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CoLocateMe: Aggregation-based, EPC Aware VM
Placement and Consolidation in Large-scale

Heterogeneous Clouds
Hashim Ali, Muhammad Zakarya, Izaz Ur Rahman, Ayaz Ali Khan, Omer Rana, Lee Gillam, Rajkumar Buyya

Abstract— In many production clouds, with the notable exception of Google, aggregation-based VM placement policies are used to provision
datacenter resources energy and performance efficiently. However, if VMs with similar workloads are placed onto same machines, they
might suffer from contention, particularly, if they are competing for similar resources. High level of resource contention may degrade VMs
performance, and, therefore, could potentially increase users’ costs and infrastructure’ energy consumption. Furthermore, segregation-based
methods result in stranded resources and, therefore, less economics. The recent industrial interest of segregating workloads opens new
directions for research. In this paper, we demonstrate how aggregation and segregation-based VM placement policies leads to variabilities
in energy efficiency, workload performance and users’ costs. We, then, propose various approaches to aggregation-based placement and
migration. We investigate through a number of experiments, using Microsoft Azure and Google’s workload traces for more than twelve
thousand hosts and a million VMs, the impact of placement decisions on energy, performance and costs. Our extensive simulations and
empirical evaluation demonstrate that, for certain workloads, aggregation-based allocation and consolidation is ∼9.61% more energy and
∼20.0% more performance efficient than segregation-based policies. Moreover, various aggregation metrics, such as runtimes and workload
types, offer variations in energy consumption and performance, therefore, users’ costs.

Index Terms—Clouds, datacenters, VM placement, resource consolidation, migrations, heterogeneity, energy efficiency, performance
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1 INTRODUCTION

One of the major challenges in cloud datacenters is to man-
age computational resources energy and performance

efficiently. Energy consumption affects our environment and
account for large energy bills while performance affects cloud
economics. Therefore, cloud service providers are focusing
to design policies for energy, performance aware computing,
encouraged by high operational costs of installed computer
clusters [1]. The goal can be achieved in two different ways:
(i) assigning only appropriate resources; and (ii) consolidat-
ing workload onto fewer machines using VM migration and
switching off idle machines. On one side, the capability of
VM migrations brings several benefits such as improved man-
ageability, increased utilization and energy savings. However,
on the other side, it results in down time that decreases
the performance of workloads. Migrations are expensive and
in dynamic cloud environments, where thousands number
of VM requests arrive in an hour, even they might not be
suitable. Therefore, appropriate VM placement policies are
essential to save energy and provide customers the expected
level of workload performance [2].
VM placement policies can be categorized as: (a) segregation;
and (b) aggregation based [1]. In segregation based policies,
the providers run user-facing, batch and production jobs in
separate clusters (hosts) that potentially needs more hosts and,
therefore, may results in stranded resource. Large number
of hosts in use can increase the providers’ energy bill and
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have impact on our environment. Aggregation based policies
run mixed workloads on same hosts which may degrade
the workload performance, particularly, if they compete for
similar resources (co-located VMs) [3]. Moreover, workload
performance also varies across different CPU architectures –
similar workloads may run quite differently over same CPU
model [4]. Subsequently, lower workload performance could
potentially increase infrastructure energy consumption and
users monetary costs. The former approach is widely used in
many production clouds, such as Alibaba cluster [5], with the
notable exception of the Google’s cluster [6]. Perhaps, inspired
from benefits of segregation-based approaches, Alibaba’s clus-
ter resources are also now offered to run workloads in mix.
However, a detailed investigation of both methodologies is
still needed in terms of energy efficiency and workload per-
formance. The switch from aggregation to segregation-based
approaches motivate us to perform this study.
In this paper, we investigate how VMs and workloads would
be placed onto physical hosts, in a heterogeneous cluster, so
that the infrastructure energy consumption is minimized un-
der the performance and users’ cost constraints. We propose
runtime-aware aggregation-based, energy, performance, cost
(EPC) efficient VM placement and consolidation policies in
order to execute several workloads in mix. Since, workloads
are co-located, therefore, we call it CoLocateMe. Using real
workload datasets from virtualised clouds, such as Google
and Microsoft Azure clouds, we evaluate the performance of
runtime-aware aggregation and segregation based placement
policies, in an event driven cloud simulator i.e. CloudSim [7].
Our empirical evaluation suggests that the proposed, runtime-
aware aggregation-based, VM placement and consolidation
policies outperform segregation-based policies. Major contri-
butions of the research conducted in this paper are:
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• an aggregation-based, energy, performance and cost
(EPC) aware VM placement policy is proposed;

• a consolidation method is suggested that put similar
workloads onto same resources;

• the proposed policies account for migration costs in
terms of energy consumption, performance loss;

• with respect to workload performance, we model re-
source heterogeneities in datacenters; and

• we evaluate the impact of aggregation and segregation-
based VM placement and migration policies on infras-
tructure energy efficiency, workload performance and
users’ costs.

The rest of the paper is organized as follows. In Sec. 2, we
discuss the VM placement problem. In Sec. 3, we propose

an aggregation-based allocation and consolidation technique
that places similar workloads on same resources. We validate
the proposed scheme using real workload traces from Azure
clusters in Sec. 4. We offer an overview of the related work in
Sec. 5. Finally, Sec. 6 concludes the paper and describes future
research.

2 PROBLEM DESCRIPTION

The runtime period or execution time (R) of a VM is depen-
dent on data size to be processed and the quantity of resources
i.e. CPU cores, memory, and bandwidth, assigned. The active
period of a physical machine is proportional to the lengthiest
runtime of the VMs running on the machine. If the duration
of most VMs is much shorter than the runtime of the longest
one, it indicates low machine runtime efficiency. To increase
the runtime efficiency of machines, researchers have proposed
techniques like aggregating VMs with similar runtime to a
particular cluster or consolidate VMs by their capacities [8].
The former method can save more power than the later one
through decreasing machine runtime. However, the impact of
the runtime diversity of VMs and VM resource capacities on
amount of machines should be considered when designing
energy, performance and cost efficient resource management
policies. Moreover, performance of workloads and possible
loss due to resource contention must be taken into account.

Fig. 1: Problem description [aggregation w.r.t runtimes]

Considering a datacenter which comprises two hosts as shown
in Fig. 1; each one can accommodate two VMs. There are four
VMs with different runtime requirements. If the placement
is not runtime aware, then both hosts will run for 14 hours
(right-hand side i.e. VM-1 and VM-2 are co-located on host
A while VM-3 and VM-4 on host B), continuously. However,

if runtimes are considered (left-hand side – VM-2 and VM-
4 are co-located on host A while VM-1 and VM-3 on host
B) then after 2 hours, host A can be switched off to save
power; if there are no pending VM requests in the admission
queue. Similar decisions can also be taken on VM capacities
and instances of similar types can be placed together. How-
ever, various workloads if co-located or aggregated may not
perform up to expected levels. Moreover, instances that run
similar workloads and applications may also be aggregated
to same resources or cluster of resources. However, if work-
loads compete for similar resources, then performance of the
workloads may potentially be affected [3]. O’Loughlin et al.
[9] demonstrated that this degradation can be more than 100%
for certain workload types.
Furthermore, similar workloads may perform quite differently
across same CPU models [4]. These variations may potentially
affect workload runtimes, therefore, users’ service costs; and
energy consumption. Subsequently, energy consumption af-
fects revenue of service providers (in terms of energy bills)
and our environment (in terms of green house gases). There-
fore, it is essential to account for these costs when deciding
resource placement and consolidation, in particular, if place-
ments are made with aggregation and segregation-based ap-
proaches. We believe, to the best of our knowledge, aggrega-
tion and segregation-based VM placement and consolidation
approaches are not well explored in the context of energy and
performance efficiencies of large-scale heterogeneous clusters
and IaaS datacenters.
The above problem can be formulated as a multi-objective
optimisation problem where objective are: (a) minimise total
energy consumption of the datacenter (E =

∑N
i=1Ehosti );

improve or, at least, maintain workload performance (P ); and
minimise users’ monetary costs (C). Note that, P and C are
directly proportional where improving workload’ P means
reducing its R which subsequently means reducing C . More-
over, multi-objective optimisation problems can be solved in
two different ways: (i) concurrently solve all objectives; and
(ii) solve one objective first, and then make it a constraint on
the next one. Moreover, various objectives (E,P,C) can be
combined into a single metric (ERC = EC

P ) where P is the
inverse of runtime (R), and then solved as a single objective
problem [1], given by:

min(ERC) (1)

As, energy is measured in Wh (watt hours), runtime in hours
and users’ monetary cost in $/hour. Thus, the above metric
captures power to runtime ratio per unit cost [4]. The least
values for ERC will translate to the best achievable perfor-
mance & energy efficiency.

3 PROPOSED SOLUTION

Aggregation, based on runtime of VMs might be useful if
workload runtimes are predictable. Albeit, various machine
learning based techniques, such as gradient boosted trees [10],
have been suggested to predict VMs runtimes. However, due
to the unpredictable nature of the cloud workloads, many
efforts are needed. In the first part of this section, we explain
the aggregation-based placement and consolidation policies.
In the second part, we explain the methodologies and ap-
proaches to implement these policies.
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3.1 Placement and Consolidation
In this section, we explain how the placement and consoli-
dation technique are being used in the optimisation module.
The energy, performance aware placement policy, based on
first fit technique (EPFF), is described in Alg. 1. The energy,
performance aware migration approach (EPAM) is described
in Alg. 2. The proposed aggregation-based placement is de-
pendent on the runtime efficiencies of the hosts and VMs.
First of all, the available hosts are being divided into groups
based on their runtime efficiencies (as described in Sec. 3.1.1).
Furthermore, all hosts in each group are being sorted in
decreasing order of their runtime efficiencies. Then, based
on the runtime of the VM, using a particular classification
technique (such as K-means clustering algorithm), every VM
is mapped onto each host in a particular group. As a result,
the most runtime efficient host (i.e. at top of the list) is selected
to run that particular VM. Note that the placement algorithm
is a modified version of the first fit (FF) heuristic approach.

Algorithm 1: VM placement algorithm (EPFF)
Input: List of hosts (H), List of VM requests (V )
Output: Efficient VM placement

1 find runtime efficiency of each host h ∈ H (using Eq. 2);
2 categorise H subject to their runtime efficiencies - Hc;
3 for each vm ∈ V do
4 estimate (past) or predict runtime of the vm;
5 match vm to Hc and pick all suitable hosts (Hm);
6 sort Hm in assending order - runtime efficiency;
7 for each h ∈ Hm do
8 if h has enough resources and can run the vm then
9 allocate vm to h;

10 break the loop and pick the next vm;
11 end if
12 end for
13 if vm did not fit in any available h then
14 start new h and allocate vm;
15 else
16 “vm cannot be allocated”;
17 “push the vm request into W (waiting queue)”;
18 end if
19 end for
20 return output

The consolidation policy runs, periodically, every five minutes
interval and looks for possibilities to aggregate the workload
(VMs) onto fewer hosts. Note that, a shorter time interval
will lead to additional overhead but a larger one may lead
to poor system performance as reacting to the dynamicity
of the workload will be too late. Furthermore, this could
happen in two different ways: (i) through migrating VMs
from underloaded and overloaded hosts, using some pre-
defined threshold values in terms of their utilisation levels
(e.g. an upper threshold value Uupper for overloaded hosts
and a lower threshold value Ulower for underloaded hosts)
[1]; and (ii) through migrating all VMs from hosts having the
highest levels of runtime efficiencies. Once hosts are being
identified, a list of migratable VMs is constructed using a
particular VM selection policy, using Alg. 3. Several metrics
of the VMs are considered when deciding their migrations.
For example, [11] chooses a VM that either: (a) has a small
memory so that its migration can be completed quickly; or

(b) has maximum utilisation level so that overloaded host
is avoided up to maximum. However, [1] prefers to migrate
relatively long-running VMs so that their migration efforts are
ensured. Moreover, [12] uses volume-to-size (VSR) ratio of a
VM to decide its migration. In this paper, we prefer to migrate
long-running VMs. Finally, Alg. 1 is used to place then on
appropriate hosts that consumes less energy and performance
is assured.

Algorithm 2: Consolidation technique (EPAM)
Input: List of hosts (H), List of VMs (V )
Output: Efficient VM placement

1 Using current states of H and V , find overloaded and
underloaded hosts (Hou) - predefined threshold values;

2 select all migratabale VMs (Vm) from Hou using a VM
selection policy (Alg. 3);

3 for each vm ∈ Vm do
4 find a list of all hosts Hn such that Hn 6⊂ Hou;
5 call VM placement algorithm (Hn, vm) [Alg. 1];
6 end for
7 run this optimisation module periodically;
8 return output

Algorithm 3: VM selection policy
Input: List of migratable VMs (Vm)
Output: Select a suitable VM VMfit for migration

1 VMfit ← null;
2 for each vm in Vm do
3 estimate runtime of vm;
4 end for
5 sort Vm in decreasing order of runtimes;
6 VMfit ← Vm[0] (long-running VM is on top of the list);
7 return VMfit

From implementation perspective, all servers are classified
into groups based on their energy consumption and perfor-
mance (CPU architecture). Workload of particular type is,
then, placed on separate server groups, as appropriate. In
contrast, workload of any type can be placed on any suitable
server in the segregation-based allocation approach. The worst
case computational complexity of Alg. 1 is O(nm) +Tp where
n, m and Tp denote the number of VMs, hosts and runtime
prediction time, respectively. Moreover, Tp is dependent on
the workload type, historical data and the prediction algo-
rithm. The best case occurs when each VM is allocated in the
first iteration. This also applies to Alg. 2 with additional time
for finding migratable VMs and appropriate target hosts. Also,
given that resource properties can change over time; and if a
runtime approach is adopted, then, potentially there may be
oscillatory or repeatable behaviour, e.g. move VM from host
X to Y and then back to X. We can use techniques like CMCR
i.e. Consolidation with Migration Cost Recovery [1] or put a
constraint to avoid such repeatable migrations. We believe,
the proposed VM selection policy (Alg. 3), that prefers to
migrate long-running VMs, ensures to control these repeatable
migrations, but not essentially.

3.1.1 Runtime Efficiency
The runtime efficiency of server host denotes its total amount
of energy consumed (Evm

host) when it runs a particular VM up
to some expected|past runtime Rvm, given by Eq. 2. Since,
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energy is the product of power consumed (P ) for time (R);
thus, the least value offers an economical placement.

Evm
host = P idle+dynamic

host ×Rpredict|past
vm (2)

Rich literature of the prediction offers various ways to esti-
mate VM’ runtimes, as described in Sec. 3.2. In other research,
runtime efficiency is the ratio between the, number of, short
running VMs and the longer one (diversity of VM runtimes)
while accounting for resource capacities. The slack of each
host denotes the difference between its total CPU capacity
C and amount of used resources of running VMs i.e. Chost

-
∑

i∈Nvm
vmi [8]. The least the slack, the more appropriate

will be the placement. While accounting for VMs durations,
the temporal slack α of each host is given by:

αvm
host = Chost.dvm −

∑
k∈Nvm

host

wk(min{rk, rvm})− svm (3)

where Chost denotes the host capacity, rvm, svm, and wi

represent the VM release time, start time and CPU demand,
respectively. Moreover, the VM runtime dvm is computed
as rvm - svm. Nvm

host denotes the number of VMs on host.
Assigning VMs to host with the least α offer opportunities
for switching on/off hosts when it is most cost effective.
Hence, α is measured in CPU×time; therefore, it can be easily
translated to energy consumption, performance and cost. Af-
ter computing α for each host, all hosts H are classified into
several clustersHc, using α and K-means clustering approach.
Next, all hosts in each cluster are sorted in increasing order
of their α values. Lastly, every VM is assigned, based on its
runtime (past or predicted), to a suitable host cluster and,
subsequently, holding the least α value.

3.2 Implementation Methodologies
Hence, due to the efforts involved in accurately predicting
the runtimes of VMs; we use two different methodologies to
implement the above algorithms: (i) use previous runtimes of
VMs to aggregate them; and (ii) predict VMs runtimes using
the gradient boost tree method [10]. However, there would
be other efficient ways of doing the same, for example using
workload types, VM sizes, as described later in Sec. 4.3.6.

3.2.1 Past Runtimes
In practice, public clouds are opaque and service providers
are not aware of the workloads they are hosting on their
infrastructure. Therefore, from IaaS point of view, workloads
and their runtimes cannot be predicted accurately. Albeit,
we are aware of various efforts towards workload runtimes
prediction [10], [13], [14], however, in practice they are not
reasonable – as public cloud workloads differ significantly
from private ones. Therefore, instead of using workload actual
runtimes, an alternative approach is to use their past runtimes
(the duration for which the workload has already run). In
other words, we assume that workloads which have run (in
past) for similar runtimes may probably run (in future) for
similar durations – this is like a probabilistic approach. The
only reason which supports this idea is that Google’s tasks
that run for more than seven hours continue running for
several days or even months [15], [16]. Albeit, this is further
evidenced in Microsoft Azure cluster [10]; however, this may
not be essentially true. The idea is based on our previous
works [1], [17]; that use VMs or containers past runtimes

(durations for which VMs/containers have already run) in
workload allocation and consolidation decisions – migrate only
relatively long-running VMs and/or containers since they could
recover their migration costs. Furthermore, the initial placement
(i.e. past runtime is zero) is achieved through the classic
first fit (FF) heuristic algorithm. Using past runtimes for such
decisions avoid complex prediction techniques (e.g. machine
learning) that might not be reasonable in hyper-scale IaaS
clouds.

3.2.2 Runtimes Prediction

If we assume that clouds are not opaque which means that
the provider has knowledge of the user’s workloads; then it
is possible to predict their runtimes using historical data [14],
[18]. For example, Cortez et al. [10] used gradient boosted
tree method to predict VMs runtimes in Microsoft Azure
cloud. They also found a close relationship among VMs run-
times, submitting users, and job names (logical). Tumanov et
al. [14] predicted job runtimes using various characteristics
of the workloads in order to automate resource allocation.
Using past runtimes may not provide accurate estimates –
for example, workloads which have run for longer durations
have more probability and, therefore, higher tendency toward
terminations. Therefore, it is essential to predict runtimes
and use them in resource allocation and migration decisions.
Note that, predicting a particular workload runtime may need
identifying its type first i.e. CPU, memory, disk intensive.
We assume that each VM requests certain resources (CPU,
memory, storage), holds a priority and is initiated by a par-
ticular user. Moreover, the actual resource usage of each VM
is also monitored. Since, submitting user, resource demand
and actual usage have shown strong relationship to runtimes
[10], [14]; therefore, we also used these features of more than
ten millions tasks (categorised in three different groups w.r.t
scheduling constants), using the Google’s cluster dataset, to
train our prediction model. We used simple (linear regression)
to complex (boosted trees) machine learning algorithms to
estimate workload runtimes. Moreover, various techniques
offer various levels of accuracy and, therefore, variations in ex-
perimental outcomes. Moreover, accurate predictions decrease
the likelihood of inappropriate migration decisions. Similarly,
predicting the runtime of VMs is also influenced by the type
of workload hosted in the VM. In [19], the authors describe
various approaches to accurate historical data if workloads
differ. Further details on workload predictions can be found
in [10], [13], [18], that offer reasonable accuracy for public
clouds where workloads fluctuate more than private ones,
significantly.

3.2.3 Migration Durations Prediction

When consolidating short running workloads, it is possible
that the migration efforts are being wasted if the VM ter-
minates during migration or just after its migration process
is finished [1]. To decide effective migrations, it is also es-
sential to estimate the migration durations for VMs running
different services. In [13], the authors have trained a machine
learning approach to predict migration durations and other
metrics using real workload dataset. Their investigations sug-
gest that migration durations and performance degradation
are, largely, reliant on the migration approach (such as pre-
copy, post-copy) and workload type. Moreover, there is a
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strong linear relationship among the amount of data being
copied and migration durations [20]. In off-line migration,
the performance loss (downtime) is almost equal to migration
duration. However, in live migration, downtime is different
and, usually, smaller than the migration duration [1].
Live migration durations are strongly dependent on various
factors such as VM size and the workload its running. More-
over, page dirty rate plays an important role in total migration
time. In order to predict migration duration, it is essential
that a representative workload is available to train various
predictive models. Further, neither Google dataset [15] nor Mi-
crosoft Azure dataset [10] contain migration statistics of VMs.
Therefore, it is difficult to estimate migration durations for
tasks relating to these both datasets. Fortunately, an interest-
ing VM migration dataset is presented in [13]. Therefore, we
choose comparable workloads from Google, Microsoft Azure,
and the migration datasets provided in [13]. This gives us
simplified assumptions for comparing workload benchmarks
and, therefore, estimation of accurate migration durations.
The model was then trained using various approaches such as
linear regression and support vector regression (SVR). Various
features, such as VM size, page dirty rate, resource utilisa-
tion of VMs, source and destination servers, are considered.
We have spent considerable efforts on statistical mapping
of various workloads so that plausible assumptions can be
derived for simulation purposes. Further details on workload
mapping can be found in our previous works [1], [17].

3.3 Modelling Heterogeneity of Infrastructure
In this section, we explain how energy consumption of vir-
tualised hosts and performance of various workloads (and
co-located VMs that compete for similar resources) across
several heterogeneous hosts can be modelled. These factors
are essential to account for as, potentially, they might have
impact on users’ costs and service revenues.

3.3.1 Energy consumption
Energy efficiency of a non-virtualised host could be accu-
rately identified through profiling its various resources for
energy measurement. However, the energy consumption of
a virtualised host may, possibly, be related to the number of
VMs they accommodate. This means that an energy expensive
host (virtualised) may, possibly, run a VM more energy effi-
ciently than an energy cheaper, but, non-virtualised host. This
relationship could be understood more effectively through
relating virtualised and non-virtualised hosts to a bus and a
car, respectively. A bus consumes more fuels but still offers
cheaper fare than a car. In a similar way, for a particular VM
a less energy efficient machine might be more efficient if it
can accommodate more VMs. Using the host (non-virtualised)
linear power model which is more than 90% accurate and
most widely used [1], the power/energy consumption of a
single VM can be estimated using Eq. 4:

Ph
vm =

Ph
idle

N
+Wh

vm × (Ph
busy − Ph

idle)× Uh
vm (4)

where N is the total number of VMs on a particular host
h, Ph

idle and Ph
busy are the energy consumed when h is idle

(0% utilised) and fully utilised, respectively. Further, Wh
vm are

the host resources (cores) allocated to the VM and Uh
vm is

the VM utilisation level. Since, for the duration of migration

there are exactly two VMs running on source and destination
hosts which also cost energy. In order to account for migration
energy cost, we use the model suggested in [20]. According
to [20], energy is largely consumed by transferring the VM
memory; and the amount of energy is directly proportional of
the VM size (as given by Eq.5). We prefer to use this model
because it is more than 90% accurate.

Emig = 0.512.(VMmem) + 20.165 (5)

where VMmem denotes the size of VM. Besides memory, disk
and network states will also consume energy. Moreover, once
the duration of a particular VM migration is predicted, then it
is also possible to compute the expected energy consumption
through multiplying the source (server) and network energy
profiles with durations. However, this might not produce
accurate estimation compared to the model in Eq. 5 which
already accounts for network and disk state costs.

3.3.2 Performance
Various studies suggest that performance of cloud applica-
tions or workloads perform quite differently due to: (i) CPU
models [4], [21]; and (ii) resource contention [3], [19], [22].
Regarding (i), similar VMs (workloads) run quite strangely
even on same CPU models; which may be related to either
design (fabrication process), cache levels and/or memory
churns. Largely, the distribution of workload runtimes follows
a log-normal pattern across different CPU models. Moreover, a
particular workload may run quickly on a specific CPU model,
but, may run quite slow on another CPU model. Similarly,
a CPU model may run a particular workload quickly, but,
another one quite slow. For example, E5430 is faster for bzip2
benchmark than E5507, but, is slower for povray benchmark
– as shown in Table 1. Regarding (ii), co-located VMs on a
specific host may experience severe performance degradation,
particularly, if they compete for same resources (resource in-
terference). The degradation is dependent on the total number
of co-located VMs and the workload type they are running on
a particular host – as shown in Table 2. In order to model
performance variations, we model: (i) CPU heterogeneity as
log-normally distributed with respect to workload runtimes;
and (ii) resource contention as regression line equation with
respect to total number of co-located VMs on a particular host
for certain workloads. Moreover, performance of workloads
is also affected due to VM migrations; and we account for
that, as described in Sec. 3.2.3. Note that performance, here,
refers to sum of all VM runtimes that run workload W (most
suitable to users which translates into costs), and is given by:

R =
∑

vm∈W
Runtimevm (6)

where Runtimevm is the wall-clock time of each vm involved
i running workload W . Further, users are billed according to
runtime of each vm as described in Sec. 4.3.7. Similarly, cost
of running a particular workload is the sum of all VM costs.

3.3.3 Workloads
Various workloads have different impacts on infrastructure
energy consumption, workload performance, and migration
durations. Therefore, it is necessary to characterize workload
types, even, if real datasets are used or replayed in simula-
tions [1]. An easy way to characterize workloads is to use
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TABLE 1: Execution times (seconds) of various applications
across different CPU models [4]

Workload type CPU model Execution times
bzip2 E5430 447s

E5507 641s
povray E5430 579s

E5507 544s

TABLE 2: Execution times (seconds) of various applications
on co-located VMs [3]

Number of co-located VMs
Workload CPU model 2 4 6 8 10 12
type Execution times
Grep E5620 13 14 16 21 31 36

E7420 20 22 25 29 38 44
Sort E5620 16 22 38 59 69 78

E7420 21 28 43 65 76 85

their resource utilisation levels. For example, CPU intensive
workloads would have large impact on CPU utilisation; but
not, essentially, on memory or disk usage. Similarly, memory
or disk intensive workloads will have little impact on CPU
usage. However, in real, scenarios are completely different,
probably, due to CPU heterogeneities. Another approach is
to use tasks’ priorities, that affects billings, as a proxy to
represent workload type [15]. However, this is not reasonable
for virtualised workloads [10]. Moreover, our investigation of
the Google cluster and Microsoft Azure datasets suggests that
these workloads (containerised, virtualised) perform quite
differently [1]. Therefore, we use monte-carlo simulations to
create synthesized workload from real benchmarks workloads
that were produced in a real IaaS cloud [4]; and follow certain
features (resource demand and usage, arrival time, submitting
users) of the original traces.

TABLE 3: Different benchmarks runtime parameters [4]

Benchmark CPU Real benchmarks runtimes
workload model (µ) (σ) Min Max CoV

E5430 439 11 421 467 0.025
Povray E5-2650 468 12 451 500 0.026

E5645 507 10 490 535 0.02
————————————————————————-

E5-2651 1994 41.9 1952 2036 0.021
E5-2650 2007 28.5 1978 2036 0.014

Namd E5645 2043 96.4 1946 2140 0.047
E5430 2160 20.7 2135 2189 0.01
E5507 2187 18.1 2162 2217 0.008

————————————————————————-
E5430 1446 66 1328 1572 0.045

Stream E5507 2348 104 2078 2448 0.044
E5645 3395 287 2995 4008 0.085

E5-2650 5294 191 4935 5860 0.036

Table 3 describes the performance (runtimes) of various
benchmark workloads (Povray, Namd, Stream) when exe-
cuted over different CPU platforms [4]. Povray is short-
running, Namd is long-running and Stream is of mixed na-
ture; when run at maximum speed. Note that, stream values
originally represent the bandwidth (i.e. data transfer) [9],
however, we assume these as durations – since the less data
copied, the least time it will take [1]. However, if utilisation
levels are normally distributed, then execution times vary.
Moreover, distributions of runtimes for a particular workload

necessarily follow multi-modal lognormal patterns; where
multi-modality relates to CPU architectural heterogeneity. Us-
ing laws of lognormal distributions [1], we generated three
different synthesized workloads from the reported values i.e.
mean (µ), standard deviation (σ), minimum, and maximum,
as shown in Table 3. We believe, the generated workloads
closely match real workloads; and can be assumed as mix of
workloads.

4 PERFORMANCE EVALUATION

We assume energy, performance and cost efficient VM place-
ment and consolidation as types of bin-packing problem
that can be solved using various heuristics such as first fit,
best fit. Energy can be decreased via increasing the resource
utilisation levels; that subsequently minimises the number of
used servers. Similarly, performance can be ensured either via:
(a) relocating workloads to best performing hosts; and/or (b)
minimising co-location. In both cases, the proposed scheduler
ensures to put similar workloads onto same hosts such that
energy and performance efficiencies are achieved. Albeit, tech-
niques like linear programming can be used to come up with
an optimal or approximate solution [23]. However, for large-
scale systems consisting thousands of servers and variety of
workloads, we prefer quickness rather than optimality.

4.1 Experimental Set-up
In order to evaluate the proposed policies, the CloudSim
[7] simulator was extensively modified to simulate a real
heterogeneous datacenter as close as possible. For example,
classes were added to account for: CPU architectural het-
erogeneity, performance of co-located VMs, migration costs
in terms of energy consumption and performance loss, VM
level power consumption, and predicting workload runtimes,
migration durations. Moreover, performance degradation due
to migrations, migration durations, and workload runtimes
are predicted using various machine learning techniques such
as linear regression, SVR and gradient boost trees [10], [13].
The energy consumption of various servers is computed ac-
cording to SPECpower1 benchmarks. Furthermore, if servers
are idle with no workload running (0% utilised), we still
assume them as switched on and, therefore, consume their idle
power (PIDLE). The energy consumption of a single VM and
virtualised host is computed using the linear power model
which is suggested more than 90% accurate [11].
Our simulated datacenter comprises 12,583 heterogeneous
servers that belong to five types, as shown in Table 4. Speeds
of various servers were mapped to millions of instructions per
second (MIPS) in order to be consistent with the CloudSim.
For aggregation-based VM placement, all available servers
are grouped into five different clusters – based on these
five types of CPU models. For example, all servers of CPU
model “E5430” denote a separate cluster. Virtual machines
of six various sizes and speeds were assumed running three
different kinds of workloads (as shown in Table 3). The
utilisation levels of all workloads were modelled as normally
distributed with respect to prior studies [11]. Frequencies of
VMs, as shown in Table 5, were mentioned in vCPUs (cores),
converted to ECUs (EC2 Compute Unit) and mapped to MIPS
rating, accordingly. The ECU is described as: “equivalent

1https://www.spec.org/power ssj2008/
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TABLE 4: Servers types and characteristics for simulated datacenter [ECU = CPU speed (GHz) × number of cores]

CPU Speed No of No of Memory Storage PIDLE PMAX Amount
model (MHz) Cores ECUs (GB) (TB) (Wh) (Wh) of hosts
E5430 2,830 8 22.4 16 4 166 265
E5507 2,533 8 20 8 8 67 218
E5645 2,400 12 28.8 16 4 63.1 200 12,583

E5-2650 2,000 16 32 24 8 52.9 215
E5-2651 1,800 12 21.6 32 12 57.5 178

CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor” and its rating is per vCPU/core; therefore, the VM
total rating is the multiple of cores (number) and ECU rating.
The rating is, then, translated to MIPS for consistency with
CloudSim as it does not support the notion of ECU. Note
that, the large difference in storage capacities of VMs, which
ensures heterogeneity, but this will have a clear impact on
the migration costs. Performance parameters for servers and
VMs (workloads) were taken from real experimental values, as
demonstrated in [1], [4]. Various heuristics, that aggregate or
segregate workloads using different features such as runtimes,
were considered for initial VM placement. At five minutes
interval, the optimisation module searches for consolidation
opportunities – if utilisation level of a server exceeds 80%
or drops below 20% which are two pre-defined threshold
values. Our empirical evaluation was accomplished using two
different approaches for VM live migration i.e. pre-copy and
post-copy. Moreover, workload sizes (runtimes) were trans-
formed to equivalent MIPS over a rating of 2GHz CPU. From
implementational simplification point of view, performance
loss or gain was modelled as subtraction or addition of MIPS
to the workload size, respectively.

TABLE 5: Amazon various instances and their characteristics
– MEM means memory & vCPU denotes a hyperthreaded core

Instance No of No of Speed MEM Storage
type vCPUs ECUs (GHz) (GB) (GB)

MIPS
t2.nano 1 1 1.0 0.5 1
t1.micro 1 1 1.0 0.613 1
t2.micro 1 1 1.0 1 1
m1.small 1 1 1.0 1.7 160

m1.medium 1 2 2.0 3.75 410
m3.medium 1 3 3.0 3.75 4

In order to demonstrate the impact of EPC-aware VM place-
ment and optimisation on infrastructure energy consump-
tion, workload performance and service costs, we consider
different approaches to VM placement (first fit - FF, energy
aware first fit - EFF, energy and performance aware first fit -
EPFF) and consolidation with migration (no migration - NO,
migrate all - ALL, energy aware migration - EAM, energy and
performance aware migration - EPAM) [1]. Note that, VMs
selected for migrations are also placed on target servers using
these heuristics. In addition, we account for migration energy
and performance costs. For example, in ALL approach, all mi-
gratable VMs are given chances to migrate; however, in EAM
and EPAM those migratable VMs are migrated which can
recover their migration costs [1]. Moreover, these policies are
implemented using two different methodologies to placement
i.e. segregation-based and aggregation-based. The former one
ensures that workload runs in mix while the later one puts
similar workloads (based on runtimes, workload types) on

same servers (same CPU architectures, similar runtime effi-
ciencies). Similarly, the proposed methodologies have been
implemented in two different ways: (i) using past runtimes
[1]; and (ii) using prediction techniques to predict runtimes
[13].

4.2 Evaluation Metrics

Data for various metrics, such as energy consumption (KWh),
performance or runtime (seconds), total number of migra-
tions, ERC , resource usage statistics, was collected during
simulations. Moreover, prediction accuracy is computed in
terms of absolute error both for runtimes (AEalloc) and mi-
gration durations (AEmig). The AE denotes the divergence of
the estimated value from the actual value in absolute units i.e.
seconds and converted to hours.

4.3 Results and Discussion

The results, averaged over ten runs, are shown in Table 6.
Our evaluation suggests that workloads run more energy and
performance efficiently and, therefore economically, if aggre-
gated onto separate clusters or co-located w.r.t certain metrics.
Moreover, a significant decrease in total number of migra-
tions can be observed; as workloads were initially placed on
appropriate servers. Effective allocation techniques are more
economical than consolidation approaches; and we suspect,
perhaps, this might be a reason that public service providers
do not migrate workloads for energy or performance aware
computation in their clusters. Furthermore, if migration costs
(in terms of energy consumption and performance loss) are
considered, then the migrate all approach can be much expen-
sive than the no migration approach. Similarly, if we migrate
things only to energy efficient servers, it degrades workload
performance and, therefore, may consume more energy due to
the existing trade-off between energy consumption and per-
formance (runtimes) [1]. These findings are, largely, consistent
with previous outcomes [1], [17]. However, if performance is
taken into account, significant energy, performance gains and,
therefore, users costs can be saved.

4.3.1 Aggregation versus Segregation
Table 6 shows that aggregation-based placement and/or
consolidation (based on workload runtimes) is approxi-
mately 9.61% energy and 20.0% performance efficient than
segregation-based methodology. The least value for ERC
shows the most EPC efficient placement. Fig. 2 describes
the percentage improvements, in energy consumption and
performance, of using runtime-based aggregation rather than
segregation. However, this may not be essentially true for
all workloads – as there are certain applications that could
perform the best if segregated using other metrics such as
workload type, VM sizes etc. For example, if various work-
loads are placed aggregated (W1 is placed on servers with
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TABLE 6: Average results for various combinations of VM allocation and migration policies – the lowest values are ‘best’ [±
denotes standard deviation, the least value for ERC denotes the most affective and EPC aware placement policy]

Policy No. of Energy Performance ERC No. of Energy Performance ERC Absolute error
allocation migration migrs (KWh) (hours) ×106 migrs (KWh) (hours) ×106 AEalloc AEmig

SEGREGATION-BASED PLACEMENT
Past runtimes Runtimes prediction

NO 0 511.93 302.78±0.02 287.2 0 511.93 302.78±0.12 287.2 - -
FF ALL 5231 547.23 349.71±0.21 409.6 6390 552.7 356.98±0.29 431.1 0.35 0.08

EAM 3211 493.31 278.02±0.09 233.4 4009 525.66 321.03±0.26 331.5 0.42 0.07
EPAM 1021 443.4 211.67±0.1 121.6 1921 461.52 235.76±0.21 157 0.29 0.09

NO 0 503.39 291.43±0.08 261.7 0 503.39 291.43±0.14 261.7 - -
EFF ALL 4123 520.04 313.56±0.41 312.9 4522 525.56 320.9±0.51 331.2 0.32 0.06

EAM 2198 511.25 301.87±0.32 285.1 2390 525.97 321.45±0.42 332.6 0.39 0.06
EPAM 1082 444.89 213.66±0.21 124.3 1693 457.28 230.12±0.39 148.2 0.44 0.08

NO 0 465.96 241.67±0.62 166.6 0 465.96 241.67±0.92 166.6 - -
EPFF ALL 3382 443.57 211.9±01.2 121.9 3319 479.24 259.32±1.3 197.2 0.49 0.1

EAM 1502 439.22 206.11±0.44 114.2 1699 460.86 234.89±0.56 155.6 0.5 0.11
EPAM 921 434.77 200.2±0.31 106.6 1256 459.45 233.01±0.34 152.7 0.49 0.07

AGGREGATION-BASED PLACEMENT
Past runtimes Runtimes prediction

NO 0 510.76 301.23±0.03 283.6 0 510.76 301.23±0.13 283.6 - -
FF ALL 2898 494.63 279.78±0.73 237 3033 501.41 288.79±0.76 255.9 0.29 0.12

EAM 1677 459.52 233.1±0.56 152.8 1799 485.75 267.98±0.51 213.5 0.38 0.11
EPAM 922 434.45 199.78±0.33 106.1 1209 458 231.08±0.42 149.7 0.4 0.09

NO 0 495.4 280.81±0.47 239.1 0 495.4 280.81±0.42 239.1 - -
EFF ALL 1999 488.51 271.65±0.35 220.6 2777 508.35 298.02±0.33 276.3 0.27 0.13

EAM 911 491.36 275.43±0.21 228.1 1455 503.75 291.9±0.45 262.7 0.5 0.12
EPAM 706 445.16 214.01±0.08 124.8 951 468.38 244.88±0.9 171.9 0.48 0.06

NO 0 463.23 238.03±0.11 160.6 0 463.23 238.03±0.18 160.6 - -
EPFF ALL 2001 462.25 236.73±0.54 158.5 2231 473.65 251.89±0.67 183.9 0.2 0.11

EAM 1109 485.56 267.72±0.39 213 1589 473.21 251.3±0.87 182.9 0.46 0.13
EPAM 799 433.61 198.66±0.64 104.7 988 449.05 219.19±0.55 132 0.33 0.08

CPU model E5430, while W2 is placed on servers with CPU
model E5-2650, and so on), they result in lower utilisation
level of resources, as shown in Table 8. In short, segregation-
based policies offers high levels of datacenter utilisation, with
the least performance loss, for particular workloads.
Similarly, if VMs are aggregated on VM sizes, then resources
are wasted (stranded resources) [16]. If VM sizes are same,
then both approaches are comparable. However, for various
sizes of VMs segregation packs them closely, which: (a) in-
creases resource utilisation (energy efficient); and (ii) higher
chances of resource contention (less performance and cost-
efficient). Our evaluation suggests that aggregation of VMs,
based on workload type, is not ensuring EPC aware placement
at all – as shown in Table. 8 (observe ERC values for various
workloads and methodologies). This is justifiable as similar
workloads often compete for same resources which results
in worse performance issues. Furthermore, we observed that
using past runtimes for aggregation-based placement and mi-
gration of workloads always produces best results. However,
if runtimes and migration durations are being predicted, then
inaccurate predictions may lead to worse results even than
segregation-based methods. This suggests to further inves-
tigate other metrics for aggregation-based resource manage-
ment in IaaS heterogeneous clouds.

4.3.2 Energy vs. Performance Aware Allocation
If we allocate workloads on energy efficient servers (or
through energy aware placement policy - EFF), then nei-
ther energy nor performance efficiency is assured – since
energy efficient servers are not essentially performance effi-
cient. Theoretically, energy efficiency is guaranteed; however,
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Fig. 2: %age improvements in energy and performance using
aggregation-based VM placement instead of segregation, us-
ing EPFF allocation and EPAM migration [B. TREE prediction]

lower performance means longer runtimes and these longer
durations translate to more energy consumption (i.e. energy
performance trade-off) [1]. Moreover, if workloads are placed
initially to energy, performance efficient servers (or through
energy, performance aware scheduling - EPFF), then both en-
ergy and performance are assured. Fig. 3 shows the percentage
improvement, in energy consumption and performance, of
using EFF and EPFF allocation polices instead of a simple FF
approach.

4.3.3 Energy vs. Performance Aware Migrations
Previous research findings, as demonstrated in [1], [17], sug-
gest that migrations are costly and sometimes it might be
even more economical not to migrate. Moreover, if a particular
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Fig. 3: Percentage improvements in energy and performance
using EFF and EPFF placement techniques rather than FF [B.
TREE prediction]

workload is being migrated several times, repeatedly, it may
suffer from severe performance degradation and, therefore,
may consume more energy. Therefore, if migrations are con-
trolled through some methodology e.g. (i) migrate relatively
long-running workloads [1]; (ii) migrate to energy efficient
servers - EAM; then energy might be saved. Further, if migra-
tions are performed to energy, performance efficient servers
(or through energy, performance aware policies - EPAM),
them both energy and performance are guaranteed. Fig. 4
shows the percentage degradation or improvement, in en-
ergy consumption and workload performance, of using ALL,
EAM and EPAM migration polices instead of no migration
approach (using boosted tress i.e. B. TREE prediction method).
Furthermore, due to the existing trade-off between energy
consumption and performance (runtime), migration to energy
efficient servers only is not economical.
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Fig. 4: %age improvements in energy and performance using
ALL, EAM and EPAM migration with B. TREE prediction
rather than no migration [the bars below 0% indicate worse
approaches – EPAM outperforms ALL and EAM policies]

4.3.4 Impact of Predictions on Energy and Performance
As described earlier, workload runtimes and migration dura-
tions play an important role in placement and consolidation
decisions, particularly, if their objectives are energy efficiency
and/or performance gains. To decide energy efficient migra-
tions, such as CMCR [1] and CPER i.e. Consolidation with
migration Energy, Performance Cost Recovery [17], runtimes
and migration durations are being compared. Therefore, their
predictions and accuracy will have an impact on total number

of migrations, which may subsequently affect energy con-
sumption and performance. Fig. 5 shows that good prediction
technique (such as boosted trees) offers relatively accurate
results over linear regression and, therefore, large savings and
performance gains. This suggests the importance of work-
load prediction in cost-efficient management of datacenter’
resources.
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Fig. 5: Impact of various runtimes prediction techniques on
energy consumption and workload performance – the lowest
values are the best [LR - linear regression, SVR - support
vector regression, B. TREE - boosted tree]

4.3.5 Running Containerized Workloads over VMs

Since, containers are replacing VMs, therefore, it is essential to
account for containerised workloads [17]. In this section, we
describe how aggregation and segregation based placement
and consolidation policies would affect energy consumption,
performance and costs of workloads that run within: contain-
ers directly; or containers that subsequently run within VMs
[24]. In addition to earlier experimental set-up, as explained in
Sec. 4.1, we illustrated three container types with characteris-
tics shown in Table 7. We assume that each VM can run several
containers. Further, the same allocation policy, which is used
to place VMs on servers, was also used to place containers on
VMs.

TABLE 7: Container types and their characteristics [17]

Container Speed Cores ECU’s Memory
type (MHz) (MB)

A 1,000 1 1 128
B 1,225 1 1.23 256
C 1,500 1 1.5 512

We observed comparable outcomes when containers run on
virtualised IaaS resources (inside VMs), as shown in Fig.
6. Albeit, servers were largely more utilised, but, with no
benefits. This demonstrates that increased levels of datacenter
utilisation may not be always beneficial from energy savings
point of view. Moreover, significant performance loss was
seen, surprisingly, when containerized workloads that run
directly on servers were aggregated based on the workload
type. We suspect this might be a possible reason for service
providers’ that prefer to segregate their workloads. Unexpect-
edly, when containers were aggregated onto VMs based on
their runtimes; then, besides reduced total number of migra-
tions potential energy savings and comparable performance
was achieved. This experiment suggests that, for diverse
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workload types, segregation-based approaches outperform
aggregation-based techniques.
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Fig. 6: Percentage improvements in energy and performance
when running workloads in: (i) containers; and (ii) virtualised
containers, instead of only VMs

4.3.6 Generalisation of Outcomes
In order to find consistency in our results and scalability of
our proposals, we evaluated the proposed techniques using a
variety of heterogeneous dynamic workloads, heterogeneous
servers, various metrics for aggregation (such as runtime,
workload type), and datacenter sizes. The experiments were
carried out using experimental set-up and mathematical mod-
els, as described earlier in Sec. 4.1. In additions, three work-
load types W1, W2 and W3 which belong to tasks of three dif-
ferent priorities (0, 2, 9) from Google’s cluster dataset, are also
investigated. Furthermore, besides workload runtimes, their
type (based on the priority or resource usage – CPU, memory,
disk intensive) are considered for aggregation and segrega-
tion. We observed that certain workloads, if aggregated using
other features such as workload type, may perform ’best’
using segregation-based placement. However, our findings
are largely consistent regarding datacenter and workloads
sizes which means that our approach can be scaled for cost-
efficient resource management in hyper-scale datacenters.
Table 8 describes the results which were obtained using pre-
vious experimental parameters and set-up, as initially was
described in Sec. 4.1. Largely, we observed that segregation-
based VM placement offers fewer opportunities for migra-
tions. Less number of migration opportunities may ensure
workload performance, however, it reduces resource utilisa-
tion levels. Moreover, workloads aggregated or segregated
using various metrics (such as VM sizes, workload type,
submitting users) offer variations in energy consumption and
performance, therefore, costs. Our evaluation suggests that
aggregating VMs based on their workload types in not en-
suring EPC aware placement at all. For example, similar VM
types may not be tightly packed on servers, in aggregation,
and resources are wasted. However, segregation can ensure
tight packing of VMs, but, increases resource contention due
to co-location. Furthermore, aggregating workloads of similar
duration allowing for more servers to be powered down to
save energy. Segregation may imply either: (a) having all
servers switched on, and minimising the number of VMs per
host; or (b) putting the shortest runtime VMs onto hosts with
the longest runtime. In respect of (b), workload performance
should be better than (a); because there are more servers

and resource contention is lessened (the period of the short
runtime), rather than a period of time closer to the longest
runtime.
We observed that aggregating VMs that have similar types of
workloads could lead to high resource contention, interference
(and possibly performance degradation that can be ∼12.2%)
for CPU activity, as shown in Table 8. However, if VM sizes
are assumed as running different types of workloads e.g.
CPU, memory, disk intensive; then, contention will be low.
Therefore, it is useful to aggregate VM types that have dif-
ferent resource requirements – as this will reduce energy use
(∼7.51%) and performance overheads (∼13.63%), as shown
in Table 8. This type of profiling is particularly relevant in a
real-time context.

4.3.7 Costs Savings
The total electricity bill, user monetary costs and costs savings
(in US dollars - $) are described in Table 9. For this analysis,
we assume a PUE2 of 1.10 and energy price of $0.88 per KWh3

that mimic a Google datacenter located in the Oklahoma State,
USA. Moreover, we assume that users’ bills are computed at
the rate of $0.0017 per second4. The cost of running a par-
ticular user’s workload is Cuser =

∑user
vm 0.0017.Runtimevm;

where the runtime of each VM is in seconds. For certain work-
loads, service providers could save up to ∼21.34% energy
costs (bills) using aggregation-based placement techniques
instead of segregation. Moreover, users’ monetary costs could
be reduced up to ∼8.39 to 18.99%.

TABLE 9: Costs savings [energy and users monetary costs are
described in US dollars]

Policy Energy Users monetary Total costs
costs ($) costs ($) savings (%)

Segregation 2202.78 1149.87 -
Aggregation 1732.65 931.56 18.99

Although, the least users’ monetary costs would certainly
affect the providers’ economics (less profit), however, they can
attract more customers which can recoup back these losses
(large business). Moreover, the above savings will translate to
a million dollars per year for hyper-scale IaaS clouds, such as
Amazon AWS and Google, that consist of clusters with more
that millions servers to offer resources at large scale.

4.3.8 Significance of Results
To demonstrate the, significant, statistical differences between
the means of the obtained results using proposed methods
and others, we performed the t-test analysis. This is carried
out through computing the probability error (p value) by
the t-critical ratio. If p ≤ 0.05, then the difference between
two datasets is statistically significant. At p = 0.05 (with 95%
confidence interval), the differences between means have a 5%
probability of occurring by chance [17]. Table 10 shows the p
values for various allocation and migration policies. It can be
seen that energy aware allocation (EFF), only, may be worse
than non-energy aware placement (FF). Similarly, aggregation-
based policies offers lower p values (t-critical = 2.774) than
segregation-based policies. The failure of the t-test for FF and

2https://www.google.co.uk/about/datacenters/efficiency/
3https://www.eia.gov/electricity/monthly/
4https://aws.amazon.com/ec2/pricing/
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TABLE 8: Results generalisation using various approaches to aggregation and different kinds of workloads (using EPFF
allocation and EPAM migration policies); datacenter size denotes the total number of servers and VMs; and VM sizes refer to
different workloads i.e. CPU, memory, disk intensive – the lowest values for ERC represent EPC aware placement

Workload Agg. | seg. Datacenter No. of Energy Performance ERC No. of Energy Performance ERC
type metric size migrs (KWh) (hours) 106 migrs (KWh) (hours) 106

Aggregation Segregation
W1 3k - 50k 672 71.22 19.34 0.16 528 71.26 19.56 0.17
W2 runtime 6k - 70k 563 167.13 88.2 7.96 500 167.78 90.01 8.32
W3 9k - 0.1m 501 295.73 171.9 53.48 487 311.69 201.56 77.5

W1, W2 6k - 0.12m 0 174.91 109.89 12.93 0 175.92 112.7 13.67
W1, W2 6k - 0.12m 1098 171.81 101.23 10.78 1001 175.51 111.56 13.37
W2, W3 runtime 9k - 0.17m 1891 352.75 277.89 166.71 1792 203.25 279.01 96.83
W1, W3 6k - 0.15m 1056 203.49 189.56 44.75 934 207.75 201.44 51.59

W1, W2, W3 12k - 0.22m 3221 578.79 391.67 543.39 2875 584.83 399.7 571.81
W1, W2, W3 12k - 0.22m 0 702.63 556.3 1330.75 0 652.16 489.21 955.2
W1, W2 6k - 0.12m 1389 174.99 110.11 12.98 1238 171.36 99.98 10.48
W2, W3 workload 9k - 0.17m 1690 365.42 301.43 203.2 1782 358.24 288.09 181.98
W1, W3 type 6k - 0.15 980 208.27 202.88 52.46 995 207.39 200.45 51

W1, W2, W3 12k - 0.22m 2150 617.33 442.9 741.11 2201 576.7 388.89 533.77
W1, W2 6k - 0.12m 1288 174.04 107.45 12.3 1499 178.3 119.34 15.54
W2, W3 VM size 9k - 0.17m 1185 359.86 291.09 186.61 1282 376.79 322.57 239.94

W1, W2, W3 12k - 0.22m 1976 584.89 399.77 572.07 2019 632.35 462.87 829.14

EFF policies is, perhaps, due to the overlaps that exist in the
collected dataset; however, EFF outperforms FF based on the
mean values.

TABLE 10: Statistical significance of results [FF and ALL are
“base” allocation and migration policies for comparison]

Policy Allocation Migration
FF EFF EPFF ALL EAM EPAM

Segregation - 0.311 0.048 - 0.045 0.044
Aggregation - 0.135 0.042 - 0.041 0.043

Further, CloudSim is suggested to produce approximately
98.63% accurate results as compared to a real IaaS cloud [1],
[17]. This means that approximately ±1.37% error is expected
in our simulated outcomes. Thus, the proposed aggregation-
based policy is approximately 9.61[±0.13]% more energy, and
20.0[±0.27]% more performance efficient than segregation-
based policies. Table 12 describes that these savings, in energy
and performance gains, are significant as compared to other
segregation-based policies.

5 RELATED WORK

In cloud computing, rich literature has addressed the VM
placement and consolidation problems. They can be classified
based on their goals and objectives such as energy efficiency,
users’ costs minimisation and performance gains. Both, VM
placement and consolidation are treated as bin-packing issues;
and are, largely, solved using various heuristics instead of
optimal solutions due to problem sizes. These heuristics use
certain features of the infrastructure, and workloads in order
to run them in respect of achievable objective. For example,
[1] used the host (virtualised) or VM efficiency factor (Ef )
to minimise IaaS energy consumption and improve (at least
maintain) the workload performance levels. Other works [11],
also use the host energy efficiency metric (i.e. hosts with the
least energy consumption) for efficient placement; however,
this metric may not accurately measure the efficiency of a het-
erogeneous virtualised host [1]. However, due to the existing
trade-off among energy and runtime (performance), energy

cannot be saved with these methods. In such circumstances,
performance must be considered during allocation and mi-
gration decisions. In the cloud literature, various research, as
demonstrated in [1], [19], [25], [26], [27], have considered per-
formance of workloads along with energy efficiency during
resource placement and migration decisions.
Largely, datacenters are not well utilised, and various place-
ment policies try to pack workloads onto fewer hosts for
increasing resource utilisation levels. A very simple approach
is to classify the workloads, aggregate similar workloads,
and schedule them onto similar hosts. However, [6] shows
that instead of using aggregation-based policies, segregation-
based placement could result in high levels of resource util-
isation. This unpredictability can, largely, be related to the
heterogeneity of hosts and workloads. Note that, workloads
classification are achieved through investigating various char-
acteristics of the workloads such as priority, submitting user,
and resource demands. Besides the difficulties involved in
predicting workloads, various other metrics could be used to
aggregate workloads. For example, [8] used workload run-
times to place relatively similar-running VM onto same hosts.
In practice, predicting workload runtimes can be a daunting
task. Moreover, all workloads of a particular user could be,
possibly, placed on same hosts or VMs. Albeit, this may offer
additional security and privacy to containerised users, but,
VMs and hosts are relatively safe.
Before 2015, Alibaba datacenters used to run various work-
loads on separate clusters [5]. However, appropriate schedul-
ing, which may result in high utilisation levels, is possible
through coordinated schedulers – that had become a com-
mon practice in today’s datacenters [6]. Aggregation-based
placement can also be used to assign appropriate resources
to workloads, in hybrid clouds that run different kinds of
sand-boxing technologies such as containerisation, virtuali-
sation, nested containers, and bare-metal. Workloads could
be placed where they could perform to their expected levels
of performance. For example, workloads that perform best in
containers might be scheduled on containerised infrastructure
instead of bare-metal and virtualised resources (VMs). More-



12TABLE 11: Summary of the related work, closest to CoLocateMe, with respect to various evaluation criteria

Related Work CoLocate
Parameters [8] [5] [29] [30] [31] [25] [6] [32] [24] [28] [33] [1] [11] Me

VMs X X X X X X X X X X X
Platform Containers X X X

Containers|VMs X X X X
Energy X X X X X X X X X

Performance X X X X X X X X
Metrics Migration cost X X X

User costs X X X
Co-location X X

Placement Aggregation X X X
method Segregation X X X

Single X X X X
Scheduler Distributed X X X

Hierarchical X X X
Aggregation Runtimes X X

criteria Workload type X
VM size X

Management Allocation X X X X X X X X X X
policy Migration X X X X X X X X

Sharing resources X

over, appropriate workload allocation and relocation decisions
are possible through a centralised scheduler that runs on top
of multiple schedulers (distributed or hierarchical) for various
sand-boxing technologies that cooperatively manage hybrid
clouds [28].
A resource level server disaggregation technique, as described
in [29], integrates various resources (such as CPU, memory,
storage) from multiple servers into a single pool. With server
disaggregation it is also possible to run a single VM on mul-
tiple servers which provides higher chances for maximising
resource utilisation. Moreover, it offers an easy way to enable
vertical resource scaling (adding more resources) of VMs.
Note that, in horizontal scaling VM sizes or their number
are scaled/increased over resources of a single or multiple
server(s). From resource allocation perspective, server disag-
gregation simplifies the VM scheduling problem to only one
dimension. However, aggregation and segregation based VMs
placement and consolidation techniques are not explored.
Lebre et al. [30] have also discussed various VM placement
and consolidation techniques in terms of three different sched-
ulers: centralised, hierarchical and distributed. Tchana et al.
[31] suggested software or application migration to achieve
energy efficiency in datacenters. Wu et al. [32] also studied
VMs consolidation while accounting for energy consumption
and migration costs i.e. performance loss in terms of down-
time. Jiang et al. [33] proposed an adaptive resource allocation
algorithm that dynamically allocates resources to VMs energy
efficiently.
Majority of the above techniques, including our own methods
[1], [28], consider segregation-based placement and consoli-
dation; while aggregation remains relatively un-addressed in
terms of energy consumption and performance. We believe,
to the best of our knowledge an investigation of aggregation
and segregation-based resource management techniques is not
available in the existing cloud state-of-the-art. Furthermore,
with notable exception of [2], [8], VM runtimes, sizes and
workloads they run, are not evaluated for similar placement
and consolidation decisions. Table 12 shows the percentage
of savings possible in energy consumption, performance im-
provement and users’ costs, when using various techniques
in relation to CoLocateMe. It is clear that “CoLocateMe”
(aggregation-based policies) offers significant performance
improvements and energy savings. The summary of the com-

parison between our proposed technique “CoLocateMe” and
other closely related works is given in Table 11. We believe,
the information in Table 11 would also help our readers to
quickly identify gaps for further research.

TABLE 12: %age of savings possible, using various techniques,
in terms of energy consumption, performance and cost [+
means performance gains and - indicates performance loss]

Work [8] [17] [25] [1] [28] CoLocate
Me

Energy ∼30 43.31 - 3.66 30.47 9.61
Performance - +1.09 +16.0 +1.87 -2.14 +20.0

Cost - 14.78 - 13.56 - 18.99

6 CONCLUSIONS AND FUTURE WORK

In this paper, through empirical evaluation we demonstrated
how various approaches to VM placement and consolida-
tion, and methodologies such as aggregation and segregation,
would affect the energy, performance and cost efficiencies of
large-scale IaaS providers. Our findings show that, for certain
workload types, significant energy could be saved while their
performance is ensured; through aggregating them on same
servers. Moreover, aggregating workloads of similar duration
allows for more servers to be switched off to save energy.
However, if workloads are aggregated based on their types
or other metrics, then they suffer from severe performance
degradation. Moreover, using performance efficient migra-
tions, certain workloads can finish their executions quickly
and, thus, reducing users monetary costs. Our evaluation also
suggests that if containers (instead of VMs) are aggregated
based on their workloads types (instead of runtimes), then
segregation-based placement methods might potentially out-
perform aggregation-based techniques.
Further research is needed to determine what kinds of work-
load are not suitable for aggregation, segregation and/or mi-
gration; and can run more energy and performance efficiently
without being segregated, aggregated and/or migrated. Sim-
ilarly, investigation of workload runtimes, their accurate pre-
diction and other suitable metrics such as workload type,
sizes, is needed for segregation-based VM placement which
is currently used in many production clouds with the only
exception of Alibaba’s cloud and Google’s cluster. Albeit,



13

similar VM placement techniques have been demonstrated
in the literature [8], however, it is assumed that runtimes of
workloads are known in advance. Furthermore, there is a need
for the investigation of other metrics-based aggregated and
segregated VM placement and consolidation techniques and
their potential impact on infrastructure energy consumption
and workload performance. A study of robust deep learning
based prediction techniques might be useful to estimate the
migration and runtimes of workloads; and the heterogene-
ity of resources which can ensure workload independent
Epc-aware resource/VM allocation and consolidation in IaaS
clouds. In future research, we will investigate how aggrega-
tion and segregation based resource management would affect
oversubscribed resources.
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