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ABSTRACT 

 

Introduction: 

Illuminating neurobiological mechanisms underlying the protective effect of recently 

discovered common genetic resilience variants for schizophrenia is crucial for more 

effective prevention efforts. Current models implicate adaptive neuroplastic changes 

in the visual system and their pro-cognitive effects as a schizophrenia resilience 

mechanism. We investigated whether common genetic resilience variants might affect 

brain structure in similar neural circuits.  

Method: 

Using structural magnetic resonance imaging, we measured the impact of an 

established schizophrenia polygenic resilience score (PRSResilience) on cortical volume, 

thickness, and surface area in 101 healthy subjects and in a replication sample of 

33,224 healthy subjects (UK Biobank).  

Finding: 

We observed a significant positive whole-brain correlation between PRSResilience and 

cortical volume in the right fusiform gyrus (FFG) (r=0.35; p=.0004). Post-hoc analyses 

in this cluster revealed an impact of PRSResilience on cortical surface area. The 

replication sample showed a positive correlation between PRSResilience and global 

cortical volume and surface area in the left FFG.  

Conclusion: 

Our findings represent the first evidence of a neurobiological correlate of a genetic 

resilience factor for schizophrenia. They support the view that schizophrenia resilience 

emerges from strengthening neural circuits in the ventral visual pathway and an 

increased capacity for the disambiguation of social and non-social visual information. 

This may aid psychosocial functioning, ameliorate the detrimental effects of subtle 

perceptual and cognitive disturbances in at-risk individuals, and facilitate coping with 

the cognitive and psychosocial consequences of stressors. Our results thus provide a 

novel link between visual cognition, the vulnerability-stress concept and schizophrenia 

resilience models. 

 

KEYWORDS 

Imaging genetics; structural MRI; visual system; fusiform gyrus; resilience factor  
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INTRODUCTION 

 

The effective prevention of schizophrenia depends on a clear understanding of both 

risk mechanisms and mechanisms of resilience, which confer protection from this 

debilitating disorder. The emerging field of resilience research promises to provide 

novel pathways toward improved treatment and prevention strategies for psychiatric 

disorders.1–4  

Resilience describes the phenomenon that many people with considerable 

exposure to risk factors for mental disorders retain good mental health.5–7 Importantly, 

current concepts regard resilience as a dynamic process facilitating adjustments to 

potentially disabling stressors, rather than as a trait or stable personality profile.3,6–8 

Nevertheless, there is clear evidence that resilience factors which contribute to 

resilience capacity5,6 may well be genetically determined.5,9–15 

Resilience research in schizophrenia needs to acknowledge its complex, decade-

spanning pathophysiological trajectory prominently involving neurodevelopmental 

disturbances16–18 and psychosocial stressors.19,20 Moreover, schizophrenia is a 

disorder of information processing21,22 featuring wide-ranging and pervasive 

perceptual and cognitive impairments.23 Schizophrenia resilience mechanisms might 

thus act over prolonged periods at multiple premorbid stages and should likely affect 

cognition. The high heritability of schizophrenia24 puts a particular emphasis on genetic 

mediators of resilience.  

Concerted efforts have discovered common and rare genetic risk variants for 

schizophrenia.25–27 The additive effects of common variants have been captured by 

polygenic risk scores.28 Recently, first successful attempts at elucidating the genetic 

architecture of resilience29 have discovered single nucleotide polymorphisms (SNPs) 

moderating the penetrance of established common genetic risk factors.30 Resilience 

variants were identified by contrasting unaffected and affected individuals at an equally 

elevated polygenic risk25 to reveal residual genetic variation associated with resilience 

in high-risk but unaffected individuals. Schizophrenia risk variants were excluded to 

perform a genome-wide association study (GWAS) of resilience that detects effects on 

caseness, which are conditionally independent from risk variants. Thus, the identified 

resilience variants are not simply protective variants, ie the alternate alleles at risk loci. 

Rather, they are independent from and orthogonal to risk variants, addressing the 

concern that resilience must not simply be defined as the flip side of vulnerability.5,6 
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Mirroring the concept of polygenic risk scores, the additive effects of these variants 

have been captured in the first polygenic resilience score (PRSResilience) for 

schizophrenia,29 which reflects an individual’s genetic resistance to illness 

manifestation. This novel approach opens valuable opportunities to investigate how 

heritable mediators of resilience to schizophrenia influence neural systems to exert 

their protective effect.  

Evidence for non-genetic schizophrenia resilience factors that could inform this 

research remains scarce. Presently, three putative protective mechanisms are most 

prominently discussed.31,32 First, several pre- and perinatal factors appear to be 

protective against schizophrenia by increasing resilience to pregnancy-related and 

obstetric complications.32 Second, specific non-neurological auto-immune disorders, 

rheumatoid arthritis and ankylosing spondylitis, appear to be associated with a lower 

illness risk.33 Third, several resilience models emphasize the importance of the visual 

system.31,34,35 The latter are partly based on studies suggesting a reduced risk for 

schizophrenia in people with congenital/early (C/E) blindness,33,35–38 which is neither 

observed in other forms of sensory loss, including C/E deafblindness and blindness 

acquired later in life,35,39–41 nor for other mental disorders.42–46 Rather than to blindness 

per se, this has been attributed to adaptive reorganization of the visual system 

triggered by C/E blindness47,48 and concurrent improvements in cognitive functions 

impaired in schizophrenia.35,40 C/E blind individuals, but not late blind individuals show 

increased gray matter in parts of the inferior occipital, fusiform and lingual gyrus49,50 as 

well as functional reorganization of both the ventral and dorsal visual pathway.51,52  

A useful framework for the interpretation of the postulated protective effect of C/E 

blindness is offered by the predictive coding theory of brain function.53,54 Converging 

evidence indicates that key clinical and cognitive symptoms of schizophrenia arise 

from a decreased precision and stability of internal high-level priors relative to sensory 

information.31,55 It has been argued that adaptive reorganization occurring in C/E 

blindness – and with it considerably greater reliance on context extracted from other 

sensory modalities – should improve the precision and stability of high-level and 

supramodal priors.31 The resulting greater primacy of priors relative to sensory data 

may facilitate resilience to schizophrenia.31 

Importantly, current epidemiological evidence remains inconclusive due to the 

low base rates of both disorders.56,57 Yet, while there is presently no consensus 

regarding the proposed role of C/E blindness as a resilience factor for 
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schizophrenia,31,34,35,38,40 these models provide predictions that are testable using 

neuroimaging. Specifically, current concepts raise the question, whether similar but 

more subtle changes of the visual system exerting a weaker protective effect could 

also occur as a form of genetically mediated natural variation in sighted individuals. 

A plethora of schizophrenia risk factors have been identified.16,32 Similarly, 

multiple neurobiological pathways promoting resilience to the disorder would have to 

be expected. An involvement of the visual system in one of these resilience 

mechanisms would be conceivable given the prominent visual perceptual impairments 

featured in schizophrenia. These encompass basic deficits in visual acuity and contrast 

sensitivity58–60 and subsequent disturbances of perceptual organization including 

figure-ground segregation, coherent motion detection, contour integration, and 

perceptual closure.61–66 They further perturb higher-level visual processes, particularly 

object recognition,61,65,67 higher-order cognitive domains including working memory as 

well as social cognition,62,67–72 and contribute to poor functional outcome.73–75 

Abnormalities in both the dorsal and ventral visual pathway have been 

implicated.61,65,76,77 Notably, visual dysfunction is among the strongest predictors of 

transition to full-blown illness in high-risk individuals78,79 – more predictive than any 

other sensory anomalies and uniquely so for schizophrenia among mental disorders.79 

Searching for resilience-promoting mechanisms within the visual system partly builds 

upon a successful strategy for risk research in neuropsychiatric disorders. Genetic 

studies indicate that rare but highly penetrant risk factors provide information about the 

neurobiological consequences of common genetic risk factors, which despite their 

lower penetrance tend to affect the same pathophysiological pathways.80,81 C/E 

blindness as one potential, rare resilience factor with a profound impact on the brain 

could thus point to similar but less penetrant mechanisms of common resilience 

factors. Accordingly, SNPs conferring resilience to schizophrenia might exert their 

protective influence partly by affecting neuroplasticity in the visual system. To test this 

hypothesis and to investigate brain morphological correlates of genetic resilience to 

schizophrenia, we conducted an imaging genetics study using structural magnetic 

resonance imaging (sMRI) in healthy participants. 
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METHODS AND MATERIALS 

 

Participants 

All participants gave their written informed consent to participate in the study in 

accordance with the study protocol approved by the ethical review board of the Faculty 

of Medicine at Goethe University. The experimental procedures were conducted in 

conformity with the approved guidelines and the Declaration of Helsinki. We obtained 

structural MRI and genetic data from 105 right-handed subjects with normal or 

corrected to normal vision and no family or personal history of psychiatric disorders, 

according to the German Version of the SCID-I questionnaire for DSM-IV.82 

Handedness was measured with the Edinburgh Handedness Inventory83 and IQ was 

determined using the MWT-B.84 We excluded four subjects due to excessive head 

motion during scanning (n=1) or substantial reconstruction errors during MRI 

processing (n=3), resulting in 101 subjects for the analysis (55 female; Mean age: 26.3 

± 4.71 years). 

 

Genotyping  

We collected venous blood samples for DNA extraction. Genotyping was performed 

using custom Illumina HumanCoreExome-24 BeadChip genotyping arrays, which 

contain 570 038 genetic variants (Illumina, Inc., San Diego, CA). The Rapid Imputation 

and Computational Pipeline (RICOPILI85) was used for quality control, principal 

component analysis and imputation. Individuals were excluded for ambiguous sex, 

cryptic relatedness up to third degree relatives by identity of descent, genotyping 

completeness < 99 %, and non-European ethnicity admixture. SNPs were excluded 

where the minor allele frequency was < 1 %, if the call rate was < 99 % or if the χ2-test 

for Hardy-Weinberg Equilibrium had a p-value < 1 e-06. Before imputation, we 

assessed genetic homogeneity in each sample using multi-dimensional scaling (MDS) 

analysis. We excluded ancestry outliers through visual inspection of the first two 

components.  

 

Calculation of polygenic resilience scores 

We calculated schizophrenia PRSResilience based on resilience loci identified by Hess et 

al.,29 who included 3786 high-risk resilient individuals and 18 619 patients at equal 

polygenic risk in their initial discovery sample. Calculations of polygenic scores were 
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performed according to previously described protocols with PRSice software v. 

2.2.8.86,87 Following the established PGC protocol,25 polygenic scores were clumped 

using linkage disequilibrium (LD) and distance thresholds of r2 = 0.1, within a 500 kb 

window. The major histocompatibility complex (MHC) region was excluded due to high 

LD.25 We calculated PRSResilience based on SNPs thresholded at p < 0.05 because, 

among nominally significant PRSResilience reported, SNPs included at this threshold 

were shown to explain the most variance.29  

 

Acquisition and analysis of MRI data 

We acquired structural MRI data on a 3T Trio MR-scanner (Siemens, Erlangen, 

Germany) using a high-resolution T1-weighted Modified Driven Equilibrium Fourier 

Transform (MDEFT) sequence88 (voxel size: 1 x 1 x 1 mm³; TR = 7.92; TE = 2.4; TI = 

910 ms; FOV = 256 x 256 mm2; number of slices per volume = 176; flip angle = 15°, 

slice thickness = 1 mm). We used FreeSurfer (version 6.0.1; 

http://surfer.nmr.mgh.harvard.edu) for semi-automated preprocessing and surface 

reconstruction, using bias-corrected89,90 T1-weighted anatomical scans as the input 

(see Supplementary Materials). Measures of cortical thickness, cortical volume, and 

surface area were computed using FreeSurfer.91,92 Surface maps were smoothed 

using a surface-based 10-mm full-width-half-maximum smoothing kernel. 

 

Statistical group analysis 

Three general linear models (GLMs) were applied at each vertex to estimate the 

relationship between PRSResilience and cortical volume, thickness, and surface area. 

Total intracranial volume (ICV) and age were included as covariates in partial 

correlation analyses. PRSResilience, age and ICV were demeaned to allow for better 

model fit. To correct for multiple comparisons, we used surface-based cluster-size 

exclusion as implemented in FreeSurfer.93 We applied an initial cluster-forming 

threshold (CFT)  of p < .001 and performed Monte Carlo simulations (10,000 iterations; 

cluster-wise p < .05, adjusted for testing both hemispheres separately, ie p < .025). 

These statistical parameters have been recommended to protect from type 1 errors.94 

 

UK Biobank (UKBB) replication analysis 

To test the replicability of our findings, we performed additional analyses on GWAS 

summary statistics 

https://www.sciencedirect.com/topics/immunology-and-microbiology/major-histocompatibility-complex
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(https://open.win.ox.ac.uk/ukbiobank/big40/pheweb33k/phenotypes/) from a UKBB 

general population sample (n = 33,224).95 For this sample, vertex-wise data is not 

publicly available, precluding a whole-brain analysis. Rather, region of interest (ROI) 

based data is available in the standardized form of 33 Desikan-Killiany (DK) parcels 

per hemisphere (66 total), representing almost the entirety of the cerebral cortex.96 We 

used the well-established ‘gtx’ method97–100 (see Supplementary Methods) to test the 

association between PRSResilience and cortical volume, thickness, and surface area in a 

ROI based manner. In keeping with the strictly confirmatory nature of this analysis, we 

focused on ROIs that best represent the location of clusters observed in the vertex-

wise analysis in the discovery sample. Additionally, we compared effect sizes of these 

ROIs to the distribution of effect sizes of all ROIs, averaged across hemispheres, via 

z-tests. 

 

RESULTS 

 

Discovery sample  

In our discovery sample, we observed a positive whole-brain correlation between 

PRSResilience and cortical volume in the right fusiform gyrus (FFG) after correction for 

multiple comparisons (MNI: X = 33.7; Y = -51.4, Z = -16.4; cluster size: 338.1 mm2; r = 

0.35; cluster-wise p = .0004; Figure 1A). Comparison with the neuroanatomical 

literature101 and probabilistic neuroimaging atlases of the ventral temporal cortex 

(VTC)102–104 indicated a position of this cluster on top of the mid-fusiform sulcus (MFS; 

see Supplementary Figure S1) and a partial overlap with the fusiform face area 

(FFA).102–104 Extracting the corresponding values from the FFG cluster revealed  that 

PRSResilience was significantly correlated with FFG surface area (r = .35, p < .001; 

Figure 1B) but not with cortical thickness (r = .14, p = .17; Figure 1C). We further 

observed an impact of PRSResilience on left FFG volume at the initial CFT (p < .001), 

which, however, did not survive multiple comparisons correction (cluster-wise p > .05; 

Supplementary Figure S2). There was no significant correlation between PRSResilience 

and either surface area or cortical thickness at the whole-brain level.  

 

UKBB replication sample 

Because the findings in our discovery sample hinted at a bilateral effect in the FFG, 

our replication analysis focused on left and right FFG parcels96 (Figure 2A). In the 

https://open.win.ox.ac.uk/ukbiobank/big40/pheweb33k/phenotypes/
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UKBB sample, we observed a significant effect of PRSResilience on cortical volume (p = 

.006) and surface area (p = .026) in the left FFG but not in the right FFG (pvolume = .208; 

psurface area = .343; Figure 2B). PRSResilience did not impact cortical thickness. Averaged 

across hemispheres, FFG effects of PRSResilience on surface area (z = 2.5, p = .012) 

and cortical volume (z = 2.09, p = .036) were significantly higher than for all other ROIs 

(Figure 2C).  

 

DISCUSSION 

 

We investigated the neuroanatomical correlates of common genetic variants 

associated with resilience to schizophrenia using sMRI. In the discovery sample, we 

observed a positive correlation between PRSResilience and cortical volume in the right 

FFG, a key component of the ventral visual pathway. In the replication sample, we 

observed a correlation between PRSResilience and global left FFG volume, which mirrors 

the cluster in the left FFG in the discovery sample that did not survive multiple 

comparisons correction. Involvement of the ventral visual pathway therefore appears 

not to be specific to one hemisphere. This is in line with evidence that both 

hemispheres – while independently analyzing half of the visual scene105–107 – combine 

their resources to jointly process objects at the fovea.107 Resilience to schizophrenia 

thus appears to result from a general increase in ventral visual pathway processing 

resources. Our findings provide the first direct evidence for a schizophrenia resilience 

mechanism involving the visual system in line with existing resilience models.  

The particularly prominent effect in the FFG in comparison with all other bilateral 

ROIs indicates that, among cortical areas, the FFG plays a central role in promoting 

resilience to schizophrenia. Understanding the mechanisms underlying this protective 

effect requires a detailed assessment of the role of the FFG within the ventral visual 

pathway. The ventral visual pathway is primarily involved in object recognition and 

categorization.108–110 Along this pathway, the FFG is an important relay between low 

level visual areas in the occipital lobe and areas in the infero-temporal cortex and para-

hippocampal gyrus,108,109 which are considered the top levels in the visual processing 

hierarchy. Importantly, all areas of the ventral stream from the primary visual cortex all 

the way up to the infero-temporal cortex are reciprocally connected via feed-forward 

and feed-back connections, communicating in parallel within various functional 

networks.111,112 This connectivity profile, which also prominently includes interactions 
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with occipital and parietal areas within the dorsal stream as well as prefrontal areas, is 

pivotal for shaping object and face recognition.113–115  

The cluster observed in our discovery sample mapped directly onto the right 

MFS. This sulcus divides the FFG into a lateral and medial part, the two moieties 

differing in cyto- and receptor-architectonics116,117 as well as their connectivity profiles 

within the VTC.101,118,119 The MFS further forms the central axis of multiple lateral-to-

medial functional gradients across the VTC. These gradients relate to the eccentricity 

of the represented visual field, the size of objects, their animacy and domain 

specificity.110,120 Described characteristics are indicative of the coexistence of 

functional networks devoted to the preferential processing of object categories.110 The 

increased volume of both moieties of the FFG as observed in our data might thus 

reflect a global enhancement of functions facilitating the parallel processing of 

complementary aspects of visual information.107 In the context of predictive coding,53,54 

this could imply greater resources for the disambiguation of sensory evidence by 

capitalizing on the priors stored in the functional architecture of the different processing 

streams. Notably, patients with schizophrenia are impaired in their ability to use stored 

knowledge for the interpretation of sensory evidence.55,121,122 Consequently, the 

embedding of sensory evidence in the context of a priori knowledge is disturbed. A 

larger FFG could compensate for disturbances that impede prior based evaluation of 

sensory information. This might also include an enhanced ability of the ventral stream 

to integrate input from the dorsal stream and from prefrontal areas, facilitating various 

facets of perceptual organisation during multiple stages of object processing, which is 

crucially impaired in schizophrenia.65 Such an interpretation is well in line with the 

notion that greater reliability of high-level priors might be protective against 

schizophrenia.31  

Increased FFG volume may further contribute to resilience capacities through 

its involvement in interpersonal communication and social cognition.120,123–125 Our 

cluster showed considerable overlap with the right FFA, the two subdivisions of which 

are located approximately at anterior and posterior ends of the MFS.101,110,126 The FFA 

is essential for the processing of face-related information including the decoding of 

facial components for affect discrimination120,123,124 and an important perceptual node 

of social cognitive networks.125 In schizophrenia, reduced FFG volume acts as a 

structural neural substrate of various perceptual and affective processing deficits 

associated with impaired social cognition.67,127–131 FFG volume further contributes 
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reliably to discriminative predictive patterns of social functioning and psychosis 

transition in high-risk individuals.132,133 Importantly, perceptual deficits such as 

difficulties to decode complex facial configurations accompany and likely precede 

aberrant cognitive and affective processing in impaired social cognition.57,123,127–129 Our 

data suggest that genetically mediated resilience mechanisms involving the FFA might 

facilitate social perceptual processing capacities. This interpretation is supported by 

reports of increased FFG volume in healthy subjects after social cognitive training.137 

Furthermore, larger FFG volume in patients with schizophrenia appears to mediate the 

beneficial effects of cognitive training on general neurocognition and social cognition 

in particular.138 Together, these findings underscore that increased FFG volume is 

indeed associated with enhanced cognitive capabilities in multiple domains. They are 

also compatible with the role of the FFG as a central relay between low level visual 

and higher cognitive areas in support of a wide array of non-social and social cognitive 

processes.  

A crucial role of social cognition for resilience to schizophrenia is conceivable, 

as it constitutes a major predictor of functional outcome125 and can compensate for the 

deleterious effects of neurocognitive deficits on daily life.139–144 Therefore, FFG related 

resilience mechanisms enhance cognitive functions which facilitate the embedding of 

individuals in their social environment, thus buffering against the effects of risk factors. 

Expanded computational resources in the ventral visual pathway should also facilitate 

coping with stressors resulting from sensory deficits. Typically, resilience models 

emphasize the ability to cope with stressors such as challenging life circumstances 

and physical illness.3,6,145 However, perturbed visual information processing in 

schizophrenia might in itself constitute a stressor. In addition to deficits in perceptual 

organization, characteristic disturbances comprise a lower threshold for sensory 

overload,146 visual distortions,146,147 reduced predictability of changes in the 

environment and resulting uncertainty regarding adequate behavior31 as well as 

psychotic experiences.75,148 These in turn have detrimental effects on adaptive 

behavior and interpersonal interactions, together constituting a fundamental stressor. 

Given the widespread deleterious impact of stress on cognition,149,150 this might lead 

to a vicious cycle of increasing psychosocial stress, aberrant information processing 

and psychosis proneness.20 Through increased perceptual and cognitive capabilities, 

the resilience mechanisms implied by our data should reduce stress induced by subtle 

perceptual impairments and increase the chances of interrupting this vicious cycle. It 
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remains to be clarified whether increased FFG resources promote a resilience 

mechanism that directly antagonizes potential cognitive disturbances or rather 

mitigates cognitive deficits by compensating for disease-related abnormalities. The 

latter would be consistent with the idea that, on the neurobiological level, resilience 

does not simply reverse pathophysiological processes but rather ameliorates the 

harmful consequences of stressors.3 

Overall, our findings point towards a central role of visual cognition in 

schizophrenia resilience as both a stressor and a coping mechanism. Furthermore, our 

results provide a crucial link between genetics, the information processing disorder 

concept and the vulnerability-stress model.22 Interestingly, there is preliminary 

evidence for an involvement of the FFG and neighboring occipito-temporal areas in 

resilience against stress and adverse life events,151 trauma,152 and bipolar 

disorder,153,154 suggesting a potential transdiagnostic relevance of visual cognition as 

a resilience mechanism.  

Lastly, current findings create an interesting link to resilience models derived 

from C/E blindness research.34 They suggest that SNPs associated with resilience to 

schizophrenia can drive some of the neuroplastic changes in visual areas that are also 

observed in early reorganization following C/E blindness.49,50 The convergence of such 

widely different biological mechanisms on a similar intermediate phenotype 

underscores the significance of the visual brain for schizophrenia resilience research. 

Importantly, this also raises the possibility that similar protective adaptations might be 

inducible through targeted interventions.75 Such interventions would likely have to 

occur at early stages of post-natal development when the visual system is susceptible 

to environmental influences.155,156 This is suggested by the lack of a protective effect 

in late blindness,35 the early start and prolonged trajectory of abnormal 

neurodevelopment in schizophrenia16, as well as the early manifestation of visual 

dysfunction in at-risk populations.78,157–159 

Our findings provide a novel direction for schizophrenia resilience research by 

demonstrating that resilience to the disorder might arise from genetic influences that 

act on neural systems subserving elementary cognitive processes. However, the 

indirect nature of the current evidence is an important limitation of our study. The 

cognitive implications of our findings can so far only be inferred from existing evidence 

for an association of FFG volume and cognition and the crucial functional role of the 

FFG within the ventral visual pathway. Here, a direct investigation of links between 
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cognition and PRSResilience effects on FFG morphology was limited to publicly 

accessible cognitive measures in the UKBB (see Supplementary Material), which are 

not tailored toward schizophrenia research and our findings specifically. Furthermore, 

the current imaging genetics approach cannot provide evidence that individuals with 

higher PRSResilience would indeed be more adaptable to the specific stressors implicated 

by our findings. These questions need to be addressed in future studies. Moreover, 

while our data suggest that structural neuroplastic alterations in the FFG contribute 

most prominently to schizophrenia resilience compared to other cortical areas, 

neuroimaging methods directly assessing brain function as well as structural and 

functional connectomics will be essential to elucidate the underlying mechanisms more 

completely. It is also highly likely that these methods will reveal additional, potentially 

unrelated resilience promoting neural circuits that sMRI is not sensitive for. 

In conclusion, our study contributes to models of schizophrenia resilience by 

demonstrating an impact of genetic variants conferring protection from the disorder on 

local brain structure in the visual system. Improved cognitive and functional capacities 

that may result from these effects suggest a resilience mechanism linked to coping 

with both the cognitive and psychosocial sequelae of stressors. Future studies should 

investigate directly the individual contributions of the cognitive processes implicated by 

our findings to schizophrenia resilience in healthy and at-risk populations. Moreover, it 

will be imperative to investigate the interaction between genetic and environmental risk 

factors with resilience factors in order to fully realize the potential of the resilience 

paradigm for the discovery of novel course-modifying and preventive interventions for 

schizophrenia. 
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FIGURES 

 

Figure 1. Whole-brain correlation between schizophrenia polygenic resilience scores 

(PRSResilience) and cortical volume (cluster-wise p < .05 corrected) (A). Surface area (B) 

and cortical thickness (C) values in the right fusiform gyrus plotted against PRSResilience. 
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Figure 2. Effects of schizophrenia polygenic resilience scores (PRSResilience) on 

fusiform gyrus (FFG) anatomical metrics in the UK Biobank sample. A) Desikan-

Killiany96 (DK) FFG parcels. B) Significant PRSResilience effects for cortical volume and 

surface area in the left FFG (error bars: 95% confidence intervals). C) PRSResilience 

effects on FFG metrics averaged across hemispheres compared to the distribution of 

effect sizes (betas) for the other 32 DK parcels, also averaged for each anatomical 

region across hemispheres. 
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