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Abstract
In this work the Monte Carlo method, introduced recently by the authors for orders of
differentiation between zero and one, is further extended to differentiation of orders
higher than one. Two approaches have been developed on this way. The first approach
is based on interpreting the coefficients of the Grünwald–Letnikov fractional differ-
ences as so called signed probabilities, which in the case of orders higher than one
can be negative or positive. We demonstrate how this situation can be processed and
used for computations. The second approach uses the Monte Carlo method for orders
between zero andone and the semi-groupproperty of fractional-order differences.Both
methods have been implemented in MATLAB and illustrated by several examples of
fractional-order differentiation of several functions that typically appear in applica-
tions. Computational results of both methods were in mutual agreement and conform
with the exact fractional-order derivatives of the functions used in the examples.
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1 Introduction

This paper is a continuation of our paper [8], where the Monte Carlo method for
fractional differentiation was introduced and used for the approximation and evalu-
ation of the Grünwald–Letnikov fractional derivative of order 0 < α < 1. The goal
of the present work is the extension of the Monte Carlo method for fractional-order
differentiation to higher orders.

Let us recall that the Grünwald–Letnikov fractional derivative is a non-local oper-
ator on L1(R) defined as [10]

Dα f (t) = lim
h→0

Aα
h f (t), α > 0, h > 0, (1.1)

where

Aα
h f (t) = 1

hα

∞∑

k=0

wk f (t − kh), (1.2)

wk = γ (α, k) = (−1)k
Γ (α + 1)

k! Γ (α − k + 1)
. (1.3)

For f (t) = 0 for t < 0, the fractional-order difference (1.2) can be used
for numerical evaluation of the Grünwald–Letnikov fractional order derivative, the
Riemann–Liouville fractional derivative, and the Caputo fractional derivative when it
is equivalent to the Riemann–Liouville one, [10].

2 A bit of history: signed probabilities and fractions of a coin

Since for the coefficients wk = γ (α, k), k = 1, 2, . . ., we have [8, 9],

∞∑

k=1

(−γ (α, k)) = 1, (2.1)

we can look at the coefficientswk as probabilities. However, not always all coefficients
wk = γ (α, k) are positive, and in such situations we can consider them as signed
probabilities, that can be positive or negative, while preserving the property (2.1).

The notion of negative probability goes back to 1932 to Wigner’s remark [16] that
some considered expressions

“…cannot be really interpreted as the simultaneous probability for coordinates
and momenta, as is clear from the fact, that it may take negative values. But of
course this must not hinder the use of it in calculations as an auxiliary function
which obeys many relations we would expect from such a probability.”

In 1942, Dirac [4] who used negative energy and negative probabilities in quantum
mechanics, emphasized that negative energy states occur with negative probability
and positive energy states occur with positive probability and that it is possible to
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develop a theory would allow its application “to a hypothetical world in which the
initial probability of certain states is negative, but transition probabilities calculated
for this hypothetical world are found to be always positive”, and concluded that

“Negative energies and probabilities should not be considered as nonsense. They
arewell-defined conceptsmathematically, like a negative sumofmoney, since the
equations which express the important properties of energies and probabilities
can still be used when they are negative. Thus negative energies and probabilities
should be considered simply as things which do not appear in experimental
results.”

It appears that Dirac’s paper directly motivated Bartlett in 1945 to introduce signed
probabilities [1], and one of the important consequences of allowing negative proba-
bilities was that

“…a negative probability implies automatically a complementary probability
greater than unity…”

This ideawas also elaborated by Feynman [6] in 1987. Similarly to Bartlett, hemen-
tioned that using negative probabilities leads to simultaneously allowing probabilities
greater than one, but “probability greater than unity presents no problem different from
that of negative probabilities”, because those are used in intermediate calculations and
the final result is always expressed in positive numbers between 0 and 1.

This development of the idea of allowing probabilities to be negative and positive
naturally leads to the algebraic theory of probability, see [14]. As quoted above, neg-
ative probabilities can be used in the intermediate computations, while the final result
must be physical (which means – positive, measurable).

This is similar to using, say, negative resistors or capacitors in electrical circuits:
there are no passive elements having negative resistance, but it is possible to create cir-
cuits exhibiting negative resistances, negative capacitances, and negative inductances.
This was pointed out by Bode in his classical book [2,Chapter IX]. Such circuits are
called negative-impedance converters ([5, 12]) and are based on using operational
amplifiers. For example, the negative resistance of −10 kΩ means that if such an
element is connected in series with a classical 20 kΩ resistor, then the resistance of
the resulting connection is 10 kΩ .

A beautiful example of the interpretation of negative probabilities was developed
by Székely [15], who introduced half-coins as random variables that take the values n
with signed probabilities – positive for odd values of n and negative for even values.
A fair coin is a random variable X that take the values 0 and 1 with probability 1/2. Its
probability generating function is E zX = (1+ z)/2. The addition of independent ran-
dom variables corresponds to multiplication of their probability generating functions.
Therefore, the probability generating function of the sum of two fair coins is equal
to ((1 + z)/2)2, and it is natural to define a half-coin via its probability generating
function

(
1 + z

2

)μ

=
∞∑

n=0

pnz
n, μ = 1

2
,
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where forμ = 1/2 the coefficients pn = (1/2
n

)
have alternating signs.When “flipping”

two half-coins, the sum of the outcomes is 0 or 1 with probability 0.5, like in the case
of flipping a normal coin.

Taking μ = 1/3 yields third-coins and “flipping” three of them makes a normal
coin; μ = 1/4 defines a quarter-coin, etc. Non-integer values of μ produce μ-coins,
and to get a normal coin it is necessary to “flip” 1/μ of suchμ-coins, which depending
on μ can be a finite or even infinite number of such “fractions of coins”.

Extending the Monte Carlo method introduced in our paper [8] for the case of 0 <

α < 1 to orders higher than one leads to working with signed probability distributions,
because in such case the coefficients wk = γ (α, k) in the fractional-order difference
(1.2) have different signs, and some of them have values outside of the interval (0, 1),
as mentioned by Bartlett and Feynman, while still satisfying the property (2.1).

3 Monte Carlo fractional differentiation using signed probabilities

Since we deal with signed probabilities, it is necessary to follow the ideas of Dirac,
Bartlett, and Feynman, which means that for using the Monte Carlo method we have
to transform the signed probabilities to the positive probabilities. As a result, the
expression used for Monte Carlo simulations will consist of two parts – one of them
might contains terms with different signs and is independent of the random variables
used in the Monte Carlo draws (trials), and the other contains the terms of the same
(positive) sign and is dependent of those random variables. Below we first illustrate
this for the cases 1 < α < 2 and 2 < α < 3, and then present a framework for the
general case.

3.1 The case of order 1 < ˛ < 2

When 1 < α < 2, we have w1 = γ (α, 1) = −α < 0, and wk > 0 for k = 2, 3, . . .
Let Y ∈ {1, 2, . . .} be a discrete random variable such that

P(Y = 1) = p1 = p1(α) = 2 − α ∈ (0, 1)

P(Y = k) = pk = pk(α) = wk = (−1)k
Γ (α + 1)

k! Γ (α − k + 1)
, k = 2, 3, . . . (3.1)

and

∞∑

k=1

pk = 1,

since

∞∑

k=0

wk = 0 = 1 − α +
∞∑

k=2

wk,
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or

−1 = −α +
∞∑

k=2

wk,

1 = 2 − α +
∞∑

k=2

wk .

Note that EY < ∞, but Var Y = ∞.
We have the following:

∞∑

k=0

wk f (t − kh) = f (t) +
∞∑

k=1

wk f (t − kh)

= f (t) − α f (t − h) +
∞∑

k=2

wk f (t − kh)

= f (t) + (−2 + p1(α)) f (t − h) +
∞∑

k=2

wk f (t − kh)

= f (t) − 2 f (t − h) +
∞∑

k=1

wk f (t − kh)

= f (t) − 2 f (t − h) + E f (t − Yh), (3.2)

if the stochastic process ζh(t) = f (t − Yh) is such that for a fixed f , t , and h
E f (t − Yh) < ∞, where the random variable Y is defined by (3.1).

Let Y1, Y2, …, Yn , …be independent copies of the random variable Y , then by the
strong law of large numbers

1

N

N∑

n=1

f (t − Ynh) → E f (t − Y h), N → ∞

with probability one for any fixed t and h, and hence, as N → ∞,

Aα
N ,h = 1

hα

[
f (t) − 2 f (t − h) + 1

N

N∑

n=1

f (t − Ynh)
]

(3.3)

with probability one converges to Aα
h f (t), α ∈ (1, 2), defined by (1.2).

Moreover, if for fixed t and h

Var f (t − Yh) < ∞,

then by the central limit theorem and Slutsky lemma, as N → ∞, we have

Bα
N = [

Aα
N ,h f (t) − Aα

h f (t)
]
/
√

vN →D N (0, 1),
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where →D denotes convergence in distributions and N (0, 1) is the standard normal
law, and vN is a sample variance of randomvariables f (t−Ynh)h−α , n = 1, 2, . . . , N .
This allows us to build asymptotic confidence intervals (see details in [8]).

The above results can be used as the basis of theMonte Carlo method for numerical
approximation and evaluation of the Grünwald–Letnikov fractional derivatives.

Indeed, we can replace the sample Y1, Y2, …, YN by its Monte Carlo simulations.
For the simulation of the random variable Y with the distribution (3.1), we

define

Fj =
j∑

i=1

pi ,

where pi = pi (α) are defined in (3.1).
Then

0 = F0 < F1 < . . . < Fj ≤ . . . , with pi = Fi − Fi−1.

If U is a random variable uniformly distributed on [0, 1], then

P(Fj−1 < U < Fj ) = p j ,

and to generate Y ∈ 1, 2, . . . we set Y = k if Fk−1 ≤ U < Fk .

3.2 The case of order 2 < ˛ < 3

When 2 < α < 3, we have

w1 = −α < 0; w2 = α(α − 1)

2
> 0;

w3 = −α(α − 1)(α − 2)

6
< 0;

wk < 0 for k = 3, 4, . . .

Using the binomial series

(1 − z)α =
∞∑

k=0

wk z
k, |z| ≤ 1,

we easily obtain

−1 = −α + α(α − 1)

2
+

∞∑

k=3

wk,
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and denoting

q1 = α; q2 = −α(α − 1)

2
; qk = −wk, k ≥ 3,

we have

1 = q1 + q2 +
∞∑

k=3

qk,

and

q1 + q2 = α − α(α − 1)

2
= 3

2
α − α2

2
∈ (0, 1) for α ∈ (2, 3).

Thus, putting p2 = q1 + q2 and pk = qk = −wk for k ≥ 3,

∞∑

k=2

pk = 1,

where 0 < pk < 1 for k = 2, 3, . . .
Now, introducing the discrete random variable

Y ∈ {2, 3, . . . , n, . . . }

such that

P (Y = k) = pk, k = 2, 3, . . . ,

we have the following:

∞∑

k=0

wk f (t − kh) = f (t) − α f (t − h) + α(α − 1)

2
f (t − 2h) +

∞∑

k=3

wk f (t − kh)

= f (t) − p1 f (t − h) + p2 f (t − 2h) −
∞∑

k=3

pk f (t − kh)

= f (t) − α [ f (t − h) − f (t − 2h)] − (p1 − p2) f (t − 2h)

−
∞∑

k=3

pk f (t − kh)

= f (t) − α [ f (t − h) − f (t − 2h)] −
∞∑

k=2

pk f (t − kh)

= f (t) − α [ f (t − h) − f (t − 2h)] − E f (t − Yh). (3.4)
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Let Y1, Y2, …, Yn , …be independent copies of the random variable Y , then for for
fixed t and h such that

E f (t − Yh) < ∞ (3.5)

and by the strong law of large numbers we obtain

1

N

N∑

n=1

f (t − Ynh) −→ E f (t − Yh)

with probability one as N → ∞.
Thus under assumption (3.5) we have the following convergence with probability

one:

AN ,α
h f (t) = 1

hα
( f (t) − α f (t − h) + α f (t − 2h))

− 1

N

N∑

n=1

f (t − Ynh) −→ Aα
h f (t), N → ∞,

and this can be used for evaluation of the Grünwlad–Letnikov fractional derivative by
the Monte Carlo method.

The simulation of Y1, Y2, …, Yn , …is similar to the previous cases of α ∈ (0, 1)
and α ∈ (1, 2), with the only difference that

Fj =
j∑

i=2

pi , pi = Fi − Fi−1,

and if Fk−1 < U < Fk , then Y = k + 1 (k = 1, 2, …), where U is a random variable
uniformly distributed on [0, 1].

3.3 The general case for any˛ > 0

It turns out that the methodology presented above for α ∈ (1, 2) and α ∈ (2, 3) can be
extended to the case of arbitrary α > 0 in terms of generalized (signed) probabilities.

Let us consider a generalized random variable Ȳ ∈ 1, 2, . . . such that

∞∑

k=1

qk = 1, qk ∈ R,

where we interpret qk as generalized probability P̄(Ȳ = k), which are allowed to be
negative, but for which there exists an integer r ≥ 1 such that

123



Monte Carlo method for fractional-order...

q1 + q2 ∈ (0, 1),

q3 + q4 ∈ (0, 1),

. . . . . .

q2r−1 + q2r ∈ (0, 1)

q2r+1 ∈ (0, 1), q2r+2 ∈ (0, 1), . . .

Then we can write the following formal identity for the Borel function g(k), k =
1, 2, . . .:

∞∑

k=1

g(k)qk = q1(g(1) − g(2)) + g(2)(q1 + q2)

+ q3(g(3) − g(4)) + g(4)(q3 + q4)

+ . . . + q2 j−1(g(2 j − 1) − g(2 j)) + g(2 j)(q2 j−1 + q2 j )

+ . . . + q2r−1(g(2r − 1) − g(2r)) + g(2r)(q2r−1 + q2r )

+ g(2r + 1)q2r+1 + g(2r + 2)q2r+2 + . . . ,

which can be finally written as

∞∑

k=1

g(k)qk =
r∑

j=1

q2 j−1(g(2 j − 1) − g(2 j)) (3.6)

+
r∑

j=1

g(2 j)(q2 j−1 + q2 j ) (3.7)

+
∞∑

j=1

g(2r + j)q2r+ j . (3.8)

Thus, denoting

π j+1 = q2 j−1 + q2 j , j = 1, 2, . . . , r ,

πr+1 = qr+ j , j = r + 1, r + 2, . . . ,

we define the generalized expectation

Ē g(Ȳ )
def=

∞∑

k=1

g(k)q(k) (3.9)

=
r∑

j=1

q2 j−1(g(2 j − 1) − g(2 j)) (3.10)
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+
r∑

j=1

g(2 j)π j+1 +
∞∑

j=r+1

g(r + j)πr j (3.11)

=
r∑

j=1

q2 j−1(g(2 j − 1) − g(2 j)) + E ḡ(Y ), (3.12)

where the ordinary discrete random variable Y is defined as

Y ∈ {2, 4, . . . , 2r , 2r + 1, 2r + 2, . . .},
P(Y = k) = πk, k ∈ K̄ = {2r + 1, 2r + 2, . . .},

and ḡ(k), k ∈ K̄ , be the above function.
If Y1, Y2, …, Yn , …are independent copies of the discrete random variable Y such

that E ḡ(Y ) < ∞, then by the strong law of large numbers

1

N

N∑

n=1

ḡ(Yn) −→ E ḡ(Y ), N → ∞

with probability one, and hence for the generalized random variable Ȳ with probability
one

r∑

j=1

q2 j−1(g(2 j − 1) − g(2 j)) + 1

N

N∑

n=1

ḡ(Yn) −→ Ē g(Ȳ ), N → ∞,

where Ē g(Ȳ ) is defined by (3.12).
The subsection 3.2 serves as an easy example of the presented general case, where

for α ∈ (2, 3) we can take r = 1, K = {1, 2, . . . , n, . . .} and K̄ = {2, 3, . . . , n, . . .}.
The generalized (signed) probabilities in this case are

P(Ȳ = 1) = q1 = α > 0,

P(Ȳ = 2) = q2 = −α(α − 1)

2
< 0,

but π2 = q1 + q2 ∈ (0, 1), as well as for the rest q j = −w j ∈ (0, 1), j = 3, 4, . . .,
and g(k) = f (t − kh), k = 0, 1, 2, . . ., for a given f and fixed r and h.

4 Monte Carlo method for fractional differentiation using
the semi-group property of fractional differences

Another approach can be based on using the semigroup property [3, 7] of the fractional-
order finite difference operator defined in (1.2). In fact, in this way we can simply
follow our paper [8], where the function f (t) should be replaced by an integer-order
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fractional difference. Using the semi-group property of fractional-order differences,
we can write

Aα
h = Aα−n

h An
h, n < α < n + 1,

where

An
h f (t) = 1

hn

n∑

j=0

(−1) j
(
n

j

)
f (t − jh),

(
n

j

)
= n!

j ! (n − j)! .

Hence [8],

Aα
h f (t) = 1

hα−n

∞∑

k=0

γ (α − n, k)An
h f (t − kh)

= 1

hα−n

⎛

⎝ 1

hn

n∑

j=0

(−1) j
(
n

j

)
f (t − jh)

− 1

hn

∞∑

k=1

bk(α − n)

n∑

j=0

(−1) j
(
n

j

)
f (t − (k + j)h)

⎞

⎠ , (4.1)

where if α̃ = α − n ∈ (0, 1), then

bk(α̃) = bk(α − n) = −γ (α̃, k)

= (−1)k+1 Γ (α̃ + 1)

k! Γ (α̃ − k + 1)
> 0, k = 1, 2, . . . , (4.2)

and

∞∑

k=1

bk = 1.

Let Z ∈ {1, 2, . . .} be a discrete random variable with

P(Z = k) = bk(α̃), k = 1, 2, . . . (4.3)

Then from (4.1) we have

Aα
h f (t) = 1

hα−n

⎛

⎝ 1

hn

n∑

j=0

(−1) j
(
n

j

)
f (t − jh)

− 1

hn
E

n∑

j=0

(−1) j
(
n

j

)
f (t − (Z + j)h)

⎞

⎠ . (4.4)
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If Z1, Z2, …, Zm , …are independent copies of the random variable Z , then, as
N → ∞, by the strong law of large numbers

1

N

N∑

m=1

1

hn

n∑

j=0

(−1) j
(
n

j

)
f (t − (Zm + j)h)

−→ E
1

hn

n∑

j=0

(−1) j
(
n

j

)
f (t − (Z + j)h)

with probability one for α ∈ (n, n + 1), assuming that the last expectation exists, and
hence with probability one as N → ∞ we have convergence to Aα

h f (t) defined by
(1.2):

Aα
N ,h f (t) = 1

hα−n

⎛

⎝ 1

hn

n∑

j=0

(−1) j
(
n

j

)
f (t − jh)

− 1

N

N∑

m=1

1

hn

n∑

j=0

(−1) j
(
n

j

)
f (t − (Zm + j)h)

⎞

⎠

−→ Aα
h f (t).

Moreover, if for fixed f , t , and h the following inequality holds

Var

⎡

⎣h−n
n∑

j=0

(−1) j
(
n

j

)
f (t − (Z + j)h)

⎤

⎦ < ∞,

then by the central limit theorem and Slutsky lemma, as N → ∞, we have

Bα
N = [

Aα
N ,h f (t) − Aα

h f (t)
]
/
√

vN →D N (0, 1),

where →D denotes convergence in distributions and N (0, 1) is the standard normal
law, and vN is a sample variance of random variables

1

hα

n∑

j=0

(−1) j
(
n

j

)
f (t − (Zm + j)h), m = 1, 2, . . . , N .

This allows us to build asymptotic confidence intervals (see details in [8]).
The above results can be used as the basis of the Monte Carlo method for numer-

ical approximation and evaluation of the Grünwald–Letnikov fractional derivatives.
Indeed, we can replace the sample Z1, Z2, …, ZN by its Monte Carlo simulations.
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For the simulation of the random variable Z with the distribution (4.3), we define

Fj =
j∑

i=1

bi ,

where bi = pi (α) are defined in (4.2).
Then

0 = F0 < F1 < . . . < Fj < . . . , with bi = Fi − Fi−1.

If U is a random variable uniformly distributed on [0, 1], then

P(Fj−1 < U < Fj ) = b j ,

and to generate Z ∈ 1, 2, . . ., we set Z = k if Fk−1 ≤ U < Fk .

5 Examples

Both proposed methods have been implemented in MATLAB [13]. This allows their
mutual comparison, as well as useful visualizations and numerical experiments with
the functions that are frequently used in the applications of the fractional calculus and
fractional-order differential equations. The Mittag-Leffler function [10]

Eα,β(z) =
∞∑

n=0

zn

Γ (αn + β)
, z ∈ C, α, β > 0,

that appears in some of the provided examples, is computed using [11]. In all examples
the considered interval is sufficiently large, namely t ∈ [0, 10].

The exact fractional derivatives are plotted using solid lines, the results of the
proposed Monte Carlo method are shown by bold points, the results of K individual
trials (draws) are shown by vertically oriented small points (in all examples, K = 200),
and the confidence intervals are shown by short horizontal lines above and below the
bold points.

Example 1. The power function

y(t) = tν, Dα y(t) = Γ (ν + 1)

Γ (ν + 1 − α)
tν−α, t > 0, α > 0.

The particular case of ν = 0 is the Heaviside unit-step function, and its derivatives
of orders α = 1.7 and α = 2.6 are shown in Fig. 1.

The derivatives of the power function for ν = 1.3 and orders α = 1.7 and α = 2.6
are shown in Fig. 2.
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Fig. 1 Derivative of orders α = 1.7 (left) and α = 2.6 (right) of the Heaviside function

Fig. 2 Derivative of orders α = 1.7 (left) and α = 2.6 (right) of the power function y(t) = t1.3

Example 2. The exponential function

Since the difference of the exponential function and the first terms of its power series
can be expressed in terms of the Mittag-Leffler function, we can easily obtain the
explicit expression for the corresponding fractional derivative [10]:

y(t) = eλt − 1 − λt = λ2t2E1,3(λt),

Dα y(t) = λ2t2−αE1,3−α(λt), t > 0, α ∈ (0, 3).

The derivative of order α = 1.7 of the function y(t) = eλt − 1 − λt for λ = −1.4
and λ = −0.4 are shown in Fig. 3.

Example 3. The sine function

Similarly to the previous example, the fractional-order derivatives of the sine function
can be obtained using its representation in terms of the Mittag-Leffler function:
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Fig. 3 Derivative of order α = 1.7 of the function y(t) = eλt − 1 − λt for λ = −1.4 (left) and λ = −0.4
(right)

Fig. 4 Derivative of order α = 1.7 of sin(t) using method P (left) and method S (right)

y(t) = sin(t) = t E2,2(−t2),

Dα y(t) = t1−αE2,2−α(−t2), t > 0, α ∈ (0, 2).

The results of evaluationof the derivatives of order 1.7 of the sine functionusingboth
methods are shown in Fig. 4 (method P is based on the signed probabilities approach,
method S is based on using the semi-group property of fractional differences). The
computed values of the fractional-order derivative are in mutual agreement and con-
form with the exact fractional-order derivatives. The confidence intervals are also of
similar size, while the variance is much smaller in the case of the method based on the
semi-group property of fractional-order differences; however, the computational cost
is much higher. This observation holds for all other examples.

Example 4. The Mittag-Leffler function

Theproduct of the power function and theMittag-Leffler function appears frequently in
solutions of fractional differential equationswith Riemann-Liouville fractional deriva-
tives, so it is also a suitable example:
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Fig. 5 Derivative of order α = 1.7 of the Mittag-Leffler function t2.5E1.5,3.5(λt
1.5) for λ = −1 (left) and

λ = −0.4 (right)

y(t) = tβ−1Eμ,β(λtμ),

Dα y(t) = tβ−α−1Eμ,β−α(λtμ), t > 0, μ > 0, α ∈ (0, β).

The results of computations for such function are shown in Fig. 5 for α = 1.7,
μ = 1.5, β = 3.5, and λ = −1.4, resp. λ = −0.4.

6 Conclusions

Our extensionof theMonteCarlo approach to fractional differentiation of orders higher
than one led to working with signed probabilities that are not necessarily positive. We
have demonstrated how this can be processed and used for computations using the
Monte Carlo method.

The results of computations by the method based on signed probabilities are com-
pared with the results obtained by the method that uses the semi-group property of
fractional-order differences. Both methods produce practically the same values of
fractional derivatives, which are in agreement with the values computed using the
explicit formulas. The method based on the semi-group property is, by its construc-
tion, significantly less efficient as it requires more computations; at the same time it is
characterized by smaller variance of the outputs of trials at the points of evaluations.
The method based on signed probabilities is, on the contrary, faster and is character-
ized by larger values of variance of the trials at the points of evaluations. In both cases
the confidence intervals are sufficiently small for practical purposes. The presented
method can be further enhanced using standard approaches for improving the classical
Monte Carlo method, such as reduction of variance, importance sampling, stratified
sampling, control variates or antithetic sampling.
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