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Study of Subjective and Objective
Quality Assessment of Night-time Videos

Xiaodi Guan, Fan Li, Zhiwei Huang and Hantao Liu

Abstract—With the widespread usage of video capture devices
and social media videos, videos are dominating the multimedia
landscape. There is an emerging need for video quality assessment
(VQA) that forms the backbone of advanced video systems.
Night-time videos play an important role in user capturing,
hence being able to accurately assess their quality is critical.
However, the characteristics of night-time videos differ from those
of general in-capture videos; and VQA algorithms that have been
developed for general-purpose videos cannot accurately assess
the quality of night-time videos. Research is needed to gain a
better understanding of how humans perceive the quality of
night-time videos, and use this new understanding to develop
reliable VQA algorithms. To this end, we construct a large-scale
night-time VQA database, namely Mobile In-capture Night-time
Database for Video Quality (MIND-VQ), containing 1181 night-
time videos, 435 subjects, and over 130000 opinion scores. We
perform thorough analyses to reveal subjective quality assessment
behaviors of night-time videos. Furthermore, we propose a new
VQA model, namely Visibility-based Night-time Video Quality
Assessment Network, VINIA. Spatial and temporal visibility-
aware components are characterized to reflect properties of
human perception of night-time VQA task. A series of exper-
iments are conducted to compare our VINIA with other existing
IQA/VQA algorithms using our new MIND-VQ database and
other public VQA databases. Experimental results show that
our subjective VQA database provides new insights and our
new VINIA model achieves superior performance in accessing
night-time video quality.

Index Terms—Quality assessment, video quality, night-time
video, subjective quality assessment.

I. INTRODUCTION

THE advances in video acquisition devices and the ex-

plosion of video-based social media have largely en-

couraged users to generate their own video content. There

is a high demand for capturing videos under the night-

time scenarios. However, the weakly illuminated night-time

environment causes specific degradations in videos, such as

low visibility, noise and overexposure. Developing a video

quality assessment (VQA) metric to faithfully predict the

visual quality of user-generated night-time videos is highly

beneficial for consumer photography and advanced video

processing systems.
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Recent years have witnessed the rapid development of VQA

including subjective assessment and objective algorithms. De-

pending on the usage of the pristine reference video, VQA

algorithms can be classified into three types, i.e., full-reference

(FR), reduced-reference (RR), and no-reference (NR). In the

absence of pristine reference for the in-capture content, NR-

VQA models [1–10] which rely only on the impaired videos

are most appropriate [11–14].

However, the quality perception for night-time videos differs

from general videos. The human visual system (HVS) is

the best extractor for visual information [15–23]. Sufficient

visual stimuli can more easily activate neural processing

of the HVS, and realize perception and understanding of

acquired visual information to achieve optimal information

extraction [15–18]. Therefore, the amount of visual stimulation

available in the visual field has a significant impact on visual

tasks. When humans assess image/video quality, the task

tends to be affected by the amount of visual stimulation for

information acquisition [24]. In general-purpose image/video

quality studies, most of the chosen natural scenes produce

sufficient visual stimulation to activate the subsequent process

of information perception and understanding. In this case,

low-level information acquisition needs are easily met, but

whether high-level needs can be met varies from content to

content [16, 18]. Therefore, the general-purpose image/video

quality assessment often depends more on high-level cognitive

needs such as the demand for the amount of information and

the aesthetic perception.

Nevertheless, under the night-time environment, weak light

leads to low contrast, insufficient visual stimulation, and

low availability of information in the captured images and

videos [25]. The weak visual stimulation leads to obstruction

of information acquisition, which in turn hinders the subse-

quent process of information perception and understanding.

The low-level information acquisition needs are not necessar-

ily met, let alone the high-level cognitive needs [24, 26–28].

Therefore, for night images/videos, the low-level needs for

information acquisition plays a predominate role in quality

assessment tasks.

Owing to the differences between night-time videos and

general videos, traditional VQA solutions (both synthetic and

authentic ones) are incompetent for night-time VQA. The

VQA databases for synthetic distortions contain distorted

videos by introducing the simulated distortions, such as com-

pression and transmission errors [30–35, 37, 38]. However, the

in-capture night-time videos have diverse content and authentic

distortions that are hard to accurately synthesize. Similarly, the

objective VQA methods designed for synthetic distortions are
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Fig. 1. Sample images in LIVE In the Wild Image Quality Challenge
Database [29]. The images represent distinctive visual content. The quality
scores of night-time images span only a narrow space on the scoring scale.

incompetent for assessing the authentic distortions, especially

the night-time-related distortions (e.g., low-light effects, and

blurriness) [1, 2, 6, 39].

Some databases focus on the authentic (in-capture) content

and distortions. However, the general-purpose authentic VQA

studies can’t provide accurate subjective assessments for intra-

category night-time contents. Ideally, in a subjective study, a

large number of visual stimuli reflecting sufficient diversity

in semantic information (including inter-category and intra-

category variability) should be evaluated in a single session so

that the scale biases are minimized [40, 41]. To render useful

quality ratings with a cost-effective experiment, the general-

purpose VQA studies focus on rating the differences of inter-

category content rather than the intra-category content. Due

to the scale biases in a general-purpose quality assessment

task, subjects might have learned to focus on rating the

differences of inter-category content rather than the intra-

category content. For example, Fig. 1 illustrates some sample

images of distinctive content from the LIVE In the Wild Image

Quality Challenge Database [29]. It can be seen that the image

quality preference when comparing distinctive samples is sta-

tistically significant (e.g., the MOS of the bright and colorful

image is generally higher than the dark night-time image).

However, within the same category, the difference seems to

have happened by chance. Also, the biases in subjective studies

have implications for objective algorithms. The algorithm that

has been designed or trained on a general-purpose database

will not necessarily be applicable for category-specific stimuli.

Besides, due to the perceptual differences, VQA research on

night-time videos should consider more low-level features to

achieve the accurate evaluation of night-time videos.

So far, researches on night-time quality assessment are

limited. Xiang et al. conducted a large-scale natural night-

time image database (NNID) [25]. Based on the work, several

night-time image quality assessment (IQA) methods have been

proposed by analyzing the characteristic of weak luminance

information [42–47]. Da et al. built a real-world night-time

video quality assessment database (NVQA), and proposed a

blind night-time video quality assessment model based on

feature fusion [48]. However, the NVQA database is relatively

limited in terms of how humans perceive the quality of night-

time videos, and how to develop dedicated VQA algorithms

to accurately and reliably predict perceived quality. To address

this problem, in this paper, we firstly develop a dedicated

night-time video database namely Mobile In-capture Night-

time Database for Video Quality (MIND-VQ), and conduct a

statistical analysis of subjective data. Secondly, we propose an

NR-VQA method for night-time videos, and conduct a series

of experiments to evaluate its performance.

The main contributions of this article are summarized as

follows:

1) The largest of its kind night-time VQA database is
created: MIND-VQ is the VQA database that focuses on a

specific category, and is committed to solving the video quality

assessment of night-time video. Our new MIND-VQ database

contains 1181 videos of diverse night-time scenes captured by

21 different users with various mobile devices. Considering

the perceptual preference of night-time videos, the database

contains night-time videos of various visibility and capturing

scenes.

2) New dedicated perceptual attributes are collected and
statistically analysed for night-time VQA: Our experiments are

based on the Single Stimulus (SS) method recommended by

ITU [49], and include new perception trials where each video

is annotated with overall perceived quality and five highly

relevant perceptual attributes (spatial visibility, temporal vis-

ibility, pleasantness of brightness, pleasantness of color, and

pleasantness of stability). We are dedicated to exploring the

rules of night-time video quality perception. Statistical analysis

is conducted to reveal the relative contributions of perceptual

attributes to the overall perceived quality of night-time videos.

Quantitative analysis shows that low-level attributes predomi-

nantly determine the night-time VQA.

3) A visibility-based objective VQA algorithm is developed
for night-time VQA: Considering the unique visual perception

of night-time videos, we propose a visibility-based night-time

VQA network, namely VINIA. In our model, firstly a spatial

visibility-aware sub-network is designed including multiscale

hierarchical visibility generation (MHG) and multiscale

visibility concatenation (MVC). Secondly, we develop a

stream in the VINIA for characterizing temporal visibility

perception. We achieve a tailored design for night-time video

quality assessment with superior performance. Our proposed

MIND-VQ and VINIA are available for download on this link:

https://drive.google.com/drive/folders/1 G28jjahAEzLs vRpai

btrPBmkcj8eyk.

II. RELATED WORK

In this section, we review existing VQA databases, NR-

VQA methods, and night-time related quality assessment

studies. We focus on pointing out the paucity of research on

the subjective assessment of night-time VQA, objective night-

time VQA algorithms, and video (rather than image) quality

study.

A. VQA Databases

Many subjective VQA databases have been created over the

past years. The first authentic (in the wild) VQA database
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is CVD2014 [50], which consists of videos with in-the-

wild distortions captured from 78 different video capture de-

vices. LIVE Qualcomm Mobile In-Capture Database [51] con-

tains 208 videos with authentic distortions. KoNViD-1k [52]

database consists of 1,200 public domain videos sampled

from the YFCC100M dataset, and annotated by 642 crowd-

workers. LIVE VQC [53] includes 585 videos, crowd-sourced

on Amazon Mechanical Turk to collect human opinions from

4,776 participants. To identify images/videos captured at night

from the general-purpose databases, we adopted objective and

subjective selection methods. First, we objectively calculated

the mean brightness of images/videos in the database, and

those below the mean are considered possible night-time

images/videos. Second, three image quality experts observed

all the images/videos separately, then judged whether they

were shot at night. Ultimately, if more than two researchers

consider that one specific image/video was taken at night, it

will be considered as a night-time image/video, and used in

the experiments of this work. Eventually, night-time scenes

rarely appear in the authentic VQA databases, e.g., 32 night-

time videos are included in CVD2014, 191 in KoNViD-1k, 4

in LIVE Qualcomm, and 92 in LIVE VQC.

B. NR-VQA Methods

Traditional NR-VQA methods extract hand-crafted features

and exploit a powerful regression module to map features

into a video quality score. Korhonen proposed an efficient

two-level video quality model (TLVQM) [3] which contains

a set of hand-crafted features related to motion and spa-

tial artifacts. Recently, Convolutional Neural Network (CNN)

models applied for VQA have shown superior performance.

VSFA [8] employed a pre-trained classification CNN as the

feature extractor, then aggregated the features with a gated

recurrent unit into frame quality. The overall video quality was

generated from the frame quality through a temporal pooling

method. CNN-TLVQM [54] combines the hand-crafted statis-

tical temporal features and spatial features obtained from a

CNN trained for image quality assessment via transfer learn-

ing. RAPIQUE [55] combines and leverages the advantages

of both quality-aware scene statistics features and semantics-

aware deep convolutional features to design the first general

and efficient spatial and temporal bandpass statistics model

for video quality modeling. VIDEVAL [56] extracts 60 of

the 763 statistical features used by the leading models to

create a new fusion-based BVQA model, effectively trading

off between VQA performance and efficiency. STDAM [57]

leverages the motion information and integrates the frame-

level features into video-level features via a bi-directional long

short-term memory network. However, there is a paucity of

research on the characteristics of night-time videos and the

development of night-time VQA algorithms.

C. Night-time Image/Video Quality Assessment

The first natural night-time image database is NNID [25],

which contains 2240 images with 448 different images cap-

tured by different photographic equipment in real-world sce-

narios. The researchers also proposed a blind night-time

IQA metric using brightness and texture features (BNBT).

Subsequently, based on the subjective data, more objective

night-time IQA metrics are developed. Li et al. proposed

a multi-stream deep convolutional neural network for night-

time IQA [42]. Two streams, i.e., brightness-aware CNN and

naturalness-aware CNN were constructed respectively by a

brightness-altered image identification task. Wang et al. inves-
tigated the statistical properties of local luminance information

based on the brightness level division, and then measured

the masking effect on color and structure information caused

by weak illumination [44]. Song et al. extracted several

quality-aware features through the study of image brightness,

contrast, structure and color. Specifically, the features related

to brightness and contrast are extracted through the analysis

of local information, while the others are extracted through

the analysis of global information [43]. He et al. measured

the night-time image quality by investigating the fundamental

image properties, such as the brightness, saturation, sharpness,

noisiness, contrast and the semantics. Then a support vector

regression (SVR) method was adopted to infer the image

quality with the extracted quality-aware features [45].

Since video quality differs from the quality of still images,

therefore, there is an urgent need to understand night-time

VQA subjectively and objectively. Da et al. created a large-

scale night-time video database named as Night Video Quality

Assessment (NVQA) database, containing 200 videos with

abundant content and diverse distortions [48]. Researches also

explored the relationship between the spatial features extracted

by several IQA methods, and chose the feature combination to

form the feature vector that contains more information about

night-time video distortions. However, the NVQA database

is relatively limited in terms of how humans perceive the

quality of night-time videos, and how to develop dedicated

VQA algorithms to accurately and reliably predict perceived

quality.

III. MOBILE IN-CAPTURE NIGHT-TIME DATABASE FOR

VIDEO QUALITY (MIND-VQ)

We aim to develop a large-scale database of night-time

videos with authentic distortions, and use this database to

develop night-time VQA algorithms.

A. Video Capture and Pre-processing

Source videos were collected with the assistance of 21

mobile users, with 21 devices of 15 models, as detailed in

Table I.

Users were required to capture videos in H.264 codec, at

a frame rate of 30Hz and resolution of 1920×1080 (1080p),

which represents the general shooting parameters. All the

videos were in mp4 container.

The users were encouraged to shoot videos with scenes that

are as diverse as possible. We guided users to shoot videos at

different degrees of spatial and temporal visibility. The spatial

visibility varied by the natural scene, including scenes with no

or weak light sources, scenes with moderate light sources, and

scenes with strong light sources. Temporal visibility varied by
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2. Examples of videos in MIND-VQ. Nine capturing scenes with authentic distortions are included in MIND-VQ. (a) Buildings, (b) Cityscape, (c) Indoor
scene, (d) Landscape, (e) Life, (f) Object, (g) Plant, (h) Traffic and (i) Others.

(a) MIND-VQ (b) CVD2014 (c) KoNViD-1k (d) LIVE Qualcomm (e) LIVE VQC

Fig. 3. Night-time videos content distribution in paired feature space. Blue ‘x’ represents video content and red line is the corresponding convex hulls. First
row is for Spatial Information×Temporal Information, second for Brightness×Contrast. MIND-VQ is the most wide-ranging in the two feature-spaces.

TABLE I
MODEL AND AMOUNT OF CAPTURING MOBILE DEVICES

Make Model Amount
Apple iPhone 6S plus 1
Apple iPhone 8 1
Apple iPhone X 2
Apple iPhone XS max 1
Huawei Honor 8 1
Huawei Honor V8 1
Huawei Nova 5 1
Huawei Nova 5i 1
Huawei Mate 9 1
Huawei Mate 30 1
Huawei P30 Pro 2
OnePlus 7t 1
Xiaomi MI6 2
Xiaomi MI8 4
vivo Z1 1

the user’s own video production, such as the storyline of the

video content and the jitters of the video.

A total of 1250 source videos were collected, followed by

pre-processing to filter out short videos, and cut long videos

short while preserving the continuity of ‘story’. As a result,

the final database is composed of 1181 videos at 1920×1080

resolution, with frame rate of 30Hz and length of 9-11 seconds.

Table II summarizes the attributes of our MIND-VQ database

and other VQA databases that include night-time videos.

B. Mobile In-capture Night-time Videos

Mobile In-capture Night-time Database for Video Quality

(MIND-VQ) consists of 1181 night-time videos of rich scene

content. Fig. 2 shows examples of night-time videos contained

in our MIND-VQ database. We detail the unique character-

istics of the source videos as follows, including the Spatial

Information (SI), Temporal Information (TI), brightness, and

contrast that characterize the diversity of night-time videos.

SI represents the amount of spatial information in a video,

so we adopt it to characterize spatial visibility. For SI, each

frame of a video is filtered by a Sobel filter, then the

standard deviation of filtering result std(Sobel(frame(T )))
is calculated, where T is time coordinate. The maximum of

std(Sobel(frame(T ))) is recorded as SI. TI represents the

temporal information of the video sequence, and we adopt it

to measure temporal visibility. TI is based on the difference

between consecutive frames, where D(T ) = frame(T ) −
frame(T − 1)). The standard deviation of each difference

map is calculated, the maximum std(D(T )) is recorded as

TI. The higher the SI and TI, the more spatial and temporal

information is conveyed.

We also take brightness and contrast into consideration,

since night-time videos are sensitive to light. Both features

are calculated for each frame, followed by averaging over all

frames to obtain the final feature value.

Fig. 3(a) shows the paired feature point cloud, including SI

Authorized licensed use limited to: Cardiff University. Downloaded on May 26,2022 at 14:37:34 UTC from IEEE Xplore.  Restrictions apply.



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3177518, IEEE
Transactions on Circuits and Systems for Video Technology

5

TABLE II
COMPARISON OF NIGHT-TIME VIDEOS IN PUBLIC LARGE-SCALE USER-GENERATED CONTENT VIDEO QUALITY ASSESSMENT DATABASES

Attribute CVD2014 KoNViD-1k LIVE Qualcomm LIVE VQC MIND-VQ
Number of night-time videos 32 191 4 92 1181
Source Captured YFCC100m Captured (mobile) Captured (mobile) Captured (mobile)
Resolution 720p 540p 1080p 1080p,720p, etc. 1080p
Framerate 20-30 fr/sec 24,25,30 fr/sec 30 fr/sec 20,24,25,30 fr/sec 30 fr/sec
Length 20-22 seconds 8 seconds 15 seconds 10 seconds 8-10 seconds
Audio track Yes 97% Yes No Yes Yes
Brightness range [30.89,101.11] [3.42,110.70] [34.87,58.31] [0.85,118.04] [0.65,146.94]
Contrast range [53.51,78.01] [4.95,91.93] [41.13,57.16] [4.71,85.05] [2.16,89.61]
SI range [19.60,81.26] [2.94,85.22] [44.02,66.00] [3.04,77.51] [0.97,90.90]
TI range [23.36,58.47] [5.18,116.89] [15.52,18.48] [4.58,118.34] [2.31,130.73]

versus TI (top graph) and brightness versus contrast (bottom

graph) for our MIND-VQ database. Fig.3(b),(c) and (d) show

the paired feature point cloud for CVD2014, KoNViD-1k,

LIVE Qualcomm and LIVE VQC, respectively. It can be seen

that our MIND-VQ database represents the most extensive

coverage in the feature space; the coverage for KoNViD-1k

and LIVE VQC is limited in higher feature areas; and the

coverage for CVD2014 and LIVE Qualcomm is inadequate.

In summary, the above analyses demonstrate that our

MIND-VQ represent rich diversity in spatial and temporal

information. Our database contains the largest number of

night-time videos, consistent resolution and frame rate. This

makes the set of videos a suitable source for video quality

assessment study.

C. Mobile-based Subjective Experiment

1) Experiment Design: We aim to conduct subjective ex-

periments using mobile displays to reveal the quality of

experience for viewing videos on mobile devices. We design

a subjective VQA study software using Android SDK for

Huawei P30 with a screen size of 6.1 inches and resolution of

2340*1080 is used to display. Because the videos in MIND-

VQ are of 1920*1080, they can be displayed in actual size

without scaling. All the videos are stored locally to avoid

frame dropping and blocking. Subjective experiments are

conducted in a standard laboratory environment[49], which

represents a well-controlled viewing environment to ensure

consistent experimental conditions[30, 51]. In order to sim-

ulate the user’s actual experience, we do not fix the viewing

distance, which is recommended by ITU for experiments based

on mobile[58].

Single stimulus continuous quality evaluation (SSCQE)

method is adopted in the experiment, where pristine reference

is not available for accessing in-capture videos. As prescribed

in ITU-R BT.500-12[49], we select non-categorical evaluation

with a continuous scale in [0,100]. In the subjective study,

we ask participants to assess the overall quality, and five per-

ceptual attributes including Spatial Visibility (SV ), Temporal

Visibility (TV ), Pleasantness of brightness (B), Pleasantness

of colorfulness (C), and Pleasantness of stability (S). As

shown in Table III, SV and TV represent low-level perceptual

attributes because visible content is a fundamental perception

need; and B, C and S represents high-level attributes because

they are related to cognitive needs.

TABLE III
FIVE ATTRIBUTES WE COLLECTED IN SUBJECTIVE EXPERIMENTS

Spatial Domain Temporal Domain
Low Level Spatial Visibility Temporal Visibility

High Level
Pleasantness of Brightness,

Pleasantness of Color
Pleasantness of Stability

• SV : Subjects’ perception of spatial visibility. The more

information can be obtained in the video content, the

higher of spatial visibility.

• TV : Subjects’ perception of temporal visibility. The

more information can be acquired along the temporal

dimension in the whole video, the higher of temporal

visibility.

• B: The subject’s perception of brightness. Excessively

low or high brightness can lead to poor perceived quality

of night-time videos.

• C: The subject’s perception of color performance. The

richness and realness of the colors can affect the per-

ceived quality of nigh-time videos.

• S: Subjects’ perception of video stability. In generating

in-capture videos, hand-held capture introduces short-

term shake-related distortions. The less jitters in the

video, the better the stability.

2) Experiment Procedure: Each subject viewed 65 videos

in an experiment, 5 for training and others for testing. The ap-

proximate experiment time was 35 minutes (including prepa-

ration). This reduces the chance of subjects suffering from

fatigue, hence maintains the data reliability. All experiments

followed the workflow detailed below.

• Step 1 (Preparation): Before the start of the experiment,

experimenters informed the participant of the general

experiment procedure and instructions on how to rate

video quality and associated perceptual attributes. After

that, 10 exemplar videos were played. The 10 exemplar

videos are for the subjects to understand the high and low

levels of each attribute.

• Step 2 (Training): Once the participant understood the

experimental requirements, the training phase followed.

Five videos that were different from the stimuli in the

testing phase were used for training. The 5 training

videos are used to familiarize the subjects with the

designed software. To be roughly consistent with previous

research (7 videos for training in LIVE-VQC [53]),
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we use 5 videos for training. The participant pressed

the ‘play’ button, and then a video was displayed in

full screen. After each video finished playing, rating

interface appeared on the screen, where six scales in

the range of [0,100] representing overall quality, Spatial

Visibility (SV ), Temporal Visibility (TV ), Pleasantness

of brightness (B), Pleasantness of colorfulness (C), and

Pleasantness of stability (S). All attributes followed the

principle that the better the experience, the higher the

score. Participants were allowed to re-watch and re-score

videos until they were satisfied with their ratings.

• Step 3 (Testing): Once the participant completed the

above two steps, actual testing started. Same to the

training phase, the videos were displayed and rated, and

each participant rated sixty videos. The testing set per

participant was randomly sampled from our MIND-VQ

database of 1181 night-time videos.

• Step 4 (Checking): The mobile was returned to experi-

menters to check if data was stored normally.

Eventually, a total of 435 observers took part in the sub-

jective study, ages ranging from 19 to 39 years old, with

232 males and 203 females. The subjects were inexperienced

with video quality assessment, and most of them were stu-

dents majoring in literature, linguistics, environmental science,

medicine, management. For the 1181 videos contained in the

MIND-VQ database, each video on average was assessed by

22 subjects.

3) Processing of Raw Data: In order to eliminate the

difference in the use of quality scale between the subjects, we

follow the approach described in [29, 30, 51, 59], to convert

the raw-score to Z-Score as follows:

μi =
1

Ni

Ni∑
j=1

sij (1)

σi =

√√√√ 1

Ni − 1

Ni∑
j=1

(sij − μi) (2)

zij =
sij − μi

σi
(3)

where sij denotes the score assigned by subject i to video j,
and Ni is the number of videos rated by subject i.

Subsequently, an observer rejection procedure specified in

the ITU-R BT 500.12 recommendation is adopted [49], result-

ing in 12 out of 435 subjects being rejected. If the Z-scores are

normally distributed, 99% of the scores will lie in the range

of [-3,3]. Therefore, Z-Scores are linearly mapped from the

range [-3,3] to [0,100] by using

z
′
ij =

100× (zij + 3)

6
(4)

In the end, the mean of the rescaled Z-scores represents the

MOS of each video:

MOSj =

Njt∑
i=1

z
′
ij

Njt
(5)
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Fig. 4. MOS histogram and probability density curve of MIND-VQ. Red
lines are the Kernel Density Estimation Curves, and the blue rectangles are
MOS histograms. The MOS distribution is relatively normal and reasonable.

TABLE IV
COMPARISON OF PLCC AND SROCC BETWEEN ATTRIBUTES AND MOS

ON MIND-VQ. BOLD INDICATES THE TOP-TWO HIGHEST VALUE

AMONG THE FIVE ATTRIBUTES

Attribute SV TV B C S
PLCC 0.9070 0.8726 0.8194 0.8378 0.7987
SROCC 0.8996 0.8746 0.8133 0.8261 0.8216

where Njt is the number of subjects (after observer rejection)

that rated the video j.
The histogram and probability density curve of MOS is

shown in Fig. 4. It can be seen that MOS values are uniformly

distributed over the common quality range on the scoring

scale. The MOS distribution is similar to that of the well-

recognised lab-based quality assessment study, such as the

LIVE database [40], meaning our results are highly reliable.

IV. SUBJECTIVE NIGHT-TIME VQA STUDY

Firstly, the impact of each attribute on night-time video

quality is presented. Secondly, we analyze the relationship be-

tween low- or high-level perception and overall video quality.

Thirdly, we divide the videos into nine capture scenes and

analyze the impact of scene categories on night-time video

quality.

A. Impact of Individual Perceptual Attributes on MOS

We calculate the Pearson Linear Correlation Coefficient

(PLCC) and Spearman Rank Order Correlation Coefficient

(SROCC) between the individual attribute and MOS. The

closer PLCC and SROCC are to 1, the more related the

attribute to perceived quality. The results are given in Table

IV. SV and TV are most highly correlated with the overall

video quality.

B. Impact of Low- and High- Perceptions on MOS

We first divide the MOS in MIND-VQ into three cat-

egories: low quality (MOS≤44.9), medium quality (44.9≤
MOS ≤64.4) and high quality(MOS≥64.4).There are 393

videos in the low quality subsets, and 394 in the medium and

high quality subset. We respectively calculate and compare

the PLCC and SROCC between the MOS and the attributes

in these subsets, and the results are shown in the Table V.

As indicated by the results in the low-quality subset, the

low-level attributes (SV and TV ) are more related to MOS
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TABLE V
COMPARISON OF PLCC AND SROCC BETWEEN ATTRIBUTES AND MOS
ON LOW, MEDIUM AND HIGH QUALITY SUBSETS. BOLD INDICATES THE

TOP-TWO HIGHEST VALUE AMONG THE FIVE ATTRIBUTES

Subset Low Medium High
Attribute PLCC SROCC PLCC SROCC PLCC SROCC
SV 0.6819 0.6888 0.4177 0.4335 0.8299 0.8318
TV 0.6075 0.5476 0.3879 0.4082 0.7333 0.7352
B 0.4858 0.4784 0.3586 0.3493 0.7986 0.8054
C 0.5486 0.5187 0.3736 0.3856 0.7935 0.7755
S 0.3605 0.3913 0.3715 0.3746 0.6414 0.6643

than the high-level attributes (B,C and S). In the medium

quality subset, all attributes are not highly correlated with

MOS. This is because people often tend to make discrepant

judgments on medium-quality videos. Nevertheless, the low-

level attributes still dominate quality perception. As for the

high-quality subset, B surpasses TV , and becomes the second

most important attribute.

Comparing the results of the three subsets, we found that the

high-level attributes gradually become important when video

quality becomes higher. When the night-time video quality

is low, the fundamental information acquisition requirements

cannot be met, and the video quality perception is limited by

the amount of information available, so low-level attributes

(SV and TV ) are dominant. With the improvement of video

quality, the demand for information acquisition is gradually

satisfied. And the impact of the low-level needs is weakened.

Whereas the high-level cognitive needs are not necessarily

met. Therefore, the video quality depends more on high-level

needs (B, C and S) related to the demand for the amount of

information and the aesthetic perception.

C. Impact of Scene Categories on MOS

Researchers have found that capturing scenes affect image

quality [41, 60], which prompts us to investigate this factor.

Videos in MIND-VQ are categorized into nine scene categories

(building, cityscape, indoor scene, landscape, life, object,

plant, traffic and others), which can be used to analyze the

impact of scene categories on video quality.

We draw the MOS level distribution for each scene category

in Fig. 5. For the sake of clear visualization, MOS is evenly

discretized to five levels, where [0,20) represents bad quality,

[20,40) represents poor quality, [40,60) represents fair quality,

[60,80) represents good quality and [80,100) represents ex-

cellent quality. Due to the extremely low visibility in Others,

none of the videos appears in Fair, Good and Excellent. For

Building, Indoor scene, Landscape, and Object, the largest

proportion of videos fall in Fair, for Cityscape and Traffic,

Good videos account for the most. The MOS distributions

suggest the scene categories affect the quality of night-time

videos.

Moreover, to explore whether the video attributes show

different influence on perceived quality under different video

scenes, we evaluate the correlation between individual at-

tributes and MOS for different scene categories, as the results

shown in Table VI. It can be seen that the relative impor-

Fig. 5. MOS level distribution for scene category.

TABLE VI
COMPARISON OF PLCC AND SROCC BETWEEN ATTRIBUTES AND MOS
ON SCENE BATEGORY SUBSETS. RED AND BLUE INDICATE THE HIGHEST

AND LOWEST VALUE AMONG THE NINE SCENE CATEGORIES

Scene
Category

SV TV B C S

PLCC 0.8890 0.8517 0.7812 0.8204 0.7729
Building

SROCC 0.8652 0.8545 0.7941 0.8013 0.7910
PLCC 0.8528 0.8281 0.8180 0.7899 0.7579

Cityscape
SROCC 0.8506 0.8388 0.8338 0.7995 0.7584
PLCC 0.8708 0.8519 0.8116 0.8305 0.8471

Indoor Scene
SROCC 0.8564 0.8515 0.7779 0.7933 0.8645
PLCC 0.9066 0.8526 0.8191 0.8307 0.7734

Landscape
SROCC 0.8745 0.8698 0.7663 0.7776 0.8006
PLCC 0.9084 0.9226 0.7792 0.8100 0.8525

Life
SROCC 0.9031 0.9253 0.7723 0.7951 0.8778
PLCC 0.8923 0.7216 0.9099 0.9290 0.4976

Object
SROCC 0.8851 0.7178 0.8916 0.9042 0.5339
PLCC 0.9222 0.8098 0.8103 0.8422 0.7486

Plant
SROCC 0.9145 0.7924 0.8258 0.8278 0.7498
PLCC 0.9085 0.8881 0.8362 0.8472 0.8627

Traffic
SROCC 0.9032 0.8953 0.8233 0.8372 0.8780
PLCC 0.8071 0.8377 0.7289 0.7359 0.7390

Others
SROCC 0.7143 0.8022 0.7143 0.7802 0.7088

tance of different attributes to MOS varies for different scene

categories.

V. OBJECTIVE NIGHT-TIME VQA MODEL

Objective night-time VQA remains a relatively unexplored

problem. Here we aim to develop a VQA model for night-time

videos. As the subjective study revealed, the quality of night-

time videos mainly relies on low-level information perception.

We first design a spatial visibility aware sub-network (SAN)

with multiscale hierarchical visibility generation (MHG) and

multiscale visibility concatenation (MVC). Then it extracts

spatial visibility-aware features from the pre-trained deep neu-

ral network SAN for each video frame. Finally, the extracted

frame-level features are regressed to the overall video quality

with the guidance of temporal visibility perception.

A. SAN: Spatial Visibility Aware Sub-network

Our spatial visibility-aware sub-network (SAN, as illus-

trated in Fig. 6) is mainly based on ResNet50 [61], like most

existing VQA models. For pre-training, we feed the frames

of videos in MIND-VQ to the model. In particular, our SAN

consists of a regression stream and visibility generation stream.

We adopt the SV of videos collected in the subjective study

as the ground-truth to guide the regression stream training. We
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Fig. 6. The architecture of the spatial visibility aware sub-network (SAN). It contains two streams, a regression stream in blue color to predict a spatial
visibility score, and a generation stream in black color to predict an spatial visibility map. We introduce the multiscale hierarchical visibility generation (MHG)
and multiscale visibility concatenation (MVC) to augment the multiscale visibility-aware features.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Three examples of proxy visibility maps. (a)(b) and (c) are the origin
frames captured differently illuminated environments. (d)(e) and (f) are the
corresponding proxy visibility maps. We can observe that, after the processing,
the high-visibility regions are retained and emphasized, with the low-visibility
regions filtered out.

take Residual Module0 (M0) and Residual Module1 (M1) as

encoders for visibility generation, and develop the multiscale

hierarchical supervision with the proxy visibility maps. To

extract visibility-aware features from the generation stream

to guide the regression stream, we introduce the multiscale

visibility concatenation (MVC) to augment the intermediate

features of the regression stream.

1) Multiscale Hierarchical Visibility Generation: For night-
time videos, the perceived video quality strongly depends

on the spatial visibility as demonstrated in Section IV. The

regression stream extracts the visibility-aware features by the

guidance of the ground truth in our MIND-VQ database.

Besides, we design the visibility generation stream to extract

the multiscale hierarchical features.

ResNet50 has four stages that extract hierarchical features at

different scales, with earlier stages capturing low-level features

and later stages capturing high-level semantics. Since the

earlier stages capture low-level features, we adopt the M0 and

M1 in the regression stream as the encoders for the generation

stream. The encoders are connected to the subsequent stage in

ResNet50 for feature reasoning. Finally, a decoder is added for

generating the visibility map. The decoder consists of a conv

layer with kernel size 1×1 and channel depth 1, a Batchnorm

layer and a sigmoid activation layer.

We generate the multiscale proxy visibility maps to develop

the multiscale hierarchical visibility generation. Considering

a severely poor visibility frame is less susceptible to ad-

ditional blur, we generate the visibility map as Map(t) =
frame(t)−GaussianBlur(frame(t)), where the radius of

GaussianBlur is set to 7. As shown in Fig. 7(f), the frame

with high visibility degrades severely after blurring. Whereas

the frame with poor visibility observes a little difference from

its blurred version. Besides, because of the smooth processing

and the subtraction, the visibility map can also highlight the

noise in the original frames. Therefore, the visibility maps

can depict the quality-aware spatial visibility information. To

further improve the algorithm, we use image pyramids during

the training phase. More specifically, we resize an image to

construct an image pyramid, and each of these images is set

as the hierarchical proxy map of the multiscale streams.

As shown in Fig. 6, the overall loss function consists of

the regression prediction error and the distance between the

predicted and proxy visibility maps. To balance the magnitude

of two loss functions and the tasks, the overall loss function

L during training is:

L = LR + αLG = LR + α
∑

i∈[1,N ]

Li
G, (6)

LR = ‖ŜV − SV ‖2, (7)

Li
G = ‖V̂i − Vi‖2, (8)

where LR represents the regression loss function, LG rep-

resents the generation loss function, Li
G is the generation

loss function of the i-th hierarchy. ŜV denotes the predicted

spatial visibility score and SV denotes the ground-truth, V̂i

denotes the generated visibility map of the i-th hierarchy and

Vi denotes the proxy map. α is a hand-crafted parameter to

balance the importance of the two tasks. In this work, we

chose α = 0.2 based on empirical experiments.
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Fig. 8. The architecture of MVC. Stage 1 is for multiscale visibility-aware
feature extraction, and Stage 2 is for the feature concatenation with the
regression stream.

2) Multiscale Visibility Concatenation: Our goal is to in-

corporate features from the generation stream into the regres-

sion stream for spatial visibility perception. However, visible

content varies in the shape and scale in night-time scenes,

therefore, a multiscale visibility concatenation is employed to

characterize visibility information at various scales.

In the first stage, the MVC constructs a feature pyramid to

incorporate multi-receptive-field visibility features as shown in

Fig. 8. First, the MVC achieves dimensionality reduction with

a fixed channel c using a 1×1 convolution kernel denoted by

f(·). We set the number of channels c to be C/4 to remove the

redundant feature representation in the primal visibility feature

fV. Then, we adopt four parallel dilated convolutions [62]

to construct the feature pyramid. The parallel dilated con-

volutions have the same kernel size of 3×3 with different

dilation rates r of 1, 4, 8 and 12. In this way, the outputs

of the dilated convolutions have various receptive fields and

the same spatial resolution ofW×H×c. Finally, the receptive-
field varied features are combined through the cross-channel

concatenation to capture a multiscale visibility representation.

Let gr(·) denote the operation of dilated convolution with

dilation rate r. The output feature of the first stage is defined

as:

fMV = g1(f(fV))⊕g4(f(fV))⊕g8(f(fV))⊕g12(f(fV)) (9)

where ⊕ represents the cross-channel concatenation.

In the second stage, the MVC integrates the multiscale

visibility representation into the regression stream as shown

in Fig. 8. Let fR be the intermediate features of the regression

stream and fMV be the output of the first stage of MVC. MVC

updates fR to obtain visibility-aware features f̂R as:

f̂R = fR ⊗ [1 + β · σ(fMV)] (10)

where ⊗ denotes element-wise multiplication, β is weight

parameter, and σ(·) is a sigmoid function. We adopt β as

0.8 in the experiments. The intuition behind Eq. (10) is that

our model needs to learn how to weight the features in the

regression stream based on the visibility features, in order to

generate more discriminative features, particularly at poor/high

visibility regions. This formulation also forces our model to

learn the features that help predict the visibility maps and

guide the spatial visibility perception task towards optimal

performance.

As shown in Fig. 6, both fR and fV are from the previous

stages. All the operations in MVC are differentiable so that we

can train the network end to end. In addition, MVC enables

the gradients to be back-propagated from the output visibility

map to the regression stream, thereby allowing the regression

stream to exploit visibility-aware information.

B. VINIA: Visibility-based Night-time Video Quality Assess-
ment Network

1) Spatial Visibility-aware Features Extraction: Firstly, as-

suming the video has T frames, we feed the video frame

It(t = 1, 2...T ) into the pretrained SAN model and output the

deep visibility-aware feature maps from its top convolutional

layer. Then, we apply spatial global average pooling and

spatial global standard deviation pooling operations for each

feature map, as shown in Fig. 9. The output feature vectors

are f tmean, f
t
std respectively. After that, f tmean and f tstd are

concatenated to serve as the spatial visibility-aware features

f tT:
f tT = f tmean ⊕ f tstd (11)

where ⊕ is the concatenation operator.

2) Overall Quality Regression with Visibility-aware guid-
ance: To regress the features to video quality, we design the

temporal stage of VINIA, which consists of two streams to

predict the overall video quality and the temporal visibility.

The fully connected layers and a GRU network is shared for

the long-term dependencies modeling.

In the temporal visibility prediction stream, we develop the

global representation of temporal visibility-aware features. It

is widely acknowledged that the pooling moments determine

the discriminability of features, and we adopt the widely

acknowledged mean and standard deviation based pooling

strategies for temporal visibility perception. For frame t ,

suppose the mean pooling and std pooling results of the feature

as Mt and Dt respectively, the global representations can be

acquired by concatenating the pooled features as follows,

fM = {M1,M2, ...,Mt, ...,MT} (12)

fD = {D1,D2, ...,Dt, ...,DT} (13)

where fM and fD stand for the mean feature and std feature

for the whole video. The fM and fD represent the temporal

relevance of the whole sequence. Supervised by the TV , the

stream can predict the temporal visibility of the video. The

ground truth of TV is the score of TV attribute collected in

the subjective study. Each video adopts its TV score as the

supervision for temporal visibility prediction stream.

In the video quality prediction stream, we adopt a visibility-

weighted strategy to predict the overall video quality. Since

temporal visibility is a significant determinate for night-time
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Fig. 9. The flowchart of the proposed VINIA. Firstly, the spatial visibility-aware features are extracted by the pretrained SAN. And a two stream scheme
with a visibility-weighted strategy is developed for overall quality prediction.

VQA, we regard the temporal visibility-aware feature as the

visual temporal attention for quality regression. To be specific,

given fM, two fully connected layers are learned to implement

the attention mechanism, as shown in Fig. 9,

W = σ(W2 · δ(W1 · fM)) (14)

where δ refers to the ReLU activation function; σ is the

sigmoid function; W1 ∈ R
C
r ×C and W2 ∈ R

C×C
r denote the

parameters of the two FC layers. The FC1 layer represents the

dimensionality-reduced global features by a linear mapping.

The features are fed into the second FC layer for a nonlinear

mapping. The sigmoid activation is used to assign weights

to different frames to achieve the visual temporal attention

selection based on temporal visibility.

Then the frame-specific quality representation f tQ can be

obtained by the spatio-temporal feature f tST and its visibility-

aware weight W as follows,

fQ = W ⊗ fST = {W1 × f1ST...Wt × f tST...WT × fTST} (15)

where the ⊗ represents the element wise multiplication. After

the feature weighting, the f tQ is regressed to the frame score

with an FC layer. Then, the subjective-inspired temporal

pooling strategy in VSFA [8] is employed for overall video

quality generation.

The overall loss function consists of the quality prediction

error and temporal visibility prediction error. The overall loss

function L during training is:

L = LQ + γLT (16)

LQ = ‖ ˆMOS −MOS‖2, (17)

LT = ‖ ˆTV − TV ‖2, (18)

where LQ represents the video quality loss function, LT

represents the temporal visibility loss function, and γ is a

hand-crafted parameter. In this work, we chose γ = 0.25 based
on our empirical experiments.

C. Implemental Details

We choose ResNet50 pre-trained on ImageNet as the back-

bone of SAN. We train the SAN with video frames in MIND-

VQ sampled at 1 frame per second. L2 loss and Adam

optimizer with an initial learning rate of 1e-4, is adopted in

this step. The learning rate is scaled by 0.8 every 10 epochs

and 100 epochs are required for training the frame-level SAN.

The spatial visibility-aware features f tT are extracted from

the top convolutional layer “res5c” of SAN. In this instance,

the dimension of f tQ is 4096. The feature dimension is then

reduced from 4096 to 128, followed by a single-layer GRU

network with a hidden size of 32. In the temporal visibility

prediction stream, the dimension of fM and fD is T (the length
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of a whole video). Followed by the concatenation, the feature

is reduced from 2T to 1 for temporal visibility prediction.

For the visual attention generation, r is set as 16. The first

FC layer reduces the feature dimension from T to T/16, and

the second FC layer increases from T/16 to T. The frame

quality is generated by the FC layer, and the video quality

is regressed by the pooling strategy same as VSFA[8]. We

freeze the parameters in the pretrained SAN to ensure that the

spatial visibility-aware property is not altered, and we train

the other part of the VINIA in an end-to-end manner. We

train our model using Adam optimizer and L2 loss with an

initial learning rate of 1e-5, a training batch size of 16. The

learning rate is scaled by 0.5 every 10 epochs and 100 epochs

are required.

VI. EXPERIMENTS

A. Experimental Methods

We select 10 state-of-the-art video/image quality assess-

ment algorithms to conduct a series of evaluation and com-

pare with the proposed VINIA. As for video quality as-

sessment algorithms, VIIDEO[1], VBLIINDS[2], TLVQM[3],

VSFA[8], CNN-TLVQM[54], RAPIQUE[55], VIDEVAL[56]

are included. Due to the limited number of accessible NR-

VQA codes, similar to the work conducted in CVD2014[50],

LIVE Qualcomm[51], and LIVE VQC[53], we select popular

NR-IQA (No-reference Image Quality Assessment) methods

as supplementary, including NIQE[63], BRISQUE[64] and

GM-LOG[65]. All metric codes used in our experiments are

officially released versions.

B. Experimental Databases

We randomly divide MIND-VQ into non-overlapped train-

ing and testing sets. The training set contains 80% of data(70%

samples for training and 10% for validation), with the testing

set contains 20% of data. The reported results are the average

over all runs of the test set results.

C. Evaluation Criteria

We measure the performance of the model using the

Spearman rank-order correlation coefficient (SROCC), Pear-

son linear correlation coefficient (PLCC), Kendall rank-order

correlation coefficient (KROCC) and root mean squared error

(RMSE). Higher SROCC, PLCC and KROCC values and

lower RMSE values represent better performance of a VQA

method. When the objective scores (the quality scores pre-

dicted by a VQA method) are not in line with the scale

of the subjective scores, the objective scores are nonlinearly

transformed, which is the same procedure used in VSFA [8].

All of the experimental results are obtained after the nonlinear

mapping.

D. Comparison with NR-VQA/IQA Methods

We compare the proposed VINIA with popular NR-

VQA/IQA methods, including NIQE, BRISQUE, GM-

LOG, VIIDEO, VBLIINDS, TLVQM, VSFA, CNN-TLVQM,

RAPIQUE and VIDEVAL. Table VII shows PLCC, SROCC,

TABLE VII
PERFORMANCE COMPARISON OF NIGHT-TIME VIDEO QUALITY

PREDICTING ON MIND-VQ. THE BOLD ENTRIES INDICATE THE BEST

PERFORMANCE

Method PLCC SROCC KROCC RMSE
NIQE 0.6429 0.6258 0.4442 14.8037
VIIDEO 0.1950 -0.0096 -0.0082 18.9910
BRISQUE 0.6609 0.6557 0.4679 12.9410
GM-LOG 0.7134 0.7076 0.5133 13.8990
VBLIINDS 0.7891 0.7950 0.5995 12.6570
TLVQM 0.8787 0.8820 0.6980 9.7476
VSFA 0.9001 0.8988 0.7247 8.3289
CNN-TLVQM 0.8084 0.8202 0.6011 11.1527
RAPIQUE 0.8477 0.8463 0.6545 9.2839
VIDEVAL 0.8664 0.8699 0.6626 10.6709
VINIA 0.9256 0.9242 0.7603 7.6565

KROCC and RMSE on the MIND-VQ. The best results among

the methods are shown in bold. Obviously, the proposed

VINIA is superior over all methods.

For the two general-purpose NR-IQA methods, NIQE

and VIIDEO, they fail in predicting the quality of nigh-

time videos. Understandably, the characteristics of night-time

videos are much different from general videos, so the features

derived from general images/videos are not suitable for night-

time video quality.

Compared with NIQE and VIIDEO, the learning-based

methods perform better on MIND-VQ. Among them, IQA

methods (BRISQUE and GM-LOG) perform less well in

contrast to VQA methods(VBLIINDS, TLVQM, VSFA, CN-

TLVQM, RAPIQUE, VIDEVAL and VINIA). All the VQA

methods take temporal information into consideration, which

is critical for video quality.

It can be seen from Table VII, our proposed VINIA outper-

forms other popular NR-VQA/IQA methods. Compared with

learning-based methods, VINIA benefits from including well-

designed and perception-inspired auxiliary information (i.e.,

SV and TV ) and sophisticated network architecture.

E. Ablation Study

We also conduct ablation experiments to verify the con-

tribution of spatial and temporal visibility-aware modules.

Experimental results are listed in Table VIII. We first remove

all the visibility-aware modules in VINIA. So only an Ima-

geNet pretrained ResNet50 is in place to extract the spatial

features, while the GRU and the subjective-inspired pooling

are preserved in the temporal module. Actually, the model

acts as a raw VSFA, with its performance shown in the first

row in Table VIII.

Then we add the MHG and MVC respectively in the spatial

visibility-aware module, with its performance shown in the

second and third row in Table VIII. Next, we combined the

MHG and MVC, and the results correspond to the forth row.

We observe that when there is only MVC and no MHG in

the SAN, the improvement is limited, indicating that only

extracting multi-scale features is not targeted. When MHG

and MVC are introduced simultaneously, the performance

improves significantly, showing the effectiveness of extracting

the multi-scale visibility-aware features.
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TABLE VIII
ABLATION EXPERIMENTS OF THE VINIA

Spatial Visibility Temporal
Visibility

PLCC SROCC KROCC RMSE
MHG MVC
× × × 0.9001 0.8988 0.7247 8.3289
� × × 0.9085 0.9072 0.7375 8.0894
× � × 0.9025 0.8992 0.7337 8.1458
� � × 0.9135 0.9097 0.7395 7.8086
× × � 0.9126 0.9091 0.7439 7.9526
� × � 0.9192 0.9209 0.7485 7.8620
× � � 0.9153 0.9130 0.7476 7.8561
� � � 0.9256 0.9242 0.7603 7.6565

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Three examples of the generated visibility maps.(a)(b) and (c) are the
proxy maps. For the low visibility (a), the extracted edges are indiscernible,
and there is a lot of noise in the visibility map. For moderate visibility (b), the
edges are discernible, but noise exists. And the high visibility map (c) exhibits
sharp edges and less noise. (d)(e) and (f) are the low-level generated visibility
maps. (g)(h) and (i) are high-level generated visibility maps. The multiscale
maps show hierarchical information. The low-level maps can intuitively show
the edge visibility, while the high-level maps can present more fine details.

The model that only includes the temporal visibility-aware

module produces the results in the fifth row. It achieves a

similar performance to the spatial visibility-aware module.

The MHG and MVC is respectively added, with the results

in sixth and seventh rows. The results show that both spatial

and temporal visibility-aware modules are equally important

for night-time VQA models.

When adding both the modules, our model achieves the best

performance, showing that combining spatial and temporal

visibility-aware modules can significantly improve the quality

prediction for the night-time VQA task.

F. Discussions

1) Generated Spatial Visibility Map in SAN: The spatial

visibility-aware maps are generated by MHG in SAN, and

are compared with the proxy maps to produce the multiscale

visibility-aware features. We visualize the generated maps of

frames to qualitatively evaluate the performance in Fig. 10.

Examples are shown in different environments, including

extremely low visibility, moderate visibility, and clear scene

of high visibility.
The first row of Fig. 10 is the proxy maps of frames in

videos. And the second and third rows are the hierarchical

generated maps by MHG. As we can observe, our generated

maps are highly similar to the proxy ones. And the hierarchical

maps show the different visibility-aware information. The low-

level maps can capture the edge visibility, while the high-level

maps can present more fine details, like noise. In summary, the

multiscale hierarchical generation structure proposed in SAN

can generate reliable visibility-aware maps for advancing the

multiscale visibility-aware features integration.
2) Different Spatial Visibility Map Generation

Parameters and Method: In VINIA, we generated

the proxy spatial visibility maps as Map(t) =
frame(t) − GaussianBlur(frame(t)), where the radius

of GaussianBlur is set to 7. We adjusted the radius to

3, 5, 9 and 11, then used the generated maps to guide the

training. Moreover, we also adopted a wavelet-based image

sharpness estimation method [66] (abbreviated as DWT) with

different threshold to generate the maps. The experimental

results are shown in Table IX. The model guided by our

proposed generation method with radius as 7 achieves the

best performance. Although the performance varies with the

generation parameters and method, the results are robust.

Moreover, after the Temporal Visibility guiding, performance

of all the methods are improved, demonstrating the robustness

and effectiveness of the proposed method.
3) Comparison with simple objective metrics SI and TI:

According to the human rating, we observe that the SV and

TV are mostly associate with the video quality perception.

Since the Spatial Information (SI) and Temporal Information

(TI) we adopted in Section III are simple metrics generated

by the objective methods which related to spatial and temporal

visibility, we analyzed the SROCC, PLCC and KROCC (which

can evaluate the rank performance) with MOS in Table X.

Results show that, SI and TI can not outperform VINIA. Since

SI and TI represent the deviation of the video frames only by

filtering and computing the difference, they cannot satisfy the

sophisticated HVS.

G. Cross Dataset Generalizability
We perform a cross dataset evaluation to verify the gener-

alization of the learning-based methods. We train the model

on full MIND-VQ, then test and report the performance on

KoNViD-1k, LIVE VQC, CVD2014, and LIVE Qualcomm.

Table XI shows the cross dataset performances in terms of

PLCC and SROCC.
We observe that the generalization ability of the proposed

VINIA is better than that of other methods. For the algorithms

based on hand-crafted features (BRISQUE, GM-LOG, VBLI-

INDS, and TLVQM) and fixed deep convolutional features

(CNN-TLVQM, RAPIQUE and VIDEVAL), the poor cross-

dataset performance stems from the differences between the
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TABLE IX
PERFORMANCE COMPARISON ON DIFFERENT SPATIAL VISIBILITY MAP GENERATION PARAMETERS AND METHOD

Method
VINIA w/o Temporal Visibility VINIA

PLCC SROCC KROCC RMSE PLCC SROCC KROCC RMSE
Gaussian Radius=7 (Ours) 0.9135 0.9097 0.7395 7.8086 0.9256 0.9242 0.7603 7.6565
Gaussian Radius=3 0.9103 0.8972 0.7263 8.6836 0.9142 0.9062 0.7384 8.5300
Gaussian Radius=5 0.8728 0.9033 0.7298 10.5337 0.8897 0.9098 0.7426 11.3717
Gaussian Radius=9 0.8746 0.8800 0.7099 12.8081 0.8835 0.8899 0.7258 11.6471
Gaussian Radius=11 0.8081 0.8678 0.6989 13.2922 0.8413 0.8802 0.7139 12.1361
DWT Threshold=2 0.9004 0.9000 0.7221 9.5823 0.9041 0.9093 0.7228 9.1891
DWT Threshold=4 0.9034 0.9011 0.7253 8.2236 0.9089 0.9097 0.7337 8.8271
DWT Threshold=6 0.7812 0.8181 0.7082 15.8191 0.8281 0.8767 0.7135 12.8231

TABLE X
RANK PERFORMANCE OF OBJECTIVE METRICS (SI AND TI)

PLCC SROCC KROCC
SI (Objective) 0.5224 0.5439 0.3805
TI (Objective) 0.2826 0.3046 0.3035
Predicted Quality Score 0.9256 0.9242 0.7603

TABLE XI
PERFORMANCE COMPARISON ON CROSS DATASET GENERALIZATION

EVALUATION. THE BOLD ENTRIES INDICATE THE BEST PERFORMANCE

Database
Train MIND-VQ

Test
KoNViD

-1k
LIVE VQC CVD2014

LIVE
Qualcomm

BRISQUE
PLCC 0.5196 0.3961 0.4084 0.1383
SROCC 0.4937 0.3354 0.3877 0.1257

GM-LOG
PLCC 0.4402 0.3382 0.5113 0.2621
SROCC 0.4294 0.2448 0.4768 0.1825

VBLIINDS
PLCC 0.0852 0.1745 0.2920 0.1876
SROCC 0.0900 -0.0342 0.2718 0.1340

TLVQM
PLCC 0.5238 0.6029 0.1862 0.2370
SROCC 0.5072 0.5437 0.0686 0.1981

VSFA
PLCC 0.5138 0.6113 0.5138 0.4545
SROCC 0.5279 0.5435 0.3703 0.4086

CNN-TLVQM
PLCC 0.4618 0.5157 0.4695 0.2515
SROCC 0.4310 0.4893 0.4144 0.2969

RAPIQUE
PLCC 0.4745 0.6022 0.4765 0.2952
SROCC 0.4977 0.5274 0.4452 0.3457

VIDEVAL
PLCC 0.5103 0.5769 0.4561 0.3169
SROCC 0.5010 0.5429 0.4384 0.3816

VINIA
PLCC 0.5903 0.6496 0.6413 0.5019
SROCC 0.5880 0.5985 0.6181 0.4668

video contents in MIND-VQ and other databases. Although

the features are designed or extracted for general VQA, the

trained SVR parameters are fit for MIND-VQ, not for general

VQA.

For learning-based algorithm VSFA which designed for

general VQA, some night-time-related features are learned

in the training on MIND-VQ. However, the learned features

are relatively random, and may not be the useful features for

general VQA. While tested on the other datasets, the algorithm

cannot show excellent robustness due to the incompatibility of

the random features.

Although there are differences between MIND-VQ and

other video datasets, the proposed VINIA is able to learn

visibility-aware features related to general VQA based on the

training of night-time videos in MIND-VQ. These features

may not be so important for general VQA, but with sufficient

learning, they can provide some reference for general VQA.

Therefore, the generalization ability of the proposed VINIA

can be better than that of other methods.

TABLE XII
AVERAGE COMPUTATION TIME (SECONDS) OF DIFFERENT METHODS

Method
Computation Time (Sec)
CPU mode GPU mode

NIQE (1 fr/sec) 9.607 -
BRISQUE (1 fr/sec) 4.342 -
GM-LOG (1 fr/sec) 4.563 -
VIIDEO 676.960 -
VBLIINDS 2565.103 -
TLVQM 282.099 -
CNN-TLVQM 194.280 175.505
RAPIQUE 31.567 -
VIDEVAL 497.4233 -
VSFA 750.067 32.247
VINIA 783.881 35.061

TABLE XIII
PARAMETERS AND FLOPS OF THE DEEP MODELS

Method Parameters (M) FLOPs (G)
VSFA 26.10 3.71
VINIA 26.45 4.62

H. Complexity Analysis

The efficiency of a video quality model is of vital im-

portance in practical deployments. The experiments were

performed in MATLAB R2021b and Python 3.7.11 on a Desk-

top with Intel Core i7-8700K CPU@3.7GHz, 11G NVIDIA

2080Ti GPU and 32G RAM. The default settings of the

original codes are used without any modification. We repeat

the tests ten times and the average computation time (seconds)

for each method is shown in Table XII. The proposed VINIA

method achieves a reasonable computation time. It is worth

mentioning that our method can be accelerated to 20x faster

by simply switching the CPU mode to the GPU mode. We

also compare the parameters and FLOPs of VSFA with VINIA

in Table XIII. The results show that, the well-designed spatial

visibility modules MVC and MHG) and the temporal visibility

module are effective and relatively lightweight.

VII. CONCLUSION

We have contributed towards subjective and objective night-

time video quality assessment. A first and largest of its kind

database, namely mobile in-capture night-time database for

video quality (MIND-VQ) is constructed, containing 1181

night-time videos captured by 21 mobile devices. Subjective

experiments are conducted, and over 130,000 subjective scores
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are collected, including video quality scores and video at-

tribute scores. Subjective study results reveal that night-time

video quality is highly determined by low-level visibility-

aware characteristics. Based on the analyses of our subjective

study, we propose a Visibility-based Night-time Video Quality

Assessment Network, namely VINIA. We develop a spatial

visibility-aware network to extract the spatial features, and fed

the features into the subsequent modules to predict the overall

video quality with the guidance of visual temporal visibility.

We conduct extensive experiments on MIND-VQ with state-

of-the-art VQA models. Experimental results demonstrate our

proposed VQA model, VINIA outperforms the existing NR-

VQA/IQA methods.
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