 

within Beijing, their specific chemistries, and the probable original plastic sources, we can conclude 332 

that a significant percentage of the MPs are created locally from daily life, service industries and 333 

industrial emissions. Many of the waste plastic products will have been disposed of at ground level 334 

and disintegrated at that level by a combination of chemical and physical degradation. It is probable 335 

that a significant component of the dustfall MPs did not become sufficiently airborne to be inhalable 336 

but were moved around at a near surface level either by natural wind or anthropomorphic generated 337 

air movements, such as traffic air turbulence resuspension.  338 

The morphologies of MPs provide important characteristics for tracing their possible sources. 339 

Fragments are the dominant morphological type of MPs in the Beijing dustfall. Previous studies have 340 

suggested that the fragmental MPs were created by the degradation of larger plastic objects (Müller 341 



18 

 

et al., 2018). The FESEM images show that larger fibrous MPs could splinter to create many more 342 

fibrous fragments with smaller particle sizes as a result of aging (Fig. 6d). The pellets or spheres MPs 343 

are generally thought to be primary particles released from personal care products, such as medicines, 344 

and cosmetics (Alidoust et al., 2021). Routinely used in cosmetics these MPs have a number of trade 345 

names, such micro-pearls, and nano-pearls, and given their microscopic size an individual application 346 

of skin cream can contain many tens of thousands of particles, available for release into the 347 

environment as the creams dry or are exposed to wind. As one of the largest megacities in the world, 348 

Beijing has a huge population, a developed economy and advanced medical technology. This vast 349 

population uses many medicines and applies MP-containing cosmetics on a daily basis, and this will 350 

be a significant source of the pellet/sphere MPs found in the Beijing dustfall.  351 

5. Conclusions 352 

1) The number concentrations of MPs in the Beijing dustfall show an average of 123.6 items/g, 353 

with the highest number being in the central zone, and the lowest number being in the northern zone.  354 

2) Nine compositional types of MPs were identified in the Beijing dustfall, including PP, PA, PS, 355 

PE, PET, Silicone, PC, PU and PVC. PA is the most common plastic type in the southern zone, PP 356 

dominates the central zone, whereas the northern zone had a diverse combination of different 357 

compositional types. 358 

3) The morphologies of the MPs in the Beijing dustfall are of three basic types: fragments, fibers, 359 

and pellet/spheres, with the fragments being the most common. There is no obvious distribution 360 

difference in the morphological types of MPs in the central, southern, and northern zone of Beijing. 361 

SEM images show the presence of aged MPs in the Beijing dustfall.  362 

4) The average size of the MPs in the Beijing dustfall is 66.62 μm. The numbers of fibrous MPs 363 
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in the dustfall increases with the decrease of size. The results indicated that the MPs in the Beijing 364 

dustfall mainly come from the degradation of larger plastics. 365 
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Table caption 606 

Table 1. The details of sample collection in Beijing. 607 

 608 

 609 

Figure captions 610 

Fig. 1. Location of the study area and distribution of the sampling sites. 611 

 612 

Fig. 2. The number concentrations of MPs at the different sampling sites in the Beijing dustfall. 613 

 614 

Fig. 3. Wavenumber and absorbance of different compositional types of microplastics collected in 615 

Beijing dustfall. The solid line is the spectrum obtained by particle testing, and the dotted line is the 616 

standard spectrum. 617 

 618 

Fig. 4. The number concentrations of different compositional types of MPs in the Beijing dustfall. 619 

Polypropylene (PP), Polyamide (PA), Polystyrene (PS), Polyethylene (PE), Polyethylene 620 

Terephthalate (PET), Silicone, Polycarbonate (PC), Polyurethane (PU) and Polyvinylchloride (PVC). 621 

 622 

Fig. 5. Relative abundances of different compositional types of MPs at different sampling sites in the 623 

Beijing fallout dust. Polypropylene (PP), Polyamide (PA), Polystyrene (PS), Polyethylene (PE), 624 

Polyethylene Terephthalate (PET), Silicone, Polycarbonate (PC), Polyurethane (PU) and 625 

Polyvinylchloride (PVC). 626 
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 627 

Fig. 6. FESEM images showing different morphological types of MPS in the Beijing dustfall. a, 628 

pellet/sphere; b, fragment; c and d, fiber; e, higher magnification of a stress embrittlement on the fiber 629 

in image d. 630 

 631 

Fig. 7. The relative abundances of different MPs morphological types at different sampling sites in 632 

the Beijing dustfall.  633 

 634 

Fig. 8. The relative abundances of different MPs morphological types for the different compositional 635 

types in the Beijing dustfall.  636 

 637 

Fig. 9. Averaged sizes by equivalent circular diameter of the different MPs in the Beijing dustfall. 638 

The error bar stands for the standard deviation. 639 

 640 

Fig. 10. The number of microplastics in different MPs size ranges in the Beijing dustfall. 641 

 642 

Fig. 11. Relative abundance of different morphological types in different MPs size ranges in the 643 

Beijing dustfall.  644 

 645 

Fig. 12. Relative abundance of pellets, fragments, and fibers in different size ranges of MPs in the 646 

Beijing dustfall.  647 

 648 

 649 
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 650 

Table 1. The details of sample collection in Beijing. 651 

Sample No Sampling 
day 

Sampling site environment Wind 
direction 

S1  

2021.06.09 

Residential area  

North 
wind 

S2 Park  

S3 Near the road (There are 
tall buildings between the 
sampling site and the road) 

S4 2021.06.10 Under the office building West wind 

S5 2021.12.10 Nanluoguxiang (residential 
areas, food stalls street, 
densely populated) 

North 
wind 

S6  

2021.06.10 

Residential area (close to 
tourism service industry) 

West wind 

S7 2021.12.11 Near the road (there are tall 
buildings between the 
sampling site and the road) 

Northwest 
wind 

S8 2021.06.10 Residential area (close to a 
pharmaceutical company) 

West wind 

S9  

 

 

 

2021.06.15 

Outside the residential area 
(close to construction 
activity) 

 

 

 

North 
wind S10 Residential area (close to 

beverage, furniture, 
machinery, and clothing 
companies) 

 652 

 653 

 654 
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 655 

Fig. 1. Location of the study area and distribution of the sampling sites. 656 

 657 

Fig. 2. The number concentrations of MPs at the different sampling sites in the Beijing dustfall. 658 

  659 
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 660 

Fig. 3. Wavenumber and absorbance of different compositional types of microplastics collected in 661 

Beijing dustfall. The solid line is the spectrum obtained by particle testing, and the dotted line is the 662 

standard spectrum. 663 

 664 

 665 

Fig. 4. The number concentrations of different compositional types of MPs in the Beijing dustfall. 666 

Polypropylene (PP), Polyamide (PA), Polystyrene (PS), Polyethylene (PE), Polyethylene 667 

Terephthalate (PET), Silicone, Polycarbonate (PC), Polyurethane (PU) and Polyvinylchloride (PVC). 668 
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 669 

Fig. 5. Relative abundances of different compositional types of MPs at different sampling sites in the 670 

Beijing fallout dust. Polypropylene (PP), Polyamide (PA), Polystyrene (PS), Polyethylene (PE), 671 

Polyethylene Terephthalate (PET), Silicone, Polycarbonate (PC), Polyurethane (PU) and 672 

Polyvinylchloride (PVC). 673 

 674 

 675 
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 676 

Fig. 6. FESEM images showing different morphological types of MPS in the Beijing dustfall. a, 677 

pellet/sphere; b, fragment; c and d, fiber; e, higher magnification of a stress embrittlement on the fiber 678 

in image d. 679 

 680 

 681 

Fig. 7. The relative abundances of different MPs morphological types at different sampling sites in 682 

the Beijing dustfall. 683 

 684 
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 685 

 686 

Fig. 8. The relative abundances of different MPs morphological types for the different compositional 687 

types in the Beijing dustfall. 688 

 689 

 690 

Fig. 9. Averaged sizes by equivalent circular diameter of the different MPs in the Beijing dustfall.  691 

The error bar stands for the standard deviation. 692 

  693 
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 694 

 695 

Fig. 10. The number of microplastics in different MPs size ranges in the Beijing dustfall. 696 

 697 

 698 

Fig. 11. Relative abundance of different morphological types in different MPs size ranges in the 699 

Beijing dustfall. 700 

  701 
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 702 

Fig. 12. Relative abundance of pellets, fragments, and fibers in different size ranges of MPs in the 703 

Beijing dustfall. 704 


