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Brewing in the United States?*
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Abstract

We use a time-varying parameter dynamic factor model with stochastic volatility
(DFM-TV-SV) estimated using Bayesian methods to disentangle the relative impor-
tance of the common component in FHFA house price movements from state-specific
shocks, over the quarterly period of 1975Q2 to 2017Q4. We find that the contribution
of the national factor in explaining fluctuations in house prices is not only critical, but
also has been increasing and has become more important than the local factors since
around 1990. We then use a Bayesian change-point vector autoregressive (VAR) model,
that allows for different regimes throughout the sample period, to study the impact of
aggregate supply, aggregate demand, (conventional) monetary policy, and term-spread
shocks, identified based on sign-restrictions, on the national component of house price
movements. We detect three regimes corresponding to the periods of “Great Infla-
tion”, “Great Moderation”, and the zero lower bound (ZLB). While the conventional
monetary policy is found to have played an important role in the historical evolution
of the national factor in the first-regime, other shocks are found to be quite dominant
as well especially during the second-regime, with monetary policy shocks playing vir-
tually no role during this period. In the third-regime, unconventional monetary policy
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shock is found to have led to a (delayed) recovery in the housing market. But more
importantly, we find evidence that the national housing factor has been detached from
the identified macroeconomic shocks (fundamentals) since 2014, thus suggesting that a
“national bubble” might be brewing again in the US housing market. Understandably,
our results have important policy implications.

Keywords: House Prices, Time-Varying Dynamic Factor Model, Change-Point
Vector Autoregressive Model, Macroeconomic Shocks, Bayesian Analysis

JEL classification: C11, C32, E31, E32, E43, E52, R31
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1 Introduction

In a seminal contribution related to the (regional and national) housing market of the United
States (US), Del Negro and Otrok (2007) used a Bayesian dynamic factor model (DFM) to
deduce the importance of the common component in the Office of Federal Housing Enterprise
Oversight’s (OFHEO’s), now the Federal Housing Finance Agency’s (FHFA’s), house price
movements relative to state- or region-specific shocks, estimated on quarterly state-level
data from 1986 to 2005. The authors found that, while movements in house prices have been
mainly driven by the local component, the period of 2001 to 2005 was different in the sense
that the overall increase in house prices was a national phenomenon, though “local bubbles”
were important in some states. As a next step, Del Negro and Otrok (2007) used a (constant
parameter) vector autoregressive (VAR) to investigate the role of monetary policy in explain-
ing the movements of the the common component of house price. The authors concluded that
the impact of monetary policy shocks, identified based on sign-restrictions, on the national
house price factor was marginal. Within the context of trying to explain the movement in
overall US house prices based on macroeconomic shocks, a recent study by Plakandaras et al.
(2018) employed a Bayesian time-varying parameter VAR (TVP-VAR) covering the period of
1830 to 2016. This is undoubtedly an important question since according to recent financial
accounts data of the US, residential real estate represents about 83.7% of total household
non-financial assets, 28.3% of total household net worth and 24.6% of household total as-
set.1 Based on a model which identified (permanent) technology, price and financial (money)
shocks, and (temporary) housing market-related demand/supply shocks, these authors found
that technology shocks dominate in driving the US housing market.2 This finding further
corroborates the analysis of conditional volatilities and correlations with macroeconomic
shocks. Interestingly, these results are in line with those obtained earlier by Iacoviello and
Neri (2010) from a micro-founded dynamic stochastic general equilibrium (DSGE) model of
the US economy, which incorporated an explicit housing sector.

Motivated by the findings of the two above-mentioned VAR-based studies, i.e., there are
possibly more important other shocks than just monetary policy surprises that drives house
prices in the US,3 we aim to revisit the work of Del Negro and Otrok (2007), based on updated
data covering the quarterly period of 1975 to 2017. Understandably, recent data, allows us
to include the tumultous episodes of the “Great Recession”, the global financial crisis (GFC)
(as well as the European sovereign debt crisis) that followed thereafter, and unconventional
monetary policy decisions in the wake of the zero lower bound (ZLB) of monetary policy rates,
with the roots of all these events associated with the bursting of the US housing bubble and

1See: https://www.federalreserve.gov/releases/z1/20190920/html/b101h.htm.
2This result is actually in line with Gupta, Lv and Wong (2019), who made similar observations for the

the Real Estate Investment Trusts (REITs) sector of the US economy. Reverting back to the paper by
Plakandaras et al. (2018), when the authors also conducted a comparative analysis for the United Kingdom
(UK) over the period of 1845 to 1846, interestingly they found that monetary policy is the most important
driver of house price.

3In fact Del Negro and Otrok (2007) clearly pointed out that there are indeed many other potential causes
that led to the booming housing market before its collapse.
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the subprime mortgage crisis (Leamer, 2015). Besides, using updated data, we extend the
work of Del Negro and Otrok (2007), and the general literature which concentrates primarily
the role of (conventional and more recently, unconventional) monetary policy shocks (rather
than other macroeconomic surprises) in driving the US housing market (see, Rahal (2016),
Simo-Kengne et al. (2016), and Huber and Punzi (2018) for detailed reviews in the regard),4

in the following ways: (i) Instead of the the constant-parameter DFM originally used by
Del Negro and Otrok (2007), we estimate an extended version of the traditional DFM with
time-varying loadings and stochastic volatility (DFM-TV-SV, henceforth), as developed by
Del Negro and Otrok (2008), to obtain the national and local factors associated with US
state-level house price movements. As pointed out by these authors, an assumption of most
DFMs is that both the stochastic process driving volatility and the nature of comovement
among variables has not changed over time, but large amount of recent empirical work
has shown that the assumption of structural stability is invalid for many macroeconomic
aggregate and regional datasets of the US (Gupta et al., 2018b), including house prices
(Canarella, Miller and Pollard, 2012; Karoglou, Morley and Thomas, 2013; Simo-Kengne
et al., 2016; Huang, 2019). Naturally, a DFM model with fixed parameters is less likely
to do well at describing house price data. As such, the generalized DFM-TV-SV not only
captures changing comovements among the house prices of the 50 states and the District
of Columbia by allowing for their dependence on common factors to evolve over time, but
also allows for stochastic volatility in the innovations to the processes followed by the factors
and the idiosyncratic components; (ii) Unlike Del Negro and Otrok (2007), and inspired by
Plakandaras et al. (2018), we identify not only monetary policy shocks, but also aggregate
supply, aggregate demand and term-spread shocks based on sign-restrictions, to analyze the
impact of these shocks on the national component of house price movements. It must be
realized that the spread shock is important for us since the time period of our analysis
involves the period of ZLB and hence, that of unconventional monetary policy, which in turn
involved compression of the long-term yield spread; (iii) Furthermore, differently from the
constant parameter VAR model used by Del Negro and Otrok (2007), we estimate changes in
macroeconomic dynamics by using an innovative change-point VAR model, proposed by Liu
et al. (2018), that allows for different regimes throughout the sample period while studying
the impact of the various shocks on the common component of the state-level housing prices.
This approach enables the VAR model to endogenously identify changes to the structure of
the US economy as well as variations to the properties of the exogenous shocks during the
sample period. Consistent with evidence of time-varying effects of macroeconomic variables
on the (regional) housing market of the US (Bork and Møller, 2015; Li et al., 2015; Nyakabawo
et al., 2015; Bork, Møller and Pedersen, 2019; Christou, Gupta and Nyakabawo, 2019), the
change-point VAR model with nonrecurrent states offers a novel way to estimate changes in
the transmission mechanism of a variety of shocks over an extensive period, and; (iv) Since
we estimate a DFM-TV-SV model, we are also able to recover the the stochastic volatility

4More recently, some studies have also emphasized the role of fiscal policy shocks in driving the US
housing market in the wake of the ZLB (see, Gupta et al. (2018a) and El Montasser et al. (2020) for further
details).
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of the national factor, which we also incorporate into our change-point VAR model. This
in turn, even though our primary focus is on house prices, allow us to simultaneously, as an
aside, analyze the impact of the various identified shocks on the (common) housing market
volatility, which have been shown to be also driven by macroeconomic variables (Miller and
Peng, 2006; Fairchild, Wu and Ma, 2015; André et al., 2017; Plakandaras et al., 2018), besides
housing returns (Miles, 2008).5 As pointed out by Segnon et al. (2021) with housing serving
the dual role of investment and consumption, the effects of housing on savings and portfolio
choices are extremely important questions, and hence, understanding the drivers of the house
price volatility cannot be ignored because it has individual portfolio implications, as it affects
households’ investment decisions regarding tenure choice and housing quantity. But more
importantly, including the national factor of the stochastic volatility of the states in our
change-point VAR, allows us to control for the possible effect of real estate uncertainty on
the corresponding national component of house prices (over and above the identified macro
shocks), as has been shown to play an important role in driving the US housing market
(Christidou and Fountas, 2018; Nguyen Thanh, Strobel and Lee, 2018).

At this stage, it must be pointed out that there is widespread worry among academicians
and policy authorities alike that, the ultra-low interest rate environment, along with the rise
in liquidity caused by unconventional monetary policy measures that followed in the wake
of the GFC, is inflating new housing bubbles (Jordà, Schularick and Taylor, 2015a,b; Blot,
Hubert and Labondance, 2018; Alpert, 2019; Rosenberg, 2019). Hence, distinguishing the
national factor from local factors in the housing market, and determing what fraction of the
variation in house prices across the states is explained by the common component, remain
important questions, since answering them allow us to deduce whether the US economy is
facing a “national bubble” or “local bubbles”. While “local bubbles” are attributable to cir-
cumstances that are specific to each geographic market given the widespread acceptance that
housing markets are partially segmented (Apergis and Payne, 2012; Montañés and Olmos,
2013; Barros, Gil-Alana and Payne, 2013; Miles, 2015), by linking the national price factor
to (conventional and unconventional) monetary policy and other macroeconomic shocks, we
will be able to gauge the part of common regional housing market movement attributable
to changes in fundamentals (wider-array of macroeconomic shocks, besides the monetary
policy shock) and the portion that could be due to speculation or pricing errors. Naturally,
our analysis has tremendous significance from the policy perspective, if indeed the national
factor dominates the local factors in explaining state-level housing price movements, and
monetary policy shocks have had a role to play in driving the common component. These
findings would in turn also align our study to the large existing literature (see for example,
Gaĺı and Gambetti (2015) and Caraiani, Călin and Gupta (2018) for comprehensive reviews)
on the relationship between monetary policy and bubbles in asset (housing) markets.

To the best of our knowledge, this is the first paper to use a Bayesian DFM-TV-SV model
to first decompose the state-level house price movements of the US into a national and local
factors, and then use a Bayesian change-point VAR to analyze the impact of aggregate

5In this regard, the role of monetary policy in producing second moment macroeconomic effects for the US
economy, including the equity market, has also been recently depicted by Mumtaz and Theodoridis (2019).
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supply, aggregate demand, monetary policy and term-spread shocks (identified based on
sign-restrictions) on the common component. The remainder of the paper is organized as
follows: Section 2 discusses the data used and the two methodologies associated with the
DFM-TV-SV and the change-point VAR; Section 3 presents the empirical results from these
two models and Section 4 concludes.

2 Data and Methodologies

2.1 Data

To be consistent with Del Negro and Otrok (2007), we use the FHFA (then OFHEO)
seasonally-adjusted house price indexes for the 50 US states and District of Columbia over
the quarterly period of 1975Q1 to 2017Q4, with the start date driven by the availability of
the house price data, and the end of the sample corresponding to the latest data at the time
of writing this paper. The FHFA house price indexes provide a broad measure of the move-
ment of single-family house prices. The FHFA indexes are weighted, repeat-sales data, i.e.,
they measure average price changes in repeat sales or refinancings on the same properties.
This information is obtained by reviewing repeat mortgage transactions on single-family
properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie
Mac since January 1975. In particular, we use the quarterly “All-Transactions Indexes.6

To create a real version of house price, we deflate the indexes by the (seasonally-adjusted)
Consumer Price Index (CPI) of the US, derived from the FRED database of the Federal
Reserve Bank of St. Louis. We work with the quarter-on-quarter (QoQ) version of the real
house price indexes to obtain the national and local factors from the DFM-TV-SV model for
both real housing returns and the corresponding stochastic volatilities.

As far as the data used in the change-point VAR is concerned, besides the two national
factors of real housing returns and stochastic volatility, we include data on the federal funds
rate (FFR), QoQ growth rate of seasonally-adjusted real Gross Domestic Product (GDP),
QoQ growth of the CPI measuring the inflation rate, and the term-spread, which was defined
as the difference between 10-year government bond yield and the FFR. Data on FFR, real
GDP, and the long-term government bond yield is again sourced from the FRED database.
The transformations of the data implies that our effective sample covers the period of 1975Q2
to 2017Q4.

2.2 The Generalized Dynamic Factor Model

In this section we present a generalized dynamic factor model (DFM) that is employed to
decompose the real housing returns in all states into a common (or national) factor and an
idiosyncratic (or state-specific) factor. The DFM is often used to tease out the common
movements among multiple time series, and has become a standard tool since the work by

6The data can be downloaded from: https://www.fhfa.gov/DataTools/Downloads/Pages/

House-Price-Index.aspx.
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Stock and Watson (1989). We generalize the standard DFM with constant parameters to
one that allows for time-varying loading parameters and the stochastic volatility (DFM-TV-
SV, henceforth). As such, the generalized DFM-TV-SV captures important time-varying
comovements among multiple time series. Formally, our model specification closely follows
Del Negro and Otrok (2008), and is specified as follows7:

ri,t = βi,t · ft + ei,t (1)

Here, ri,t is the first-difference of the natural log of the real house price for state i at time
t. ft is the national factor that affects all house prices at time t, and βi,t is the time-varying
loading parameter of this national factor. ei,t is the idiosyncratic factor.

The common factor and the idiosyncratic factors are assumed to be independent from
each other. Therefore, the variance decomposition of our model is given by:

V ar(ri,t) = β2
i,t · V ar(ft) + V ar(ei,t) (2)

Note that either the time-varying loading parameters or the stochastic volatility of the factors
enables the factors contributions to the total variations of each variable to vary over time.

Following the standard practice in this literature, we model the common factor ft using
a stationary AR(p) process:

ft = ϕf
1ft−1 + ϕf

2ft−2 + ......ϕf
pft−p + exp(hf

t ) · ε
f
t (3)

where εft ∼ i.i.d.N(0, σ2
f ). Therefore, the shock to the factor has a stochastic volatility, and

its time-varying volatility is governed by exp(hf
t ).

To keep the model parsimonious, we employ a driftless random walk process to capture
the time variation of the volatility:

hf
t = hf

t−1 + σh
f · ξ

f
t , ξft ∼ i.i.d.N(0, 1) (4)

The factor loading βi,t varies over time, and is also assumed to follow a random walk
process:

βi,t = βi,t−1 + σβ
i · ηi,t ; ηi,t ∼ i.i.d.N(0, 1) (5)

Here shocks to the loading parameters in different series are assumed to be orthogonal to
each other. 8

7As a robustness check, we also expand our dynamic factor model to include 5 reginoal factors that include
Northeast, Midwest, West, Southeast, and Southwest following Del Negro and Otrok (2007). The resulting
national factor from this expanded model is very similar to the national factor from the model without
reginoal factors and the correlation between the two is 0.98. Furthermore the variance decomposition results
indicate that the contributions of the national factor to house price variations are little changed by adding
regional factors. These results are available upon request.

8It is straightforward to see that potential comovements in the factor loadings across all series can be
captured by the common factor volatility. This was pointed out by Del Negro and Otrok (2008).
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The idiosyncratic factor follows a stationary AR(q) process:

ei,t = ϕi,1ei,t−1 + ϕi,2ei,t−2 + · · ·+ ϕi,qei,t−q + exp(hi,t) · εi,t (6)

where εi,t ∼ i.i.d.N(0, σ2
i ). The stochastic volatility of the idiosyncratic factor follows a

random walk process:

hi,t = hi,t−1 + σh
i · ξi,t, ξi,t ∼ i.i.d.N(0, 1) (7)

Here we assume that the shocks to the stochastic volatility in different factors are independent
from each other. This assumption simplifies the estimation algorithm.

As usual, some normalizations of the factor rotations are needed before the model can
be identified and estimated. The loading parameters and the variance of the shock to the
common factor are not separately identifiable. We choose to set σ2

f = 1 to achieve the
identification. Following Del Negro and Otrok (2008) we also restrict that the time-varying
volatility all start from zero for the same identification purpose. We demean each series
before the estimation since the means of factors are not separately identifiable. Finally,
following works such as Neely and Rapach (2011) and Bhatt, Kishor and Ma (2017), we set
p = q = 2 to keep the model parsimonious.

2.3 Estimation Procedure

We estimate this DFM-TV-SV model using the Monte Carlo Markov Chain (MCMC) Bayesian
estimation method. Specifically, we employ the well-established Gibbs-Sampling algorithm
by breaking the model into several blocks and sampling sequentially from posterior con-
ditional densities. The idea of the Gibbs-Sampling algorithm is that when the algorithm
converges after the initial burn-in draws, these random draws from the conditional densities
altogether constitute a good approximation of the underlying joint densities. Applying the
law of large numbers, the numerical integration can be easily taken to obtain the marginal
densities of the parameters and the state variables of our interest. Most blocks in the model
are linear and Gussian, and as a result the standard algorithms in Kim and Nelson (1999a)
are readily applicable. The stochastic volatility introduces a non-Gaussian feature into the
model. We apply the procedure proposed in Kim, Shephard and Chib (1998) that utilizes a
mixture of normal densities to approximate the underying non-Gaussian distribution in order
to simulate the stochastic volatility. This procedure has been widely used in the literature,
see e.g., Stock and Watson (2007) and Primiceri (2005).

We briefly outline the Gibbs-Sampling estimation algorithm below. Further details are
given in the Appendix A.2.

1. Cast the model into its state-space form as given in the Appendix A.2, and draw the
national factor {ft}Tt=1 from the conditional density:

f

(
{ft}Tt=1

∣∣∣∣{{βi,t}Tt=1

}n

i=1
, ϕf , {ϕi,e}ni=1, {σ2

i }ni=1, {h
f
t }Tt=1,

{
{hi,t}Tt=1

}n

i=1
, {{ri,t}Tt=1}ni=1

)
,

where ϕf =
(
ϕf
1 , ϕ

f
2 , ...ϕ

f
p

)′
, and ϕi,e = (ϕi,1, ϕi,2, ..., ϕi,q)

′ for i = 1, 2, ..., n.
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2. Draw the AR parameters of the common factor from the conditional density:

f

(
ϕf

∣∣∣∣{ft}Tt=1, {h
f
t }Tt=1

)
Draws of the AR parameters outside the unity circle are discarded to ensure the sta-
tionarity.

3. Sample the AR and variance parameters for each idiosyncratic factor from the condi-
tional density:

f

(
ϕi,e, σ

2
i

∣∣∣∣{ft}Tt=1, {βi,t}Tt=1, {hi,t}Tt=1, {{ri,t}Tt=1}ni=1

)
Because the idiosyncratic factors are orthogonal to each other, these draws can be
made one by one for each i = 1, 2, ....., n. Again, to ensure the stationarity any draw
of the AR parameters outside the unity circle is discarded.

4. Draw the loading parameters and the shock variance parameters from the conditional
density:

f

(
{βi,t}Tt=1, (σ

β
i )

2

∣∣∣∣{ft}Tt=1, ϕi,e, σ
2
i , {hi,t}Tt=1

)
Again, due to the orthogonality condition, these draws can be made one by one for
each i = 1, 2, ....., n.

5. Draw the stochastic volatility of the common factor from the conditional density:

f

(
{hf

t }Tt=1, σ
h
f

∣∣∣∣{ft}Tt=1, ϕf

)
And draw the stochastic volatility of the idiosyncratic factor from the conditional
density:

f

(
{hi,t}Tt=1, σ

h
i

∣∣∣∣{ft}Tt=1, {βi,t}Tt=1, ϕi,e, {ri,t}Tt=1

)
Starting with initial values, we repeat steps (1) through (5) for (D + S) number of times.
Here D is the initial burn-in draws needed for the algorithm to converge, and the results are
based on the saved S number of draws. We set D to 2000 and S to 8000.

2.4 Change-Point VAR Model

This section reviews the empirical model used for structural analysis. It also discusses how
the marginal likelihood of the model is applied to determine: i) the number of regimes and
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ii) the order of lags. A similar framework has been applied by Kapetanios et al. (2012) and
Liu et al. (2018).

To assess whether agents’ responses to macroeconomic shocks vary across regimes, the
following VAR model is estimated

Zt = cS +
K∑
j=1

BSZt−j + εt, (8)

where εt ∼ N (0,ΩS) and the data matrix Zt contains quarterly data on the FFR, real GDP
growth, inflation, term-spread, and the national factors of real housing returns and volatility
derived from the DFM-TV-SV model. BS and ΩS denote the VAR coefficient and covariance
matrix, respectively, which vary across regimes.

The empirical model permits M breaks to take place at unknown dates and as in Chib
(1998) the evolution of these breaks is prescribed by the latent state variable, St. The latter
state variable is follows an M state Markov chain with restricted transition probabilities,
pij = p (St = j|St−1 = i), given by

pij > 0 if i = j (9)

pij > 0 if j = i+ 1

pMM = 1

pij = 0 otherwise.

For example, if M = 3, the transition matrix is defined as

P̃ =


p11 0 0

1− p11 p22 0
0 1− p22 1

 .

Equations (8) and (9) describe a Markov switching VAR with non-recurrent states where
transitions from one regime are restricted to happen sequentially. For example, to move
from Regime 1 to Regime 3, the process has to visit Regime 2. The transition matrix also
precludes transitions to past regimes. As discussed in Sims, Waggoner and Zha (2008), this
is a Markov Switching model where structural breaks are modelled as multiple change points.
We believe that this approach is advantageous over standard Markov switching models as it
permits the user to associate changes in the macroeconomic dynamics with structural breaks
in the economy. For instance, it is shown below that the marginal likelihood metric selects
as the best “fitting” model the one with three regimes. Furthermore, these regimes seem to
coincide with the Great Inflation, Great Moderation and Great Recession-Zero Lower Bound
(ZLB) periods.
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2.5 Estimation and Selection of the Number of Change Points and
Lags

We follow Chib (1998) and adopt a Bayesian Gibbs sampling approach to the estimation of
the change-point VAR models. Appendix B provides a detailed description of the prior and
Appendix C describes the main steps of the algorithm. The only feature that is perhaps
important to be mentioned here is that during the last regime, the policy rate does not
respond to any variable into the system (to proxy for the ZLB). This characteristic is imposed
via tight priors (see the discussion in the Appendix B).

The choice of the number of breakpoints is a crucial specification issue. The number of
regimes is selected by comparing the marginal likelihood across models (i.e. different number
of regimes or/and lags). The maximum number of regimes has been set equal to three, while
the maximum number of lags equal to four. Both choices are driven by concerns regarding
the limited number of observations per regime.9

Given m and l the marginal likelihood is estimated based on Chib (1998) and Bauwens
and Rombouts (2012):

lnG (Zt | m, k) = ln f
(
Zt | m, k,Θ, P̃

)
+ ln p

(
Θ, P̃ | m, k

)
− ln g

(
Θ, P̃ | Zt,m, k

)
(10)

where lnG (Zt | m, k) denotes the marginal likelihood, ln f
(
Zt | m, k,Θ, P̃

)
is the like-

lihood, while ln p
(
Θ, P̃ | m, k

)
and ln g

(
Θ, P̃ | Zt,m, k

)
are the prior and posterior dis-

tribution of the VAR parameter vector, respectively. Note that as lnG (Zt | m) does not
depend on the parameters of the model and in theory it can be evaluated at any value of
the parameters. Following standard practices, we evaluate the marginal likelihood at the
posterior mean. The first two terms on the right-hand side of equation (10) are easily evalu-

ated whereas the calculation of the normalizing constant, ln g
(
Θ, P̃ | Zt,m

)
requires some

work. As described in detail in Bauwens and Rombouts (2012), this term can be evaluated

by considering reduced Gibbs runs on an appropriate factorization of g
(
Θ, P̃ | Zt,m

)
. We

use 10,000 additional Gibbs replications to evaluate g
(
Θ, P̃ | Zt,m

)
at the posterior mean.

2.6 Shock Identification

This section explains briefly the identification scheme employed in this paper, and it is
motivated by the work of Uhlig (2004), Mountford and Uhlig (2009) and Barsky and Sims
(2011). The identified shocks maximise their contribution on selected variables and also
satisfy the sign restrictions described in Table 1, which are imposed for four periods.

The mapping between reduced and structural errors is given by

εt = A0,Svt (11)

9Allowing for a larger number of breakpoints and lags turns out to be and infeasible task as there are not
enough observations per regime.
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Table 1: Sign Restrictions

Variables Shocks
Demand Supply Monetary Policy Slope

Policy Rate + - + 0
GDP Growth + + - -
Inflation + - - -
Term-Spread ? ? ? +
House Prices Factor ? ? ? ?
House Prices Volatility Factor ? ? ? ?

Notes: All sing restrictions have been imposed for 4 periods. During the ZLB regime, the policy

rate does not respond to the demand and supply shock as well (i.e. additional zero restrictions).

For any orthogonal matrix D (DD′ = I, where I is the identity matrix) the above mapping
can be written as

εt = A0,SDSvt

Since
ΩS = A0,SDSD

′
SA

′
0,S = A0,SA

′
0,S

Using the companion form of the VAR(p) model, the impulse of variable j and the impulse
of shock i in the period h can be expressed as

IRFi,j(h) = JjB
h−1
S A0,SDSJ

′
i (12)

where Ji and Jh are selection matrices of zeros and ones.
In ? the matrix DS results from the following minimisation problem

D∗
S = argmin

∑
j∈I+

Hj,+∈H+∑
hj=h̃j

f

(
−JjB

h−1
S A0,SDSJ

′
i

σj,S

)
+

∑
j∈I−

Hj,+∈H+∑
hj=h̃j

f

(
JjB

h−1
S A0,SDSJ

′
i

σj,S

)
(13)

s.t.
DSD

′
S = I

where σj,S is the standard deviation of variable j and f (x) =

{
100x if x ≥ 0
x otherwise

. Finally, I+

is the index set of variables, for which identification of a given shock restricts the impulse
response to be positive and I− is the index set of variables, for which identification restricts
the impulse response to be negative. The use of this scheme is to identify “meaningful”
macroeconomic shocks and to study how these disturbances affect house price movements.
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Although the identification scheme employed shares many similarities with the one de-
veloped by Mountford and Uhlig (2009) and Barsky and Sims (2011), two features of the
proposed methodology are of worth to be mentioned explicitly. The first point is that the
matrix DS is regime dependent, meaning that the above maximisation problem (expression
13) needs to be performed for each regime. More importantly, no restriction is placed on
the house price level and volatility factors. In other words, our approach about the effects of
“standard” macroeconomic shocks on the series that describe the evolution of the common
components associated with real housing returns and stochastic volatility is agnostic.

Table 1 reports the sign restrictions employed to identify a demand, supply, monetary
policy and term-spread shock. The restrictions for the first three shocks are uncontroversial,
and they have been used in the literature extensively. Although the last shock has been
studied in a number of papers Kapetanios et al. (2012), Baumeister and Benati (2013) and
Liu et al. (2018) (among others), it is less common and aims to capture movements at the
long-end of the yield curve that are not induced by variations in the policy rate. During the
period of the Great Moderation period, this shock could reflect the foreign capital inflows to
the US, capturing the so-called savings glut phenomenon (Sá, Towbin and Wieladek, 2014;
Sá and Wieladek, 2015; Cesa-Bianchi, Ferrero and Rebucci, 2018). While during the ZLB
period, this shock could proxy the Federal Reserve’s unconventional policies.

3 Empirical Results

In this section we present the estimation results of the DFM-TV-SV model as described
in Section 2.2 and when applied to the quarterly real housing returns in 50 states and the
District of Columbia. We first present the national factor of the real housing returns together
with its time-varying stochastic volatility, and then discuss its time-varying contributions
to real housing returns in all states, followed by discussions of the implied time-varying
cross-state correlation and the cross-state volatility dispersion from the DFM-TV-SV model.
Finally, we turn our attention to analyzing the impact of sign restrictions-based identfied
aggregate demand, aggregate supply, monetary policy and credit shocks on the evolution of
the national factor using a change-point VAR model.

3.1 The National Factor of the Real Housing Returns

Figure 1 plots the national factor (in a solid line), together with the 90% probability intervals
(in dotted lines)10. One important advantage of this generalized DFM is that it allows
exposures of the real housing returns in all states to the national factor to vary over time,
and thus permits a time-varying integration of the local housing market with the national

10To provide diagnostics of the algorithm convergence, we follow Primiceri (2005) to compute the 20th-
order sample autocorrelation of simulation draws for each parameter and state variable (averaged over the
sample period for state variables) and plot them in figure 19. These numbers are all around 0.2 and indeed
most of them are far below 0.2. Our results are also robust to different initial values. We deem these results
quite satisfactory as indication of the algorithm convergence.
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market. The national factor started to increase in 1975, but then declined in the late 1970s
through the early 1980s. Since around the mid-1980s, the national factor had steadily risen
for an extended period of time until about 2006, when the national factor plunged leading
to a severe financial crisis and recession in 2007-2009. The national real housing returns
factor leveled off around 2010, and has rebounded sharply since 2011. The dynamics of the
national factor of real housing returns estimated from our DFM-TV-SV model is in general
consistent with those findings documented over the common period of the past literature (see
for example, Del Negro and Otrok (2007) and Fairchild, Wu and Ma (2015)). We explain this
pattern below by identifying various shocks in the context of a change-point VAR framework.

Figures 2 and 3 plot the time-varying loading parameters of the national factor, together
with the 90% probability intervals, for the growth of real house price in each state. Overall,
the exposures of the real housing returns in all states to the national factor vary substantially
over time. These loading parameters appear to be positive for all states at all time periods,
indicating that there is no identification issue. The dynamic patterns of these time variations
also display substantial heterogeneity across states. A number of states, including Alaska,
California, Delaware, Florida, Hawaii, Idaho, Illinois, Maryland, Nevada, New York, Ore-
gon, Virginia, Vermont, Washington, and Wisconsin, all witnessed a steady increase in the
exposures of their real housing returns from the early 1990s to the pre-crisis period. Inter-
estingly, many other states, including Arkansas, Colorado, Connecticut, DC, Iowa, Indiana,
Kansas, Kentucky, Louisiana, Massachusetts, Maine, Mississippi, North Dakota, Nebraska,
New Hampshire, Ohio, Oklahoma, Rhode Island, South Dakota, Texas, Utah, West Vir-
ginia, and Wyoming, all experienced a steady decline in the exposures of their real house
price growth in the same period.

Figure 4 shows the stochastic volatility of the national factor with its 90% probability
interval. There is a rapid and substantial increase in the stochastic volatility of the national
factor from around 1998 to around 2011, followed by a large decline afterwards. Figures 5 and
6 plot the stochastic volatility of each state-specific factor. Overall, there is a substantial time
variation in the stochastic volatility for all idiosyncratic factors, and there is a substantial
heterogeneity in the dynamic patterns across states.

Recall, from equation (2), that both the time-varying loading parameters and the stochas-
tic volatility of the national and the state-specific factors jointly determine the time-varying
contributions of the national factor to the total variations of the growth in real house price
in the states. Figures 7 and 8 show the dynamic evolution of the relative contribution of
the national factor to the real housing returns in all states. The relative contribution of
the national factor has increased since the mid-1980s for most states. These include states
that have experienced an overall steady increase in its loading of the national factor, such
as California and New York, and states that have witnessed a decline in its loading of the
national factor, such as Connecticut and Massachusetts. For the latter group of states, it
seems that the decline in the loading of the national factor is more than offset by a large
increase in the stochastic volatility of the national factor and a large decline in the stochastic
volatility of the idiosyncratic factor, resulting in an increasing relative contribution of the
national factor. To quantify the relative contribution of the national factor to the total vari-
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ations, we note that the contribution of the national factor for the full sample period in all
states is 44.85% on average. This contribution is only about 28.85% on average during the
period from 1975Q1 to 1989Q4, rises to as much as 52.12% during the period from 1990Q1
to 2006Q4, and remains as high as 55.08% during the period from 2007Q1 to 2017Q4. Al-
though the contribution of the national factor has declined somewhat after the financial
crisis in some states, we conclude that overall the role of the national factor in explaining
the house prices in all states is not only critical but also has been increasing to become more
important than the local factors since around 1990. These findings are broadly in line with
previous works such as Del Negro and Otrok (2007), but recall, the sample period of that
study ended in 2005, and hence did not cover the most recent periods, including that of the
GFC which corresponded with a tumultous period of the US housing market. Given the
dominance of the national factor in explaining state-level house price movements, especially
since 1990, identifying the role of various macroeconomic shocks in driving this common real
housing returns component in a regime-specific context, is clearly of paramount importance,
and this is what we focus on in detail below in a short while.

3.2 Cross-State Time Varying Correlation

The generalized DFM as employed here can capture potentially time-varying comovements
among multiple series. To this end, we compute the implied correlation for each pair of
states and present the average of these pairwise correlations at each time point in Figure
9. The average cross-state correlations increased from the mid-1980s till around 2011, and
then declined until the end of the sample. The increase in this correlation was more rapid
in 1985-1995 than in 1996-2005. This correlation increased more rapidly again between 2005
and 2011, which may have been driven by the financial crisis.

3.3 Cross-Sectional Dispersion in Volatility

Another metric that can be computed based on the DFM-TV-SV model to usefully sum-
marize the dynamic patters of these growth in real house prices is the volatility dispersion,
which is the standard deviation of the implied volatility of all states, as shown in Del Ne-
gro and Otrok (2008). In Figure 10, we present this time-varying volatility dispersion and
the decomposition of it into the component driven by the national factor and that by the
state-specific factor. We find that there is a large increase in the volatility dispersion at the
beginning of the sample period till around the mid-1980s, followed by a large decline. The
third panel in this figure indicates that this rise and decline in the total volatility dispersion
is primarily attributed to the idiosyncratic factor. The total volatility dispersion increased
between 2000 and 2009 again, and then declined until the end of the sample. The second
panel suggests that this is primarily due to the national factor.
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3.4 Change-Point VARModel Specification and Evolution of Regimes

Next, we focus our attention on the change-point VAR, using which we analyze the impact
of various identified macroeconomic shocks on the national factors of real housing returns
and stochastic volatility.11 We start with the discussion of the dynamic specification of the
model. Table 2 reveals that the model that gets the most support from the data is the most
flexible one. In words, the data prefer a model with 3 regimes and 4 lags.12

Figure 11 helps us to understand the model selection implied by the marginal likelihood
statistic. The evolution of the regimes coincides with the three phases of inflation and,
consequently, the policy rate during the time interval considered in this study. Namely, the
first regime is associated with high inflation and policy rate (“Great Inflation”). In contrast,
the second regime overlaps (mostly) with the Great Moderation (stable low inflation and
policy rate) and the final regime with the ZLB period. Interestingly, the second regime
more or less corresponds to sample period used by Del Negro and Otrok (2007) under the
rationale that this sample corresponds to a single monetary policy-regime and thus helps in
correctly identifying the monetary policy shocks. The “good-luck” versus “good-policy” and
ZLB literature document that the dynamics across these different regimes are dramatically
different (see Sims and Zha (2006), Cogley and Sargent (2005) and Liu et al. (2018) among
others). In addition, when we look at these three-regimes, we observe the first-regime being
characterized by the declining national factor of real housing returns and then recovery of the
same with low volatility,13 followed by the rapid increases with eventual collapse and highly
volatile national factors in the second regime, and then finally the recovery of the common
component with declining variability in the wake of expansionary unconventional monetary
policies. As a result, a model with sufficient flexibility is required to capture accurately the
extensive non-linearities in the data. The results displayed by Table 2 are inline with this
rationale.

3.5 Shocks

The evident time-varying importance of the national real housing returns factor in explaining
movements at the state-level especially post-1990 tends to suggest that the housing market
boom before the collapse in 2007, and then again the recovery after that is not necessarily
purely driven by local factors (“local bubbles”). Hence, this section is devoted to studying
the responses of the economy including the national housing market factors of returns and
volatility, to each identified shocks and whether these responses are regime-dependent. The
importance of the shock across all three regimes is also assessed in this section.

11An iinteresting area of future research in this regard would be to determine what state-specific charac-
teristics drive the differences in exposures to the common factor.

12Extending the search for a larger number of regimes or/and lags is not possible given the scale of the
empirical model and the quarterly nature of the data. There are no enough observations per-regime to ensure
meaningful estimates.

13This period is known to be associated with large structural changes in the credit market culminating
into the end of regulation Q.
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3.5.1 Demand Shock

Figure 12 illustrates responses to a demand shock. To remind the reader, the effects of the
shock on the term-spread, the real housing returns factor and the house prices volatility
factor are left unrestricted. Figure 12 makes apparent that the transmission of the shock to
the macroeconomy varies dramatically across the three regimes. The shocks seems to have
a larger effect on the economy during the “Great Moderation” (regime 2), and the forecast
variance decomposition also confirms this (Figure 13 and Table 3). Although the effect on the
reall GDP growth is comparable across the three regimes, inflation rises substantially more
in the second regime, and this leads to a protracted increase in the interest rate. Despite the
long-lasting policy rate increase, the term-spread falls indicating that the long-term interest
rate rises by less than the short-end of the yield curve; perhaps due to well-anchored inflation
expectation during the Great Moderation. The housing factor increase initially, but this is
only a short-lasting effect, since as monetary authorities start ‘fighting’ higher inflation and
the policy rate increases, the real housing returns factor falls.

During the Great Moderation, the demand shock explains 50% of the variability of the
policy rate, indicating that the Federal Reserve’s intense effort to mitigate the inflationary
consequences of the shock. This elevated impact is also reflected on GDP (20%), inflation
(20%), term-spread (35%), real housing returns factor (30%) and real house price volatility
factor (20%).

3.5.2 Supply Shock

The responses of output growth, inflation and the policy rate are stronger in the first than in
the other two regimes (Figure 14). The stimulative monetary policy needed for the (negative)
output-gap to be closed, leads to the higher housing returns factor in regimes one and two.
This effect is supported further by the strong (income) growth in the economy, which also
leads to lower volatility of the national factor of housing returns for regimes one and two.

The forecast variance contribution of the shock does not seem to vary across the 1st and
2nd regimes and it fluctuates between 10% and 20% (Figure 13 and Table 3). The supply
shock plays a more important role during the 3rd regime, with its contribution to GDP
growth, and the factors of real housing returns and stochastic volatility rising above 20%.

3.5.3 Policy Shock

A policy ‘cut’ increases output growth persistently during the second regime (Figure 15).
Interestingly, the term-spread rises approximately by 200 basis points suggesting that long-
term interest rates do not decrease as much as the policy rate. The stimulative environment
created by the Federal Reserve leads to higher values of the real housing returns factor
during the Great Moderation, while this effect is insignificant in the first regime. This
highly accommodative policy results in higher volatility of the national housing returns
factor, although this effect is not precisely estimated.

The forecast variance contribution to GDP growth and inflation is admittedly quite small
(Figure 13 and Table 3), which is in line with a number of existing studies (see Bernanke,
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Boivin and Eliasz (2005), Smets and Wouters (2007) and Justiniano, Primiceri and Tam-
balotti (2010) among others). On the other hand, the contribution of the policy shock on
the term-spread and national housing returns factor rises to (almost) 30%,14 indicating the
strong link between policy actions and decision of agents to invest in either long-term or/and
housing debt.

3.5.4 Slope Shock

The slope shock is a perturbation that lower the long-end of the yield curve, while the policy
rate remains constant contemporaneously. In the first regime, the shock stimulates demand
and inflation. As the authorities start increasing the policy rate to restore price stability, the
national house price factor starts falling with (about) a year delay, while the corresponding
volatility increases contemporaneously. These effects carry over to the next regime. However,
the response of volatility of the national housing returns factor is not precisely estimated. As
the economy moves into the ZLB regime, the responses of the level and volatility of common
factors change sign. In this regime, real housing returns factor increases and volatility falls
(but again, the latter response is not precisely estimated). Recall that, the slope shock
in the last regime proxies the Federal Reserve’s unconventional policies adopted to repair
macroeconomic stability (something which we will return to below) in the wake of the Great
Recession.

The shock seems to have a limited effect on the macroeconomic variables including the
term-spread (Figure 13 and Table 3). An exception is the contribution of the GDP on growth
during the Great Moderation, especially at short-horizons such as one quarter and one year,
whereby the shock explains 35% and 30% of the variability of growth. The contribution of
the shock to the slope of the yield-curve rises as the forecast horizon increases. However,
the magnitude of this effect is (approximately) 15%. Interestingly, the contribution of the
term-spread shocks is much higher for the remaining two variables (between 20% and 30%).
What seems to be more noteworthy is the fact that the contribution of the shock peaks in
the third regime.

3.6 Sensitivity Analysis

It is illustrated in the Appendix D that the results are robust: i) when the value of the hyper-
parameter that controls the tightness of the VAR coefficients is increased (looser priors), ii)
when the unemployment (instead of the GDP growth) series, , derived from the FRED
database, is used to proxy the real sector of the economy, and iii) when the dynamic order
to the VAR is reduced to 3, 2 and 1 lags (per-regime).15

14This is actually more than twice the figure of 13% detected by Del Negro and Otrok (2007), and could
be an indication of our model picking up the existing nonlinearity in the relationships among the variables
of the change-point VAR.

15For all these exercises the number of regimes is set equal to 3 as in the benchmark model.

18



3.7 The National Housing Returns Factor and Identified Shocks

The discussion in this section is concentrated on the national real housing returns factor
in relation to not only conventional and unconventional monetary policy shocks, but also
aggregate demand and aggregate supply innovations. Table 3 illustrates that the identified
macroeconomic economic shocks explain between 50% and 70% of the variability of the
national housing returns factor (depending on the horizon and the regime). This message
is further reinforced by Figure 17, where the identified shocks account for (almost) all the
historical evolution of the common component of state-level growth in real house prices
during the first and second regimes. The explanatory power of the identified shocks collapses
during the Great Recession, while it improves in the period between 2011Q1 and 2014Q2,
but breaks down again from 2014Q3 till the end of the sample (2017Q4).16

Several interesting facts emerge from both Table 3 and Figure 17. The first one is that,
unlike in the high inflation regime, conventional monetary policy played almost no role in
the growth of the national factor related to the housing market during the Great Moderation
– a result in line with Del Negro and Otrok (2007); if anything, its contribution is rather
negative (Nelson, Pinter and Theodoridis (2018)). This finding is consistent with the work
of Justiniano, Primiceri and Tambalotti (2017) and Justiniano, Primiceri and Tambalotti
(2019) where the authors explain that factors related to the credit supply and demand, and
not monetary policy, are behind the increase of house prices (and housing debt/leverage).
In this study, credit supply and demand shocks are not identified explicitly, but are proba-
bly captured by the demand, supply and slope shocks in our model and, interestingly, the
contribution of all these three types of shocks to the national factor of real housing returns
is positive during this period, which in turn, corroborates the findings of Plakandaras et al.
(2018), especially in terms of the importance of the aggregate supply shocks.

The national real house price growth factor collapsed during the Great Recession, with
one-third of this fall not being explained by the shocks identified. During this period, the
(conventional) monetary policy is constrained by the ZLB, which started binding at the
beginning of the 2009. Interestingly, substantial negative policy contribution started cumu-
lating a few quarters before the ZLB, and these adverse effects picked up during the ZLB
period (persistence effect). This anecdotal evidence could suggest that the inability of mone-
tary authorities to lower the policy rate, which cannot be modelled as a shock, could explain
a large part of the unexplained wedge.

Although quantitative easing (QE) was introduced in the last quarter of 2008, the model
suggests that the slope (or QE) shock started contributing positively to the economy around

16Based on the suggestion of an anonymous referee, we extended our data until 2021Q1. However, these
additional observations had almost no effect on the estimation. This should not come as surprise as the scale
of the model is enormous (with close to 200 parameters) and 13 additional observations are not sufficient to
change the inference dramatically. For instance, when we looked at the historical decomposition from the
longer data set, the model interprets the COVID-19 pandemic as a demand shock mainly. More importantly,
the increase in the housing returns seen during the coronavirus crisis cannot be justifi ed by fundamental
shocks. This decoupling is what gives rise to overvaluation and, potentially, sharp correction concerns as it
is explained in a recent IMF blog by Ahir et al. (2021) (among others). Complete details of these results are
available upon request from the authors.
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2012. This period coincides with the introduction of the open-ended QE3 and the Forward
Guidance (FG) unconventional monetary policy. This does not mean that the first two QE
programs had no positive effects on recovering the housing market, as this question cannot
be answered from the historical decomposition, and in turn requires the knowledge of the
counterfactual profile of the national factor in the absence of the QE1 and QE2 programs.
However, the assumption that the large positive contributions by the slope shock during
the third regime are associated with explicit guidance about future policy rate would be
consistent with the point made in the previous paragraph. In other words, what matters
most for agents when it comes to house prices is the systematic part of the monetary policy
described by the policy rate.

Finally, the real housing returns factor post-2014 has decoupled again from the identi-
fied macroeconomic shocks. This perhaps reflects the concerns, as also as outlined above
in the introduction, from important policy institutions and policy-makers (see for example,
Borio (2019) and Carstens (2019), among others) that low interest rates led many investors
to search for higher returns that are also subject to elevated risks. Moreover, studies like
Bork, Møller and Pedersen (2019), Balcilar et al. (2021), Bouri et al. (2021), Gupta et al.
(2021) have recently highlighted the importance of behavioral factors such as, sentiment
and uncertainty in playing crucial roles, beyond standard macroeconomic and financial vari-
ables, in driving house price movements, i.e., both returns and volatility for the overall and
regional US.17 In light of this, our findings should not come as a surprise, and carries impor-
tant implications from the perspective of modeling the US housing market. In particular,
such behavioral variables should then be explicitly included, and shocks to them analyzed,
while performing structural analyses of macroeconomic and financial shocks on the housing
market. From the policy perspective, if these shocks are indeed important relative to con-
ventional shocks for the US housing market, then policy authorities would need to target
these behavioral variables to indirectly affect the movements in housing returns and volatil-
ity, especially given evidence that sentiment and uncertainty are not necessarily exogenous
and are indeed predictable (Marfatia, André and Gupta, 2020; André, Gabauer and Gupta,
2021; Ludvigson, Ma and Ng, 2021; Salisu, Gupta and Ogbonna, 2021).

3.8 Identifying Conventional and Unconventional Monetary Pol-
icy Shocks Using External Instruments

This section scrutinizes the role of both conventional and unconventional monetary policy on
the real housing returns factor.18 In the first stage, the monetary policy (conventional and
unconventional) shocks are identified from interest rate surprises that take place in a narrow
window (thirty-minutes) before and after the policy meetings by using the methodology

17This line of reasoning is vindicated, when based on the suggestion of an anonymous referee, inclusion
of a metric of macroeconomic uncertainty (as developed by Jurado, Ludvigson and Ng (2015)) and the
excess bond premium (as per Gilchrist and Zakrajsek (2012)), continues to not only depict the decoupling,
but makes it even relatively larger. Complete details of these results are available upon request from the
authors.

18We would like thank an anonymous referee for suggesting this line of analysis.
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developed by Swanson (2021). In the second phase, proxy SVAR techniques (as in Mertens
and Ravn (2013) and Mertens and Ravn (2014)) to identify the effects on house prices.

3.8.1 Proxy SVAR

This section briefly reviews the shock identification methodology proposed by Mertens and
Ravn (2013) and Mertens and Ravn (2014). Although, the scheme proposed initially was
for a fixed-coefficient VAR model, the studies of Mumtaz and Petrova (2018) and Mumtaz
and Theodoridis (2020) illustrate how the process can be extended to allow for time- and
regime-dependence, respectively.

The fundamental idea of this methodology is that a “proxy” (ϕt) that is correlated with
the shock of interest (vmt ), and uncorrelated with the remaining shocks (v•t ), is used to
identify the structural shock. These conditions can be expressed as follows

E (ϕt, v
m
t ) = α ̸= 0 (14)

E (ϕt, v
•
t ) = 0

As explained in Mertens and Ravn (2013) and Mertens and Ravn (2014), the identification
of structural shocks (i.e., the first column of A0,S) can result as a solution of a Generalized
method of Moments (GMM) estimation problem that satisfy the moment conditions (14).
The authors also illustrate that the structural shocks, vmt , can be simply derived by regression
of ϕt on εt. For instance, let us assume that the fitted value of the vmt is given by:
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where ΩS denotes the regime-dependent variance-covariance matrix of the VAR residuals,
while moving from the third to the fourth line we employ the orthonormality properties of
the identified matrix and mapping between the structural and reduced-form errors discussed
above.

3.8.2 Narrative Measures for Conventional and Unconventional Monetary Pol-
icy Shocks

The strength of the identification scheme discussed in the previous section relies on the qual-
ity of the instrument used to identify the structural shock.19 As explained by Jarociński
and Karadi (2020) and Miranda-Agrippino and Ricco (2021), changes in the forward interest
rate contracts defined in a narrow window of 30 minutes before and after the policy an-
nouncements can contain also information that is related to the state of the economy and
not, necessarily, to the reaction function of the monetary authority.

19The methodology proposed by Caldara and Herbst (2019) deals also with “weak” instruments.
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Jarociński and Karadi (2020) propose a methodology that isolates the monetary policy
shocks from the disturbances that contain “information” about the state the of economy.
However, their scheme does not disentangle “conventional” monetary policy shocks from
“unconventional” quantitative easing and forward guidance ones. As discussed in the liter-
ature (see Andres, Lopez-Salido and Nelson (2004), Chen, Curdia and Ferrero (2012), De
Graeve and Theodoridis (2016) and Liu et al. (2018) among others) the transmission mech-
anism of different monetary policy is not necessarily the same, meaning that the effects of
conventional and unconventional monetary policy shocks on the real housing returns factor
could be different.

Fortunately, Swanson (2021) and Altavilla et al. (2019) extend the methodology proposed
by Gürkaynak, Sack and Swanson (2005), and achieve the identification of all three types of
monetary policy shocks. Figure 18 reports the effects of different monetary policy shocks on
the real housing returns factor across different regimes using the Proxy SVAR techniques,
and the narrative measures. Before discussing the results, it is important to mention that the
lack of available futures interest rate contracts for the US prior to 1991, limits the evaluation
exercise to regimes 2 and 3 and only.

Similar to the benchmark sign-restrictions identification scheme, Figure 15 and Figure 18,
indicates that conventional monetary policy shocks have a sizeable effect on the real housing
returns factor (first-row and first-column subplot). The latter effect appears to be more
persistent and more precisely estimated when narrative measures are used. Quantitative
easing monetary policy shocks have again a large impact on the factor (first-row and second-
column subplot). Interestingly, the quantitative easing shocks appears to be less persistent
than conventional monetary policy shocks. Finally, forward guidance monetary policy shocks
do affect house price significantly.

The lack of a significant impact on the real housing returns factor from forward guidance
shocks might seem puzzling at first. However, this consideration might be addressed if the
nature of interest rate shocks is understood. Forward guidance is nothing more than a
communication policy that reveals information about the central bank’s reaction function
in the future. As a result, it reduces uncertainty about the future monetary policy actions
and, consequently, reinforces the effects of conventional and quantitative monetary policy
decided today.

4 Conclusions

In this paper, we use a time-varying parameter dynamic factor model with stochastic volatil-
ity (DFM-TV-SVP) estimated using Bayesian methods to disentangle the relative importance
of the common component in FHFA house price movements from state-specific shocks, over
the quarterly period of 1975Q2 to 2017Q4. We find that the contribution of the national
factor in explaining fluctuations in house prices has declined somewhat after the financial
crisis in some states, but overall the role of the national factor in all states is not only critical
but also has been increasing and has become more important than the local factors since
around 1990. This result suggests that, while “local bubbles” have been important in some
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states, but that overall the increase in house prices is a national phenomenon. We then use a
Bayesian change-point vector autoregressive (VAR) model, that allows for different regimes
throughout the sample period, to study the impact of not only (conventional) monetary pol-
icy shocks, but also aggregate supply, aggregate demand and term-spread shocks, identified
based on sign-restrictions, on the national component of house price movements, with the
term-spread surprises measuring unconventional monetary policy decisions. We detect three
regimes corresponding to the periods of “Great Inflation”, “Great Moderation”, and the
episodes of the “Great Recession” and the global financial crisis thereafter, associated with
the zero lower bound (ZLB). While conventional monetary policy is found to have played
an important role in the historical evolution of the national factor of real housing returns of
the US in the first-regime, other shocks are found to be quite dominant as well, especially
during the second-regime of the “Great Moderation”, with monetary policy shocks playing
virtually no role in explaining the national housing market boom during this period. As far
as the third-regime is concerned, unconventional monetary policy shocks, associated with
the phase 3 of the quantitative easing (QE3), is found to have led to a (delayed) recovery
in the housing market. Since the DFM-TV-SV model also allows us to recover the national
factor of housing market volatility, we could incorporate it into our change-point VAR to
analyze what shocks play a role in driving this factor. In this context, again the role of mon-
etary policy is limited, with dominant effect coming from the term-spread shock, followed
by the aggregate supply and aggregate demand shocks. But perhaps more importanly, we
find evidence of the national real housing returns factor to have got detached from the iden-
tified macroeconomic shocks, i.e., fundamentals since 2014 – somewhat similar to what was
observed in terms of the low explanatory power of the shocks during the Great Recession.
This result seems to suggest that a “national bubble” is brewing again in the US housing
market, resulting from the prolonged period of loose unconventional monetary policies fol-
lowing the recent financial crisis. Naturally, our findings call for careful monitoring of the
behavior of house prices, in order for the policy authorities to decide whether or not to “lean
against the wind”, by raising policy rates. Besides the cost of producing a future recession,
whether such policies can in fact affect the housing market also remains debatable, given our
finding of a limited role for conventional monetary policy in driving the US housing market
historically. Perhaps, in this regard the role of macro-prudential tools become important,
which are often considered as the best instruments to prevent the build up of credit-driven
bubbles, notably because they can be tailored to address specific market failures (Cerutti,
Claessens and Laeven, 2017).
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Figure 1: The National Factor
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Table 2: Marginal Likelihood Comparison

Regimes/Lags 1 2 3 4

2 -3204.35 -2364.70 -703.00 -135.34
3 -749.32 -78.69 349.55 703.91
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Figure 2: Time Varying Loading Parameters of the National Factor
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Figure 3: Time Varying Loading Parameters of the National Factor - Continued
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Figure 4: The Stochastic Volatility of the National Factor
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Figure 5: The Stochastic Volatility of the Individual Factor
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Figure 6: The Stochastic Volatility of the Individual Factor - Continued
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represent the 5%− 95% percentiles.
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Figure 7: Time Varying Variance Contributions of the National Factor
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Notes: The solid black line is the median of the posterior distribution, while the dotted lines

represent the 5%− 95% percentiles.
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Figure 8: Time Varying Variance Contributions of the National Factor - Continued
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Notes: The solid black line is the median of the posterior distribution, while the dotted lines

represent the 5%− 95% percentiles.
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Figure 9: The Time Varying Average of Cross-States Correlations

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Notes: The solid black line is the median of the posterior distribution, while the dotted lines

represent the 5%− 95% percentiles.
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Figure 10: The Total Volatility Dispersion and Its Decomposition into the National and the
Individual Components
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Notes: The solid black line is the median of the posterior distribution, while the dotted lines

represent the 5%− 95% percentiles.

41



Figure 11: Evolution of Regimes

Notes: Observed data (solid blue line), regime 1 (red shaded area) spans between 1975Q1-1984Q4,

regime 2 (blue shaded area) between 1985Q1 and 2008Q4 and regime 3 (yellow shaded area)

between 2009Q1 and 2017Q4.

42



Figure 12: Impulse Responses: Demand Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 13: Forecast Variance Decomposition
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Table 3: Forecast Variance Contributions

H=1Q H=4Q H=12Q H=40Q

R=1 R=2 R=3 R=1 R=2 R=3 R=1 R=2 R=3 R=1 R=2 R=3
Demand 5 44 0 6 52 0 7 50 0 9 42 0
Supply 5 21 0 5 18 0 9 14 0 11 14 0
Policy 5 18 55 3 7 55 4 6 55 5 10 55
Slope 0 0 0 1 1 0 6 5 0 8 9 0
Demand 4 11 12 4 12 15 4 17 16 5 22 15
Supply 4 11 23 5 12 23 5 13 22 6 13 21
Policy 1 11 17 1 11 16 2 12 16 3 13 17
Slope 2 35 6 1 30 6 2 24 6 3 22 7
Demand 11 4 48 8 8 45 9 16 41 10 18 35
Supply 19 15 8 19 15 9 17 14 10 17 14 10
Policy 11 6 13 7 6 13 8 7 14 8 9 18
Slope 10 3 6 8 3 7 9 4 7 10 6 8
Demand 9 11 24 6 25 24 8 36 22 10 35 19
Supply 11 14 18 13 17 18 15 15 18 15 15 16
Policy 8 34 8 6 31 8 7 19 10 7 18 16
Slope 4 4 17 5 3 16 7 5 16 10 7 15
Demand 17 13 12 16 11 14 14 31 16 14 31 15
Supply 9 11 20 9 14 19 10 17 19 12 16 17
Policy 12 29 7 12 25 7 10 17 9 9 16 13
Slope 13 23 23 12 20 27 13 11 25 13 15 22
Demand 4 13 15 4 14 16 4 18 14 5 20 11
Supply 4 21 23 5 22 23 5 19 17 6 16 12
Policy 4 12 8 4 13 8 4 14 15 4 17 27
Slope 6 23 33 6 27 32 6 30 26 7 28 18

Notes: The table reports the posterior mean forecast variance shares. R = 1, R = 2 and R = 3

indicate regimes 1, 2 and 3, respectively. While H = 1Q, H = 4Q, H = 12Q and H = 40Q refer

to forecast horizons, 1 quarter, 4 quarter, 1 year and 10 years, respectively.
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Figure 14: Impulse Responses: Supply Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 15: Impulse Responses: Policy Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 16: Impulse Responses: Slope Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 17: Historical Decomposition of Real Housing Returns Factor
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Figure 18: Responses of Real Housing Returns Factor Across Different Types of Adverse
Monetary Policy Shocks and Across Regimes

Notes: The solid (black) line represent the (pointwise) median, while the shaded are

captures the 16%− 84% percentiles of the posterior distribution.
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A Bayesian MCMC Estimation Algorithm

In this section we provide further details of each step in the Gibbs-Sampling estimation
algorithm.

A.1 Draws of the National Factor

We follow a procedure as laid out in Kim and Nelson (1999a) to reduce the dimensionality
of the resulting state-space model so as to facilitate the estimation. Specifically, substitute
equation (1) into equation (6) to yield the following state-space representation:
Measurement Equation:

r∗i,t = Ht · Zt + exp(hi,t) · εi,t (16)

Transition equation:

Zt = F · Zt−1 + ζt (17)

where in the measurement equation, r∗i,t = (1−ϕi,1L−ϕi,2L
2)ri,t,Ht = (βi,t,−ϕi,1βi,t−1,−ϕi,2βi,t−2).

In the transition equation, the state vector Zt = (ft, ft−1, ft−2)
′ and the matrix F is:

F =

ϕf
1 ϕf

2 0
0 1 0
0 0 1

 (18)

The shock vector ζt =
(
exp

(
hf
t

)
· εft , 0, 0

)′
, and its variance matrix is denoted by Qt.

Conditioning on the previous draws of {Ht}Tt=1, {{hi,t}Tt=1}ni=1, {σ2
i }ni=1, F , and {Qt}Tt=1,

we rely on the above state-space representation to take random draws of the national factor
{ft}Tt=1. Formally, we employ the Kalman filter and the ”filter forward and sample back-
wards” algorithm as in Carter and Kohn (1994). See Kim and Nelson (1999a) for details of
this standard algorithm.

A.2 Draws of the Model Parameters in the Factor Dynamics

Given previous draws of the common factor ({ft}Tt=1) and its stochastic volatility ({hf
t }Tt=1),

the AR parameter of the common factor dynamics is sampled from the linear regression (3).
The conjugate prior for ϕf is a Gaussian distribution with a zero mean and a variance that
is an identity matrix.

Conditional on the previous draws of the common factor ({ft}Tt=1) and the time-varying
loading ({βi,t}Tt=1), the idiosyncratic factor (ei,t) can computed from equation (1). Given the
idiosyncratic factor together with its stochastic volatility ({hi,t}Tt=1), the AR and the variance
parameters are sampled from the linear regression (6). Again the conjugate prior for ϕi,e

is a Gaussian distribution with a zero mean and a variance that is an identity matrix. In
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addition, the conjugate prior for the variance parameter is σ2
i ∼ IG(0, 0) , where IG denotes

the Inverted-Gamma distribution. This specification ensures a diffuse prior for the variance
parameters.

Since in both cases, the factor volatility is time varying, the regression errors are het-
eroskedastic. We re-scale the variables in each equation to make the errors homoskedastic,
essentially doing a WLS (Weighted-Least-Squares). We sample these parameters from the
transformed regression.

A.3 Draws of the Loading Parameters and the Shock Variance

Applying the same procedure as in section (A.2) to reduce the dimentionality, we can cast
the model into its following state-space representation:

Measurement Equation:

r∗i,t = Xi,t ·Bi,t + exp(hi,t) · εi,t (19)

Transition equation:

Bi,t = G ·Bi,t−1 + ξi,t (20)

where r∗i,t = (1−ϕi,1L−ϕi,2L
2)ri,t, Xi,t = (ft,−ϕi,1·ft−1,−ϕi,2·ft−2), Bi,t = (βi,t, βi,t−1, βi,t−2)

′,

ξi,t = (σβ
i · ηi,t, 0, 0)′, and the matrix G in the transition equation is:

G =

1 0 0
0 1 0
0 0 1


Because conditional on r∗i,t, Xi,t, hi,t, σi, σ

β
i , the loading parameters are independent across

series, this step can be conducted for each series i. The algorithm ”filter forward, sample
backwards” in Carter and Kohn (1994) is employed to draw the latent factors Bi,t. Con-

ditional on Bi,t, the variance parameter σβ
i is sampled from the linear regression (5). For

the variance parameter σβ
i , we employ the conjugate prior: (σβ

i )
2 ∼ IG(0.002, 2) with a

relatively diffuse prior.

A.4 Draws of the Stochastic Volatility

Conditional on factors and corresponding parameters in the stochastic volatility process,
the stochastic volatility of factors are independent from each other. As a result, we explain
the sampling algorithm for the stochastic volatility of the common factor, and the same
procedure applies to each idiosyncratic factor.

Given a draw of the common factor and other parameters, compute the random shock in
equation (3):

f ∗
t = ft − ϕf

1ft−1 − ϕf
2ft−2 = exp(hf

t ) · ε
f
t (21)
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Square and take a natural logarithm of both sides to obtain the following state-space
representation:

Measurement Equation:

f ∗∗
t = 2hgft + ζft (22)

Transition Equation:

hf
t = hf

t−1 + σh
f · ξ

f
t , ξft ∼ i.i.d.N(0, 1) (23)

where f ∗∗
t = ln(f ∗

t )
2, ζft = ln(εft )

2.
First note that the shocks ζft and ξft are independent. However, the shock ζft in the

measurement equation is not normally distributed, and its distribution is lnχ2(1). Kim,
Shephard and Chib (1998) propose an approach based on a mixture of normal densities to
approximate the underlying non-normal distribution when utilizing the Kalman Filter to
draw the stochastic volatility in this context. Specifically, they suggest using seven normal
densities with different means mk − 1.2704 and variances τ 2k , for k = 1, 2, ..., 7 , with the
component probabilities being θk . They carefully choose these values to closely replicate
the exact density of lnχ2(1). Table 1 below is taken from Kim, Shephard and Chib (1998)
and reports these values.

Table 4: Selection of the mixing distribution to be

δ Pr(δ = k) mk τ 2k

1 0.0073 -10.13 5.79596
2 0.10556 -3.9728 2.61369
3 0.00002 -8.5669 5.1795
4 0.04395 2.77786 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.2575 -1.0882 1.26261

Conditional on knowing f ∗∗ and the component probabilities of the seven normal densities,
the above state space model is approximately linear and Gaussian. Therefore, the stan-
dard sampling algorithm in Carter and Kohn (1994) can be employed again to draw the
stochastic volatility. Given a sample of the stochastic volatility, the component probabili-
ties is then updated using the Bayes’ rule. The specific sampling algorithm follows those in
Primiceri (2005), Del Negro and Primiceri (2015), and Koop and Korobilis (2010). For the
shock variance to the volatility process, we use the conjugate with a relatively diffuse prior:
IG(0.002, 2).
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A.5 Diagnostics of the Algorithm Convergence

Figure 19: Convergence Diagnostics for Parameters and State Variables
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Notes: 1-52 are the common factor and state-specific factors; 53-104 are stochastic volatilities;

105-208 are AR parameters; 209-259 are variance parameters for individual factors; 260-310 are

factor loadings.

53



B Description of the Priors

The priors for the VAR(P ) coefficients and the error covariance matrices are set via dummy
observations. The normal inverse Wishart prior and is defined as

YD =



diag(γ1σ1...γNσN )
τ

0N×(P−1)×N

..............
diag (σ1...σN)
..............
01×N

 , and XD =


JP⊗diag(σ1...σN )

τ
0NP×1

0N×NP 0N×1

..............
01×NP c

 ,

where σi for i = 1, 2, ..N represents scaling factors, γi denotes the prior mean for the
coefficients on the first lag, τ is the tightness of the prior on the VAR coefficients, c is the
tightness of the prior on the constant terms. In order to obtain a value for γi, σi, we estimate
an AR(1) model via OLS for each endogenous variable. γi is set equal to OLS estimate of
the AR(1) coefficient, while σi is the standard deviation of the residual. The matrix JP is
defined as diag (1, 2, ..P ) . We set τ = 0.1 and c = 1 in our implementation. The value for τ
implies a relatively high degree of shrinkage, however, the model is estimated using quarterly
macroeconomic data and a lager number of both regimes and lags is considered in order to
be confident that the dynamics of the data captured properly. A tight prior and a low
number of observations per regime should bias the results against state variation. However,
we know from the discussion in the text that this is not the case. Despite the tight priors
the estimation of the model reveals significantly different dynamics across regimes. Note
that in the final regime covering the unconventional monetary policy period, we introduce
an additional prior on the VAR coefficients that ensures that lagged coefficients on the non-
dependent variables in the interest rate equation are close to zero. This prior is implemented
via a prior covariance matrix with the diagonal elements corresponding to the coefficients of
interest in the interest rate equation set to small values (1e− 12). The remaining diagonal
elements are set to 1e12.

The prior for the non zero elements of the transition probability matrix pij is of the
following form

p0ij = D (uij) ,

where D(.) denotes the Dirichlet distribution and uij = 15 if i = j and uij = 1 if i ̸= j. This
choice of uij implies that the regimes are fairly persistent. The posterior distribution is:

pij = D (uij + ηij) ,

where ηij denotes the number of times regime i is followed by regime j.

C Description of the Gibbs sampling algorithm

The Gibbs sampling algorithm proceeds in the following steps:
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1. Sampling St

Following (Kim and Nelson, 1999b, Chapter 9), we use Multi-Move Gibbs sampling to

draw St from the joint conditional density, f
(
St|Zt, cS, B1,S, . . . , BK,S,ΩS, P̃

)
. Note

that we impose the restriction that each regime must have at least N ×K + 2 obser-
vations, where N denotes the number of endogenous variables in the VAR, to ensure
sufficient degrees of freedom for each regime.

2. Sampling cS, B1,S, . . . , BK,S, ΩS

Conditional on a draw for St, the model is simply a sequence of Bayesian VAR models.
The regime-specific VAR coefficients are sampled from a Normal distribution and the
covariances are drawn from an inverted Wishart distribution. For the first M regimes,
we use a Normal Inverse Wishart prior (see Kadiyala and Karlsson (1997)). However, as
described in detail below, we employ a (Normal diffuse) prior distribution for the VAR
coefficients to the final regime, which is compatible with the identification of the shock
to the government bond spread. In our sample, the recent financial crisis coincides
with the final regime of the estimated VAR model. The prior on the VAR coefficients
in this regime implies that the policy rate does not respond to lagged changes in other
endogenous variables. This assumption is compatible with restrictions used to identify
the shock to the bond-yield spread and reflects the fact that policy rates have reached
the ZLB.

3. Sampling P̃
Given the state variables St, the non-zero elements of the transition probability matrix
are independent of Zt and the other parameters of the model, and they are drawn from
a Dirichlet posterior.

D Robustness Analysis

D.1 Looser Priors

This is section illustrates that agents’ responses to identified macroeconomic shocks are
(almost) unchanged when the hyper-parameter that controls the tightness of the VAR coef-
ficients is increased to 2.
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Figure 20: Impulse Responses: Demand Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 21: Impulse Responses: Supply Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 22: Impulse Responses: Policy Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 23: Impulse Responses: Slope Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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D.2 Unemployment

This is section illustrates that agents’ responses to identified macroeconomic shocks are again
(almost) unchanged when the unemployment (instead of GDP growth) is used.

Figure 24: Impulse Responses: Demand Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 25: Impulse Responses: Supply Shock

Regime 1

5 10 15 20

-0.2

-0.1

0

Polic
y Ra

te Regime 2

5 10 15 20

-0.05

0

0.05

5 10 15 20
-1

0

1
Regime 3

5 10 15 20

-0.3

-0.2

-0.1

0

Une
mplo

yme
nt

5 10 15 20
-0.2

-0.1

0

5 10 15 20

-0.06
-0.04
-0.02

0
0.02

5 10 15 20

-0.4

-0.2

0

Infla
tion

5 10 15 20
-0.3
-0.2
-0.1

0
0.1

5 10 15 20

-0.06
-0.04
-0.02

0
0.02

5 10 15 20
-0.05

0
0.05

0.1
0.15

Term
 Spr

ead

5 10 15 20
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04

5 10 15 20

-0.01

0

0.01

5 10 15 20
-0.5

0

0.5

Hou
se P

rices
Fact

or

5 10 15 20
-0.4
-0.2

0
0.2
0.4
0.6

5 10 15 20

-0.2
0

0.2
0.4

5 10 15 20

-0.4

-0.2

0

Hou
se P

rices
Volti

lity F
acto

r

5 10 15 20
-1

-0.5

0

5 10 15 20

-0.4
-0.2

0
0.2

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 26: Impulse Responses: Policy Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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Figure 27: Impulse Responses: Slope Shock

Notes: The solid (black) line represent the (pointwise) median, while the shaded are captures the

16% − 84% percentiles of the posterior distribution. The shock has been normalised to increase

GDP growth by 1 percentage point in the second quarter.
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