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Abstract

People with photosensitive epilepsy (PSE) are prone to seizures elicited by visual stimuli. The possibility of in-
ducing epileptiform activity in a reliable way makes PSE a useful model to understand epilepsy, with potential
applications for the development of new diagnostic methods and new treatments for epilepsy. A relationship
has been demonstrated between PSE and both occipital and more widespread cortical hyperexcitability using
various types of stimulation. Here we aimed to test whether hyperexcitability could be inferred from resting in-
terictal electroencephalographic (EEG) data without stimulation. We considered a cohort of 46 individuals with
idiopathic generalized epilepsy who underwent EEG during intermittent photic stimulation: 26 had a photopar-
oxysmal response (PPR), the PPR group, and 20 did not, the non-PPR group. For each individual, we com-
puted functional networks from the resting EEG data before stimulation. We then placed a computer model of
ictogenicity into the networks and simulated the propensity of the network to generate seizures in silico [the
brain network ictogenicity (BNI)]. Furthermore, we computed the node ictogenicity (NI), a measure of how
much each brain region contributes to the overall ictogenic propensity. We used the BNI and NI as proxies for
testing widespread and occipital hyperexcitability, respectively. We found that the BNI was not higher in the
PPR group relative to the non-PPR group. However, we observed that the (right) occipital NI was significantly
higher in the PPR group relative to the non-PPR group. Other regions did not have significant differences in NI
values between groups.
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Significance Statement

We used a computational framework to assess widespread and occipital hyperexcitability in people with ep-
ilepsy from apparently normal EEG results. We aimed at distinguishing individuals with photosensitivity from
individuals without this susceptibility to seizures provoked by visual stimuli. Our results suggest that either
widespread hyperexcitability did not differ between the two groups of individuals, or that our methods were
not appropriate to measure this hyperexcitability. Conversely, we observed higher occipital hyperexcitability
in the photosensitive group compared with the other group. This finding suggests that occipital hyperexcit-
ability is an enduring feature in the brain activity of people with photosensitivity. Thus, our results suggest
that our methods based on resting-state EEG may aid the diagnosis of photosensitive epilepsy without re-
quiring stimulation.
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Introduction
People with epilepsy are prone to unprovoked epileptic

seizures (Fisher et al., 2005). A subset of individuals also
has seizures triggered by stimuli. The most common re-
flex epilepsy is photosensitive epilepsy (PSE), which oc-
curs in ;2–5% of people with epilepsy (Padmanaban et
al., 2019). In addition to seizures, visual stimuli can also
induce EEG epileptiform activity in PSE. Thus, PSE can
be diagnosed by recording a photoparoxysmal response
(PPR) in an electroencephalogram (EEG) during intermit-
tent photic stimulation (IPS). PSE is commonly seen in the
idiopathic generalized epilepsies (IGEs), in particular, ju-
venile myoclonic epilepsy (JME), ranging from 30% to
90% (Wolf and Goosses, 1986; Appleton et al., 2000).
PSE can serve as a useful model to understand epilepsy
(Padmanaban et al., 2019). The PPR phenotype has been
used within clinical trials to test the efficacy of antiseizure
medication (Yuen and Sims, 2014) and in assessing other
neurophysiological responses to visual stimuli (Parra et
al., 2003; Perry et al., 2014). Thus, a better understanding
of the pathophysiology of PSE may have an impact on the
diagnosis and treatments of epilepsy.
Various studies have found evidence for both occipital

and more widespread cortical hyperexcitability in people
with PSE (Padmanaban et al., 2019). By using a paired-
pulse flash-evoked technique, Strigaro et al. (2012)
showed decreased inhibition in the visual system of peo-
ple with PSE. Siniatchkin et al. (2007) used transcranial
magnetic stimulation (TMS) to investigate the excitability
of the visual and primary motor cortices in people with
and without PPR. They observed that people with PPR
have a significantly lower phosphene threshold (i.e., a
lower TMS amplitude is required to elicit a perception of
light in people with PPR). They also found that occipital
TMS can more easily suppress visual perception in peo-
ple with PPR than in those without it (Siniatchkin et al.,
2007). Brigo et al. (2013) have also used TMS in PSE and
provided further supporting evidence for these observa-
tions. Beyond the occipital lobe, there is evidence of the
involvement of motor areas. Moeller et al. (2009, 2013)
have used EEG combined with functional magnetic reso-
nance imaging (fMRI) to show increased blood oxygen-
ation level-dependent (BOLD) signal within the visual
cortex, and the premotor and parietal cortices after a
PPR has been provoked by IPS. By using magnetoence-
phalography, Parra et al. (2003) observed enhanced

network-level synchrony within the gamma band just be-
fore PPR formation. Vaudano et al. (2017) considered
resting-state EEG-fMRI and found a decreased alpha-re-
lated inhibition of the visual cortex and sensory–motor
networks in people with PSE versus other individuals
with epilepsy (i.e., a lower anticorrelation between EEG
alpha power and the BOLD signal in those networks).
Diffusion tensor imaging studies have also revealed
structural connectivity abnormalities within motor areas
and the occipital lobe in individuals with PSE in IGE and
JME, which may underpin hyperexcitability in those re-
gions (Groppa et al., 2012; Vollmar et al., 2012).
Since a propensity for ictogenicity can be a conse-

quence of hyperexcitability, here we aimed to find out
whether widespread and/or occipital increases in the pro-
pensity for ictogenicity may be identified from resting in-
terictal EEGs in people with PSE. As a proxy to evaluate
network-wide and local propensity for ictogenicity, we
used the brain network ictogenicity (BNI) and node ictoge-
nicity (NI), respectively. BNI is a measure of how likely a
functional brain network is to generate seizure-like activity
in computer simulations (Petkov et al., 2014; Lopes et al.,
2017). These simulations consist in placing a mathemati-
cal model of normal and abnormal epileptic EEG features
into the functional network and computing the resulting
brain dynamics. Functional networks more prone to seiz-
ures are expected to produce more seizure-like activity in
the simulations (Petkov et al., 2014; Lopes et al., 2017,
2021). Node ictogenicity is assessed by removing regions
from the functional network and evaluating the resulting
altered BNI (Goodfellow et al., 2016; Lopes et al., 2017).
Brain regions whose removal produces a higher reduction
of BNI are considered more likely to drive seizures.
We studied retrospective EEG recordings from two

groups of individuals with IGE, one that had PPR during
IPS (the PPR group), and another that did not have PPR
(the non-PPR group). We tested the following two hypoth-
eses: (1) the PPR group has a higher BNI than the non-
PPR group; and (2) the PPR group has a higher occipital
NI than the non-PPR group. We aimed to test whether in-
terictal EEG may be used to predict PSE and whether the
mechanisms of PPR are enduring features present in in-
terictal brain states even without stimulation.

Materials and Methods
Data
We searched EEG reports at the University Hospital

of Wales (Cardiff, UK) from 2007 to 2017 using the
terms, “photoparoxysmal response,” “PPR,” “IGE,” “JME,”
“JAE” (juvenile absence epilepsy), and childhood absence
epilepsy “CAE,” and limited our search to individuals who
were 12–32 years of age at the time of EEG. Clinical EEG
reports were reviewed to identify two cohorts of individuals
with (1) IGE with IPS and PPR, and (2) IGE with IPS and no
PPR. The IPS protocol at our center followed the internation-
al standard recommendations set out in the International
League Against Epilepsy guidelines (Kasteleijn-Nolst Trenité
et al., 2012). This comprised 10 s of IPS, 5 s with eyes open
and 5 s with eyes closed, at the following incrementally
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increasing and then decreasing frequencies (1, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 60, 50, 40, 30, 25, and 20Hz). The IPS
was immediately stopped if a PPR was observed (i.e., a
spike-wave discharge induced by the light stimulation). In
some individuals, the order of stimulation was varied to look
for reproducible PPR or to cease IPS if frequent PPR was

already seen. We selected 29 individuals with PPR seen on
EEGs and 20 individuals in the group without PPR. Henceforth,
we will refer to the two groups as the PPR group and the
non-PPR group, respectively.
The routine clinical EEG included ;20min of resting-

state interictal EEG preceding the IPS procedure. To test
whether we could predict the individuals’ responses
based on the interictal EEG recorded before IPS, we se-
lected three continuous segments of 20 s per individual
within the 20min window. The selection criteria were such
as to avoid distinct (eye movement, muscle) artifacts and
epileptiform activity, and such that all three segments
were at least 1 min apart from each other. Three individu-
als in the PPR group were excluded from this study be-
cause we could not find interictal segments without
marked artifacts within their EEG sessions. Thus, we stud-
ied a total of 46 individuals (26 PPR individuals and 20
non-PPR individuals). Tables 1 and 2 show the demo-
graphics and clinical information of these two groups.
Figure 1 provides an example of a 20 s segment.
The EEG recordings were obtained using the 10–20 sys-

tem for electrode placement, and we considered all the
standard channels in our analysis (C3, C4, CZ, F3, F4, F7, F8,
FP1, FP2, FPZ, FZ, O1, O2, P3, P4, PZ, T3, T4, T5, and T6).
The EEG data were recorded at a sampling rate, fs, of

500 or 512Hz. For consistency, we downsampled the
data to 250Hz. Furthermore, we applied a bandpass filter
in the low alpha frequency band, 6–9Hz (fourth-order
Butterworth filter with forward and backward filtering to
minimize phase distortions). We focused on the low alpha
band because previous studies have shown that function-
al networks inferred from this frequency band are informa-
tive for both epilepsy diagnosis and epilepsy classification
(Schmidt et al., 2016; Lopes et al., 2019), as well as of re-
duced inhibition in PSE (Vaudano et al., 2017). The data
were also rereferenced to the average of all artifact-free
segments.

Table 1: Demographics and clinical information of the
group of individuals that presented PPR on EEG

ID Age (years) Gender Syndrome Medication
PPR1 24 M JME Lamotrigine
PPR2 16 M GTCSO None
PPR3 15 M GTSO Valproate
PPR4 13 F JAE None
PPR5 15 F JAE Levetiracetam,

lamotrigine
PPR6 13 F JME None
PPR7 16 F JME Lamotrigine
PPR8 17 F JME Lamotrigine
PPR9 19 F JAE Clobazam
PPR10 18 M GTCSO None
PPR11 16 F GTCSO Levetiracetam
PPR12 17 F JME Levetiracetam
PPR13 13 F JME None
PPR14 24 F JME Valproate
PPR15 19 F GTCSO None
PPR16 22 F GTCSO None
PPR17 14 F JME None
PPR18 31 F JME None
PPR19 18 M JME None
PPR20 23 F GTCSO Levetiracetam
PPR21 19 M GTCSO Valproate
PPR22 23 F GTCSO Sertraline
PPR23 26 M JME Valproate, zonisamide
PPR24 13 F JME None
PPR25 14 F GTCSO None
PPR26 13 F JAE None

M, Male; F, female; GTCSO, generalized tonic-clonic seizures only.

Table 2: Demographics and clinical information of the group of individuals that did not show a PPR on EEG

ID Age (years) Gender Syndrome Medication
Non-PPR1 16 M JME None
Non-PPR2 28 F JME Valproate
Non-PPR3 30 M JME Valproate
Non-PPR4 19 M JME None
Non-PPR5 24 F JME Levetiracetam
Non-PPR6 18 M JME Epilim
Non-PPR7 19 M JME None
Non-PPR8 27 F JME Valproate
Non-PPR9 20 F JME Lamotrigine
Non-PPR10 18 M JME None
Non-PPR11 18 F JME None
Non-PPR12 22 F JME Duloxetine
Non-PPR13 22 F JME Lamotrigine, carbamazepine
Non-PPR14 23 M JME None
Non-PPR15 21 F JME Topiramate, levetiracetam, clobazam
Non-PPR16 30 M GTCSO Carbamazepine
Non-PPR17 20 F JME Epilim
Non-PPR18 20 F JME None
Non-PPR19 20 M JME Valproate
Non-PPR20 31 F JME Lamotrigine, Sumatriptan

M, Male; F, female; GTCSO, generalized tonic-clonic seizures only.
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Functional networks
To build functional networks from the 20 s interictal

EEG segments, we followed a method based on previous
studies (Schmidt et al., 2016; Lopes et al., 2019, 2020;
Tait et al., 2021). We computed functional networks in the
sensor space, where nodes corresponded to EEG chan-
nels. Connections between pairs of nodes i and j were in-
ferred using the phase-locking value (PLV; Tass et al.,
1998; Mormann et al., 2000), as follows:

PLVij ¼ 1
Nt

����
XNt

k¼1

eiDf ijðtkÞ
����;

where Ns is the number of time points (Nt ¼ 5000), and
Df ijðtkÞ is the instantaneous phase difference between
the EEG signals from channels i and j at time tk, which
was computed using the Hilbert transform. We also calcu-
lated the average phase lag t ij between pairs of signals,
as follows:

t ij ¼ arg
XNt

k¼1

eiDf ijðtkÞ

0
@

1
A:

We considered nodes i and j to be connected at
PLVij.0 and t ij.2p=fs with connection weight PLVij. We
neglected zero phase lag PLV (i.e., t ij,2p=fs) to avoid
possibly artifactual relations because of volume conduc-
tion (Bastos and Schoffelen, 2016). Spurious connections
were also rejected by comparing each possible PLV value
to a set of PLV values obtained from surrogate time series
(i.e., randomized time series comparable to the original
time series). This comparison aims to remove connections
whose PLV is because of random associations between
signals and because of the finite nature of the signals. We
generated 99 surrogates from the original EEG signals
using the iterative amplitude-adjusted Fourier transform
with 10 iterations (Schreiber and Schmitz, 1996, 2000)
and calculated 99 PLV values for every pair of channels.
PLV values that are .95% of the corresponding PLV

Figure 1. Summary of our computational method. We used interictal scalp EEG to infer functional networks. Then, to interrogate the
networks, we considered a computational model of ictogenicity to simulate seizure-like activity on the functional networks. This al-
lowed us to assess the propensity of a functional network to generate seizures in silico, the BNI. It further enabled us to measure
the NI (i.e., the effect of removing a node on the BNI), which represents the local ictogenic propensity.
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values calculated from the surrogates were taken forward,
representing the weights of the functional network. Thus,
we constructed three functional networks per individual
(i.e., one from each 20 s segment), each of them a matrix
of statistically significant PLV values. Figure 1 shows an
example of a functional network.

Computational model
We used these functional networks and a computation-

al model of epilepsy to address two questions. (1) Do the
networks from the PPR group have a higher ictogenic pro-
pensity than those from the non-PPR group? (2) Does the
PPR group have a higher local ictogenic propensity in the
occipital lobe compared with the non-PPR group?
The computational model was used to simulate the abil-

ity of a functional network to generate seizures, thereby
enabling us to assess the propensity of the brain for icto-
genicity and to compare it across individuals. It also ena-
bles us to analyze the relative importance of each brain
region to the overall propensity to ictogenicity (i.e., the
local ictogenic propensity; Lopes et al., 2017, 2019,
2020). Our approach consisted in using a phenomenolog-
ical model of ictogenicity, the theta model (Ermentrout
and Kopell, 1986), together with the calculated functional
networks, to simulate brain-like activity and seizure-like
transitions in these networks (Lopes et al., 2017, 2019,
2020). In this model, the activity at network node i is rep-
resented by a phase oscillator, u i, that obeys the following
ordinary differential equation, as follows:

u i

_

¼ 1� cosu ið Þ1 11cosu ið ÞIi tð Þ;
where Ii tð Þ is an input current to the node i at time t. This
current is given by the following:

Ii tð Þ ¼ I01j ið Þ tð Þ1K
N

X
i 6¼j

PLVji 1� cos u j � u sð Þ� �� �
;

where I01j ið Þ tð Þ is Gaussian noise, K is a global scaling
factor of network interactions, and N is the number of
nodes in the network (N ¼ 20). The noise represents sig-
nals coming from brain regions outside of the considered
functional networks and the term ½1� cosðu j � u sð ÞÞ� is
the output of node j, representing a displacement from its
resting-state phase u sð Þ. PLVji is j, the ith entry of the adja-
cency matrix that represents the functional network cal-
culated above. Within the model, oscillators may transit
between the following two states: a resting state charac-
terized by fluctuations close to the stable phase u ðsÞ if
Ii,0, and a seizure-like state represented by a rotating
phase if Ii.0. The transition between the two states corre-
sponds to a saddle node on an invariant circle bifurcation
at Ii ¼ 0. This oscillator model was shown to approximate
a neural mass model for the purpose of studying the icto-
genicity of a network (Lopes et al., 2017). Figure 1 shows
an example of simulated signals using this model. We
chose parameters according to previous studies (Lopes
et al., 2017, 2019, 2020): I0 ¼ �1:2 and noise SD s ¼ 0:6.
The global scaling factor K was treated as a free

parameter (see the Brain network ictogenicity and node
ictogenicity section).

Brain network ictogenicity and node ictogenicity
We measured the ability of the brain network to gener-

ate seizures by using the concept of BNI. The BNI is the
average fraction of computational time that the network
nodes spend in the seizure-like state (Petkov et al., 2014;
Lopes et al., 2017), as follows:

BNI ¼ 1
N

X
i

t ið Þ
sz

T
;

where t ið Þ
sz is the time that node i spends in the rotating

state during a total simulation time T. We used
T ¼ 4� 106, as in previous studies (Lopes et al., 2019,
2020; but see Lopes et al., 2017, for more details about
the calculation of t ið Þ

sz ). To avoid an arbitrary choice of the
free parameter K, we considered a robust redefinition of
the BNI (Lopes et al., 2017, 2021) given by the following:

dBNI ¼
ðK2

K1

BNI Kð ÞdK;

where K1 and K2 were chosen so that to capture the full vari-
ation of the BNI from 0 to 1 for all networks under considera-
tion. We used the same interval K1;K2½ � ¼ ½1;40� for all
functional networks of all individuals. For each individual, we
obtained three dBNI values, one per each functional network,
and took their mean value for the statistical analysis below.
To quantify the relative importance of each node to the

ability of the network to generate seizures (i.e., the local
ictogenicity, we considered the NI; Goodfellow et al.,
2016; Lopes et al., 2017, 2019). The NI ið Þ measures the ef-
fect of removing node i on the ability of the network to
generate seizures in silico, and it is given by the following:

NI ið Þ ¼ BNIpre � BNI ið Þpost
BNIpre

;

where BNIpre is the BNI before node removal, and BNI ið Þpost is
the BNI after the removal of node i. Following previous stud-
ies, we selected the parameter K such that BNIpre ¼ 0:5
(Goodfellow et al., 2016; Lopes et al., 2017, 2019, 2020).
BNI ið Þpost is typically smaller than BNIpre, meaning that NI ið Þ is
usually positive. Thus, the NI ið Þ ranges typically between 0
and 1, where 0 corresponds to a node removal that has no ef-
fect on seizure generation (BNI ið Þpost ¼ BNIpre), and 1 corre-
sponds to a node removal that stops seizures in the network
(BNI ið Þpost ¼ 0). The higher the NI, the more important the node
is for seizure dynamics. As above, we also took the mean NI
values of each node across the three functional networks per
individual for the statistical analysis presented below.
Figure 1 summarizes the key steps of our methods.

Statistical methods
We used a one-sided Mann–Whitney U test to assess

whether the mean BNI values were higher in the PPR
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group than in the non-PPR group. We also used the same
test to compare the mean NI in the occipital areas of the
two groups. Furthermore, we performed an exploratory
analysis where we used the two-sided Mann–Whitney U
test to evaluate whether the mean NI of each brain area
(other than the occipital areas) was different between the
two groups. To correct for multiple comparisons within
each family of tests, we applied the Bonferroni–Holm
procedure to each of these three analyses separately.
For all of these Mann–Whitney U tests, we report the
U-statistic and z score. We further quantified statistical
differences by using estimation statistics (Ho et al.,
2019). We used the median difference as the effect
size and 95% confidence intervals (CIs) were built
using 5000 bootstrap samples. To measure these esti-
mation statistics, we used the tools provided by (Ho et
al., 2019; https://www.estimationstats.com).
In the case of statistically significant results, we further

quantified the difference between the two groups using
the receiver operating characteristic (ROC) curve, area
under the curve (AUC), and sensitivity and specificity.

Data availability
MATLAB scripts implementing the methods described

in the article are freely available online at https://github.
com/ml0pe5/Photostimulation_BNI_NI.

Results
Do people with epilepsy who had a PPR to IPS have

higher widespread excitability than people who did not
have a PPR to IPS? Assuming that they do have a higher
widespread excitability, does it translate into a higher pro-
pensity to seizures as assessed from their resting-state
functional networks? To address this latter question, we
measured the BNI of each individual from interictal EEG
recordings before the IPS study. Figure 2 shows the BNI
of the two groups: the PPR group (i.e., positive PPR on
IPS) and the non-PPR group (i.e., no PPR on IPS). We

found that the BNI is not statistically significantly higher in
the PPR group (p ¼ 0:89; one-sided Mann–Whitney U
test, U ¼ 556, z ¼ �1:23). We further found that the un-
paired median difference of BNI was �1:48 with a 95%
confidence interval equal to –4.64 to 1.40. These results
suggest that PPRs are not a consequence of an individual
having a higher propensity to generate seizures (i.e., a
lower threshold for seizure emergence).
Having observed that the PPR group is not more prone

to seizures than the non-PPR group, we hypothesized
that their paroxysmal response to light stimulation results
from a higher ictogenic propensity in the occipital lobe
compared with the non-PPR group. Thus, we tested
whether the occipital areas of PPR individuals had a
stronger contribution to seizure generation within the
whole brain network than they did in non-PPR individuals.
Figure 3 compares the NI in the occipital areas (channels
O1 and O2) between the PPR and non-PPR groups. We
observed that the median of the NI of the O1 region was
higher in the PPR group relative to the non-PPR group,
but it was not significant (p ¼ 0:18; one-sided Mann–
Whitney U test, corrected for multiple comparisons,
U ¼ 652, z ¼ 0:90). We found a significantly higher NI in
the O2 region in the PPR group relative to the non-PPR
group (p ¼ 0:013; one-sided Mann–Whitney U test, cor-
rected for multiple comparisons, U ¼ 724, z ¼ 2:49).
Estimation statistics further supported these observa-
tions: for O1, the unpaired median difference of NI was
0.03 with a 95% confidence interval of �0.02 to 0.06; and
for O2 the effect size was 0.07 with a 95% confidence in-
terval of 0.01–0.12. As an exploratory analysis, we also
tested whether any other region had a different ictogenic-
ity in the PPR group compared with the non-PPR group,
and we found that no region had a statistically different NI
between the two groups (Fig. 4, Table 3).
Given the observation that the O2 was the most differ-

ent area in terms of NI between the two groups, we further
measured its ability to classify the two groups. We calcu-
lated the ROC curve and found an AUC of 0.72, a sensitiv-
ity of 0.85, and a specificity of 0.55.
To better characterize our findings, we performed a

supplementary analysis. Considering that previous stud-
ies have suggested that photosensitive epilepsy may be
differentiated from other types of epilepsy by analyzing
resting-state EEG power spectrum (Vaudano et al.,
2017) or by analyzing resting-state EEG functional net-
works (Varotto et al., 2012), we tested whether such
types of analyses could distinguish our two groups of in-
dividuals. Our purpose was to determine whether our
findings could be explained by these straightforward
spectral or connectivity analyses of EEG signals. Based
on the study by Vaudano et al. (2017), we computed
the relative power in the alpha band in the occipital elec-
trodes (O1 and O2) and tested whether the relative
power was higher in the PPR group than in the non-PPR
group. We observed no statistical differences (Table 4).
Furthermore, we tested whether the occipital electrodes
had higher connectivity strength in the PPR group rela-
tive to the non-PPR group (Rubinov and Sporns, 2010).
Again, we found no statistical differences (Table 4).

Figure 2. Violin plot of BNI comparing the PPR and non-PPR
groups. The white dot represents the median, the black box
represents the interquartile range, and the other dots within the
shaded region correspond to the BNI of each individual. The
BNI values are not statistically higher in the PPR group than in
the non-PPR group (p = 0.89, one-sided Mann–Whitney U test).
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Discussion
In this study, we consider the hypothesis that PSE

may be underpinned by both occipital and more wide-
spread cortical hyperexcitability (Padmanaban et al.,
2019). We assess whether such hyperexcitability is an
enduring feature inferable from resting brain activity of
people with PSE. We used interictal scalp EEG record-
ings from two groups of individuals with IGE, one that
had PPR during IPS, and another that did not have
PPR. We inferred functional networks from the EEG
data and studied the propensity of the participants’
brain networks to generate seizure activity using a
computer model. By simulating the emergence of sei-
zure-like dynamics on the networks, we were able to
compare the overall ictogenic propensity and local ic-
togenic propensity across individuals.

We first tested whether the PPR group had a higher BNI
than the non-PPR group. A higher BNI would suggest a
higher propensity of the PPR group to have seizures,
which could be indicative of widespread hyperexcitability
in this group. We found that the BNI was not statistically
different between the two groups. While this result sug-
gests that there is not an enduring hyperexcitability identi-
fiable from interictal EEG data, we acknowledge that
there is an alternative interpretation. Namely, the BNI may
better reflect the expectable seizure frequency of an indi-
vidual (Lopes et al., 2021) rather than their hypothesized
widespread hyperexcitability. From this perspective, the
BNI was not expected to be higher in the PPR group rela-
tive to the non-PPR group, as observed, because people
with PSE do not have higher seizure rates than people
without PSE (Covanis, 2005; Verrotti et al., 2012).

Figure 3. NI of the occipital lobe nodes in the PPR and non-PPR groups. The NI values in the O2 region are statistically significantly
higher in the PPR group than in the non-PPR group. The p-values correspond to one-sided Mann–Whitney U tests corrected with
the Bonferroni–Holm procedure.

Figure 4. NI of all the network nodes in the PPR and non-PPR groups. This figure excludes the nodes corresponding to the occipital
lobe nodes (presented in Fig. 3). p-Values, effect sizes, and confidence intervals are presented in Table 3. All these differences in NI
are not statistically significant.
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We then tested whether the PPR group had a higher
occipital NI than the non-PPR group. We found that in-
deed the NI is higher in occipital regions of the PPR
group relative to the non-PPR group, in particular in
the right occipital region (O2). This result suggests that
there is an enduring hyperexcitability of the occipital
regions in PSE, and that this hyperexcitability can be
inferred even from apparently normal scalp EEG re-
cordings, without requiring the use of stimulation.
More specifically, a higher NI of a region indicates that
this region is more relevant to seizure emergence.
Note, however, that we do find other regions with high-
er NI than the occipital lobe (e.g., the frontal areas,
FP1 and FP2; Fig. 4). Together, these results suggest
that people with PSE have a higher ictogenic propen-
sity in their occipital lobe compared with other individ-
uals with epilepsy, but that this region is not their main
driver of seizures (in line with people without PSE). We
further showed that, using NI to classify people with
PSE, we obtained a sensitivity of 0.85 and a specificity
of 0.55. Our results are in line with previous evidence
that has indicated occipital hyperexcitability in people

with PSE (Wilkins, 1995; Porciatti et al., 2000; Ferlazzo
et al., 2005; Padmanaban et al., 2019).
There have been previous studies assessing PSE based

on resting-state EEG functional connectivity. Varotto et al.
(2012) computed partial directed coherence from 10 indi-
viduals with PSE and 10 healthy control subjects. They
found that people with PSE had enhanced connectivity,
predominantly involving the anterior cortical regions. A
key advantage of our study compared with this one is that
we compared two groups of people with epilepsy, one with
PSE and one without, allowing us to assess features that
should be specific to PSE, rather than of epilepsy more
generally. Vaudano et al. (2017) analyzed resting-state
EEG-fMRI from 16 individuals with genetic generalized epi-
lepsy with PSE, 13 individuals with genetic generalized epi-
lepsy without PSE, and 15 individuals with focal epilepsy.
They found that the PSE group had significantly higher
mean alpha power than the other two groups. Based on
both EEG and fMRI, they showed that the “cortical–sub-
cortical network generating the alpha oscillation at rest is
different in people with epilepsy and visual sensitivity.”
While not having fMRI in our dataset, our analysis went

Table 4: Assessment of relative power and connectivity differences on occipital electrodes between the PPR and non-PPR
groups

Measure Node Uncorrected p-value U statistic z-score Effect size CI lower limit CI upper limit
Relative low alpha power O1 0.79 575 �0.81 �0.028 �0.095 0.047

O2 0.74 582 �0.65 �0.013 �0.089 0.049
Relative alpha power O1 0.86 562 �1.10 �0.078 �0.13 0.049

O2 0.80 573 �0.85 �0.039 �0.14 0.041
Occipital connectivity O1 0.94 543 �1.52 �0.76 �2.18 0.48

O2 0.76 580 �0.70 �0.34 �2.18 1.17

The relative power was computed following the methods of Vaudano et al. (2017). We considered the following two frequency bands: low alpha power (6–9 Hz)
as in the main analysis; and alpha power (7.5–12.5 Hz) as in the study by Vaudano et al. (2017). The occipital connectivity corresponds to the connection strength
of the electrodes (i.e., sum of in-strength and out-strength; Rubinov and Sporns, 2010). The p-values, U statistics, and z-scores correspond to one-sided Mann–
Whitney U tests assessing whether the relative power (or connectivity strength) is higher in the PPR group relative to the non-PPR group at a given occipital elec-
trode. All p-values are not significant. The effect size (median difference) and confidence intervals further show that there are no statistical differences between
the groups when using these measures.

Table 3: Assessment of NI differences between the two groups in each node (as presented in Fig. 4)

Node Uncorrected p-value Corrected p-value U statistic z Effect size CI lower limit CI upper limit
C3 0.54 1 583 �0.6 �0.016 �0.048 0.025
C4 0.35 1 568 �0.94 �0.026 �0.060 0.011
CZ 0.59 1 586 �0.54 �0.002 �0.057 0.046
F3 0.65 1 590 �0.45 �0.019 �0.068 0.029
F4 0.73 1 595 �0.34 �0.020 �0.072 0.031
F7 0.63 1 633 0.48 0.068 �0.024 0.124
F8 0.56 1 638 0.59 0.038 �0.014 0.073
FP1 0.47 1 578 �0.72 �0.014 �0.064 0.050
FP2 0.94 1 607 �0.08 0.015 �0.027 0.058
FPZ 0.75 1 626 0.32 0.045 �0.072 0.179
FZ 0.79 1 599 �0.25 �0.006 �0.056 0.050
P3 0.29 1 659 1.05 0.067 �0.001 0.121
P4 0.35 1 653 0.92 0.022 �0.045 0.106
PZ 0.29 1 659 1.05 0.024 �0.032 0.096
T3 0.60 1 635 0.52 0.010 �0.046 0.051
T4 0.08 1 689 1.72 0.042 �0.002 0.079
T5 0.85 1 602 �0.19 �0.004 �0.057 0.057
T6 0.26 1 560 �1.12 �0.015 �0.051 0.031

The p-values, U statistics, and z-scores correspond to two-sided Mann–Whitney U tests assessing whether NI is different between the two groups at a given
node. The p-values were corrected using the Bonferroni–Holm procedure, and none is significant. The effect size (median difference of NI) and confidence inter-
vals further show that there are no statistical differences between the groups in any of these nodes.
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beyond those of these two studies. Rather than focusing
on differences in network structure between groups, we
placed a model of ictogenicity on the networks to pose
hypotheses about how their structure may influence icto-
genicity. Additionally, we tested whether we could distin-
guish our two groups of individuals based on analyses of
alpha power and connectivity strength, similar (but not
equivalent) to those performed by Vaudano et al. (2017)
and Varotto et al. (2012). We found that those measures
could not differentiate our groups of individuals, which
further supports the use of our computational method.
Nevertheless, we note that our analyses of EEG spectrum
and connectivity are not replications of the analyses re-
ported by Vaudano et al. (2017) and Varotto et al. (2012). In
addition to some methodological differences, both the
data and cohorts of individuals were not directly compara-
ble to ours. Vaudano et al. (2017) used 32-channel EEG
and fMRI, while we used 20-channel EEG. Varotto et al.
(2012) compared individuals with PSE with healthy control
subjects, whereas we assessed a cohort of IGE patients
with and without PSE. Our purpose was not to replicate
their studies, but rather to assess whether we could differ-
entiate our two groups of individuals using straightforward
EEG spectrum or connectivity analyses, which to some ex-
tent underlie our computational framework. Future work
should aim to replicate together our study and their studies
to better assess whether the results are concordant or
complementary.
In conclusion, we applied the BNI and NI frameworks to

interictal scalp EEGs from people with epilepsy, and we
found that people with PSE have higher NI in occipital re-
gions than people without PSE. Our findings suggest that
the mechanisms of PSE may be revealed by enduring fea-
tures present in interictal brain states. Our results also
suggest that the NI applied to resting-state EEG may aid
the diagnosis of PSE without the need of stimulation.
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