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ABSTRACT

Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Under-
standing how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will
require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge
are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observa-
tions Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fun-
damental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources.
Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how
they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of bio-
diversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composi-
tion EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together
numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity
monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technolog-
ical advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv)
Effective Population Size (Ne). We rankGenetic EBVs according to their relevance, sensitivity to change, generalizability,
scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic
EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic
EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs
beyond current observations using various modeling approaches. Our review then explores challenges of aggregation,
standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to max-
imize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made
major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale
genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also chal-
lenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances,
genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the
foundation of all biodiversity and species’ long-term persistence in the face of environmental change. We conclude with
a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The
technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should antici-
pate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.
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I INTRODUCTION

Governments, business, and society increasingly recognize
that biodiversity contributes to ecosystem resilience and func-
tion, sustainable economies, and human well-being. Changes
in biodiversity impact ecosystem services, often in ways that
are hard to predict. To address this problem, government,
non-government, and research organizations aim to quantify
biodiversity trends, assess drivers of biodiversity change,
measure responses of biological systems to interventions,
and define policy options for preserving and restoring biodi-
versity. These activities require observational data collected
across space and time on all levels of biological organization
(genes, species and ecosystems). The Group on Earth Obser-
vations Biodiversity Observation Network (GEO BON) is
tackling this challenge with the Essential Biodiversity Vari-
able (EBV) concept, to help aggregate, harmonize, summa-
rize, and interpret complex biodiversity observation data,
especially from diverse data sources (Pereira et al., 2013;
Brummitt et al., 2017; Navarro et al., 2017; Schmeller
et al., 2017).

EBVs are a set of fundamental metrics that describe
genetic, species, population, and ecosystem diversity,
building on and harmonizing direct observations
(e.g. species occurrences) to serve as a basis for indicators
or inputs for modeling and forecasting the status and
trends of biodiversity. EBVs track core components of bio-
diversity change, using highly standardized and scalable
biodiversity observations. The concept of Genetic Compo-
sition EBVs goes beyond traditional methods and statistics
and their practical use in biodiversity monitoring
(Schwartz, Luikart & Waples, 2007; Mimura et al., 2017;
Leroy et al., 2018); EBVs should provide the most essential
information across space, time, and species. According to
Pereira et al. (2013), a short list of EBVs that are standard-
ized, recognized, and responsive to natural and anthropo-
genic drivers will allow for uptake of high-quality,
comparable and scalable biodiversity data by an array of

endpoint users. Similar to Essential Climate Variables
(ECVs; Bojinski et al., 2014), EBVs should be relevant, sen-
sitive to change, generalizable, scalable, feasible, and have
substantial accessible databases available (Schmeller
et al., 2018). EBVs must consider the fundamental charac-
teristics of biological systems, and methods for collecting
and analyzing observation data. EBVs should be applica-
ble to all life forms, at multiple scales, and in all ecosys-
tems. The implementation of EBVs allows for data to be
synthesized into products such as indicators (e.g. the Spe-
cies Habitat Index, https://geobon.org/ebvs/indicators/
) for measuring progress on policy commitments, such as
the Convention on Biological Diversity (CBD), Sustain-
able Development Goals, Global Strategy for Plant Con-
servation, and Intergovernmental Panel on Biodiversity
and Ecosystem Services (IPBES; Schmeller et al., 2015;
Brummitt et al., 2017; Navarro et al., 2017).

Pereira et al. (2013) proposed six EBV ‘classes’ correspond-
ing to ways that biodiversity can be categorized, observed,
and managed: Genetic Composition, Species Populations,
Species Traits, Community Composition, Ecosystem Struc-
ture, and Ecosystem Function. Each EBV class may comprise
multiple EBVs that quantify different key attributes of that
level of biodiversity; they should be complementary and com-
prehensive. For example, two EBVs are proposed in the Spe-
cies Populations class (species distribution and species
abundance; Jetz et al., 2019), while five EBVs are proposed
in the Species Traits class (phenology, morphology, repro-
duction, physiology, and movement; Kissling et al., 2018).
The EBV concept was also used for invasive species
(Latombe et al., 2017), and an ocean observation framework
(Marine BON; Muller-Karger et al., 2018). Schmeller
et al. (2018) proposed six criteria for evaluating the suitability
of potential EBVs. Progress is ongoing to achieve consensus
on suitable EBVs for each class and to define workflows con-
necting data to EBVs – work that must be accomplished
before EBVs can be used operationally (Schmeller
et al., 2017).
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Genetic composition (within-species genetic variation) is
a foundational component of biodiversity. It contributes to
function and structure in all ecosystems and to resilience
and/or productivity in agriculture, aquaculture and for-
estry systems (see Section I.3). Genetic composition can
respond to environmental change rapidly and without
changes in species abundance (Balkenhol et al., 2016), and
in some cases genetic data are cheaper and easier to gather
than other methods of biodiversity monitoring (see Carroll
et al., 2018; Ferreira et al., 2018; Parsons et al., 2018; Wheat
et al., 2016). Nonetheless, observations of genetic composi-
tion have not been sufficiently mobilized for, nor integrated
into, large-scale biodiversity conservation policy, sustain-
able development, and decision-making on resource man-
agement to date (Laikre et al., 2010; Pierson et al., 2016;
Bruford et al., 2017; Thomson et al., 2021), even though it
ultimately determines the capacity of populations to adapt
to environmental changes and therefore underpins their
long-term persistence (Reed & Frankham, 2003; see
Section I.3). Although many countries have monitoring
programs for species and ecosystem variables, few systemat-
ically monitor genetic variation; a recent report found that
the status and trends of genetic diversity are rarely included
in National Reports to the CBD (Hoban et al., 2021). How-
ever, Scotland has committed to regular reporting on
genetic diversity, with the first assessment published in
2020 (Hollingsworth et al., 2020), while Sweden has com-
mitted to large-scale monitoring of genetic diversity (Posle-
dovich, Ekblom & Laikre, 2021).

(1) Genetic data and infrastructure are ready
for EBVs

While there are many reviews of genetic tools and statistics,
and their practical use in biodiversity monitoring (Schwartz
et al., 2007; Mimura et al., 2017; Leroy et al., 2018), there
has not yet been an effort to define clearly Genetic Composi-
tion EBVs (hereafter Genetic EBVs), summarize the practi-
cal framework for collecting and analyzing genetic
observations via standardized procedures, and examine the
challenges and opportunities that will ensure their usefulness
for biodiversity monitoring. It is now timely to do so. Over
the last 50 years, genetic data production and methods have
advanced rapidly. Genetic data were first collected in the
form of isozymes and allozymes from the 1970s to early
1990s, followed by DNA sequences, microsatellites and
other technologies from the late 1980s to the present
day, and large-scale next generation sequencing assessing
genome-wide variation starting in the 2000s and increasing
in use to the present. Detailed overviews of the temporal
trends, applications and integration of the various types of
molecular markers can be found in Schlötterer (2004),
Ouborg et al. (2010), Putman & Carbone (2014), Garner
et al. (2016), Garrido-Cardenas, Mesa-Valle & Manzano-
Agugliaro (2018), and Leigh et al. (2021).

Genetic composition has been assessed for thousands
of species globally with increasingly high-resolution

population-level genetic data sets available at decreasing
costs (Vranckx et al., 2012; Romiguier et al., 2014; Lawrence
et al., 2019). Although the changing technology and limited
number of systematic monitoring programs does pose prob-
lems for spatiotemporal comparisons (see Sections III.1 on
obtaining genetic data and V.2 on scale and standardization),
recent studies are identifying gaps in genetic marker data
availability (Miraldo et al., 2016) and are jointly analyzing
genetic summaries obtained across different species, studies
and markers using standardization and normalization proce-
dures [e.g. De Kort et al. (2021) for amplified fragment length
polymorphism (AFLP)/microsatellites]. Further, hundreds of
species now have had their genomes sequenced and assem-
bled, which makes developing genetic markers and interpret-
ing genetic data more efficient in these and related species
(e.g. within the same genus). We acknowledge that, at pre-
sent, genetic data cover only a tiny fraction of all species on
Earth and that it will take substantial time and effort to fill
the spatiotemporal and taxonomic gaps. However, these gaps
and biases are true for other biodiversity data [e.g. detailed
data for species’ population sizes and trends is limited to
few species (Boakes et al., 2010; Fithian et al., 2015; Hortal
et al., 2015; Meyer et al., 2016; Jetz et al., 2019)] and the rapid
advances in genetic data accessibility mean that these gaps
are swiftly being filled (e.g. the growth in the availability of
whole-genome sequences illustrated in fig. 2 in Leigh
et al., 2021).
Numerous agencies routinely assess the genetic compo-

sition of high-priority species, including via genome
sequencing. Advances in sequencing technology, data
storage and analysis are opening new frontiers including
DNA sequencing ‘in the field’ (Pomerantz et al., 2018;
Ovaskainen et al., 2020; see Section V), as well as analyzing
DNA from biological collections or paleospecimens to
establish pre-human-impact baselines (Bi et al., 2019).
Non-invasive (e.g. hair and scat) and environmental
(e.g. soil, water) sampling is also increasingly standardized,
making genetic data more widely available. There are
well-developed, standard data-storage formats and analy-
sis software (often open source, such as R – see Molecular

Ecology Resources, Volume 17, Issue 1: Population Geno-
mics with R, and online Supporting Information Fig. S1
and Table S1). Methods for modeling genetic composition
and extrapolation in space and time are also well advanced
(see Section IV.2).
Alongside data production, advances are occurring in data

stewardship. Owing to the research community’s adherence
to the 2011 Joint Data Archiving Policy, standardized data
formats, and the existence of numerous large-scale data
archives (Section III), genetic data are among the most acces-
sible of all biodiversity data, although challenges remain,
e.g. missing metadata, incomplete data files, and biases
(Toczydlowski et al., 2021). The ability to collate and aggre-
gate genetic data sets and calculate genetic summary statistics
for potential Genetic EBVs has been demonstrated
(Section IV). Furthermore, consensus and uptake of meta-
data standards for biological collections are aligning genetic
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data sets with the FAIR principles [Findable, Accessible,
Interoperable, and Reproducible (https://www.go-fair.org/
fair-principles/; Wilkinson et al., 2016)], applying data
schemes like the Minimum Information about any
(x) Sequence (MIxS, https://gensc.org/mixs/) devised by
the Genomics Standards Consortium, and establishing
highly searchable metadatabases (Sections III and IV).
Accessible and affordable genomic-level data, and digitiza-
tion and curation of older genetic data (Sections IV and V),
provide a pathway towards operational Genetic EBVs. In
parallel, all the aforementioned advances have recently
favored the emergence of a new field named ‘macroge-
netics’, which aims at understanding patterns and drivers of
genetic variation across large spatial, temporal, and/or taxo-
nomic scales [hundreds to thousands of species (Blanchet,
Prunier & De Kort, 2017; Leigh et al., 2021)]. The fast-
growing field of macrogenetics is paving the way for Genetic
EBV deployment (see Section IV.1 for details).

(2) What is genetic composition and why is it
important for biodiversity policy, conservation,
and society?

We define the Genetic EBV class to encompass inherited
components, such as variations in DNA sequence or epige-
netic modifications (Rey et al., 2020), that determine form
and function and vary among individuals or populations of
a species. This EBV class has relevance to global policy tar-
gets including CBD Aichi Target 13, ‘minimize genetic ero-
sion’ and ‘safeguard genetic diversity’; Sustainable
Development Goal (SDG) 2.5, ‘maintain genetic diversity’,
SDG 14 on marine resources and SDG 15, on ecosystems
and biodiversity; and to Global Strategy for Plant Conserva-
tion Target 5, ‘effective management [for] conserving
genetic diversity’ and Target 9, ‘70 per cent of genetic diver-
sity… conserved’. Genetic diversity is mentioned in these policy
mechanisms, and its multiple dimensions must be under-
stood, monitored, and managed to achieve sustainable devel-
opment, benefits, and conservation goals. Genetic EBVs
recently have been linked with conservation decision-making
in the publication ‘Effective Biodiversity Indicators’ by the
UK Government (Henly & Wentworth, 2021) and the Food
and Agriculture Organization (FAO) has incorporated the
effective population size (Ne) as an indicator for forest genetic
monitoring (Graudal et al., 2020).

Genetic composition is a measure of within-species diver-
sity, which helps species adapt, maintain fitness, avoid
inbreeding depression, and underlies the breadth of species’
niches and the diversity of biotic and abiotic interactions.
Genetic diversity is the foundation of the three levels of bio-
diversity, supporting and complementing species and ecosys-
tems diversity. Genetic diversity provides resilience against
abrupt changes and allows species and ecosystems to adapt
to changing environments, climates, and other challenges
(including diseases). Ultimately, genetic variation allows
species to develop into distinct and new lineages. Genetic
diversity within and across populations supports

ecosystem functions and contributes vital resources to society
(e.g. seagrass and mangroves that serve both to protect
coastal habitats and as nurseries for fish), and services such
as carbon capture (Kettenring et al., 2014; Hollingsworth
et al., 2020). Genetic diversity has also been used for millennia
to provide thousands of domesticated or harvested species
with new adaptations to climate, disease, soil types, food
sources, altitude, etc., and to improve sustainability and
reduce industrial inputs (e.g. natural defenses against pests).
In short, genetic diversity underlies processes upon which
all other biodiversity depends.

Genetic diversity data can be observed directly through
the analysis of genetic markers (e.g. DNA sequences, micro-
satellite fragment data, single nucleotide polymorphisms
(SNPs), methylation patterns, etc.) in individuals sampled
through geographic space and time. Genetic observations
are often summarized as allele frequencies at the population
level (analogous to species abundances in an ecosystem; Hu,
He & Hubbell, 2006), or through summary statistics mea-
sured at various hierarchies (individual, population/metapo-
pulation, lineage, or species level; Fig. 1). Such hierarchies
can be characterized as alpha diversity (population-level
measures at one location), beta diversity (differentiation
between locations in space or time), and gamma diversity
(across the system of populations).

Note that molecular genetic tools such as DNA sequences
are also used to gather observations for taxonomic diversity
at and above the species level (e.g. phylogenetics and system-
atics). While genetic data within a species are applied to the
Genetic EBV class, data above the species level are appropri-
ate for the Species or Community EBV classes. Molecular
genetic data may also be collected for genetic forensics and
environmental DNA (eDNA) assessments. Targeted (e.g.
species-specific) and metabarcoding eDNA tools can infer
species presence using eDNA detected in water, soil, and
air samples (Goodwin et al., 2019; Bal�azs et al., 2020) and
are well suited to provide data for the Species Population
EBV classes; but note, only within-species data are relevant
for the Genetic EBV class.

(3) Aims and structure of this review

In this review we elucidate the major stages and gaps on the
route towards enabling large-scale standardized observations
of genetic variants. Section II defines Genetic EBVs, explains
their calculation and meaning, and assesses how each
Genetic EBV meets the criteria of Schmeller et al. (2018): rel-
evance, sensitivity to change, generalizability, scalability, fea-
sibility, and available data. Section III explains the workflow
for transforming, aggregating, harmonizing and archiving
genetic data underlying Genetic EBVs, including publishing
data and metadata standards in interoperable formats for
integration with large data sets. In Section IV, we discuss
methods and models for interpolation and extrapolation,
translating genetic data or proxies for genetic data into pat-
terns of change across space and time, and looking towards
EBV development for global application. In Section V, we
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discuss opportunities and challenges, and assimilation of
Genetic EBVs into regional and global policy instruments.
We conclude that the technical and analytical foundation
of Genetic EBVs is extremely well developed, but additional
steps are needed to scale Genetic EBVs for monitoring pro-
grams globally, establish best practices for informatics and
modeling, and reconcile data sets with different resolutions.

II GENETIC EBVs

(1) Four proposed Genetic EBVs

Genetic EBVs have been proposed previously but were not
thoroughly defined or examined in detail (Pereira et al., 2013;
Turak et al., 2017;Kissling et al., 2018). The four previously pro-
posed EBVs were: allelic diversity, population genetic differen-
tiation, co-ancestry, and breed/varietal diversity. Here we
refine, revise and clarify these EBVs (Table 1). The first three
are proposed to be renamed as: (i) Genetic Diversity, (ii) Genetic
Differentiation, and (iii) Inbreeding. The first three EBVs reflect
Wright’s F-statistics (Wright, 1969, 1978) measuring the genetic
variation among populations, within populations and within
individuals, respectively. A new EBV, (iv) Effective Population
Size (Ne), also developed by Wright, is added to measure the
rate of change (particularly loss) of genetic diversity due to drift
in the next generations (Luikart et al., 2010; Tallmon

et al., 2010). As opposed to the current state of genetic diversity,
Ne informs inferences on future genetic diversity changes and is
highly suited for monitoring of conservation management
actions. The previous EBV of breed/varietal diversity was inte-
grated into the more comprehensive Genetic
Differentiation EBV.
We examine how each EBV reflects the essential charac-

teristics of genetic composition, genetic health, and genetic
viability of populations and species. We explain the biologi-
cal features that each represents, discuss how to interpret
change, and review assumptions and cautions. The proposed
list should be applicable for wild, semi-wild or managed, and
domesticated species, and covers the forces that underpin
genetic variation (Section II.1a). A key point is that although
each EBV summarizes a different aspect of genetic composi-
tion, all Genetic EBVs can typically be calculated from a single data set

originating from DNA samples collected from individuals in a target pop-

ulation. The EBVs we propose can be calculated using differ-
ent genetic markers (e.g. whole-genome sequencing data,
SNPs, DNA sequences, microsatellites).

(a) What drives change in genetic composition?

The field of population genetics has a well-established mathe-
matical framework and predictive theory for how processes
interact to shape genetic composition, which can enable a high
degree of forecasting accuracy. The genetic variation of

Fig. 1. The four Genetic Essential Biodiversity Variables (EBVs; bullet points) are indicated below each level of biological
organization (Species, Populations, Individuals) for which they can be calculated. The species level corresponds to the combined
genetic diversity for the species. The population level pie charts reflect the relative population sizes and the proportion of
genotypes in each population (i.e. population genetic structure resulting from gene flow and migration). The smallest circles
represent unique individuals with the colors depicting their genotypes.
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species and their populations is entirely shaped by four pro-
cesses: (i) Mutation is the random creation of new genetic vari-
ants, increasing genetic diversity. (ii) Genetic drift is the
fluctuation in a population’s allele frequencies due to the ran-
dom sampling of alleles from generation to generation (e.g. not
due to selection). In small populations, these chance statistical
effects can lead to rapid change and typically decrease genetic
diversity (e.g. ‘genetic erosion’) and increase among-
population genetic differentiation over time (although note
that genetic drift can reduce the efficacy of stabilizing selection,
which might increase diversity). (iii) Gene flow is the exchange of
genetic variation among populations via gametes (e.g. pollen,
sperm) or whole organisms that mate and produce offspring,
and can drive changes in local levels (including local increases)
of genetic variation. (iv) Selection is a process influencing the dif-
ferential survival and reproduction of genetic variants across
space and time, and can influence the genetic variation within
populations and the differentiation between them, depending
on the type of selection. Selection is related to specific genomic
sites (the genes influencing certain phenotypes, and linked
regions), while drift, mutation, and migration can affect diver-
sity at sites across the genome. The influence of these four pro-
cesses is mediated by Ne, which is roughly related to the
number of breeding adults in a genetically ideal population.
High Ne results in more effective selection, more mutations,
and lower genetic drift (Charlesworth, 2009). Decades of
genetic measurements of these four processes have identified
and quantified major detrimental anthropogenic drivers
(e.g. harvesting, selective breeding, habitat change, pollution,
reduced population size, isolation, and habitat fragmentation),
as well as beneficial anthropogenic drivers such as genetic res-
cue and migration corridors (Pacioni, Wayne & Page, 2019;
Almeida-Rocha et al., 2020). Genetic composition is also influ-
enced by life history traits that render some species more sensi-
tive to genetic erosion, or less able to respond to environmental
changes through genetic adaptations (e.g. long generation
time, small population sizes, inbreeding, self or clonally propa-
gating, restricted dispersal ability) (Romiguier et al., 2014;
Schmeller et al., 2018).

While, the genetic EBVs are not presented in order of
importance, we begin with Genetic Diversity within a popu-
lation because this is the unit where natural selection takes
place. Nonetheless we emphasize that defining populations
(e.g. assessing genetic differentiation or population structure)
is usually the first step in evaluating Genetic EBVs. Genetic
and other data (environmental, geographic location) can be
used to help define populations, a topic covered extensively
in the literature (Fenderson, Kovach & Llamas, 2020). Once
independent population units are defined, the other EBVs
are calculated within each unit. EBVs would typically be cal-
culated on genome-wide or neutral-marker data sets,
although see the following discussion on adaptive diversity.

(b) A note on adaptive diversity

Genetic loci are often categorized as adaptive (e.g. ‘non-neu-
tral’), or ‘neutral’. Adaptive genetic differentiation, the

outcome of natural selection, may confer fitness advantages
under local conditions. Genetic composition will differ when
measured using adaptive compared to neutral genetic
markers (Ralls et al., 2018), which can impact recommended
management actions (e.g. Van Oppen et al., 2017). When
possible, adaptive loci should be identified and analyzed sep-
arately, as comparing population genetic structure assessed
using neutral and adaptive markers can provide alternative
conservation options (Waples & Lindley, 2018). Identifying
adaptive loci under selection is challenging (Hoban
et al., 2016), but methods are advancing to account better
for loci under selection (Hohenlohe, Funk & Rajora, 2021).
Various correlation methods can be used to identify putative
adaptive loci, often through interactions with simple environ-
mental data (Rellstab et al., 2015; Ahrens et al., 2018). Alter-
natively, loci with a particular, known function (identified
with a reference genome and/or field and laboratory exper-
iments) can be analyzed, although such data are available for
fewer species. Nonetheless, these loci (assuming sufficiently
large SNP datasets, good ecological knowledge and a
sequenced, annotated genome) are useful to map local adap-
tations, model adaptive responses, and determine the num-
ber and degree of differentiation among ‘population units’
– the required first step for evaluating Genetic EBVs.

(2) Genetic diversity EBVs: richness and evenness

‘Genetic diversity’ describes the level of genetic variability
within a population that enables species to adapt and persist.
Previously, Pereira et al. (2013) referred only to allelic rich-
ness, but genetic diversity has two key components: richness
and evenness; both should be recorded to capture genetic
diversity fully. Both are easy metrics to assess and explain to
practitioners (Fig. 2). Richness refers to the count of genetic
variants in a population, corrected for sample size (e.g. an
expectation for a given sample size). Several statistics fall
under this category including number of haplotypes (usually
for organelle DNA), number of distinct genetic sequences
observed in a sample, and allelic richness [for microsatellites
and SNPs, the mean number of genetic variants (alleles) per
defined genomic position (locus)]. The number and differ-
ence among genetic states are the units that ultimately deter-
mine form and function and are the units on which natural
selection can act. Genetic richness can only be increased via

mutations (or, locally, by gene flow).
Evenness of genetic diversity is often represented by

expected heterozygosity (He). It is probably the most widely
reported statistic in genetic studies, irrespective of the marker
type. It expresses the probability that two randomly drawn
alleles from a sample are different (it is identical to the
Gini–Simpson diversity index from ecological literature).
Similar to richness, evenness will help a population respond
rapidly to environmental change through adaptation. Both
richness and evenness have been recorded in thousands of
genetic studies (see Section IV).
Richness and evenness are correlated in populations at

mutation-drift equilibrium (Nei, Maruyama & Chakraborty,
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1975; Fischer et al., 2017), but these metrics respond differently
to perturbations. Allelic richness measures respond faster to
decreases in population size (similar to loss of rare species)
while genetic evenness (heterozygosity) may respond faster to
population mixing. Such different responses can be used to
make inferences on past demography (population expansions
or bottlenecks; Nei et al., 1975). For both measures, a decrease
is generally interpreted as a loss of evolutionary potential – the
ability of a population or species to adapt to rapid environ-
mental changes such as climate change. Importantly, genetic
measures of richness and evenness are not directly comparable
when calculated using different genetic markers (although
standardization procedures can make them comparable; see
De Kort et al., 2021), so interpretation should be directed by
the type and number of genetic markers and the number of
populations/individuals analyzed (see Section V.2 on data
set parameter selection). Alternatively, an integrated frame-
work for measuring diversity, such as Hill numbers, could be
explored for unifying different measures of Genetic EBVs,
and to investigate variation at different EBV classes across
multiple scales (Sherwin et al., 2017; Gaggiotti et al., 2018).

(3) Genetic differentiation EBVs: number of units
and their connectivity

Genetic differentiation is defined as a divergence in genetic
composition (specifically the frequencies of alleles) between
multiple populations of the same species, caused by

natural selection, genetic drift, and restricted gene flow
(Section II.1a). This is a measure of beta diversity. The
Genetic Differentiation EBV includes both the number of
distinct populations (or evolutionary lineages) and the levels
of differentiation between them; both are needed to capture
and interpret ‘differentiation’ fully. Genetic differentiation is
sometimes also referred to as population structure, and can
be organized hierarchically (populations, regions, manage-
ment units, genetic clusters, etc.). The previously proposed
EBV of cultivated ‘varietal or breed diversity’ in reference
to domesticated species could fall under the term ‘genetic
differentiation’, which can apply to all species. The term
‘genetic connectivity’ typically connotes gene flow (see
Section II.1a), which usually reduces genetic differentiation.

Genetic differentiation can be assessed via clustering
methods [e.g. STRUCTURE (Pritchard, Stephens &
Donnelly, 2000); discriminant analysis of principal compo-
nents (DAPC) (Jombart, Devillard & Balloux, 2010); see
Table S1] that identify the number and genetic composition
of groups, or methods which compute summary statistics of
the degree of differentiation among a priori defined groups,
usually on a scale of 0 to 1 (see Table 1). It is important to
note that measures of genetic differentiation are usually
based on a priori, or at times a posteriori, stratification of sam-
ples representing prospective units. As such, these units can
only represent hypotheses of genetic structuring, which may
not correspond to all underlying patterns of differentiation.
Thus, this EBV is measured under the assumption that

Fig. 2. A sample of four diploid individuals from a population, with various representations of genetic composition data structures.
The workflow process includes genetic sequencing, aligning the sequences from each individual, and polymorphic loci identification.
The data from the polymorphic sites (single nucleotide polymorphisms; SNPs) in the sequence can be summarized as a matrix of
genotypes for each locus (L1–L4). When these loci are bi-allelic SNPs, the data can be summarized as the Minor Allele Count –
the number of occurrences of the least frequent allele at that locus, a convenient summary format for certain statistics and models.
A Genetic Diversity EBV for evenness, such as observed heterozygosity (Ho), can also be summarized for each individual (rows), or
by locus (columns), as illustrated for the SNP matrix. Note that some measures of diversity include invariant sites which are
calculated from sequence alignments, not a matrix of SNP genotypes.
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population units have been appropriately delineated and
provides an essential context within which the other three
Genetic EBVs are assessed.

Loss of population units is clearly detrimental from a con-
servation perspective. An increase in differentiation is also
typically detrimental from a manager’s perspective, as it is
caused by a decrease in population size and/or a decrease
in connectivity (e.g. habitat fragmentation or isolation).
However, a decrease in differentiation may sometimes be
detrimental, for example when isolated populations adapted
to contrasting environments are homogenized, or when a
managed species hybridizes with wild populations. In other
cases, a decrease in differentiation may be the beneficial out-
come of targeted genetic rescue (Whiteley et al., 2015),
whereby isolated populations are connected through corri-
dors or translocations. Genetic differentiation is relatively
easy to calculate, visualize and explain to conservation man-
agers and policy makers. Unfortunately, many measures of
genetic differentiation show slow responses to perturbation
in some situations (tens of generations; e.g. Landguth
et al., 2010), have undesirable statistical properties (Jost
et al., 2018), and are difficult to apply in species with contin-
uous distributions or asymmetric gene flow. Alternative
individual-based measures can be used as proxies for gene
flow (Shirk, Landguth & Cushman, 2017). Moreover, cur-
rent differentiation levels may already be a result of habitat
fragmentation or other human influences.

Highly genetically differentiated populations, or groups of
populations, such as adaptively or morphologically distinct
varieties or sets of populations, are often called Evolution-
arily Significant Units (ESUs). These have been segregated
for hundreds of generations and are usually defined by a set
of genetically based traits or adaptations (Funk et al., 2012).
Such independent genetic units may comprise a breed or cul-
tivar in domesticated species, or an ecotype, subspecies, vari-
ety, or stock in non-domesticated species. The number of
such units is essential, as loss of ESUs equates to loss of a dis-
tinct product of evolutionary history such as unique traits and
co-adapted sets of traits. In practice, the units are delineated
by significant divergence at multiple loci indicative of inde-
pendent evolutionary trajectories plus some ecological or
trait differences (Fraser & Bernatchez, 2001; de
Queiroz, 2007). There is increasing effort to identify and
conserve ESUs at national and international scales, promot-
ing evolutionary processes (e.g. Gene Conservation Units in
European forestry; Koskela et al., 2013).

(4) Inbreeding EBV

Measurements of inbreeding can be used to determine the
level of diversity within individuals. Mating between related
individuals constitutes inbreeding. Highly inbred individuals
often have lower fitness (termed ‘inbreeding depression’),
which can compromise population growth and persistence
by reducing demographic rates (e.g. decreased fecundity).
Inbreeding metrics indicate near-term risks, and can signal
that management action, such as translocating individuals,

is urgently needed. When populations are large and/or there
is sufficient gene flow within and between populations,
inbreeding rates tend to be reduced. This EBV was previ-
ously called ‘co-ancestry’ (Pereira et al., 2013) but ‘inbreed-
ing’ is more reflective of the process and is an accessible
concept for practitioners. Inbreeding is often a consequence
of small population size, increasing rapidly when Ne is less
than approximately 50 and in fragmented populations where
gene flow dynamics are impacted (e.g. plant pollination;
Breed et al., 2015). However, some species can have naturally
high inbreeding levels due to their mating system without any
apparent fitness loss and some benefit (e.g. reproductive
assurance in plants; Winn et al., 2011).
Inbreeding can be estimated using various methods

depending on the timescales and type of data available: path
analysis on a pedigree; the degree of homozygosity using
whole-genome data (e.g. runs of homozygosity); direct obser-
vations of inbreeding via the genotyping of progeny arrays; or
the inbreeding coefficient, FIS, which provides evidence of
non-random mating according to Hardy–Weinberg equilib-
rium expectations [i.e. excess in observed homozygous geno-
types (Kardos, Luikart & Allendorf, 2015; Kardos
et al., 2018)]. In addition to these measures of contemporary
inbreeding, one can measure risks of inbreeding. Related-
ness, kinship and co-ancestry metrics can identify related
individuals in a population and quantify the likelihood of
inbreeding before it occurs. Estimates of inbreeding have
one major advantage over diversity and differentiation: esti-
mates made with a given method are easy to compare across
studies, as they should not be dependent on the type of DNA
markers used, as long as the data set has sufficient statistical
power.

(5) Contemporary effective population size EBV

Effective population size (Ne) is an established fundamental
parameter for genetic biodiversity monitoring. In a popula-
tion, Ne quantifies the amount of genetic change that is
occurring and will occur in the future as a result of genetic
drift. Ne determines the equilibrium level of genetic diversity
that a population can maintain and thus the long-term genetic
diversity in a population (Leffler et al., 2012; Ellegren &
Galtier, 2016). Ne is the most important parameter for asses-
sing the ability of populations to adapt to rapid environmental
change and the likelihood of inbreeding depression and other
reactions to perturbations (Hoban, 2014; Tenesa et al., 2007).
For example, depending on the scenario, other less-sensitive or
well-suited metrics, such as He, may have minimal decline
between sampling timepoints, while Ne may decline more
rapidly and indicate that rapid loss in genetic variation is
predicted in the near future.
Ne is defined as the number of individuals in a theoretically

ideal population (e.g. most adults randomly mate and con-
tribute a Poisson-distributed number of offspring every gen-
eration) that will experience the same magnitude of genetic
diversity loss (due to random genetic drift) as the real popula-
tion. Ne determines the influence of genetic drift based on the
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amount of genetic diversity – when Ne is small, genetic
diversity is lost from a population faster over time and the
random fluctuations in allele frequency caused by genetic
drift can overrule the effect of natural selection
(Charlesworth, 2009). Ne is widely adopted in practical man-
agement due to its relationship to both short-term inbreeding
and long-term evolutionary potential (Jamieson &
Allendorf, 2012).

Ne can be estimated across different spatial and temporal
scales (Ryman, Laikre & Hössjer, 2019). Historical Ne is
calculated in terms of coalescence, which translates to an
average allelic sampling variance across generations due
to past genetic drift (and/or sampling variance) (Sjödin
et al., 2005). This provides a retrospective view of Ne equally
across the entire genealogy, and limits the suitability of his-
toric Ne for the assessment of change as an EBV. Historic
Ne could be used to compare the average Ne for a genealogy
across different populations or to characterize the diversity
across multiple species in a region; however, these are less
informative for monitoring diversity, especially as related to
change influenced by environmental drivers (Nadachowska-
Brzyska, Konczal & Babik, 2022).

Alternatively, in natural resource management situations,
the more commonly applied Ne, and the primary focus of
our EBV, is the contemporary Ne (Nadachowska-Brzyska
et al., 2022). In conservation situations, where recent demo-
graphic changes are the rule rather than the exception, an
EBV addressing contemporary Ne can inform inferences on
future genetic diversity changes. Using contemporary Ne, a
prospective view of a population’s genetic diversity in
n generations is provided.

Two categories exist for contemporary Ne (hereafter Ne)
estimators using genetic data – those requiring a single-
time-point data set [e.g. linkage disequilibrium (LD),
kinship-based methods], and those requiring two time
points to be sampled, defined as temporal Ne estimates
(Do et al., 2014). The two categories can give concordant esti-
mates, and both are influenced by marker and sample sizes
(Ackerman et al., 2017; Hoban et al., 2020; Luikart
et al., 2021; Waples, 2021). Temporal methods progressively
have been replaced by single-time-point methods since the
late 2000s (Waples, 2021). In particular, linkage
disequilibrium-based Ne estimates can be generated from a
single time point and are more robust to violations in model
assumptions and more easily comparable across studies
(Waples & England, 2011), but are sensitive to population
structure (Neel et al., 2013). The different contemporary
Ne estimations are complementary to one another and
the use of several estimators can help to reduce uncertainty.
There are also multiple kinds of Ne that quantify other
parameters and apply to different timescales (e.g. inbreeding,
variance, etc.). See Waples (2016) and Ryman et al. (2019)
for in-depth reviews of the definitions and interpretation
of each measure of Ne. When populations are stable and
at mutation–drift equilibrium, the historical Ne is the
same as the contemporary Ne and the latter reflects the allelic
sampling variance of the previous generation(s). In all cases,

Ne should be estimated within demographic units (metapo-
pulations or populations).

Effective population size is clearly linked to the census popu-
lation size (Nc) and the variance in reproductive success among
individuals: the larger this variance, the smaller resultant Ne for
a givenNc (Kimura &Crow, 1963). The effective sizeNe is often
between 1/2 and 1/10 of the Nc, but in some cases it is much
smaller. By applying the average ratio for vertebrates of approx-
imately Ne/Nc = 0.1, Nc can be inferred from genetically
informed effective population size (see Hoban et al., 2020).

Ne estimation is sensitive to sample size variance and
mixed-age populations and requires careful application and
interpretation. However, Ne is one of the best-studied and
easily explained metrics for applying biodiversity loss thresh-
olds: Ne below approximately 50 will lead to rapid increases
in inbreeding, loss of fitness, and genetic composition change;
while Ne below approximately 500 will result in loss of ability
to adapt via natural selection (Frankham, 2005; Jamieson &
Allendorf, 2012; but see also Frankham, Bradshaw &
Brook, 2014 for arguments for doubling these thresholds to
100 and 1000, respectively).Ne is useful to assess conservation
management needs and to monitor success of recovery pro-
grammes, including through indicator metrics and forecast-
ing (Hoban et al., 2020). From an applied perspective, Ne is
a measure of population size, which in many cases is easier
(and more cost effective) to determine using genetic tools
than through traditional survey efforts.

(6) Why four Genetic EBVs?

The four proposed Genetic EBVs cover the components of
Wright’s genetic variation (Fig. 3; Jost, 2006; Daly, Baetens &
De Baets, 2018) and together provide a comprehensive
description of the impacts of environmental change on
genetic composition. As with other classes of EBVs, various
Genetic EBVs will sometimes all be affected similarly by a
driver (environmental or human factors), while other drivers
will lead to idiosyncratic changes. This provides some ability
to distinguish among drivers, and to elucidate the underlying
mechanistic process, by calculating and comparing multiple
EBVs. For example, decreases in census size will likely lead
to increases in inbreeding (and genetic drift), as well as asso-
ciated loss in allelic richness and genetic evenness (heterozy-
gosity). Changes in gene flow will lead to changes in genetic
differentiation, average relatedness, allelic richness, and het-
erozygosity, but each on different timescales (Landguth
et al., 2010). Inbreeding and allelic richness typically change
relatively quickly after the onset of disturbances, compared
to genetic evenness (heterozygosity) and differentiation,
which respond more slowly (Keyghobadi et al., 2005; Lowe
et al., 2005). Note that interpretation of Ne and genetic differ-
entiation can be sensitive to genetic data set sizes and also to
levels of breeding between close relatives (i.e. biparental
inbreeding) or selfing (primarily in plants). Note also that
hybridization rate was considered as a potential EBV but
was determined not to fit our criteria (see Appendix S2).
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(7) Important notes on Genetic EBVs as biodiversity
metrics

Here we highlight several relevant characteristics of Genetic
EBVs. Due to the continuously inherited nature of DNA,
Genetic EBVs are useful for assessing populations today
and also their history at timescales from recent generations
to millions of years ago. Geneticists can use DNA from con-
temporary samples to infer past changes in migration rates
or the rate of change in Ne through models (see Section IV.2).
For example, analysis of DNA in the rarest bat in the UK,
Plecotus austriacus, showed a recent 30-fold decline in Ne at a
median of 200 years ago, corresponding to changes in farm-
ing practices and disappearance of unimproved grasslands
(Razgour et al., 2013). Also, because DNA can be obtained
from preserved remains up to tens of thousands of years
old, the past state of genetic composition can be directly
assessed. For example, the genome sequence of a single
member of the Wrangel Island population of wooly mam-
moth (Mammuthus primigenius), the last remaining population
before the species went extinct, showed 20% less heterozy-
gosity and 28 times more runs of homozygosity (a metric of
inbreeding) than a more ancient, healthy population
(Palkopoulou et al., 2015). This is not a unique characteristic
of genetic composition data, as data for other EBV classes
can be obtained from past relics (e.g. population sizes from
fossil abundance, community composition from pollen in
sediment). However, the amount of information in genetic
data from even one individual can provide high-resolution,

reliable inferences on past states and changes that are proba-
bly unmatched by other historical evidence.
Another unique aspect of genetic data is that a single

genetic or genomic data set can be used for calculating many
(or all) Genetic EBVs (assuming sufficient sampling of indi-
viduals). This is similar to Species EBVs in which individual
observations underlie abundance and extent, but dissimilar
to Trait EBVs which require distinct observations using var-
ious instruments to cover a range of EBVs. For example,
Henry et al. (2009) collected DNA from scat of the Amur tiger
(Panthera tigris altaica) population and genotyped 95 individuals
at 12 microsatellite markers. This data set revealed strong
genetic differentiation between two isolated regions, and very
low allelic richness, heterozygosity (evenness) and Ne relative
to other tiger populations [see Silva et al. (2020) for a plant
example using SNPs]. Small sampling efforts, such as geno-
mic sequences from fewer than 10 individuals, can assess
the present state of EBVs and their change over time (Díez-
del-Molino et al., 2018).
Lastly, most Genetic EBVs are interpreted in a context of

change. As with other EBV classes, they typically require
samples across multiple points in space and/or time (with
representative sampling and comparable data, e.g. similar
sampling and analyses). However, some Genetic EBVs also
have relevance based on their ‘state value’ in addition to

‘change’. Ne and inbreeding can be calculated from single-
time-point samples and have thresholds in their state value
that signal vulnerability (Section II.5). For other EBVs, the

Fig. 3. The four Genetic Composition Essential Biodiversity Variables (EBVs). Green background shading indicates the preferred
genetic state (high or low levels) in many conservation/management situations. The preferred state for genetic differentiation is
context dependent, represented by a lighter shade of green (see text). Distance of genetic units illustrates high genetic distance
(black versus white), and low genetic distance (dark gray versus light gray). The contemporary effective population size (Ne) is
represented with black (breeding) and gray (non-breeding) individuals and the graphs denote projections after the present time (p)
of the future losses of genetic diversity.
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state value has meaning if comparing species with similar life
histories but different exposure to drivers such as harvest (see
discussion of third category in Section IV.1). Thus, to some
extent, Genetic EBVs can be used when only single time points
are available, although temporal monitoring is needed to
determine the rate of change and degree of change from
baselines.

III OBTAINING AND ARCHIVING GENETIC
COMPOSITION DATA AND METADATA

(1) Obtaining genetic data

The steps in generating Genetic EBVs include collection of
biological samples, laboratory work, computational proces-
sing of raw genetic data, analysis/calculation, publishing,
archiving, modeling and/or synthesis (Fig. 4). Collecting
genetic data begins with a biological sample – some remnant
of a living or preserved individual, including ‘invasive’ sam-
pling (direct handling of the organism to obtain a sample)

or ‘non-invasive’ sampling (from hair, faeces, shed skin,
etc.) (Fig. 5). Samples may be obtained from extant popula-
tions, biological collections, or sub-fossils (ancient DNA).
Molecular biology techniques are used to analyze DNA
sequences extracted from the sample. These data can be pre-
sented as sequences of DNA nucleotides, the allele ‘states’ at
a locus for each individual, and/or as allele frequencies in
populations, from which genetic statistics are derived
(Fig. 2). DNA storage, extraction, sequencing and quality
control are discussed briefly in Appendix S3. Data sets are
often considered ‘genetic’ (tens of genetic markers, usually
without a reference genome – as for most legacy data sets)
or ‘genomic’ (thousands to millions of markers, often with a
reference genome – as for many current data sets). Resolu-
tion and precision of EBV values are higher for the latter.
Genetic composition can be reliably described for both data
types, although reliable estimates of relatedness and inbreed-
ing are best measured using genomic data sets. The growing
size and complexity of genomic data sets creates the need for
a corresponding growth in computer storage and power
(i.e. supercomputers) and statistical programs to allow for

Fig. 4. Steps in generating Genetic Composition Essential Biodiversity Variables (EBVs) include field (or archive) collection of DNA,
laboratory work, computational processing of raw data, analysis/calculation, publishing, archiving, modeling and/or synthesis and
communication to inform management decisions. GEOME, Genomic Observatories MetaDatabase; Pop, population; QA/QC,
quality assurance/quality control.
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comprehensive analyses. Advancing the necessary support-
ing components, such as computing infrastructure and bioin-
formatics, will facilitate data accessibility and application.

As for many biodiversity observations, genetic composi-
tion data can be obtained from different types of scientific
studies (e.g. assessing the conservation status of important
species; testing ecological hypotheses; stock assessments in
forestry or fisheries; taxonomy; forensic investigations). The
spatial extent of studies is highly variable; sampling often
focuses on a specific region but sometimes includes a species’
entire range. It is critical that samples are collected in an
observational design that considers the expected data prod-
uct, such as prediction of possible future change under differ-
ent scenarios; nonetheless numerous studies use
opportunistic and biased sampling. If the goal is to assess tem-
poral trends, sampling effort should be comparable between
time points. Most studies are from a single time point, but
some are longitudinal. For example, many national agencies

and research institutions sample fish stocks, large mammals
(e.g. lynx, wolves, bears), and forest trees regularly to monitor
genetic richness, genetic differentiation, and Ne. One exam-
ple is the Columbia River Basin in the USA where state, fed-
eral, tribal, and non-profit organizations have genetically
monitored multiple salmonid species and populations over
several decades with yearly funding of hundreds of millions
of USD (Hand et al., 2018). This system is one of the most
heavily monitored in the world because of socioeconomic
and cultural factors coupled with the critical ecological
importance of the basin.
Where the study intent is to calculate Genetic EBVs, ide-

ally each step in the data workflow should be guided by
standard operating procedures (SOPs) that are feasible,
cost-effective and publicly available to produce an ‘EBV-
ready data set’ (Kissling et al., 2018) from which indicators
can be derived. SOPs will ensure that EBVs are measured
in consistent ways, increase data set interoperability and re-

Fig. 5. Sources of DNA for genetic analyses. Genetic material may be obtained directly from tissue samples from extant populations
(biopsy or non-invasive), biological collections (e.g. museums), or sub-fossils (sometimes called ancient DNA) or from the environment
(i.e. environmental DNA, eDNA). Older samples may have low-quality and low-quantity DNA, restricting the use of certain Genetic
Essential Biodiversity Variables (EBVs); eDNA is challenging to use for Genetic EBVs since the DNA is typically of lower quality and
quantity. These examples indicate information typically assessed with these types of data, and do not represent all possibilities.
Ne, effective population size.
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use, and expand the uptake of Genetic EBVs for diverse
users. Examples of SOPs are: site choice and sampling meth-
odology (i.e. choice of individuals, relevant spatial scales and
temporal frequency), environmental and biological observa-
tions to collect, methods of tissue preservation, data quality
control, software/ analysis pipelines, and data archiving
and metadata storage to ensure alignment with FAIR princi-
ples (Findable, Accessible, Interoperable, and Reproducible).
Several communities have developed genetic SOPs. One of
the best known is the International Whaling Commission’s
assessment of stock structure which, in cooperation with
associated scientists, has developed best practices for sam-
pling genetic data, data analysis, reporting genetic variation
measures including Ne over time, defining population units,
and assessing genetic data quality (IWC, 2018; Waples
et al., 2018). Other research initiatives have established field,
laboratory, sequencing and analysis SOPs appropriate for
their taxonomic group, and/or genetic methodology [e.g. Oz
Mammals Genomic Initiative (Eldridge et al., 2020); IraMoana
Project (Liggins, Noble & the Ira Moana Network, 2021b)].
The Marine Biodiversity Observation Network (MBON) is
working to develop best practices for ‘omics’ information
(Goodwin et al., 2019), including the Global Omics Observa-
tory Network (GLOMICON – https://sites.google.com/
view/glomicon/home).

(2) Genetic data archiving practices

It is becoming standard practice to deposit genetic data into
searchable and open access repositories – this is mandatory
in several leading journals (Joint Data Archiving Policy
(https://datadryad.org/docs/JointDataArchivingPolicy.
pdf). Successful re-use and integration of these data sets, such
as to calculate Genetic EBVs, depends on the archive, its
interoperability, and the metadata requirements
(Section III.3). The International Nucleotide Sequence Data-
base Collaboration repositories [INSDC; Cochrane
et al., 2016; primarily a consortium of US, European and
Japanese national databases, including the National Center
for Biotechnology Information (NCBI)] are the largest publicly
available nucleotide databases. These databases host rawDNA
sequence data in standard, interoperable formats and they can
be queried and programmatically accessed (e.g. ‘rentrez’ R
package, ‘geomedb’ R package). While standardized and eas-
ily accessible, the genetic data deposited into INSDC does
not always include the minimum information required to re-
create data sets appropriate for the calculation of Genetic
EBVs. Archiving practices may also be inconsistent – the
deposited DNA sequences are typically only the new, unique
sequences derived from the study rather than all observed
sequences, and do not provide frequency information that is
needed to calculate EBVs reliably [see Section IV (Pope
et al., 2015a; Paz-Vinas et al., 2021)]. For processed genetic
data, such as microsatellite and SNP data sets, numerous other
open access archives are used, including Dryad, FigShare, and
GitHub. Taxonomic and region-specific archives also exist
(e.g. CartograTree, DIPNet, see Sections III.3 and IV.1),

although it is not always easy to find them. Also, these reposito-
ries do not always require standard data file formats or have
minimum metadata requirements and therefore these data
are not easily searched or programmatically accessed.

Most archived genetic data cannot be operationalized yet.
Typically, less than 10% of sequences are georeferenced,
and most cannot be geolocated based on text descriptions
(Gratton et al., 2017; Miraldo et al., 2016; Toczydlowski
et al., 2021). For example, Theodoridis et al. (2020) examined
mammal mitochondrial genetic diversity globally, compris-
ing >150,000 mitochondrial DNA sequences from BOLD
and GenBank. They attempted to assign geographic
coordinates to sequences without precise geolocation data
using GeoNames.org (http://api.geonames.org), but could
do so for just 36% of sequences. In short, even for a
very well-studied group (mammals), a majority of data could
not be used. In addition, most genetic data sets are not
directly linked to non-genetic global biodiversity databases
(e.g. the Global Biodiversity Information Facility, GBIF),
or environmental databases including widely used satellite
and in situ data repositories, although links to these can be
made through sufficient spatial data (Kissling et al., 2018).
In some cases, the exact georeferences of the sampled organ-
ism or population may be purposely withheld, to protect the
study organism (e.g. an endangered species, or highly desir-
able species) or at the request of Indigenous peoples for rea-
sons of cultural sensitivity regarding this information.
Nonetheless, standardized practices of quality control and
assurance when generating data and metadata, and during
data archival, would help to avoid issues with compounding
errors during data aggregation.

(3) Metadata

Metadata associated with archived samples, DNA, sequences,
or other genetic data are essential for enabling re-use of these
resources for calculating and interpreting EBVs. Ideally, geno-
mic records should contain environmental information or a
link to an environmental database with high-quality informa-
tion about local conditions of the sampled organism. At the
specimen level, metadata may include collection date, taxo-
nomic designation, morphological measurements, latitude/
longitude, age, condition/health, spatial scale, and reproduc-
tive status. At the site or population level (by convention
termed ‘occurrence’ or ‘event’ level) these may include
habitat description or ecoregion classification, co-occurring
species, samplingmethodology,measured environmental vari-
ables (light, soil moisture, etc.), and uncertainty in the geoloca-
tion. Metadata regarding the laboratory, sequencing, quality
control, and bioinformatic steps may also be recorded, and
are important for generating comparable genetic data but
are difficult to document and reproduce in a standard way
to derive the genetic data set from the raw data. As with
laboratory protocols, open text fields for detailed description
may be needed.

Despite disparate study objectives, the research commu-
nity has been active in developing standardized metadata
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fields and vocabularies to capture ecological and environ-
mental data for a sample and/or field sampling event, and
laboratory and sequencing methodologies. These metadata
standards are supported by the Biodiversity Information
Standards community [administering the Darwin Core stan-
dard (https://dwc.tdwg.org/; Wieczorek et al., 2012)] and
the Genomics Standards Consortium (https://press3.mcs.
anl.gov/gensc/mixs/; Wooley, Field & Glöckner, 2009; Yil-
maz et al., 2011), and operationalized through the Genomic
Observatories Metadatabase (GEOME; https://geome-db.
org/; Deck et al., 2017, Riginos et al., 2020). If widely
adopted, standard metadata fields alongside deposited
genetic data would ensure that they are uniformly queryable
according to their machine readable metadata (using a web
interface or programmatically using the ‘geomedb’ R pack-
age) and interoperable with other data aggregators
(i.e. INSDC, GBIF).To help coordinate the use of a mini-
mum set of mandatory and/or recommended metadata
fields, GEOME’s infrastructure enables ‘Teams’ and ‘Pro-
jects’ to design their own metadata templates and rules,
based on existing fields and vocabularies (including options
to maintain the privacy of some fields, such as exact georefer-
ences for aforementioned reasons). This platform helps users
coordinate research projects, ensures the interoperability of
data sets, allows discovery of data sets, and will help facilitate
the calculation of Genetic EBVs.

Although well developed, uptake and use of the standard-
ized metadata fields and vocabularies by the research com-
munity will take time as many researchers remain unaware
of suggested metadata fields and large-scale environmental
data sets to link to their genetic data. Nonetheless, with the
support of leading journals (see Sibbett, Rieseberg &
Narum, 2020) and pressure from funding agencies to ensure
data is searchable, open access and interoperable, adherence
to metadata standards and the use of provided infrastructures
will increase, helping ensure these data sets can be used to
calculate Genetic EBVs. GEO BON will continue to work
with the IUCN, the Society for Conservation Biology, and
the EU COST Action G-BiKE to promote broader under-
standing of these practices in the community.

IV OPERATIONALIZING EBVs: FROM SINGLE
STUDIES TO GLOBAL USE

In order to better operationalize EBVs, GEO BON has
adopted the data structure of a multi-dimensional array as
a basic format to represent EBVs (Jetz et al., 2019). Each cell
contains an observation or model-based output with the
dimensions as species–space–time, at a minimum. There is
an expectation that eventually such data structures, termed
‘data cubes’, will have regional to global coverage, across
critical timescales (yearly, decadal, centuries). As for most
biodiversity data, genetic surveys typically sample a limited
range of space and timescales, resulting in sparse and spa-
tially biased data structures. This section covers two vital

steps towards operational EBVs: how large numbers of
genetic data sets can be compiled and analyzed across space
and time, and how modeling efforts are helping to fill in the
sparse genetic data landscape.

(1) Visualizing EBVs in space and time across
species

The well-established population genetic theory describing
intrinsic drivers of genetic composition, the relatively small
number of genetic statistics, and the community commitment
to data archiving have led to numerous compilations of
genetic data sets and summary statistics at large spatio-tem-
poral scales. Collectively, this effort has paved the way for
large-scale studies to describe regional and global patterns
of the four proposed Genetic EBVs and their drivers of
change. These large-scale macrogenetic studies (Blanchet
et al., 2017; Leigh et al., 2021) can be classified into three cat-
egories described below (also see Table 2). Each category
represents a major step towards integrating observations into
an EBV data object and operationalizing EBVs; they also
help develop the knowledge and boundary conditions for
simulation models and forecasting of genetic diversity
(Section IV.2).
The first category of macrogenetic studies involves inte-

grating data sets from multiple species (tens to thousands)
spanning large geographic scales (thousands of square kilo-
metres to global coverage) with extensive environmental
databases to identify spatial trends or patterns in EBVs
(reviewed in Leigh et al., 2021). A study may test for correla-
tions between genetic diversity and macro-ecological corre-
lates such as latitude (Miraldo et al., 2016), assorted
environmental variables (Manel et al., 2020), anthropogenic
impact (Millette et al., 2020; Schmidt et al., 2020), species
diversity (Theodoridis et al., 2020), or life-history traits
(De Kort et al., 2021). Such studies may generate multi-
species genetic data from scratch (e.g. Taberlet et al., 2012)
and/or extract large amounts of data from the literature or
from public repositories like GenBank or BOLD (Leigh et

al., 2021). For example, Manel et al. (2020) repurposed
50,588 mitochondrial DNA barcode sequences [COI (cyto-
chrome c oxidase subunit I) gene] from 5426 fish species to
explore global determinants of freshwater and marine fish
species’ Genetic Diversity EBV (Table 2). The results from
these studies can be effectively mapped in the spatial dimen-
sion of the GEO BON EBV ‘data cube’. However, numer-
ous statistical considerations apply to macrogenetic studies
using data extracted from nucleotide databases, such as
inconsistent data depositing practices (see Section III and
Paz-Vinas et al., 2021). Further, these studies frequently do
not assess true ‘population’ samples, but rather aggregated
sequences according to spatial proximity or a grid
(e.g. Theodoridis et al., 2020; Millette et al., 2020; Manel
et al., 2020; see Paz-Vinas et al., 2021). It is also often hard
to reproduce these studies’ results because the data sets are
extensively modified once they are obtained from archives
(Pope et al., 2015b). Macrogenetic studies based on genetic
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data extracted from the literature (e.g. Lawrence et al., 2019)
may bemore reliable for representing population-level genetic
data. For instance, De Kort et al. (2021) compiled andmapped
genetic evenness (heterozygosity) EBV values for 8386 geore-
ferenced populations (with N ≥ 10 sampled individuals) from
727 animal and plant species to explore the effects of life-
history traits and temperature stability on genetic diversity.
Further, literature-based macrogenetic studies allow for the
assessment of critical information such as the sampling effort
needed to obtain a given number of alleles or sequences –
information that typically cannot be assessed for data
extracted from public repositories (Paz-Vinas et al., 2021;
Leigh et al., 2021), although metadata stewardship is continu-
ally improving (see Section III.3; Riginos et al., 2020).

A second category of large-scale macrogenetic studies
seeks to document temporal change. Here, researchers ana-
lyze time-series observations of the same population or
region to quantify changes in genetic composition directly.
These time series can come from long-term monitoring, or
a combination of contemporary samples and archive,
museum or sediment (e.g. sub-fossil) specimens. For example,
Leigh et al. (2019) compiled data from 91 species and found
that genetic diversity in animals (primarily fish, birds, mam-
mals and insects) has declined about 6% globally. Jordan
et al. (2019) found decreased genetic diversity in 52% of resto-
ration plantings (e.g. revegetation) compared to their seed
source, an effect most strongly associated with seed obtained
from few source sites. These results contrast with analyses by
Millette et al. (2020) and Lawrence et al. (2019), emphasizing
that some large-scale studies may have less power to detect
change due to a limited time span, repurposing data from
nucleotide databases, challenges in aggregation, and other
reasons (reviewed in Leigh et al., 2021; Table 2).

Unfortunately, true time series of observations of the same
population or region with similar sampling are rare, making
it difficult to construct a data object with a comprehensive
time dimension that spans broad timescales. As with other
EBV classes, statistical models will be essential to fill in spatial
and temporal gaps (Section IV.2).

A third category seeks to test the effects of specific environ-
mental or human impacts via ‘space for time substitution’ or
‘case–control’ (Table 2). This can help to quantify the impact
of a specific factor or process on genetic composition. For
example, Pinsky & Palumbi (2014) analyzed microsatellite
genetic data from 140 species to document that, on average,
overharvested fish populations have 12% lower allelic rich-
ness genetic diversity than non-harvested fish. Aguilar
et al. (2008) used data from 102 plant species to reveal signif-
icantly lower genetic richness and evenness in plant popula-
tions after habitat fragmentation, especially after more than
100 years of fragmentation. These and other examples
(e.g. DiBattista, 2008), provide information for models
(e.g. a minimum distance among populations beyond which
significant genetic differences arise; Durrant et al., 2014) that
can help populate cells in an EBV data cube, as explained in
Section IV.2.

Such efforts at post-hoc data aggregation and mobilization
are complemented by coordinated research networks where
scientists are compiling their population genetic data sets into
curated, standardized archives, supplementary to the general
nucleotide databases like GenBank. This involves labour-
intensive retroactive application of archiving standards and
requirements. For example, the Diversity of the Indo-Pacific
Network project compiled more than 200 data sets for Indo-
Pacific marine organisms (http://diversityindopacific.net/;
Crandall et al., 2019). Similar examples include: Ira Moana

Table 2. Examples of three broad categories of large-scale studies that establish a foundation to operationalize Essential Biodiversity
Variables (EBVs): taxa examined, data source, EBVs compiled, size of data set, and DNAmarker type (mtDNA, mitochondrial DNA;
microsat, microsatellite; AFLP, amplified fragment length polymorphism). Category 1 = large scale spatial patterns; Category
2 = temporal change; Category 3 = quantitative relationship between driver and Genetic EBV response

Study Category Taxa Data source Genetic EBV
Number
of species

Marker type

Manel et al. (2020) 1 Freshwater and
marine fishes

GenBank Genetic Diversity: richness 5426 mtDNA

Lawrence
et al. (2019)

1 Terrestrial
vertebrates

From literature Genetic Diversity: richness and
evenness; Genetic
Differentiation: differentiation
between units

897 Microsat

De Kort et al. (2021) 1 Animals and
plants

From literature Genetic Diversity: evenness 727 Microsat and
AFLP

Leigh et al. (2019) 2 Animals From literature Genetic Diversity: richness and
evenness

91 Predominantly
microsat

Jordan et al. (2019) 2 Plants From literature Genetic Diversity: richness and
evenness

48 Various

Pinsky &
Palumbi (2014)

3 Fish From literature Genetic Diversity: richness and
evenness

140 Microsat

Breed et al. (2015) 3 Plants From literature Inbreeding 40 Predominantly
microsat
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(https://sites.massey.ac.nz/iramoana/), FishGen (www.
fishgen.net) and CartograTree (https://treegenesdb.org/
ct). Other efforts are planning genetic assessment of many
species as a part of a single project, and simultaneously co-
sampling them. For example, the IntraBioDiv Consortium
sampled 27 alpine plant species with the same strategy, in
the same locations, with a common analysis method
(https://www.wsl.ch/en/projects/intrabiodiv.html); this
data set has been used for many studies (e.g. Taberlet
et al., 2012; Hanson et al., 2017). The Oz Mammals Geno-
mics Initiative (https://ozmammalsgenomics.com/) is using
standardized methods to generate conservation genomic
data sets for 14 threatened Australian mammals (Eldridge
et al., 2020; von Takach et al., 2021). All of these projects
show that mining databases and the literature, and greater
coordination of planning for data interoperability and FAIR
practices, has great value for understanding and operationa-
lizing Genetic EBVs at large scales. International groups
such as GEO BON are working to network among these
groups and share data standards, lessons learned, and best
practices for operationalizing EBVs (https://geobon.org/
ebvs/working-groups/genetic-composition/).

(2) Predicting Genetic EBVs beyond current
observations via modeling

To be spatially comprehensive, EBVs in all classes must rely
on a combination of observational and modeled data. For
instance, genetic composition data are usually collected from
a subset of individuals or locations, which necessitates accu-
rate, spatially predictive models for EBV values at
unsampled locations or time points. One simple form of
genetic data modeling is spatial interpolation to identify pat-
terns such as clines and hot spots across numerous taxa
(Murphy et al., 2008; Paz-Vinas et al., 2018). At large scales,
interpolation has been used to provide a global ‘picture’ of
genetic status (Vandergast et al., 2011; Miraldo et al., 2016).

Another form of genetic data modeling aims at establish-
ing a statistical relationship between Genetic EBV measure-
ments and specific environmental variables including
climate, habitat and biotic interactions (Hand et al., 2015;
Jaffé et al., 2019; Carvalho et al., 2019, 2020) or EBVs in other
classes like species diversity (Taberlet et al., 2012; Manel
et al., 2020). The simplest approach is to determine a relation-
ship between genetic differentiation and Euclidean distance,
known as isolation by distance or genetic spatial autocorrela-
tion. This can help infer a minimum distance beyond which
populations have significant genetic differentiation (Durrant
et al., 2014, Silva et al., 2020). More complex genetic–
environmental relationships (e.g. landscape genetics) can
identify potential drivers and correlates of change in genetic
variation. These analyses project genetic variation into
unsampled locations for which data on the driver are avail-
able, using the driver as a surrogate of genetic variation
(Wasserman et al., 2012; Hanson et al., 2017). This has prac-
tical utility for highlighting migration corridors to limit
genetic erosion (DiLeo & Wagner, 2016; Monteiro

et al., 2019), identifying priority conservation areas aimed at
protecting within-species genetic composition [e.g. conserva-
tion planning (Paz-Vinas et al., 2018; Hanson et al., 2020)], or
modeling population vulnerability and changes in adaptive
capacity due to environmental change (Fitzpatrick &
Keller, 2015; Martins et al., 2018; Razgour et al., 2018; Vran-
ken et al., 2021). For example, Bay et al. (2018) identified
‘genomic vulnerability’ to climate change in populations of
the North American yellow warbler (Setophaga petechia) based
on the mismatch between current genomic variation in
climate-adapted loci and predicted future conditions.
Modeling approaches have also been used to combine

genetic data with species distribution models. Within-species
genetic lineages (the Genetic Differentiation EBV) are
increasingly used to improve ecological niche model (ENM)
predictions of species distributions. ENMs constructed
for within-species genetic units offer a more accurate picture
of past and present spatial distribution of a species
(e.g. Shinneman et al., 2016), as well as future distributions
given adaptive variation and potential climatic changes
(e.g. Maguire et al., 2018; Razgour et al., 2019), which helps
assess vulnerability of a species and possible changes to
genetic composition. Meanwhile, ENMs are also used to
assess statistical relationships between environmental suit-
ability and heterozygosity, which could be used to map pre-
dicted genetic diversity across continuous space (Diniz-Filho
et al., 2015).
One remarkable form of genetic modeling is to infer EBV

values in the past. Because an individual genome contains
information on its ‘ancestral’ genomes, numerous well-
developed analytical methods can be used to infer Ne at given
time points in the past [e.g. skyline plots, approximate Bayes-
ian computation (ABC), Pairwise Sequentially Markovian
Coalescent (PSMC) models] (Mather, Traves & Ho, 2020).
For example, Nater et al. (2015) used modern DNA and
ABC to trace the demographic history of orangutan popula-
tions, identifying severe Ne declines in response to changes in
the extent of rainforest habitats and hunting by early
humans. These methods can help establish pre-impact base-
lines and natural levels of variability in Genetic EBVs, popu-
late the three-dimensional EBV object (e.g. ‘data cube’), and
better quantify the impact of drivers through time.
Methods are also well developed for forecasting Genetic

EBVs, such as changes in richness due to future habitat
change (Alsos et al., 2016). Established population genetic
theory (Section II.1a), allows for demographic–genetic simu-
lations (see Hoban, 2014) to assess genetic composition
change under drivers such as management strategies
(e.g. promoting gene flow among populations, harvest, mini-
mizing mortality in specific regions). Such models can also
evaluate the efficiency of different monitoring programs
and rank EBVs for sensitivity (Hoban et al., 2014).
It is true that genetic data are currently scattered spatio-

temporally and collected in non-uniform ways that can result
in bias, as is true of many ecological data sets and all classes of
EBVs [see review on impacts of sampling biases in ecological
data sets by Hughes et al. (2021); Boakes et al., 2010; Fithian
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et al., 2015; Hortal et al., 2015; Jetz et al., 2019; Meyer
et al., 2016]. Although genetic data are relatively sparse
across landscapes, the aforementioned approaches are filling
gaps in genetic information and predicting EBVs spatially
and temporally, and across multiple species. Further, the
development and uptake of these proposed EBVs could
improve global standardized data collection, including use
of archive repositories for genetic data and uniform meta-
data. The existing limitations will continue to be overcome
through combining additional supporting measures, such as
through statistical, modeling, bioinformatic and software
guidelines. To help guide and advance genetic data collec-
tion for restoring and conserving biodiversity, guidance is
being developed to encourage efficient progress and rapid
uptake of genomics for spatial conservation planning
(e.g. Kershaw et al., 2021) and natural resource and func-
tional ecosystem restoration (e.g. Mohr et al., 2022). A strong
focus on education, training and outreach of practitioners
and decision makers, especially in relation
to operationalizing EBVs, is also needed (Wasserman
et al., 2010; Brown et al., 2016).

V FUTURE DIRECTIONS FOR GENETIC EBVs

(1) What is needed for Genetic EBV
operationalization?

A number of challenges exist for Genetic EBV operationali-
zation. These include standardizing bioinformatic pipelines,
standardizing sampling for adequate characterization of
each EBV, cost, scaling issues, and choosing target species.
As Navarro et al. (2017, p. 161) explain, the EBV framework
as a whole also ‘faces challenges emerging from the lack of
global monitoring schemes, the integration of datasets result-
ing from different collection methods, and technical issues
related to data product structure, storage, workflow execu-
tion, and legal interoperability’. In Genetic EBVs, different
spatial and temporal resolution and measurement units need
to be harmonized and standardized to allow for integration
of data sets from different sources.

For greater adoption of Genetic EBVs by the community,
it is critical to demonstrate their value (as we attempt to
achieve here), and provide education, training, outreach,
and guidance, and also develop necessary supporting compo-
nents, such as bioinformatics and computing infrastructure.
Further, clear protocols and decision trees providing guid-
ance on particular methods or software to use for a given
problem, question, or data set (while being mindful of their
caveats) could improve uptake. Last, adequate funding to
support these goals can allow for increased and sustainable
utilization. We and others are continuing to make progress
in these areas and are committed to focus on these goals.
With these in place, the likelihood of Genetic EBV applica-
tion should increase.

(2) Challenges: scale, standardization and costs

There is a general lack of systematic global biodiversity data
collection and monitoring. Similar to populations and traits,
monitoring of genetic change will require combining data
sets collected from different species in different locations
across time and with different methods – a substantial statis-
tical challenge (see Section IV). Comparisons of Genetic
EBVs across taxa will also need to account for correlations
with phylogenetic or trait variation (Romiguier et al., 2014).

Just as species or traits may be observed through a variety
of measurements, each with its own error rates and biases,
genetic information is measured with different markers such
as microsatellites, SNPs, or DNA sequences, and there is a
need for harmonization across these measurements, particu-
larly to incorporate temporal change. For example, it is not
currently possible to compare Genetic EBV values from
microsatellites to values from SNPs, without data on both
marker types for the same samples. Looking forward,
most data sets will soon be sequence-based (e.g. candidate
gene resequencing, whole-genome resequencing, reduced-
representation sequencing) which are likely to be more
robust for long-term monitoring as the data are forward-
compatible (see Galla et al., 2019; Wright et al., 2019). Addi-
tionally, standardized quality control and assurance practices
could ensure that the large volumes of data and metadata
harmonized for EBVs do not lead to ‘small sources of system-
atic or random error [that] can cause spurious results or
obscure real effects’ (Laurie et al., 2010, p. 591).

Another challenge is a lack of standardized minimum sam-
pling size and spatiotemporal sampling guidelines (although
a single strategy is impossible as it must adapt depending
on organisms and locations), although some recognized sam-
pling rules-of-thumb have been established and validated
[e.g. Hale, Burg & Steeves (2012) for microsatellites;
Nazareno et al. (2017) for SNPs]. A larger challenge is likely
a current lack of standard bioinformatic pipelines and
decision-making guidelines, e.g. standard thresholds for fil-
tering genetic data. Genetic differentiation and genetic diver-
sity in reduced-representation sequencing data sets can be
affected by bioinformatic processing such as SNP calling
(e.g. Wright et al., 2019; Graham et al., 2020). SNP calling will
depend on whether a reference-based versus de novo approach
is used, with reference-based approaches being preferred
when possible (Shafer et al., 2017; Luikart et al., 2018). The
rapidly decreasing cost of whole-genome resequencing will
eventually diminish these problems, however. While there
will not be a single analytical pipeline that will be appropriate
for calculating all Genetic EBVs for all species, having a set of
standard methods that are agreed upon, helpful guides for
key choices, and standards and templates for documenting
informatic pipelines (with well-understood values and rules),
will aid with transparency, repeatability, and integration
(Tahsin et al., 2016, Gratton et al., 2017, Duruz et al., 2019).

A final challenge is the high cost of gathering and proces-
sing genetic data. DNA extraction and sequencing are
expensive (c. US$10–50 per sample for laboratory supplies
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and US$10–100 per sample for personnel time) and require
specialized equipment and personnel training. Funding and
opportunities for laboratory work and data analysis are lim-
ited or absent in some regions, including in many countries
within critical biodiversity hotspots. An additional challenge
is choosing appropriate representative species and ecosys-
tems to monitor with genetic data. The best choice will be
species for which a change in genetic variation serves as a sig-
nal of change in other species (indicator species). When
efforts and funding are constrained, we suggest that a few
representatives from each group and ecosystem be chosen,
including foundation/keystone species. Species selection
should also consider the amount of pre-existing ‘genomic
resources’, such as annotated reference genomes for the
genus. Species can also be selected for genetic monitoring
based on the representation of key areas: conservation prior-
ity, cultural importance, ecosystem services, wild harvesting,
and important game species (as in Hollingsworth et al., 2020).
The provisioning of sample access, and uptake and applica-
tion of EBVs, will be determined by conservation practi-
tioners, including Indigenous peoples as stewards of the
natural environment and genetic resources. The Nagoya
Protocol (https://www.cbd.int/abs/) to the CBD acknowl-
edges the link of biodiversity conservation with Indigenous
peoples. In many nations, Indigenous peoples will be respon-
sible for authorizing access to genetic samples and derived
data. Geneticists need to work closely with Indigenous com-
munities (McCartney et al., 2021) to ensure sharing of benefits
from research activity and aligning research with Indigenous
worldviews, such as by following the CARE Principles [Col-
lective Benefit, Authority to Control, Responsibility and
Ethics (https://www.gida-global.org/care; Liggins, Hudson
& Anderson, 2021a); Carroll et al., 2020)].

(3) Examples of integrating Genetic EBVs into
legislation or policy at large scales

National conservation laws and policies, such as the
U.S. Endangered Species Act (ESA), seek to preserve biodi-
versity through the conservation of individual species
(Drozdowski, 1995; Waples et al., 2013). Under the ESA,
those species, subspecies, or ‘distinct population segments’
(DPSs) are listed when they are determined to be ‘endan-
gered’ (in danger of extinction), or ‘threatened’ (likely to
become endangered in the foreseeable future). Although
these policies are often criticized for the lack of quantitative
metrics in their language for guidance (Waples et al., 2013),
inferences from genetic analyses are frequently utilized to
identify units to conserve, determine the level at which they
should be listed, and evaluate listed species for delisting
(Fallon, 2007; Funk et al., 2019). Although there have been
efforts to streamline this process and the listing criteria,
genetic data are used inconsistently (Kelly, 2010; Coates,
Byrne & Moritz, 2018). The establishment of internationally
recognized and easily understood Genetic EBVs will provide
quantitative metrics making ESA listing more objective and
transparent. Globally, Key Biodiversity Areas now integrate

genetic diversity and differentiation in their declaration
(IUCN, 2016).
Another national initiative is Scotland’s pragmatic assess-

ment of genetic composition in representative species via

‘scorecards’. The scorecards use structured expert reviews
to assess several categories of risks: loss of diversity (through
population declines, loss of functional variation and loss of
divergent lineages); maladaptive hybridization; and low
reproduction or constraints on adaptation. The scorecards
also assess ex situ conservation representation (zoos, seed
banks, botanic gardens) and current conservation actions.
For each species, there is a rating of risk (along with an eval-
uation of uncertainty) and of the effectiveness of mitigation.
A similar scorecard approach was used in Beckman
et al. (2019) which focused on all U.S. species of Quercus (oaks),
an emblematic, well-known genus of ecological, socioeco-
nomic and cultural importance. Scorecard approaches,
including genetic issues and genetic data, could easily be
adapted to include Genetic EBVs.
The European Union (EU) Habitats Directive is the cen-

terpiece of biodiversity conservation legislation in the Union.
It focuses both on the preservation of habitats and species of
conservation concern and requires each member state to
define and pursue favorable reference conditions for habitats
and species. Since 2012, the directive explicitly mentions that
the criteria for a favorable reference population should
include genetic information (population structure, genetic
connectivity, etc.), and that this favorable reference popula-
tion is by definition larger than the minimum viable popula-
tion size (Evans &Arvela, 2011; Laikre et al., 2009). However,
general guidelines on how populations should be defined are
not provided and are interpreted differently by each member
state. Several member states are working to generally imple-
ment genetic criteria in their evaluations (Mergeay, 2012),
including the Ne EBV. Other EU initiatives that incorporate
genetic approaches, and could benefit from EBVs include the
UK Strategy for Forest Genetics Resources (Trivedi
et al., 2019) and EUFORGEN (de Vries et al., 2015).

(4) Future directions and opportunities

We have focused on the use of genetic data sets, and models
that build on such data sets, for EBVs. Nonetheless, large
parts of the world lack genetic data observations, necessitat-
ing a discussion of proxies or substitutes for genetic data.
Suitable proxies could also overcome challenges surrounding
the cost of obtaining genetic data. While there are currently
no proxies that can fully replace genetic sampling to obtain
Genetic EBVs, some show promise, including geographic
range loss, decrease in number of adult individuals, or frag-
mentation rates (see Section IV.2). Decades of theoretical
work and hundreds of studies have shown strong genetic
composition responses to these proxies as they are connected
to basic genetic processes (Sections II.1a and IV). For
instance, Khoury et al. (2019) advocate that safeguarding
genetic diversity can be based on the percentage of geo-
graphic range found in protected areas (in situ) or represented
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in seed banks (ex situ). However, genetic composition
responses are mediated through species- and situation-
specific factors, and responses are highly non-linear, such
that this relationship may be only weakly predictive (Alsos
et al., 2012). Future research effort is needed towards estab-
lishing statistical relationships with proxies, identifying how
species traits mediate these relationships, and developing sta-
tistical frameworks and models (see Section IV.2). Simula-
tions can test how well proxies relate to genetic diversity,
i.e. the simulation of loss of range size. Another potential
proxy is pedigree data or studbooks, which allow direct infer-
ence of Ne, relatedness/inbreeding, and loss of genetic even-
ness (heterozygosity) via available software (e.g. PMx),
although this is only applicable to domesticated species, zoo
populations, and a few highly monitored natural
populations.

The genetic data obtained for Genetic EBVs can also pro-
vide information useful to other EBV classes (Gurgel
et al., 2020). Genetic data can be used to infer population size
(either by mark–recapture or via Ne) for the Species Abun-
dance EBV in the Species Populations class, or to delimit spe-
cies occurrence (Species Population or Community
Composition EBVs) through eDNA sampling (see Section-
I.3). Coordination of sampling is another useful synergy;
genetic sample collection could occur concurrently with Spe-
cies Populations and Traits EBV data collection to facilitate
cost-effectiveness and allow cohesive assessments across mul-
tiple EBVs, an important consideration for Biodiversity
Observation Networks (BONs). There are opportunities
across EBV classes to coordinate development of standard-
ized sampling protocols, data-storage structures, and model-
ing and harmonization techniques. Lastly, we have little
knowledge of how Genetic EBVs and other EBV classes co-
vary in response to environmental change (although see Raz-
gour et al., 2019), including whether EBV classes exhibit
related changes to response or response time (e.g. lags in
response). Indicators or other high-level reporting metrics
could also integrate multiple classes to illustrate a compre-
hensive picture of biodiversity.

The final phase of EBV operationalization is policy imple-
mentation. EBVs have great potential to form the basis of
indicators for policy (Navarro et al., 2017). Unfortunately,
currently recommended CBD indicators do not track
within-species genetic variation and are not built upon
Genetic EBVs (Appendix S4; Laikre et al., 2020; Hoban
et al., 2020). Still, there are emerging examples of Genetic
EBVs or similar concepts in use in policy frameworks that
may inform and engender further efforts across the globe
(see Section V.3).

Genetic and genomic methods continue to advance rap-
idly, creating opportunities for refining Genetic EBVs in
the future, particularly focused on quantifying uncertainties
and creating open data frameworks. Decreasing costs and
ongoing research efforts are rapidly increasing the amount
and quality of reference genome data available, and knowl-
edge of genomic processes, genes and their functions. Long-
read sequencing technologies like PacBio and Oxford

Nanopore technology will soon allow monitoring via whole-
genome sequencing for species of small to moderate genome
size. To facilitate such studies, tissue samples should be stored
in biorepositories, e.g. biobanks, for use in future advanced
analyses. Developments in transcriptomics and meta-
bolomics will lead to advances in mechanistic models and
prediction of specific genomic responses to environmental
change. Technological advances such as synthetic biology
[e.g. CRISPR (clustered regularly interspaced short palin-
dromic repeats) modification] may lead to transformative
ways tomanage and conserve genetic variation. Additionally,
rapid sequencing technology for use ‘in the field’ promises to
allow near-immediate genetic data collection for urgent
questions (e.g. for prioritizing harvest from specific source
populations in fish and in wildlife management). Rapid,
‘pocket-size’ genomic sequencers such as the Nanopore cost
less than US$1000 and plug into a laptop. Although genetic
composition is not currently amenable to remote-sensing
technologies such as satellites, autonomous collection via in

situ recording infrastructure (such as the U.S. National Eco-
logical Observatory Network, NEON), hair traps, or auto-
mated sampling devices may soon allow DNA capture,
sequencing and analysis in the field (Turon et al., 2020).
Drones with increased autonomy allow sampling in elusive
species or inaccessible sites (e.g. cliffs, oceans), and regularly
repeated sampling. Advances in eDNA analysis are also
anticipated, although due to eDNA quantities and degrada-
tion, it might not be possible to use eDNA for all EBVs
(Section I.3).

Technology for collecting environmental data that are nec-
essary for interpreting and modeling genetic data are also
advancing. ‘Biologging’, a technique for live registration of
physiological parameters, coupled with epigenetics, will help
to determine the importance of genetic variants for individual
phenotypes and ecosystem functions (e.g. Tree Talker© is a
micro-device for measuring water transport in trees, diametri-
cal growth, and spectral characteristics; Valentini et al., 2019).
Coupling these data with Genetic EBVs will help to determine
underlying causal factors behind genetic, species, and ecosys-
tem diversity, enable us to predict future responses, and help
to identify adaptive genetic variants that can respond to cli-
mate and environmental change.

VI CONCLUSIONS

Here we summarize our review and describe concrete steps
for advancing operationalization of Genetic EBVs.

(1) We propose four Genetic EBVs: (i) Genetic Diversity,
(ii) Genetic Differentiation, (iii) Inbreeding, and (iv) Effective
Population Size. These EBVs offer a viable means of moni-
toring the essential characteristics of genetic composition,
genetic health, and genetic viability of wild and domesticated
populations and species, at regional to global scales.

(2) The technical and analytical foundation of these
Genetic EBVs is well developed, and workflows for
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archiving, obtaining and analyzing genetic data are matur-
ing. There are highly standardized data structures and file
formats for storage, and well-developed open-access pipe-
lines for calculating standard statistics underlying the EBVs.
Numerous statistical and computational developments have
led to highly advanced models for inferring and predicting
genetic change, which are complemented by increasingly
large-scale genetic data set aggregation.

(3) Despite the robust underpinnings of these Genetic
EBVs, additional developments and research efforts are
required. Specifically, progress towards increased standardi-
zation and shared resources will lead to routine, robust
uptake and operationalization of Genetic EBVs in biodiver-
sity assessments and policy. The next steps are:

(a) Improved and upscaled monitoring of temporal
changes in genetic composition. Standardized temporal
measures of genetic composition remain scarce due to limited
longitudinal genetic monitoring, biases in location and tax-
onomy of the available data, and still unsolved statistical
challenges in aggregating and harmonizing existing genetic
data sets in large-scale analyses.

(b) Standardization of genetic methods. Standard labora-
tory and informatic methodologies, and guidelines for consis-
tent, routine archiving and reuse of genetic data, still require
improvements to make all genetic data interoperable.

(c) Better recording and use of genetic metadata. There are
broad opportunities for increased use of genetic archival
databases and biological and environmental metadatabases,
and for better links between genetic and environmental
repositories and observatories to improve data searching
and inferences regarding the drivers of changes in Genetic
EBVs. There is a need to develop better proxies in the
absence of genetic data.

(d) Development of genetic resources and technology. Fur-
ther work towards development of key genetic resources (ref-
erence genomes), especially for IUCN threatened species and
indicator species and those that underpin biodiversity (foun-
dation species), as well as increased deployment of genetic
technologies to additional countries and ecosystems, will
greatly aid Genetic EBV calculations.

(4) Genetic EBVs capture the genetic status and trajectory
of life on Earth. Progress is being made towards integration
of genetic variation observations into major international
regulations and legislation. International initiatives are work-
ing towards a framework for monitoring Genetic EBVs glob-
ally, including GEO BON, the IUCN Conservation
Genetics Specialist Group and the EU COST Action
G-BiKE.

(5) The EBVs proposed here are centered on genetic pop-
ulation processes and will remain relevant, even as innovative
calculation methods are developed and with advances in
genomic technologies. Implementation of our recommenda-
tions for data curation, sharing and integration, alongside
increasingly detailed assessments of Genetic EBVs, can lead
to robust assessment of genetic status and improved conser-
vation and management of the world’s biomes into the
future.
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Dalén, L. (2015). Complete genomes reveal signatures of demographic and
genetic declines in the woolly mammoth. Current Biology 25, 1395–1400.

*Paradis, E. (2010). pegas: an R package for population genetics with an integrated-
modular approach. Bioinformatics 26, 419–420.

Parsons, K. M., Everett, M., Dahlheim, M. & Park, L. (2018). Water, water
everywhere: environmental DNA can unlock population structure in elusive
marine species. Royal Society Open Science 5, 180537.

Paz-Vinas, I., Jensen, E. L., Bertola, L. D., Breed, M. F., Hand, B. K.,
Hunter, M. E., Kershaw, F., Leigh, D. M., Luikart, G., Mergeay, J.,
Miller, J. M., van Rees, C. B., Segelbacher, G. & Hoban, S. (2021).
Macrogenetic studies must not ignore limitations of genetic markers and scale.
Ecology Letters 24, 1282–1284.

Paz-Vinas, I.,Loot,G.,Hermoso,V.,Veyssière, C.,Poulet,N.,Grenouillet,G.&
Blanchet, S. (2018). Systematic conservation planning for intraspecific genetic
diversity. Proceedings of the Royal Society B: Biological Sciences 285, 20172746.

*Peakall, R. & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel.
Population genetic software for teaching and research–an update. Bioinformatics 28,
2537–2539.

Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G.,
Scholes, R. J., Bruford, M. W., Brummitt, N., Butchart, S. H. M.,
Cardoso, A. C., Coops, N. C., Dulloo, E., Faith, D. P., Freyhof, J.,
Gregory, R. D., et al. (2013). Essential biodiversity variables. Science 339, 277–278.

*Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. (2015). related: an R package for
analysing pairwise relatedness from codominant molecular markers. Molecular

Ecology Resources 15, 557–561.
Pierson, J. C., Coates, D. J., Oostermeijer, J. G. B., Beissinger, S. R.,
Bragg, J. G., Sunnucks, P., Schumaker, N. H. & Young, A. G. (2016).
Genetic factors in threatened species recovery plans on three continents. Frontiers in
Ecology and the Environment 14, 433–440.

Pinsky, M. L. & Palumbi, S. R. (2014). Meta-analysis reveals lower genetic diversity
in overfished populations. Molecular Ecology 23, 29–39.
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