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ABSTRACT

Future Multi-Domain Operations (MDO) will require the coordination of hundreds—even thousands—of devices and com-
ponent services. This will demand the capability to rapidly discover the distributed devices/services and combine them into
different workflow configurations, thereby creating the applications necessary to support changing mission needs. Moti-
vated by neuromorphic processing models, in previous work it was shown that this can be achieved by using hyperdimen-
sional symbolic semantic vector representations of the services/devices and workflows. Using a process of vector exchange
the required services are dynamically discovered and inter-connected to achieve the required tasks. In network edge envi-
ronments, the capability to perform these tasks with minimum energy consumption is critical. This paper describes how
emerging spiking neural network (SNN) neuromorphic processing devices can be used to perform the required hyperdi-
mensional vector computation (HDC) with significant energy savings compared to what can be achieved using traditional
CMOS implementations.
Keywords: AI, Spiking Neural Networks, Service Discovery, Workflow Composition, Hyperdimensional Computing, Vec-
tor Symbolic Architecture

1. INTRODUCTION
Future Multi-Domain Operations (MDO) will require the coordination of hundreds—even thousands—of devices and com-
ponent services in what has become known as the Internet of Battlefield Things (IoBT). This will demand the capability to
rapidly discover the distributed devices/services and combine them into different workflow configurations, thereby creating
the applications necessary to support changing mission needs. To meet these objectives, we envision a distributed Cognitive
Computing System (CCS) that consists of humans and software that work together as a ‘Distributed Federated Brain’.1

To address this challenge, our current research harnesses advancements from an emerging computing framework termed
Vector Symbolic Architectures (VSA)2 or Hyperdimensional Computing (HDC)3 to develop light-weight algorithms for
efficiently performing cognitive processing at the network edge. Vector Symbolic Architectures (VSAs) are a family of
bio-inspired methods originally inspired by Hinton4 for representing and manipulating concepts and their meanings using
fixed size vector representations in a high-dimensional vector space. Eliasmith5 has shown how these vector representations
can be used to perform ‘brain like’ neuromorphic cognitive processing and coined the phrase ‘semantic pointer’ for such a
vector since it acts as both a ‘semantic’ description of the concept and a ‘pointer’ to the concept. As such, they are said to be
semantically self-describing. VSAs are capable of supporting a large range of cognitive tasks such as: Semantic composition
and matching6, 7 ; Analogical mapping2 ; and Logical reasoning6, 8 . Consequentially they have been used in natural language
processing6 , and cognitive modelling5 . VSAs use vectors of very high dimensionality (D), i.e., hypervectors (HVs). For
example, Plate’s Holographic Reduced Representations (HRR)9 use real-number vectors typically having (512 ≤ 𝐷 <
2048). Whereas Kanerva’s Binary Spatter Codes (BSC)10 are bit-string hypervectors (HV), typically having 𝐷 ≈ 10, 000.

In a previous paper presented at SPIE 202111 , a VSA was described that used an hierarchical BSC binding and bundling
scheme12–14 . This new approach to workflow orchestration was used to demonstrate how MDO sensor and service descrip-
tions could be represented as HVs and how these HVs could in turn be bound and bundled into higher-level HVs that
represent sensor-service workflows. Using these workflow HV representations, the possibility to perform efficient dis-
tributed service discovery and workflow orchestration in communications and energy constrained environments that are
typical of IoBT scenarios was described. An example MDO communications re-planning task was used to demonstrate the
approach can be used in a simulated typical TacCIS environment with limited communications bandwidth. Using a VSA
architecture to perform these types of operations is already computationally efficient, since the operations that need to be



performed to discover services only requires simple vector comparison operations (e.g., Hamming Distance using logical
XOR operations on binary HVs). However, in future IoBT environments energy efficiency is crucially important and so
to demonstrate that some of these matching operations could be performed at ultra-low energies an ‘In Memory’ matching
process, based on an experimental Phase Change Memory (PCM) device15 ,was described. It was demonstrated that this
type of device could perform the required matching operations on up to 150 10kbit HVs with an efficiency > 100𝑥 that of
an equivalent CMOS device.

Although PCM devices can efficiently perform the vector matching they are not able to perform the other required VSA
processing operations, namely binding, bundling and unbinding that are required to implement a full VSA solution. The
motivation for this paper was to demonstrate the possibility to perform all of the VSA operations required to implement
the hierarchical VSA scheme presented in the SPIE2111 paper using an alternative technology based on emerging energy
efficient SNN neuromorphic processing devices such as the IBM TrueNorth16 and Intel Loihi 217 processors. Eliasmith5
has demonstrated how spike-rate encoded SNN circuits can implement an HRR based VSA scheme for cognitive processing
in order to perform the required convolution and deconvolution operations. Whilst this is an elegant solution, it requires
large numbers of spikes to be processed and since the energy efficiency of neuromorphic processors is typically a function
of the number of spikes required16 this is not an energy-efficient mechanism. Similarly, although BSC operators are much
simpler to perform than the HRR equivalent, representing 10,000 bit HVs as spike sequences is also not energy efficient.
An alternative to SNN spike rate encoding is time-to-spike encoding which can significantly reduce the number of spikes
required. To use time-to-spike encoding requires a different type of HV representation which we term a sparse hypervector
(SHV). An SHV encoding model was proposed by Laiho et.al.18 , which is based on a slot encoding mechanism with and
SHV encoded as 𝑀 slots with 𝐵 possible bit positions per slot but with only one bit set in each slot. A recent paper by Frady
et.al.19 , compared various alternative SHV models and concluded that this slot encoding has the all desired properties for
VSA manipulations and outperformed the other methods evaluated.

This paper is structured as follows. In Section 2 the basic VSA operations are described and using the Laiho SHV model
the equivalence between HV and SHV bundling capacity is presented. Section 3 describes how the Lahio model can be
mapped to a time-to-spike SNN model and how all the basic VSA operations can be represented as SNN circuits. Section
4 summarises the MDO communications re-planning scenario presented in the SPIE2111 paper. This scenario is used to
illustrate how the basic SNN circuits can be combined to perform the more complex VSA functions required and compares
the estimated energy requirements for SNN devices with those obtained for PCM devices performing similar functions.
Conclusions and plans for future work are presented in Section 5.

2. VSA OPERATIONS
Unlike classical computing, which operates on bits through logical operations and the four arithmetic operations of addition,
subtraction, multiplication and division, VSAs deal with HVs through three operations, bundling (a superposition operator
denoted ‘+’), binding and unbinding (permutation/multiplication operators denoted ‘⊙’ and ‘ ⦰ ’ respectively) and a HV
normalisation operator. VSA vectors built using these operations can then be compared for similarity and have their sub-
vector contents probed using vector comparison operators such as cosine similarity and Hamming Distance/Similarity.

Binding permutes HVs to a different part of the HV space making them orthogonal to all other vectors with high prob-
ability. In this paper two types of binding are used. roll-filler and cyclic-shift binding. roll-filler binding is a multiplicative
permutation between roll (R) and filler (F) HVs such that if 𝑉 = 𝑅⊙ 𝐹 then V is orthogonal to both R and F with high
probability. Binding is also commutative and so 𝑉 ⦰ 𝑅 = 𝐹 and 𝑉 ⦰ 𝐹 = 𝑅. Cyclic-shift binding, denoted ‘𝜌’ is a unary
version for binding/unbinding an HV. Cyclic shift binding cyclically shifts the HV to the right right. Cyclic shift unbinding
cyclically shifts the vector to the left. Again the cyclic shift binding produce an HV the is orthogonal to the original HV.
Binding/unbinding and cyclic-shift are also associative and distribute over bundling. For many VSAs, including BSCs and
Laiho’s SHVs, binding and unbinding are also invertible.

Bundling combines orthogonal HVs using a sperposition operation, such as majority sum addition, into a single same
sized compound HV that bears similarity to each of its roll-filler constituents. The resulting HV therefore represents the
group of sub-HVs of which it is composed, analogous to a set or data record, while simultaneously storing each sub-HV
within its HV elements. Consider the bundled set of roll-filler pairs in Eq. 1

𝑍𝑣 = 𝑉𝑟 ⊙ 𝐴𝑣 +𝑊𝑟 ⊙ 𝐵𝑣 +𝑋𝑟 ⊙ 𝐶𝑣 (1)



To recover the sub-HVs from 𝑍𝑣 it must be unbound with the appropriate roll HV, for example to extract 𝐴𝑣 perform:
𝑉𝑟⦰𝑍𝑣 = 𝐴𝑣 + 𝑉𝑟⦰𝑊𝑟 ⊙ 𝐵𝑣 + 𝑉𝑟⦰𝑋𝑟 ⊙ 𝐶𝑣 (2)

= 𝐴𝑣 + 𝑛𝑜𝑖𝑠𝑒 (3)
By designating the roll HVs in Eq. 1 as ‘position’ HVs (e.g., 𝑉𝑟 = 𝑃0,𝑊𝑟 = 𝑃1, 𝑋𝑟 = 𝑃2) it is easy to see that Eq. 1 can
be used to represent sequences where the filler vector at any position can be extracted by unbinding 𝑉𝑟 with the position
vector. An alternate approach for the creation of sequences is to combine bundling with the cyclic-shift binding operator,
for example

𝑍𝑣 = 𝜌1(𝐴𝑣) + 𝜌2(𝐵𝑣) + 𝜌3(𝐶𝑣) (4)
The exponentiation operator applied to 𝜌 indicates the number and direction of the cyclic-shift steps. Each bundled sub-HV
can be retrieved in order by applying 𝜌 in the opposite direction.

𝐴𝑣 ≈ 𝜌−1(𝑍𝑣) = 𝐴𝑣 + 𝜌1(𝐵𝑣) + 𝜌2(𝐶𝑣) (5)

Bundled VSA HVs preserve vector dimension regardless of the number of sub-attribute HVs being combined. However,
as shown in Section 2.2 the ability to decode sub-HVs within a bundled vector is limited by the vector dimension (D), the
number possible vectors (L), which we define as the vector library size, and the acceptable unbinding error rate (typically
1.0E-06) If greater bundling capacity is required then it becomes necessary to use a hierarchical bundling scheme. In12, 13, 20
an hierarchical binding/bundling scheme is described that employs both permutation and cyclic-shift binding to enable the
creation of practically unlimited hierarchically nested sequences overcoming the limitations that occur when using Eq. 1
or Eq. 4. The encoding scheme is given in Equation 6 and is capable of encoding many thousands of sub-feature vectors
even when there are repetitions and similarities between sub-features:

𝑍𝑥 =
𝑐𝑥
∑

𝑖=1

(

𝜌𝑖(𝑍𝑖)⊙
𝑖−1
∏

𝑗=0
𝑝𝑗

)

+ 𝑆𝑡𝑜𝑝𝑉 𝑒𝑐 ⊙
𝑐𝑥
∏

𝑗=0
𝑝𝑗 (6)

Omitting 𝑆𝑡𝑜𝑝𝑉 𝑒𝑐 for readability, this expands to,
𝑍𝑥 = 𝑝0 ⊙𝑍1

1 + 𝑝0 ⊙ 𝑝1 ⊙𝑍2
2 + 𝑝0 ⊙ 𝑝1 ⊙ 𝑝2 ⊙𝑍3

3 +… (7)
Where

• 𝑍𝑥 is the next highest semantic vector containing a superposition of 𝑥 sub-feature vectors;
• {𝑍1, 𝑍2, 𝑍3,…𝑍𝑛} are the sub-feature vectors being combined for the individual nodes of Figure 1. Each 𝑍𝑛 itself can

be a compound vector representing a sub-workflow or a complex vector description for an individual service step,
built using the methods described by Simpkin et al;21

• 𝑝0, 𝑝1, 𝑝2,… are a set of known atomic role vectors used to define the current position or step in the workflow.
• 𝑐𝑥 is the size of bundled vector 𝑍𝑥, i.e., the number of sub-feature vectors being combined; and
• 𝑆𝑡𝑜𝑝𝑉 𝑒𝑐 is a role vector owned by each 𝑍𝑥 that enables it to detected when all of the steps in its (sub)workflow have

been executed.

The key to understanding the power of Equation 6 as a hierarchical binding scheme results from the fact that the
cyclic_shift operator distributes over the ⊙ operator and we stipulate that cyclic_shift takes precedence over ⊙. As il-
lustrated in Equation 7, this means that if a compound vector such as 𝑍𝑥 is used as a sub-feature vector for a higher level
concept then the 𝑃 vectors associated with each sub-feature vector 𝑍𝑛 are automatically promoted to a new value by the
cyclic_shift. This is illustrated in Figure 1 where we have replaced the ⊙ operator with a ’dot’ symbol and the 𝜌 operator by
adding an exponent to the vector in order to de-clutter the diagram. These representations are interchangeable throughout
the rest of this paper.



Figure 1. Schematic representation of the hierarchical recursive binding scheme showing how vectors compose into higher level vectors
which can then be recursively un-bound from the higher level to lower level vectors.

As shown in Section 4, Equation 6 can be used to construct service description vectors and in turn, using the same
recursive formulation, these vectors can be combined into service workflow vectors at the next higher semantic level. In this
case the vectors, 𝑍1…𝑍𝑐𝑥 represent the individual services and service workflow compositions and the vectors 𝑝𝑜… 𝑝𝑐𝑥−1are a set of random vectors chosen to represent the position of the component services in the workflow. In this paradigm
workflow HVs and SHVs are vectors of vectors.

To extract the sequence of services from a workflow HV the vector can be recursively unbound using the ⦰ operator
and performing a left cyclic shift on the resultant vector as follows:

𝜌−1(𝑍𝑥⦰𝑝0) = 𝑍1 + 𝜌−1(𝑝1)⦰𝜌1(𝑍2) +… = 𝑍1 + 𝑛𝑜𝑖𝑠𝑒 (8)

In this case the resulting vector is a noisy version of the vector 𝑍1 and to identify that this vector is the requested vector
𝑍1, it must be compared with a list of possible vectors and verified to be 𝑍1 by virtue of having the highest similarity (e.g.,
lowest Hdist). This process is often referred to as a ’clean-up’ memory operation.
2.1 BSC vs SHV operators
In the Kanerva BSC HV representation the left or right cyclic shift operations are performed by a rotation of all D bits of
the HV and both the role/filler binding and unbinding operations are performed using the logical XOR operation between
all of the bits of the respective role and filler vectors. The superposition bundling operation in this case is a majority
sum operation. In the Laiho SHV slot encoding model the left and right cyclic-shift operations are achieved by a similar
right-cyclic-shift of the M slot positions. Role-filler binding is however achieved by adding the bit positions between the
corresponding slots of the role SHV (e.g., bit position 𝑏1) and filler SHV (e.g., bit position 𝑏2) and then computing the sum
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Figure 2. Bundling Capacity of BSC HVs and SHVs. (a) shows the equivalence between the two encoding approaches for low unbinding
error rates. (b) shows how the unbinding accuracy is degraded for higher bundling capacity using 10,000 bit BSC HVs and SHVs with
the same information capacity

of the two bit positions modulus the number of possible bit positions 𝐵 (i.e., 𝑏𝑛 = (𝑏1 + 𝑏2)𝑚𝑜𝑑𝐵). The bit at this position
(𝑏𝑛) is then set in the slot of the bound SHV. Unbinding is a modulus subtraction operation (i.e., 𝑏1 = (𝑏𝑛 − 𝑏2)𝑚𝑜𝑑𝐵). The
SHV bundling operation is performed by slotwise addition operation by counting the number of bits that occur in the same
position within each slot from all of the SHVs that are bundled. Sparsity is preserved by computing for each slot the bit
position corresponding to the maximum number of co-occurring bits (i.e., the argmax) and setting the bit at this position
in the final bundled SHV. If there are multiple bit positions with the same number of co-occurring bits then the bit at one
of these positions is selected either randomly or by a well defined algorithm (e.g., lowest bit index). The resulting bundled
SHV therefore has the same sparse structure as the component SHVs of which it is composed.
2.2 BSC vs SHV Bundling Capacity
The bundling capacity of BSC HVs is well established both theoretically and empirically and depends upon the vector
dimension (D), the number of symbolic vectors in the clean-up memory library (L) and the error rate that can be accepted
when unbinding. When using HVs to represent service workflows a high degree of unbinding accuracy is required (i.e.,
typical error rates of 𝑃_𝑒𝑟𝑟𝑜𝑟 <= 10−6). While this limits the bundling capacity of any single HV this can be compensated
for by using the hierarchical binding scheme described above.

In the SPIE2111 paper it was demonstrated that HVs can be used to perform IoBT service workflow orchestration in
typical MDO TacCIS environments. In these environments D is limited by the capability to efficiently exchange HVs
over relatively low bandwidth communications networks. It was demonstrated that this can be performed efficiently using
10,000 bit BSC HVs. The vector library size in these type of applications depends on the number of IoBT services in the
network with each service comparing its own service description vector(s) with the unbound workflow vector to determine



if they are candidates to perform the next action required13, 14, 20, 21 . This vector comparison is performed in parallel by all
the IoBT services and so the clean-up memory library is essentially distributed across the communications network. This
requires the capability to handle large clean-up memory library sizes, typically in the range 1,000 to 100,000 vectors. As
a result the typical bundling capacity is limited to 90 sub-HVs in a single HV. This has been confirmed both theoretically
and empirically.

The bundling capacity for the Laiho slot encoding model18 can also be determined both theoretically and empirically
and Figure 2 (a) compares the bundling capacity of BSC HVs of dimension (D) with SHV encoding for the same information
capacity (i.e., D = 𝑀𝐿𝑜𝑔2(𝐵)) for library sizes (L) of 1,000 and 100,000 SHVs respectively and an unbinding error rate
of 𝑃_𝑒𝑟𝑟𝑜𝑟 <= 10−6. In the example the SHV bits per slot was fixed at 𝐵 = 100 while the number of slots 𝑀 was varied.
The results show that for the same information capacity the bundling capacity of the two representations are equivalent
over a wide range of values of M with a 20% reduction in capacity for a 100 times increase in library size. This result is
significant since it shows that the cost of transmitting SHVs and HVs over a communications network is the same for this
level of unbinding accuracy.

In the VSA literature, bundling capacity is often quoted in the range of hundreds or even thousands of HVs. Reference22
for example, presents results for a range of VSA vector binding and bundling schemes. However in their results the vector
library size is limited to a small number of symbol vectors (L=27) and large bundling capacity is only achieved at the
expense of lower unbinding accuracy. Figure 2 (b) presents empirical results for SHV bundling capacity using the Lahio
model and a library size L = 10,000. The figure shows the unbinding accuracy as a function of bundling capacity for
larger bundling capacity and for SHV vectors with the same information capacity, i.e., 𝑀𝑙𝑜𝑔2𝐵. This is compared to the
theoretical BSC capacity (BSC_)thry). The empirical results show that the slot encoded SHVs perform better than the BSC
HVs and that the accuracy improves as the number of slots (M) is reduced with a corresponding increase bit positions (B) to
maintain the same information capacity. A comparison of the bundling accuracy of the Lahio model with results obtained
in Reference22 and for the same library size (L=27) shows that the slot encoding with 1 bit per slot also has similar bundling
capacity to other non binary encoding schemes such as HRR and FHRR.

It should be noted that whilst bundling capacity is important, VSA bundling is not a data compression technique and
judging performance based purely on sequence indexing capacity is not the main criteria for judging the value of any
VSA approach. The main criteria should be the simplicity with which the vector binding, bundling and unbinding can
be performed, and crucially the efficiency with which the required clean-up memory operations can be performed. For
example,23 found the HRR solution to be intractable; reporting issues with computation time and storage capacity and
noting the computational complexity of HRR solutions to be 𝑂(𝐷.𝑙𝑜𝑔(𝐷)) compared to 𝑂(𝐷) for BSC.

The following sections show how all the required VSA operations operations can be efficiently performed using the
sparse vector slot encoding model using 1 bit per slot and how these operations can be implemented in time-to-spike SNN
circuits.

3. MAPPING SPARSE BINARY VSA OPERATORS ONTO SNN CIRCUITS
Mapping of the sparse slot encoding vector model into an SNN representation is performed by treating each slot as a neuron
and the time-to-spike as the bit position. In the following sections a symbolic representation of an SNN circuit is used as
illustrated in Figure 3(a). In the circuit representation neurons are shown as triangles, each with an input dendrite and an
output axon. The axon of any neuron can connect to the dendrite of one or more other neurons via synaptic connections.
This representation reflects the structure of a typical neuromorphic processor, for example the IBM experimental Truenorth
architecture16 . The major difference between this architecture and the Truenorth architecture is that each synaptic con-
nection between an axon and a dendrite can introduce a time delay to the incoming spike before it stimulates the neuron
associated with the dendrite. The way in which the neuron responds to the stimulus depends on the neuron model used.
The sections below describe how SNN circuits of this type can perform all of the required VSA operations using relatively
simple neuron models and a time-to-spike encoding strategy.

All of the circuit components and models described in this paper have been simulated using the Brian 2 SNN simulation
tool24 . The Brian2 simulator seeks to simulate the behaviour of biological neurons but is equally applicable for simulating
neuromorphic processing devices. In this paper Brian 2 model terminology is used throughout to describe the neuron model
behaviour. All the neuron models are therefore defined by systems of differential equations that determine how the internal
neuron voltage changes. This is controlled by user defined parameters. Each neuron model can specify one or more spike
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Figure 3. Example SNN VSA circuits. (a) SHV Generation and (b) Clean-Up Memory

threshold voltage levels with the result that the neuron producing one or more output spikes on its axon whenever a spike
threshold voltage is exceeded. The Brian 2 neurons also allow the user to specify the neuron voltage reset values following
a spike and importantly to specify refractory properties such that after the neuron fires it is prevented from further spiking
during the refractory period.
3.1 VSA SNN Components
A typical VSA comprises five main components: Hypervector generation; Binding; Bundling; Unbinding and Clean-Up
memory. The following sections show how each of these components can be mapped into SNN circuits which can then
be combined to perform more complex VSA operations. In Section 4.4, an example complex VSA SNN circuit that can
perform hierarchical vector unbinding is described.
3.2 Sparse Hypervector Generation
SHV generation is the component that provides a mechanism for selecting the SHV’s that are to be processed by the other
components. SHVs with M slots can be generated such that the bit position in each slot is random or where the bit position
is chosen to represent some specific vector properties e.g., a semantic vector. Each generated SHV can be stored into a
neuromorphic SHV library using synaptic time delays (𝑑𝑖) corresponding to the bit position. The circuit is shown in Figure
3(a). The circuit comprises two neuron groups designated P and G1. Each of the G1 neurons corresponds to one slot in
the Laiho model and so there are 𝑀 ∗ 𝐺1 neurons. There is one P neuron for each SHV stored in the SHV library and so
there are 𝐿 P-neurons. The P-neuron axons are connected in a matrix structure to the G1 dendrites via synapses as shown in
Figure 3(a) and so there are 𝑀 ∗ 𝐿 synaptic connections. Each P neuron axon connects to each of the G1 neuron dendrites
through the corresponding synaptic connections. The firing of a single P-neuron at time 𝑡0 is the trigger for the generation
of a single SHV. The corresponding spike stimulates all of the synapses on the P-neuron axon and after a time delay of 𝑑𝑗



the associated 𝑗𝑡ℎ G1 neuron is stimulated and its neuron voltage is increased by 𝑉𝑠 at time 𝑡0 + 𝑑𝑗 . All the G1 neurons
in this case have a simple leaky integrate and fire (LIF) type neuron model and a threshold voltage of 𝑉𝑡 (𝑉𝑡 ≤ 𝑉𝑠). The
corresponding G1 neuron immediately fires and generates an output spike. The resulting spike firing pattern of all the M
G1 neurons represents the required SHV time-to-spike encoding.
3.3 Clean-Up Memory Circuit
Before considering how sequences of SHVs can be generated and subsequently bound and bundled, it instructive to under-
stand how the clean-up memory component operates in relation to the SHV generation circuit.

A typical clean-up memory circuit is illustrated in Figure 3.3(b). In this example the circuit is required to mirror the
action of the SHV generation circuit such that if the SHV generated by a spike from the 𝑗𝑡ℎ P-neuron (𝑃𝑗) at time 𝑡0 were
input then the corresponding 𝑗𝑡ℎ G5 output (𝐺5𝑗) neuron would be stimulated and would fire at time 𝑡0 + 𝐵Δ. To achieve
this objective the circuit comprises M input neurons in a neuron group designated as G4 and L output neurons designated
as neuron group G5. In this case the axon of each G4 neuron connects to all L dendrites of the G5 neurons via synaptic
connections. The synaptic delays are calculated such that any SHV input to the circuit is additionally delayed at each of the
synapses on the G5 dendrites i.e., on the 𝐺5𝑗 neuron the additional time delay would be 𝐵Δ− 𝑑𝑗 . Thus at time 𝑡0 +𝐵Δ all
of the delayed spikes will simultaneously stimulate the dendrite of the 𝐺4𝑗 neuron resulting in a stimulus of 𝑀 ∗ 𝑉𝑠 volts
being received. If this voltage exceeds the neuron threshold voltage then the neuron will fire at this time. Conversely on all
other dendrites the stimulus will arrive with a random time delay and so the voltage on these neurons will not exceed the
spike threshold.

When a number of generated SHVs have been bound and bundled, following an unbinding operation the received SHV
will be a noisy version of one of the SHVs in the sense that only a subset of the M bits will match. The expected number of
matching bits (𝑚) depends on the values of M, B and the number of bundled SHVs N. This can be determined theoretically
and has been empirically verified. In this case only 𝑚 synaptic time delays will match and the the resulting stimulus at time
𝑡0 + 𝐵Δ will be 𝑚 ∗ 𝑉𝑠. Similarly the expected mean number of matching bits for all other 𝐿 − 1 neurons that will align
randomly can be determined. The spike threshold 𝑉𝑡 of the G5 neurons is therefore chosen to ensure that only those neurons
that match will fire with high probability. An important feature of this clean-up memory circuit is that matching against all
L library SHVs is performed in parallel and is only limited by the number of synaptic connections on the dendrite. The
results from an example Brian2 simulation of a clean-up memory circuit is given in Section ??.
3.4 Cyclic Shift Binding and Bundling
Right Cyclic Shift binding of the spike encoded SHV can be performed by connecting the output axon of each of the M
neurons to the dendrite of the next neighbouring neuron in the group via further set of synaptic connections. Figure 4 (a)
illustrates this for a neuron group designated G2 where the output of neuron 𝐺2𝑗 is wired to the input of neuron 𝐺2𝑗+1 and
the output of the last neuron, 𝐺2𝑀−1, is wired to the input of the first neuron, 𝐺20. The synaptic delay on these connections
is 𝐵Δ − 𝛿 seconds where 𝛿 is the minimum neuron processing delay between a stimulus event on the dendrite and the
output spike being generated. The circuit operates as follows. At time 𝑡0 a P-neuron fires to select the first of the SHVs
to be bundled. This SHV is then cyclically shifted and arrives at the input of the G2 neuron group with all spikes delayed
by 𝐵Δ seconds. At time 𝑡0 + 𝐵Δ a second P-neuron is fired which selects the next SHV to be bundled. The input to
each G2 neuron is then the shifted spike from the first SHV and the spike from the current un-shifted SHV. To perform
the bundling operation on these two SHVs each neuron selects fires on receipt of the earliest of these spikes and then uses
the refractory property of the neuron to suppress any later spikes occurring in the remainder of the 𝐵Δ time period. This
operation maintains the sparsity of the resulting output SHV at one spike per neuron. The process continues until all N
SHVs that are to be cyclically shifted and bundled into a new SHV with only one spike per neuron.

Figure 4 (b to d) shows the results from the Brian2 simulation of this process. The number of SHVs being bundled in
this example is limited to just five SHVs with M= 100 neurons, B = 100 bit positions, Δ = 0.001 and 𝛿 = 0.0001 so that
the actions can be clearly seen. In Figure 4(b) the sequence of P-neuron firing is shown beginning with neuron 𝑃4 down
to neuron 𝑃0 with a 100ms separation between spikes. In Figure 4 (c) the neuron voltage from a single G2 neuron (𝐺2𝑗)is shown. In the first 100ms there the neuron is stimulated at 𝑡0 + 80𝑚𝑠 and since this is the first stimulus the neuron fires.
This is indicated by the fact that there is no exponential decay of the neuron voltage since on firing the neuron voltage is
reset to zero. The pattern of firing of all 100 G2 neurons is shown in Figure 4 (d) in the first 100ms, the spike pattern is for
the un-shifted SHV that was generated by the triggering of the 𝑃4 neuron. In the next 100ms the spike from the adjacent
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Figure 4. Cyclic Shift Binding. (a) SNN Circuit. (b)-(d) Brian2 simulation results binding 5 vectors with M = 100, B = 100 and Δ = 1𝑚𝑠

neuron 𝐺2𝑗−1 and the new spike generated from the firing of the 𝑃3 neuron stimulate the neuron as shown in Figure 4 (c).
The first of these stimulus events causes the neuron to fire but the second stimulus event does not result in a spike. The
output from all the G2 neurons now represents the cyclically shifted bundled SHV of the first two selected SHV’s. The
process continues until all five SHVs have been bundled, and the resultant cyclically shifted bundled SHV is as shown in
the time period between 400ms and 500ms in Figure 4 (d).
3.5 Cyclic Shift Unbinding and Clean-Up
To unbind this SHV it is necessary to perform a left-cyclic shift operation. The circuit required to do this is shown in Figure
5(a) where the neuron group G2 that performs the cyclic shift is wired in the reverse order to the previous circuit. In this
case the output of neuron 𝐺2𝑗 is wired to the input of neuron 𝐺2𝑗−1 with the output of neuron 𝐺0 wired to the input of
neuron 𝐺𝑀−1. The time delay on the cyclic shift connections is again 𝐵Δ − 𝛿 seconds. The bundled SHV is injected into
the circuit at time 𝑡0 and therefore the unbinding of each bundled SHV occurs every 𝐵Δ seconds. This is shown in the
Brian2 simulation results in Figure 5(b) where the SHV in each 100ms time period is a left-shifted version of the SHV from
the previous 100ms.

The output SHV from the G2 neurons is a noisy version of each of the original bundled SHVs in the sense that only a
subset of the bit positions will match the corresponding ’clean’ SHV. This noisy SHV is injected into the clean-up memory
circuit as described in Section 3.3 and the resulting neuron voltages from all of the G3 output neurons is shown in Figure
5(c). The effect of the clean-up memory operation can be clearly seen with the neuron voltage of all neurons other than the
neuron corresponding to the noisy unbound SHV being random but for the matching neuron the voltage peaks at the end
of each unbinding cycle. In the example, and for illustration only, the spike stimulus event on the neurons dendrite is set at
1.0 volts and so the voltage is a measure of the number of matching bits. In this example the average number of matching
bits is 19 which conforms to the theoretical expected value. Each neuron has a threshold voltage that is determined by the
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Figure 5. Cyclic Shift Unbinding and Clean-Up Memory. (a) SNN Circuit. (b)-(d) Brian2 simulation results unbinding 5 vectors with M
= 100, B = 100 and Δ = 1𝑚𝑠

maximum number of SHVs that can be bundled and the neuron spikes when this threshold is exceeded. In this case the
pattern of neuron firing is shown in Figure 5(d) which shows a sequence ordering from 𝐺20 to 𝐺24, which is the reverse
of the order in which the SHVs were bundled as expected. The neuron firing order is essentially an index of the matching
SHV and if the actual matching SHV is required then this output can be used as the input triggers to the SHV generation
circuit.
3.6 Role-Filler Binding and Bundling Circuit
Role-filler binding that conforms to the Laiho slot encoding model requires a neuron model that can perform a modulus
addition between the times of arrival of two input spikes and produce a single output spike at that position. A neuron model
that can perform this operation is illustrate in Figure 6(a) where the synaptic connections between the two input neurons
and the output neuron introduce no delay. The neuron model uses a linearly increasing neuron voltage that is then held
constant on the arrival of the first spike and then linearly decays on the arrival of the second spike. The neuron has two
spike thresholds voltages 𝑉0 and 𝑉𝑡 and the time constant of the linear increase or decrease is (𝑉𝑡 − 𝑉0)∕𝐵Δ. If the neuron
voltage falls below the lower threshold 𝑉0 the neuron fires and the neuron voltage reverts to the linear increase. If the upper
threshold is exceeded the neuron fires and the neuron voltage is reset to 𝑉0. If two spike times (e.g., 𝑡1, 𝑡2) sum to less than
𝐵Δ the lower threshold is crossed at time 𝑡1 + 𝑡2 and the neuron fires and the neuron voltage reverts to a linear increase
which reaches the upper threshold at time 𝐵Δ + 𝑡1 + 𝑡2. This is equivalent to the required modulus addition in the next
cycle. If the two spike times (e.g., 𝑡3, 𝑡4) sum to more than 𝐵Δ then the lower threshold is reached at time 𝐵Δ + 𝑡3 + 𝑡4which is the required modulus addition in the next cycle time window and the neuron fires. The neuron voltage then reverts
to a linear increase but this gets reset at time 2𝐵Δ and the process can repeat.The neuron model also operates on a cyclical
basis and resets every 2𝐵Δ seconds.
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Figure 6. Role-Filler Binding and Unbinding Neuron Model. (a) Binding using modulus addition. (b) Unbinding using modulus subtrac-
tion

The Role-filler binding and bundling circuit that performs this operation is shown in Figure 7(a). The circuit uses the
the same SHV generation circuit as the cyclic shift binding and bundling circuit, but now the role and filler SHVs are
generated concurrently with each pair being generated after a time delay of 2𝐵Δ seconds. To aid understanding of how this
circuit operates Figure 7 (b) to (f) shows the corresponding Brian2 simulation results. The circuit comprises two neuron
groups. Group G1 performs the binding using the neuron addition model and Group G2 performs the bundling using the
same model as the cyclic shift neurons to select the earliest spike. The G2 neuron group could have been implemented as
a recurrent connection where each G2 neuron feeds back to itself. However, a simpler neuron model was used in which
neuron fires in its current cycle at the same time as in the previous cycle the unless an earlier stimulus is received from the
next vector to be bundled.

In Figure 7(b) the P-neurons are shown to fire every 2 ∗ 𝐵Δ = 200𝑚𝑠 with five pairs of SHVs being generated. Each
pair are the role and filler SHVs that are to be bound in each case. Figure 7(c) shows the neuron voltage of one of the
G1 neurons which illustrates the addition bundling operation. Whilst the Laiho model specifies a modulus operation, all
that is actually required is a reversible operation for binding and unbinding. A simplification to the model was therefore
used which performs the addition but does not apply the extra cycle required for the modulus. As will be seen the reverse
subtraction operation then also does not perform the modulus cycle. The output spikes from the single corresponding neuron
are shown in Figure 7(d) and these are fed into the bundling neuron group G2 with Figure 7(e) showing the neuron voltage
of the corresponding G2 neuron. The spike pattern for all 100 G2 neurons after each binding and bundling cycle is shown
in Figure 7(f).
3.7 Role-Filler Unbinding and Clean-Up Memory Circuit
To illustrate how the Role-Filler unbinding operates the time delays of the spikes from the bundled SHV are used to create
an additional entry in the SHV Generation memory that stores the bundled vector. The unbinding and clean-up memory



(a)

(b)

(c)

(d)

(e)

(f)

Vector 
Bundling

Sp
ar

se
 V

ec
to

r G
en

er
at

io
n

BDt

P 
ne

ur
on

s

G2 neurons

Synaptic
Delays

Output
Sparse Bundled Vector

G1 neuronsVector Binding

Role 1

Filler 1

Role 2

Filler 2

Role m

Filler m

Input 
Pairs of role filler
trigger spikes for 

vectors to be bound

Figure 7. Role-Filler Binding and Bundling. (a) SNN Circuit. (b)-(f) Brian2 simulation results unbinding 5 vectors with M = 100, B =
100 and Δ = 1𝑚𝑠

circuit is shown in Figure 8(a). The unbinding circuit comprises a singe neuron group (G4) which implements the subtraction
neuron model shown in Figure 7(b). Subtraction is performed in a similar way to the addition but on receipt of the second
spike the neuron voltage is linearly increased and a spike is generated at when this voltage exceeds an upper spike threshold.

The unbind operation uses the P-neurons to simultaneously generate a role SHV and the stored bundled SHV. This action
is required to unbinfd the corresponding filler SHV. To unbind all the filler SHVs this process is repeated every 𝐵Δ ms
cycling through the role vectors. This is illustrated in Figure 8(b) where roles 𝑃0, 𝑃2...𝑃8 are sequentially selected to unbind
the bundled SHV. The corresponding voltage of one of the unbinding G4 neurons is shown in Figure 8(c) and the resulting
unbound SHV in each 200ms unbinding cycle is shown in Figure 8(d). These SHVs are injected into the Clean-Up Memory
and the resulting G5 neuron voltages are shown in Figure 8(e). Because the cycle time is now 200ms the noise varies as
shown but as for the cyclic shift clean-up operation the neuron voltage on the neuron corresponding to the matching SHV
adds at the end of each cycle to reflect the number of matching bits which again has an average of 19 bits. The sequence of
G5 neuron firing is shown in Figure 8(f) which are the required corresponding filler SHV indices.

4. USING SHVS AND SNN CIRCUITS IN AN MDO SCENARIO
To demonstrate how a VSA approach can be used to perform typical MDO tasks the SPIE2111 paper described a com-
munications re-planning task being performed in a typical MDO TacCIS environment where agile rapid communications
re-planning is required. The demonstration showed how a radios and communications plans can be represented as VSA
HVs and how by exchanging the HVs over a number of radio networks, the HVs can be used to discover radio’s operating
under a current communications plan and instruct them to switch to a required target communications plan. The SPIE2111
paper also explained how an experimental ’In Memory’ processing ’Phase Change Memory’ (PCM) device could be used
to perform some of the required vector processing, specifically the clean-up memory processing, at ultra low energy.
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This section describes how an SNN neuromorphic processor can be used to perform the required VSA operations and
specifically how an SNN circuit can perform the clean-up memory operation on hierarchical SHVs.
4.1 The Scenario
The scenario used in the SPIE2111 paper is shown in Figure 9. At the start of the scenario different types of platform
and their associated radio’s are operating on the different radio channels indicated by the three planes (CH1 - CH3) in
the diagram. Some of these radio’s are assumed to be on a fixed channel, some can operate on any two channels and a
minority can operate on all three channels. Whilst three channels were used to demonstrate the principle, increasing the
number of available channels and expanding the capabilities of the radios to use multiple channels is not a limitation. A
commander wishes to request assets under their control to be used in different configurations operating on different radio
channels. Figure 9, for illustration, shows the initial and target configurations of the radios and their associated platform
(e.g., personal radio’s are assumed to be associated with an individual user).
4.2 Representing Radio’s as VSA SHVs
To represent radio’s as VSA SHVs, the SHV binding scheme described by Equations 6 and 7 in Section 2is used. In the
scenario, an individual radio is specified by key-value pairs represented in a json description file as illustrated in Figure
10. The json description defines the various attributes of the radio and its associated roles and platform characteristics.
The keys (i.e., roles) are associated with corresponding values (i.e., fillers). This json structure is used for the purpose of
our scenario but any field descriptions and corresponding values can be used. The json file is automatically parsed and
converted into SHVs using a similar approach to that described in Reference 13 for BSC HVs. The approach uses random
SHVs to describe each letter of the alphabet and any required additional symbols (e.g., punctuation, from which the various



Figure 9. Schematic of the scenario showing the current and target communication plans in three channel layers. The colour coding of
the different radio/platforms is used to illustrate the vector unbinding

keys can be constructed. For example, the key ‘company’ is constructed from random SHVs for each letter of the word as
follows:

𝑍𝑘𝑒𝑦−𝑐𝑜𝑚𝑝𝑎𝑛𝑦 = 𝑐0 ⊙ 𝑜1 ⊙ 𝑚2 ⊙…⊙ 𝑦6 (9)

In this case the SHV binding produces a unique role SHV for each key.
The ’value’ SHVs are constructed in a similar way but to allow for similar values to be compared the value SHVs use

both binding and bundling operations. For example the value ’alpha’ is constructed as follows:
𝑍𝑣𝑎𝑙𝑢𝑒−𝑎𝑙𝑝ℎ𝑎 = 𝑎0 + 𝑙1 + 𝑝2 ⊙ +…+ 𝑎4 (10)

Figure 10. json representation of two radios each with different configurations

VSA SHVs for both role and filler SHVs that can also be generated from a semantic vector space, for example Word2Vec,25
via the method of randomised binary projection.26 This enables semantically similar descriptions of radio’s to be created
allowing the discovery of similar services from different MDO partners.

The resulting key and value SHVs are bound together to construct key-value (i.e., role-filler) SHVs and these SHVs are
bundled to create a description SHV for each radio as follows:

𝑍𝑟𝑎𝑑𝑖𝑜−1 = 𝑍𝑘𝑒𝑦−𝑖𝑑 ⊙𝑍𝑣𝑎𝑙𝑢𝑒−1 +𝑍𝑘𝑒𝑦−𝑐𝑜𝑚𝑝𝑎𝑛𝑦 ⊙𝑍𝑣𝑎𝑙𝑢𝑒−𝑐𝑜𝑚𝑝𝑎𝑛𝑦1 +…+𝑍𝑘𝑒𝑦−𝑆𝐼𝐷𝐶 ⊙𝑍𝑣𝑎𝑙𝑢𝑒−𝑆𝐹𝐺𝑃𝑈𝐶𝐼−−−𝐴 (11)

In our scenario, since we want to instruct a radio to switch to a specific channel, we separately construct SHVs for each
of the allowable channels on which the associated radio can operate. For example:



𝑍𝑈𝐻𝐹𝐶ℎ𝑎𝑛𝑛𝑒𝑙1 = 𝑍𝑘𝑒𝑦−𝑈𝐻𝐹𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⊙𝑍𝑣𝑎𝑙𝑢𝑒−1 (12)
and

𝑍𝑉 𝐻𝐹𝐶ℎ𝑎𝑛𝑛𝑒𝑙1 = 𝑍𝑘𝑒𝑦−𝑉 𝐻𝐹𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ⊙𝑍𝑣𝑎𝑙𝑢𝑒−1 (13)

And so the first radio in our example would also have SHVs for VHF Channel 1 and UHF channels 1 - 3 together with
bundled with an SHV that described its key-value (i.e., role-filler) description pairs.

This approach provides the flexibility for a radio to have a number of accredited functions and radio channels on which
it can operate with each allowable configuration being stored on the radio device as a separate SHV.
4.2.1 Representing Communications Plans as VSA SHVs
To represent a communications plan (comms-plan) as a VSA SHV each radio can be represented as a service and the
comms-plan itself as a workflow. The workflow needs to record the order in which the radio services are discovered and so
the hierarchical binding scheme described in Section 2 is used to achieve this. In this case the service SHVs are constructed
as an SHV that combines the required radio description SHV and the channel SHV that the plan requires that radio to be
on, for example:

𝑍𝐶𝑜𝑚𝑚𝑠−𝑃 𝑙𝑎𝑛 = 𝑝00 ⊙𝑍𝑟𝑎𝑑𝑖𝑜−1 ⊙𝑍𝑈𝐻𝐹𝐶ℎ𝑎𝑛𝑛𝑒𝑙1 + 𝑝00 ⊙ 𝑝01 ⊙𝑍𝑟𝑎𝑑𝑖𝑜−1 ⊙𝑍𝑈𝐻𝐹𝐶ℎ𝑎𝑛𝑛𝑒𝑙1 +… (14)

The construction of a comms-plan SHV is shown schematically in Figure 11 where it can be see that the comms-plan
SHV is a hierarchical vector of vectors which, as a result of the binding and bundling operations, is the same dimension as
the original component SHVs.

Figure 11. Hierarchical construction of the Comms-Plan SHV as a vector of vectors

4.3 Logical Operations Performed
When a communications plan change is to be activated, the commander radio assumes the role of a requesting node. The
node packs the SHV into a wireless communications packet and multicasts the packet on one of the available communica-
tions channels. The sequence of logical operations that are then performed by each node are identical to those described in
detail in the SPIE21.11 It has been shown in Figure 2 (a) that the bundling capacity of the SHVs is equivalent to the type
of BSC HVs used in the SPIE2111 paper when 𝐷 = 𝑀𝑙𝑜𝑔2𝐵. So in the scenario the equivalent SHVs have a 𝑀 = 1000
neurons and 𝐵 = 1024 possible bit positions with a library size 𝐿 = 10000 . Since vectors of this size require 𝑀𝑙𝑜𝑔2𝐵 bits
to communicate the vector the wireless communication requirements are identical to the reported results in the SPIE2111
paper.



The logical sequence of operations is shown as a flowchart in Figure 12 where each node is in one of two states. It is
either acting in a ‘Listening State’ or in a ‘Requesting State’. In Figure 12 the ‘Listening State’ workflow is connected by
orange flow and is un-shaded. In the ‘Requesting State’ the flow is connected by blue lines and the actions are shaded. The
red dashed lines indicate message transmission/reception. Details of all these operations are given in the SPIE2111 paper.

Essentially when a comms-plan SHV is transmitted on any radio channel all the VSA enabled radios are in a listening
state and respond to any VSA messages on their current channel. On receipt of a VSA message nodes unpack the SHV
and compare it with their own SHV library of allowable SHV descriptions. The received vector will always be a noisy
representation and so this action must be performed using a ’clean-up’ memory operation. Since each radio can potentially
have a large number of possible configurations the size of the local clean-up memory can itself be relatively large but
because all radio nodes are performing this action in parallel the actual vector library size (L) used to determine the clean-
up memory match threshold is effectively the size of all the allowable configurations across all participating nodes. Each
node therefore compares this noisy unbound SHV with its allowable channel SHVs. If there is an above threshold match
then this radio is a candidate to perform the requested operation in this step of the plan.

In the current architecture each candidate node performs a set vector exchanges with the current requesting node to
determine if it is the best match and if selected it becomes the current requesting node. The node then performs the required
service action, unbinds the received vector, packs the SHV into a wireless communications packet and multicasts the packet
on one of the available communications channels. The detailed description of these operations are again given in SPIE2111
paper.
4.4 Integration points for the SNN circuits
In the SPIE2111 paper a PCM device was described that could perform the required clean-up memory operations for up to
150 10kbit BSC HVs with a significant performance and energy efficiency gain i.e., 𝑜𝑣𝑒𝑟100𝑥 compared to performing the
same operations using standard CMOS circuits. In this section an SNN circuit is described that can perform the same types
of operation but on more SHVs. The circuit can also perform the hierarchical unbinding operation which was not possible
using the PCM device.

Generating a hierarchical SHV using the component SNN circuits can readily be achieved using a combination of Right
Cyclic Shift and Role-Filler binding and bundling and so the following discussion assumes that the hierarchical workflow
vector has been generated. In the logical flow described in Section 4.3 on receipt of a workflow vector the first operation is
to compare the noisy unbound workflow SHV to determine if there is a matching configuration. An SNN circuit that can
perform this operation is illustrated in Figure 13. The circuit is a combination of the sparse SHV generation circuit, the
role-filler and left cyclic-shift unbinding circuits and the clean-up memory circuit. However the cyclic shift connections
now encompass the role-filler binding as shown. The function of the circuit is to perform the vector comparisons but also to
determine the current unbound state of the workflow vector and using a recurrent connection between the clean-up memory
and the vector generation components to select the appropriate position vector to perform the next unbinding operation.

The structure of an SHV workflow vector is described by Equation 7. Each component of the vector represents a step
in the workflow with cyclically shifted node description vectors, 𝑍𝑛

𝑖 , being bound to position SHVs e.g., 𝑃0 ⊙ 𝑃1…⊙ 𝑃𝑛,
where n is the position of the service in the workflow. The operation to unbind the workflow vector is described by Equation
8 which requires a role-filler unbinding operation between a cyclically shifted position SHV e.g., 𝑃 0

0 . 𝑃 1
1 and the Workflow

SHV. The resulting vector is then left cyclically shifted to expose the required noisy version of the required service vector.
The challenge is that when a vector is received it is necessary to determine how many times it has been previously

unbound. To do this an extra SHV, the T-vector, is bundled with the unbound workflow vector. As the vector is unbound
the T-vector is also operated on and so after 𝑛 unbinding operations this vector will have been modified to:

𝑝−𝑛1 ⊙ 𝑃−𝑛
2 ⊙…𝑃−𝑛

𝑛 … 𝑇 −𝑛 (15)

The vector generation component stores the shifted position vectors 𝑃−
0 1…𝑃 𝑛−1

𝑛 together with a null SHV where all
time delays are set to zero and on receipt the received workflow SHV is also stored in the memory.



Figure 12. Flow diagram showing the logical sequence of operations that each radio node performs to achieve the required sequence of
operations

To initiate the process the null vector and workflow vector are triggered and the subtraction unbinding layer and left
cyclic shift neurons simply passes through the workflow vector with no change. Depending on the number of previous
unbinding operations this vector will be:

𝑍𝑥 = 𝑍𝑛 + 𝑝−𝑛1 ⊙ 𝑃−𝑛
2 ⊙…𝑃−𝑛

𝑛 … 𝑇 −𝑛 + 𝑛𝑜𝑖𝑠𝑒 (16)

The clean-up memory stores vectors representing all of the different possible n states of the T vector together with all
of the configuration SHVs 𝑍𝑘 that the node can perform.

When an unbound SHV is injected into the clean-up memory this will result in the excitation of any service SHV
that matches 𝑍𝑛 and the corresponding modified T-vector. This will result in the two corresponding neurons firing as
shown at time 𝑡0 + 𝐵Δ. The firing of the neuron corresponding to 𝑍𝑛 is the indication that there is a match on one of the



configurations that the service can perform and so it is a candidate to perform this step of the workflow. The output of
the matching modified T-vectors is fed back to the position vector that is required to unbind the next step with a delay of
𝐵Δ − 2 ∗ 𝛿 seconds. Since the feedback delay of the left-cyclic shift is 𝐵Δ − 𝛿seconds the cyclically shifted vector 𝑍𝑥−1
and the triggered position vector are injected into the unbinding circuit and the next step in the workflow is revealed. This
circuit can be used to perform a complete unbinding of a workflow vector if required - or in the case of a service the cycle
only has to be completed once to determine if there is a match and to obtain the unbound vector for transmission as the new
requester.

This circuit therefor performs a similar clean-up memory operation to that described in the SPIE2111 paper using the
PCM processor plus the unbinding operation which had to be performed in near-memory alongside the PCM device.
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Figure 13. Hierarchical SNN Unbinding Circuit

4.5 Estimated Energy Efficiency of the SNN Circuits Vs PCM
The results from the Brian 2 simulations have demonstrated that it is possible to implement VSA operations using energy
efficient SNN processing devices. The amount of energy consumed by a neuromorphic processing device is a function
of the number of spikes required to perform the computation. Using a sparse vector encoding and a time-to-spike SNN
processing and maintaining sparcity as the SHV binding and bundling operations are performed minimises the number of
spikes required to perform these operations.

An estimate of the energy required can be made using the TrueNorth experimental SNN processor as a guide. This
processor consumes an estimated 45pJ per spike.16 An SHV cyclic-shift unbinding circuit using 𝑀 = 1000 neurons and
𝐵 = 1024, for each unbinding operation the energy cost is in the region of 45nJ and would take 𝐵Δ seconds to complete.
Similar estimates can be made for the binding and bundling circuits. In contrast, estimates for a CMOS cyclic-shift circuit
is typically in the region of 100pJ per bit,.27 Thus, the cyclic shift operation on a equivalent 𝐷 = 10000 bit BSC HV (i.e.,



𝐷 = 𝑀 log2 𝐵) would require in the region of 1 µJ. Hence, the SNN process would potentially be approximately 20x more
energy efficient, however there is a clear trade-off to be made between energy efficiency gain and processing time latency.

In the case of the clean-up memory circuit the cost of performing the matching operations will depend on the cost of the
synaptic delays rather than simply the number of spikes. Current SNN devices such as TrueNorth do not support time delays
on each synaptic connection and so the energy cost of performing the clean-up memory operations will therefore depend
on the efficiency with which future SNN neuromorphic devices can perform the required time delay synaptic processing.
In terms of a baseline comparison an experimental Phase Change Memory (PCM) device has demonstrated the capability
to perform a 300 vector cleanup memory for 10,000 bit HVs using just 9.44 nJ per query an improvement in total energy
efficiency of x 117.5 compared to the equivalent CMOS implementation,.15 These figures give some indication of the
energy efficiencies that would be required for synaptic time delay processing for an SNN processor that could perform an
equivalent SHV clean-up memory. However this requirement would need to be balanced against the fact that the SNN
processor could also perform all the other required VSA SHV operations.

5. CONCLUSION AND FUTURE DIRECTIONS
Work presented at SPIE2111 showed how a Vector Symbolic Architecture (VSA) approach, using densely encoded binary
hypervectors (HV), could be used to discover services distributed across low bandwidth communications networks and how
distributed service workflows could be orchestrated. This was demonstrated in the context of a communications replanning
MDO scenario. The motivation for this paper was to show that by using a different sparse hypervector representation(SHV),
based on a slot encoding model, that the same VSA operations could be performed and that this type of encoding could be
mapped into energy efficient spiking neural network circuits to perform the VSA processing.

Theoretical and empirical comparison of the VSA binding and bundling capacity of dense encoded binary HVs (i.e., HVs
with 10,000 bits used in the previous work) with VSA SHVs encoded using a sparse slot encoding model proposed by18 are
presented. It is shown that the two representations are essentially equivalent, in terms of bundling capacity,specifically when
low unbinding error rates (1𝑖𝑛10−6 and large vector libraries are required such as in the example workflow orchestration
scenario. Under these conditions SHV unbinding 𝐷 = 𝑀𝑙𝑜𝑔2𝐵, where M are the number of slots. B the number of bits
per slot and D the dimension of the BSC HV. This result is significant since it shows that the communications cost involved
in the vector exchange is identical between the two representations. Interestingly if lower unbinding accuracy is acceptable
then communicating SHVs is more efficient.

Using the slot encoding formulation the paper has demonstrate how the VSA operations can be mapped into SNN
circuits. The resulting circuits can perform all of the basic VSA functions including cyclic-shift and role-filler binding and
bundling, cyclic-shift and role-filler unbinding and the required clean-up memory. Results using Brian 2 simulations of
these circuits show that they perform close to the theoretical predictions and that, using various approximations to the18
model, highly efficient SNN circuits minimise the number of neurons and spikes required to perform the VSA operations
were created.

Energy estimates are provided for performing typical VSA functions and energy efficiencies of x20 are estimated com-
pared to performing the same operations using standard CMOS operation on 10,000 bit BSC HVs. Further energy savings
can be made by reducing the number of neurons but this is at the cost of extending the required processing time for each VSA
operations. Recommendations for future SNN neuromprphic processor design to support VSA processing, particularly in
relation to supporting synaptic time delays have been made.

Current work is focused on extending the VSA circuits to perform hierarchical binding and bundling which requires
cyclic-shift and role-filler operations to be combined into a single circuit. An alternative adaptive approach to determining
the spike threshold voltage for the output neurons of the clean-up memory is also being investigated. Future work will
investigate how SNN circuits can be developed to perform typical VSA processing using semantic SHVs to perform ana-
logical mapping, logical reasoning with a specific focus on abductive reasoning as a form of cognitive processing. The full
capabilities that can be enabled by VSA operations in SNN circuits are still to be explored but this paper shows that it offers
the potential to develop a new generation of energy efficient artificial intelligence capabilities.
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