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Abstract— The detection of tiny targets on the surface with 
high efficiency and accuracy is significant for the current 
intelligent manufacturing. Visual inspection methods based on 
deep learning are widely utilized to detect tiny objects. However, 
the tiny objects appear less distinct, less wide, and less area 
occupied in the image. At the same time, there is a lot of 
object-like noise, which further increases the difficulty of 
detecting tiny objects. In response to the challenges brought by 
the complexity of the detection environment, this paper 
proposes a network model that combines the enhancement of 
pixel-level features at equal resolution and the introduction of 
full-scale features based on attention. The model utilizes the 
subtle differences between the tiny target and the background 
and the semantic information of the tiny target outline to 
enhance the features of the tiny target while significantly 
reducing its loss in the equal-resolution feature layer. 
Additionally, a gradual attention mechanism is proposed to 
guide the network model to pay attention to tiny objects features 
on the full-scale feature layer. The performance of this network 
model is validated on a real dataset. Experiments show that the 
model exhibits superior performance and outperforms existing 
resNet50, DenseNet, Racki-Net, and SegDecNet in detecting tiny 
objects. 

Index Terms— detection of tiny targets, Visual inspection, 
enhancement of pixel-level features, gradual attention 
mechanism 

I. INTRODUCTION 

Cracks are typical tiny targets and the ones on the surface 
of objects bring significant insecurity to equipment products in 
various fields, such as industry[1] and aerospace[2]. Thus, 
accurate and efficient techniques for detecting cracks are of 
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great significance to the current manufacturing industry[3]. In 
the early days, most crack defects were detected by traditional 
manual methods, which showed low accuracy and low 
efficiency. With the progress of machine learning, the 
application of crack detection technology based on machine 
vision is gradually widespread and has become a focus of 
attention. 

In the past two decades, traditional image processing 
techniques have been applied to simple detection tasks, such 
as thresholding methods[4], region segmentation[5], and 
morphological features[6]. However, these methods exhibit 
low accuracy and poor stability for detecting cracks under 
high noise. Subsequently, machine learning techniques have 
further allowed for a more sophisticated environment for 
detecting cracks. In [7], a method based on the random forest 
was proposed to generate descriptors of cracks. In addition, a 
crack detection method based on the support vector 
machine(SVM) was proposed in [8]. Although these methods 
show good performance in a specific complex detection 
environment, they mainly rely on manual or shallow feature 
extraction, resulting in significant limitations and poor 
robustness. 

(c) stain noise (d) texture noise

(b) scratch noise(a) crack

 

Figure 1.  Cracks and various noises. 

In recent years, the convolutional neural network(CNN) in 
the deep learning method[9] has been widely utilized in 
diverse scenarios such as industrial surveying[10] and object 
detection[11] because of its superiority, and it has also become 
the mainstream of crack detection[12](e.g., Qu et al.[13], 
Nguyen et al.[14], Han et al.[15]). In object detection, 
although the position of the crack can be located[16][17], its 
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accuracy and efficiency have certain limitations. To 
quantitatively analyze cracks[18][19], the method based on 
pixel segmentation was applied to crack detection[20][21]. 
Although pixel segmentation shows superior performance in 
detecting cracks, its effect is still limited in the case of high 
noise, and some scenes need to determine the existence of 
cracks qualitatively. To detect cracks accurately and 
qualitatively, in [22] and [23], a network structure combining 
segmentation and classification is proposed to detect cracks. 
Experiments show that the combined network structure is 
beneficial to crack detection. However, complex application 
scenarios present new challenges to detection techniques. First, 
the cracks have low contrast in the image and are tiny, as 
shown in Fig. 1(a). The narrow width of the cracks on the 
surface also results in almost no difference in pixel values 
between cracked and non-cracked. Low-contrast and subtle 
cracks require the network model to have a more prominent 
ability to preserve features. Second, there is much crack-like 
noise in the non-cracked region, which is likely to lead to false 
detections by the model, as shown in Fig. 1(b)(c)(d). Third, the 
space ratio of cracks is small. The randomness of crack 
generation and its small width make the pixel points of the 
crack occupy a small proportion of the entire image, which 

increases the difficulty of the model to capture the features of 
the crack in the feature layer of a larger space. 

To cope with the above difficulties, a new network 
structure based on CNN is proposed for detecting cracks in 
tiny targets. First, Equal Resolution Feature Enhancement 
Network(ERFE-Net) is designed to extract and enhance 
features of tiny targets through subtle differences between tiny 
targets and backgrounds and semantic information of tiny 
target contours in equal-resolution feature layers, which fully 
guarantees the ability of the network to retain useful features. 
Second, the fusion of multi-scale features can improve the 
detective performance of models[24][25]. Thus, the full-scale 
feature layers from ERFE-Net are extracted to obtain more 
adequate features of tiny targets. Additionally, the proposed 
gradual squeeze and excitation Network(GSE-Net) improves 
the ability of the network model to discover features of tiny 
targets, which further strengthens the effective features. Thus, 
both ERFE-Net and GSE-Net highly enhance and preserve 
features of tiny targets under high noise. 

The rest of the paper is organized as follows: Section 2 
describes the proposed tiny target detection network. Section 3 
presents the experimental details and results analysis. Finally, 
the paper and future work are summarized. 
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Figure 2.  The structure for detecting tiny targets. 

II. METHOD 

The structure of the network proposed in this paper 
consists of two parts. In the first part, ERFE-Net is designed to 
extract and strengthen weak features of tiny targets. Then 
full-scale features, extracted from ERFE-Net and passed 
through an attention network with gradual squeezing and 
excitation, are used as input to the decision network to predict 
the probability of tiny targets' existence. Fig. 2 shows the 
structure of the entire network model. 

A. Equal Resolution Feature Enhancement Network 

To amplify the feature difference between tiny targets and 
non-target, ERFE-Net is proposed to enhance and extract 
features of tiny targets in the case of weak features and noise. 
To achieve this, the design of the network should satisfy the 

following requirements: (a) the requirement of effectively 
enhancing weak features and ignoring noise; (b) the 
requirement that effective features are highly preserved. In 
order to realize the above requirements, the structure of the 
network module is embodied in the following description. 
First, ERFE-Net achieves pixel-level segmentation by 
exploiting the subtle differences between tiny target and 
non-target pixel values and the semantic information of tiny 
target contours, enabling the convolution kernel to focus on 
tiny targets and ignore disturbances in a targeted manner. 
Second, the resolutions of all feature layers remain unchanged 
during extracting features, as shown in Fig. 3. ERFE-Net does 
not perform any downsampling operation because 
downsampling will further lose effective features to a certain 
extent. 



  

The Process of ERFE-Net
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Figure 3.  ERFE-Net process of strengthening features. 

ERFE-Net is a fully convolutional network with 9 layers, 
as shown in Fig. 2 To avoid overfitting, batch normalization is 
performed after convolution operations except the last layer. 
Then, ReLU is utilized as an activation function. In order to 
extract features meticulously, the convolution kernels of the 
first 8 layers of the network are all 3×3, and the last layer is 
1×1. The spatial size of each sample remains unchanged, and 
the output channel becomes 1 after passing through ERFE-Net. 
At this point, the output and the label image are consistent in 
space and channel. The loss is obtained by computing the 
point-to-point value between the output and the label image. 
The label value at each point on the label image is shown in 
the following formula. 

 
( )

1,  ( )
=

0,  ( )

 

 

i, j

i, j tiny target
y

i, j background
 (1) 

where 
( )i, j

y  is the label value of the position ( )i, j  in the 

sample. If position ( )i, j  is the pixel of the tiny target, the 

corresponding true value on the label image is 1. Otherwise, 
the true value of the position is 0. 

B. Gradual Attention Based Decision Network 

1) Decision Network 

In neural networks, shallow and deep features layers 
contain more details and semantic information, respectively. 
To efficiently utilize useful features, the rich features 
extracted from ERFE-Net are taken as the input of the data of 
the second part of the detective network. Specifically, the last 
feature layer and the feature layer of channel dimension 
transformation from ERFE-Net are taken out, as shown in Fig. 
2. Then, these feature layers are concatenated along the 
channel direction without any operation since all feature layers 
have the same spatial size. At this point, the second part's input 
contains rich detailed and semantic information. Additionally, 
the spliced feature layer implements an attention mechanism 
for tiny targets through GSE-Net. The remaining structure of 
the second part is a binary classification network, and each 
image corresponding to a value of the label is shown in the 
following formula. 
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where 
( )i, jY  is the label value of the image. If the sample 

contains tiny targets, the value of the corresponding label is 1. 
Otherwise, the label value of this sample is 0. The remaining 
network structure consists of 6 convolutional layers and 1 
fully connected layer, as shown in Fig. 2. All convolutional 
layers undergo Batch normalization and ReLU activation 
after convolutional operations. In addition, the first five 

layers all perform a 2×2 max-pooling operation to realize the 
downsampling of the feature layer after the convolutional 
operation. To improve the confidence of network predictions, 
global max pooling and global average pooling are utilized in 
parallel after the sixth convolutional layer, resulting in 2048 
neurons. Then, 2 neurons are obtained through the fully 
connected layer and the softmax function. That is the 
predicted probability of whether the image contains tiny 
targets is obtained. 
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Figure 4.  The structure of GSE-Net. 

2) Gradual Squeeze and Excitation Network 

The tiny targets appear inconspicuous, and the area ratio 
is also minimal in the image. Meanwhile, the content of 
useful information of each feature layer is also different. To 
further enhance the features of tiny targets, GSE-Net is 
proposed to pay attention to the region of tiny targets in the 
feature layer. Compared with SE-Net[26], the gradual 
squeeze can avoid abruptly compressing feature layers 
abruptly and ignoring effective features, and it enhances the 
expressive power of effective features.  Thus, the gradual 
squeeze can gradually induce the network to discover features 
of tiny targets more easily. 

GSE-Net consists of two parts: gradual squeeze and 
excitation, as shown in Fig. 4. First, gradual squeeze acts on 
each feature layer, including two convolutional operations 
and one average pooling operation, and then obtains the 
representative value of each feature layer after squeezing, as 
shown in the following formula. 

   1 11 11

5 i iConvF F  (3) 
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9 9 12  i iConvF F  (4) 

  2i if GAP F  (5) 

where 160 160 1 iF  is the feature of the thi  layer in the feature 

layer, with dimensions [160, 160, 1]. 1 32 32 1 F  and 
2 8 8 1 F  are the features sequentially produced by the 

Gradual Squeeze process. 11 11

5 )( Conv  is a convolution kernel 

and a stride of 5 convolutional operations. ( )   is the function 

of rectified linear units. ( )GAP   is global average pooling and 

if  is the representative value of the features of the thi  layer 

after gradually extruding. The features of each layer in the 
feature layer are obtained sequentially after passing through 
the above stepwise extrusion operations. Then, all the 
representative values are activated through the fully 
connected layer and the sigmoid function, as shown in the 
following equation. 
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where N  is the number of channels in the feature layer. ( )FC   

is the fully connected layer and ( )   is the sigmoid function. 
121w  is the representative value after activation, and the 

size is 121. Finally, a gradual attention mechanism is 
implemented through element-wise multiplication between 
the activated representative values and the initial feature layer, 
as shown in the following equation. 

  F F w  (7) 

where   is element-wise multiplication and F  is the feature 

layer that has passed through GSE-Net. 

C. Training 

In this paper, the training of the proposed network for 
detecting tiny target consists of two parts: the training of 
ERFE-Net and the training of gradual attention based 
decision network(GABD-Net). There is a sequential 
relationship between the two parts of the training. 

ERFE-Net is trained first, and GABD-Net is frozen during 
the training process. When the loss value of ERFE-Net 
reaches the specified value, the training is stopped. The loss 
function of ERFE-Net is shown below. 
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where b  is the number of samples in a batch. w  and h  are the 

width and height of the image, respectively. ( )k ,i , jy  and ( )k ,i , jp  

are the label value and predicted value of position ( )i, j  in the 
thk  image, respectively. Then GABD-Net is trained and 

ERFE-Net is frozen and its loss function is shown below. 
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where kY  is the label value of the thk  image and kP  is the 

corresponding predicted value. When the number of training 
rounds reaches the specified value, the training of the entire 
network model is completed. 

III. EXPERIMENTS 

To demonstrate the performance of the proposed detective 
network, related experiments are performed on a dataset 
derived from crack images of tantalum capacitors. 
Specifically, the experiment includes 3 parts: experimental 
settings, ablation experiment, and comparative experiment. 
Experimental results show that the network model exhibits 
superior performance than existing network models. 

A. Experimental Settings 

1) Dataset 

The dataset of cracks was obtained by using an industrial 
camera to capture tantalum capacitors in a visual experiment 
platform, and the result was a total of 2400 images. In this 
dataset, there are 153 images containing cracks. Images 
containing cracks were taken as positive samples. 153 images 
without cracks are regarded as negative samples to balance 
positive and negative samples. Thus, the dataset has 306 

images with a resolution of 160 × 160 pixels. Examples with 
and without cracks are shown in Fig. 5, and each image is 
provided with a manual pixel-level region mask. 266 images 
are randomly selected as an independent validation set, and 
the rest are training sets before experiments. To ensure the 
experimental validity, the images in the validation set of each 
experiment are the same. The training set and the validation 
set of each experiment contain half of the positive and 
negative samples. 
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Figure 5.  Examples of samples in the dataset: positive samples(crack), 
pixel-level region masks(mask), and negative samples(without crack). 

2) Implementation Details 

The dataset was acquired using a Conway 20x telecentric 
lens, model MVL-MY-2-110-MP. All experiments were run 
on CPU x Intel(R) Xeon(R) CPU E5-2698 v4 and NVIDIA 
Tesla V100. The proposed network employs the Adam 
optimizer during training with a learning rate set to 0.001, an 
average coefficient of gradient computation of 0.5, and a 
sum-squared coefficient of 0.999. The size of each batch is 16, 
and each batch is shuffled randomly. The loss threshold for 
training ERFE-Net is set to 0.0005, and the number of 
training epochs for GABD-Net is 100 epochs. 

3) Evaluation Metrics 

In order to evaluate the performance of the proposed 
detective model from multiple aspects, multiple evaluation 
metrics are introduced, including accuracy, precision, recall, 
and F1-score, as shown in the following equation. 
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where TP , FP , TN , FN  is True Positive, False Positive, 

True Negative, and False Negative, respectively. In addition, 

to further demonstrate the stability of the proposed model, the 

receiver operating characteristic curve(ROC) and area under 



  

the curve(AUC) also serve as evaluation means. 

B. Ablation experiments 

This subsection demonstrates the effectiveness of 
different innovative parts in the network model through 
ablation experiments. The effectiveness of ERFE-Net and 
GSE-Net are sequentially evaluated separately. Specific 
experimental details will be described below. 

TABLE I.  COMPARATIVE EXPERIMENTAL RESULTS ON THE 

PERFORMANCE OF ERFE-NET 

Training Ac Pr Re F1 AUC 

None ERFE 62.41% 59.76% 75.94% 66.89% 65.89% 

Non-train ERFE 70.30% 71.77% 66.92% 69.26% 75.38% 

Reduce FLR 96.24% 96.95% 95.49% 96.21% 98.33% 

Ours 98.50% 100.0% 96.99% 98.47% 99.96% 

 

Figure 6.  The ROC curve about the performance comparison experiment of 
ERFE-NET. 

1) Ablation of Equal Resolution Feature Enhancement 
Network 

To verify the superiority of ERFE-Net, the ways of 
participating in the comparison include None ERFE, 
Non-train ERFE, and Reduce FLR. Specifically, None ERFE 
means that the entire detective network only contains 
GABD-Net. That is, the original image is directly utilized as 
the input of GABD-Net. Non-train ERFE means that the 
training process is not divided into two steps. That is, the 
network training process is end-to-end. Reduce FLR means 
that the max-pooling layer is inserted after each convolutional 
operation of ERFE-Net. At this time, the feature layer of 
ERFE-Net decreases at twice the speed layer by layer. 

2) Ablation of Gradual Squeeze and Excitation Network 

To evaluate the superiority of GSE-Net, two terms 
involved in the comparison are introduced, including None 
Attention and +SE-Net. Among them, None Attention means 
that the model does not introduce an attention mechanism. 
+SE-Net refers to replacing GSE-Net with SE-Net. 

From the experimental data in Table Ⅱ, the introduction of 
GSE-Net improves the overall performance of the network 
model once again. In particular, the precision achieves a score 
of 100%, and the F1-score and AUC almost reach the score of 

a perfect classifier. However, SE-Net did not improve the 
performance of the network model. It is not difficult to 
analyze that GSE-Net is more suitable for feature layers with 
a larger resolution because it adopts a step-by-step extrusion 
method. Thus, this demonstrates the superiority of the 
proposed GSE-Net when applied to feature layers with larger 
spatial dimensions. In conclusion, GSE-Net can notice the 
features of cracks on feature layers with a larger resolution, 
thereby improving the model's overall performance. 

TABLE II.  COMPARATIVE EXPERIMENTAL RESULTS ON THE 

PERFORMANCE OF GSE-NET 

Training Ac Pr Re F1 AUC 

None Attention 97.74% 98.47% 96.99% 97.72% 99.79% 

+ SE-Net 97.74% 98.47% 96.99% 97.72% 99.66% 

+ GSE-Net 98.50% 100.0% 96.99% 98.47% 99.96% 

C. Comparative Experiments 

Given that deep learning has achieved good results in the 
task of detecting cracks, we compare several mainstream 
classification networks and more advanced methods with the 
network model proposed in this paper, including mainstream 
classification networks: resNet50[27] and DenseNet[28], and 
more advanced methods: Racki-Net[22] and SegDecNet[23]. 
For fairness, all participating networks were trained with the 
same choice of settings. 
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Figure 7.  Experimental results comparing other models with ours. 

 

Figure 8.  The ROC curve comparing the performance of other models with 

ours. 

The experimental results of the performance comparison 
between the proposed and other network models are shown in 



  

Fig. 7 and Fig. 8. Among other networks involved in the 
comparison, Racki-Net and SegDecNet did not reach 90% on 
the F1-score. The F1-score of the method proposed in this 
paper is almost 98.5%, about 10% higher than the above two 
methods. In terms of robustness, the score of 99.96% 
obtained in the experiments shows that the proposed network 
model has strong stability. From other performance 
evaluation indicators, the performance of the proposed 
network model is also extremely superior. It is easy to analyze 
that Racki-Net and SegDecNet reduce the resolution of 
feature layers in feature extraction and enhancement, which 
loses the features of cracks to a certain extent, while the 
proposed ERFE-Net reduces the loss of features. Additionally, 
introducing the gradual attention mechanism further 
strengthens the features of cracks. Furthermore, resNet50 and 
DenseNet clearly show poor performance. To sum up, the 
network model proposed in this paper has outstanding 
advantages in detecting cracks. 

IV. CONCLUSION 

In this paper, a network model combining ERFE-Net and 

GSE-Net is proposed for tiny target detection problems with 

weak features accompanied by high noise and a small area 

ratio, verifying its performance on a real crack dataset. 

Specifically, ERFE-Net is designed to overcome the problem 

of extracting and enhancing weak features under high noise 

because it efficiently extracts features while avoiding the loss 

of features to a certain extent. Additionally, the full-scale 

feature layers from ERFE-Net are exploited to improve the 

utilization of useful information. Meanwhile, GSE-Net is 

proposed to guide the network model to efficiently search for 

features of tiny targets in large-resolution feature layers with 

high noise. The role of GSE-Net in the full-scale feature layer 

is to strengthen the features of tiny targets further. The 

experimental results show that the method for detecting tiny 

targets proposed in this paper has significantly superior 

performance. 

Future work will focus on investigating the generality of 

the detective method. The detection model is improved on the 

existing basis, and the applicability of the model is expanded 

to more tiny targets recognition, providing a powerful 

detection method for detecting tiny targets on the surface, 

such as precision instruments and electronic appliances. 
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