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Abstract
The problem of truth discovery, i.e., of trying to find the true facts concerning a number of 
objects based on reports from various information sources of unknown trustworthiness, has 
received increased attention recently. The problem is made interesting by the fact that the 
relative believability of facts depends on the trustworthiness of their sources, which in turn 
depends on the believability of the facts the sources report. Several algorithms for truth dis-
covery have been proposed, but their evaluation has mainly been performed experimentally 
by computing accuracy against large datasets. Furthermore, it is often unclear how these 
algorithms behave on an intuitive level. In this paper we take steps towards a framework 
for truth discovery which allows comparison and evaluation of algorithms based instead on 
their theoretical properties. To do so we pose truth discovery as a social choice problem, 
and formulate various axioms that any reasonable algorithm should satisfy. Along the way 
we provide an axiomatic characterisation of the baseline ‘Voting’ algorithm—which leads 
to an impossibility result showing that a certain combination of the axioms cannot hold 
simultaneously—and check which axioms a particular well-known algorithm satisfies. We 
find that, surprisingly, our more fundamental axioms do not hold, and propose modifica-
tions to the algorithms to partially fix these problems.

Keywords  Truth discovery · Axioms · Trust and reputation · Social choice theory

1  Introduction

There is an increasing amount of data available in today’s world, particularly from the web, 
social media platforms and crowdsourcing systems. The openness of such platforms makes 
it simple for a wide range of users to share information quickly and easily, potentially 
reaching a wide international audience. It is inevitable that amongst this abundance of data 
there are conflicts, where data sources disagree on the truth regarding a particular object or 
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entity. For example, low-quality sources may mistakenly provide erroneous data for topics 
on which they lack expertise.

Resolving such conflicts and determining the true facts is therefore an important task. 
Truth discovery has emerged as a set of techniques to achieve this by considering the trust-
worthiness of sources [7, 19, 27]. The general principle is that true facts are those claimed 
by trustworthy sources, and trustworthy sources are those that claim believable facts. 
Application areas include real-time traffic navigation [14], drug side-effect discovery [30], 
crowdsourcing and social sensing [29, 38, 47].

For a simple example of a situation where trust can play an important role in conflict 
resolution, consider the following example.

Example 1.1  Let o and p represent two images for which crowdsourcing workers are asked 
to provide labels (in the truth discovery terminology, o and p are called objects). Consider 
workers (the data sources) s, t, u and v who put forward potential labels f, g for o, and h, i 
for p, as shown in Fig. 1; such potential answers are termed facts. In the graphical repre-
sentation, sources, facts and objects are shown from left to right, and the edges indicate 
claims made by sources and the objects to which facts relate.

Without considering trust information, the label for o appears a tie, with both options f 
and g receiving one vote from sources s and t respectively.

Taking a trust-aware approach, however, we can look beyond object o to consider the 
trustworthiness of s and t. Indeed, when it comes to object p, t agrees with two extra 
sources u and v, whereas s disagrees with everyone. In principle there could be hundreds 
of extra sources here instead of just two, in which case the effect would be even more strik-
ing. We may conclude that s is less trustworthy than t. Returning to o, we see that g is sup-
ported by a more trustworthy source, and conclude that it should be accepted over f.

Many truth discovery algorithms have been proposed in the literature with a wide range 
of techniques used, e.g. iterative heuristic-based methods [17, 34], probabilistic models 
[45], maximum likelihood estimation and optimisation-based methods [28], and neural net-
work models [24, 31, 39]. It is common for such algorithms to be evaluated empirically by 
running them against real-world or synthetic datasets for which the true facts are already 
known; this allows accuracy and other metrics to be calculated, and permits comparison 
between algorithms (see [37] for a systematic empirical evaluation of this kind). This may 
be accompanied by some theoretical analysis, such as calculating run-time complexity 
[19], proving convergence of an iterative algorithm [46], or proving convergence to the 
‘true’ facts under certain assumptions on the distribution of source trustworthiness [18, 41, 
42].

A limitation of this kind of analysis is that the results only apply narrowly to particu-
lar algorithms, due to the assumptions made (for instance, that claims from sources fol-
low a particular probability distribution). Such assumptions can be problematic in domains 

Fig. 1   Illustrative example of a 
dataset to which truth discovery 
can be applied with data sources 
{s, t, u, v} , facts {f , g, h, i} and 
objects {o, p}
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where the desired truth is somewhat ‘fuzzy’; for example, image classification problems 
and determining the copyright status of books.1

In this work we take first steps towards a more general approach, in which we aim to 
study truth discovery without reference to any specific methodology or probabilistic frame-
work. To do so we note the similarities between truth discovery and problems such as judg-
ment aggregation [15], voting theory [50] ranking and recommendation systems [1–3, 36] 
in which the axiomatic approach of social choice has been successfully applied. In tak-
ing the axiomatic approach one aims to formulate axioms that encode intuitively desirable 
properties that an algorithm may possess. The interaction between these axioms can then 
be studied; typical results include impossibility results, where it is shown that a set of axi-
oms cannot hold simultaneously, and characterisation results, where it is shown that a set 
of axioms are uniquely satisfied by a particular algorithm.

Such analysis brings a new normative perspective to the truth discovery literature. This 
complements empirical evaluation: in addition to seeing how well an algorithm performs 
in practise on test datasets, one can check how well it does against theoretical properties 
that any ‘reasonable’ algorithm should satisfy. The satisfaction (or failure) of such proper-
ties then shines new light on the intuitive behaviour of an algorithm, and may guide devel-
opment of new ones.

With this in mind, we develop a simplified framework for truth discovery in which axi-
oms can be formulated, and go on to give both an impossibility result and an axiomatic 
characterisation of a baseline voting algorithm. We also analyse the class of recursive truth 
discovery algorithms, which includes many existing examples from the literature. In par-
ticular, we analyse the well-known algorithm Sums [34] with respect to the axioms.

However, as a first step towards a social choice perspective of truth discovery, our 
framework involves a number of simplifying assumptions not commonly made in the truth 
discovery literature.

•	 Manipulation and collusion. Some of our axioms assume sources are not manipu-
lative: they provide claims in good faith, and do not aim to misinform or artificially 
improve their standing with respect to the truth discovery algorithm. We also assume 
sources act independently, i.e. they do not collude with or copy one another.

•	 Object correlations. We do not model correlations between the objects of interest in 
the truth discovery problem. For example, in a crowdsourcing setting it may be known 
in advance that two objects o and p are similar, so that the true labels for o and p are 
correlated; this cannot be expressed in our framework.

•	 Ordinal outputs. For the most part, the outputs of our truth discovery methods consist 
of rankings of the sources and facts. Thus, we describe when a source is considered 
more trustworthy than another, but do not assign precise numerical values represent-
ing trustworthiness. This breaks with tradition in the truth discovery literature, but is a 
common point of view in social choice theory.

At first glance these are strong assumptions, and rule out potential applications of our ver-
sion of truth discovery. However, we argue that the problem is non-trivial even in this sim-
plified setting, and that interesting axioms can still be put forth. The framework as set out 
here lays the groundwork for these assumptions to be lifted in future work.

1  https://​www.​nytim​es.​com/​2019/​08/​19/​techn​ology/​amazon-​orwell-​1984.​html

https://www.nytimes.com/2019/08/19/technology/amazon-orwell-1984.html
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The paper is organised as follows. Our framework is introduced and formally defined in 
the next section. Section 3 provides examples of truth discovery algorithms from the litera-
ture expressed in the framework. In Sect. 4 we formally introduce the axioms and present 
an impossibility result showing a subset of these cannot all be satisfied simultaneously. The 
examples of Sect. 3 are then revisited in Sect. 5, where we analyse them with respect to the 
axioms and propose modifications to resolve some axiom failures. In Sect. 6 we extend the 
framework to allow variable domains of sources, facts and objects, and give an impossibil-
ity result similar to that of Sect. 4. We discuss the axioms in Sect. 7 and related work in 
Sect. 8. We conclude in Sect. 9. Missing proofs are given in appendix A.

2 � An idealised framework for truth discovery

In this section we define our formal framework, which provides the key definitions required 
for theoretical discussion and analysis of truth discovery methods.

For most of the paper, we consider a fixed domain of finite and mutually disjoint sets S , 
F  and O throughout, called the sources, facts and objects respectively. All definitions and 
axioms will be stated with respect to these sets.2

2.1 � Truth discovery networks

A core definition of the framework is that of a truth discovery network, which represents 
the input to a truth discovery problem. We model this as a tripartite graph with certain con-
straints on its structure, in keeping with approaches taken throughout the truth discovery 
literature [19, 45].

Definition 2.1  A truth discovery network (hereafter a TD network) is a directed graph 
N = (V ,E) where V = S ∪ F ∪O , and E ⊆ (S × F) ∪ (F ×O) has the following properties: 

1.	 For each f ∈ F  there is a unique o ∈ O with (f , o) ∈ E , denoted ���N(f ) . That is, each 
fact is associated with exactly one object.

2.	 For s ∈ S and o ∈ O , there is at most one directed path from s to o. That is, sources 
cannot claim multiple facts for a single object.

3.	 (S × F) ∩ E is non-empty. That is, at least one claim is made.

We will say that s claims f when (s, f ) ∈ E . Let N  denote the set of all TD networks.
Figure 1 (page 2) provides an example of a TD network. Note that there is no require-

ment that a source makes a claim for every object, or even that a source makes any claims 
at all. This reflects the fact that truth discovery datasets are in practise extremely sparse, 
i.e. each individual source makes few claims. Conversely, we allow for facts that receive no 
claims from any sources.

Also note that the object associated with a fact f is not fixed across all networks. This 
is because we view facts as labels for information that sources may claim, not the pieces 
of information themselves. Similarly, we consider objects simply as labels for real-world 

2  We generalise to variable domains in Sect. 6.
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entities. Whilst a particular piece of information has a fixed entity to which it pertains, the 
labels do not.3

A special case of our framework is the binary case in which every object has exactly two 
associated facts. This brings us close to the setting studied in judgment aggregation [15] 
and, specifically (since sources do not necessarily claim a fact associated to every object) 
to the setting of binary aggregation with abstentions [9, 11]. An important difference, how-
ever, is that for simplicity we do not assume any constraints on the possible configurations 
of true facts across different objects. That is, any combination of facts is feasible. In judg-
ment aggregation such an assumption has the effect of neutralising the impossibility results 
that arise in that domain (see, e.g., [9]). We shall see that that is not the case in our setting.

To simplify the notation in what follows, for a network N = (V ,E) we write 
�����N(s) = {f ∈ F ∶ (s, f ) ∈ E} for the set of facts claimed by a source s, and 
���N(f ) = {s ∈ S ∶ (s, f ) ∈ E} for the set of sources claiming a fact f.

2.2 � Truth discovery operators

Having defined the input to a truth discovery problem, the output must be defined. Contrary 
to many approaches in the truth discovery literature which output numeric trust scores for 
sources and belief scores for facts [17, 34, 45, 47–49], we consider the primary output to 
be rankings of the sources and facts. To the extent that we do consider numeric scores, it 
is only to induce a ranking. This is because we are chiefly interested in ordinal properties 
rather than quantitative values. Indeed, for the theoretical analysis we wish to perform it 
is only important that a source is more trustworthy than another; the particular numeric 
scores produced by an algorithm are irrelevant.

Moreover, the scores produced by existing algorithms may have no semantic meaning 
[34], and so referring to numeric values is not meaningful when comparing across algo-
rithms. In this case it is only the rankings of sources and facts that can be compared, which 
is further motivation for our choice. This point of view is also common across the social 
choice literature.

However, numerical scores do provide valuable information for comparing sources and 
facts given a fixed algorithm. For example, the magnitude of the difference in trust scores 
for sources s and t tells us something about confidence: a small difference indicates low 
confidence in distinguishing s and t—even if one is ranked above the other—whereas a 
large difference indicates high confidence. In this sense our decision to primarily deal with 
ordinal outputs (and ordinal axioms) is another simplifying assumption compared to typi-
cal truth discovery settings.

For a set X, let L(X) denote the set of all total preorders on X, i.e. the set of transitive, 
reflexive and complete binary relations on X. We define a truth discovery operator as a 
function which maps networks to rankings of sources and facts.

Definition 2.2  An ordinal truth discovery operator T (hereafter TD operator) is a mapping 
T ∶ N → L(S) × L(F) . We shall write T(N) = (⊑T

N
,⪯T

N
) , i.e. ⊑T

N
 is a total preorder on S 

and ⪯T
N

 is a total preorder on F .

3  For example, when implementing truth discovery algorithms in practise it is common to assign integer 
IDs to the ‘facts’ and ‘objects’; the algorithm then operates using only the integer IDs. In this case there 
is no reason to require that fact 17 is always associated with object 4, for example, and the same principle 
applies in our framework.
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Intuitively, the relation ⊑T
N

 is a measure of source trustworthiness in the network N 
according to T, and ⪯T

N
 is a measure of fact believability; s1 ⊑T

N
s2 means that source s2 is at 

least as trustworthy as source s1 , and f1 ⪯T
N
f2 means fact f2 is at least as believable as fact 

f1 . The notation ⊏T
N

 and ≃T
N

 will be used to denote the strict and symmetric orders induced 
by ⊑T

N
 respectively. For fact rankings, ≺T

N
 and ≈T

N
 are defined similarly. Note that for sim-

plicity the fact ranking ⪯T
N

 compares all facts, even those associated with different objects 
in N.

To capture existing truth discovery methods we introduce numerical operators, which 
assign each source a numeric trust score and each fact a belief score.

Definition 2.3  A numerical TD operator is a mapping T ∶ N → ℝ
S∪F  , i.e. T assigns to 

each TD network N a function T(N) = TN ∶ S ∪ F → ℝ . For s ∈ S , TN(s) is the trust score 
for s in the network N according to T; for f ∈ F  , TN(f ) is the belief score for f. The set of 
all numerical TD operators will be denoted by TNum.

Note that any numerical operator T naturally induces an ordinal operator T̂  , where 
s1 ⊑

T̂
N
s2 iff TN(s1) ≤ TN(s2) , and f1 ⪯T̂

N
f2 iff TN(f1) ≤ TN(f2) . Henceforth we shall write ⊑T

N
 , 

⪯T
N

 without explicitly defining the induced ordinal operator T̂ .
It is worth noting that yet other truth discovery algorithms output neither rankings nor 

numeric scores for facts, but only a single ‘true’ fact for each object [10, 28, 43]. This is 
also the approach taken in judgment aggregation, where an aggregation rule selects which 
formulas are to be taken as true. In the case of finitely many possible facts, such algorithms 
can be modelled in our framework as numerical operators where TN(f ) = 1 for each identi-
fied ‘true’ fact f, and TN(g) = 0 for other facts g. To go in the reverse direction and obtain 
the ‘true’ facts according to an operator, one may simply select the set of facts for each 
object that rank maximally.

3 � Examples of truth discovery operators

Our framework can capture some operators that have been proposed in the truth discov-
ery literature. In this section we provide two concrete examples: Voting, which is a simple 
approach commonly used as a baseline method, and Sums [34]. We go on to outline the 
class of recursive operators—of which Sums is an instance—which contains many more 
examples from the literature.

3.1 � Voting

In Voting, we consider each source to cast ‘votes’ for the facts they claim, and facts are 
ranked according to the number of votes received. Clearly this method disregards the 
source trustworthiness aspect of truth discovery, as a vote from one source carries as much 
weight as a vote from any other. As such, Voting cannot be considered a serious contender 
for truth discovery. It is nonetheless useful as a simple baseline method against which to 
compare more sophisticated methods.

Definition 3.1  Voting is the numerical operator defined as follows: for any network 
N ∈ N  , s ∈ S and f ∈ F  , TN(s) = 1 and TN(f ) = |���N(f )|.
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Consider the network N shown in Fig. 1. Facts f, g and h each receive one vote, whereas 
i receives 3. The fact ranking induced by Voting is therefore f ≈ g ≈ h ≺ i . On the other 
hand, all sources receive a trust score of 1 and therefore rank equally.

3.2 � Sums

Sums [34] is a simple and well-known operator adapted from the Hubs and Authorities 
[21] algorithm for ranking web pages. The algorithm operates iteratively and recursively, 
assigning each source and fact a sequences of scores, with the final scores taken as the limit 
of the sequence.

Initially, scores are fixed at a constant value of 1/2. The trust score for each source is 
then updated by summing the belief score of its associated facts. Similarly, belief scores 
are updated by summing the trust scores of the associated sources. To prevent these scores 
from growing without bound as the algorithm iterates, they are normalised at each iteration 
by dividing each trust score by the maximum across all sources (belief scores are normal-
ised similarly).

Expressed in our framework, we have that if T is the (numerical) operator giving the 
scores at iteration n, then the pre-normalisation scores at iteration n + 1 are given by T ′ , 
where

Consider again the network N shown in Fig.  1. It can be shown that, with T denoting 
the limiting scores from Sums with normalisation, we have TN(s) = 0 , TN(t) = 1 , and 
TN(u) = TN(v) =

√
2∕2 . The induced ranking of sources is therefore s ⊏ u ≃ v ⊏ t.

For fact scores, we have TN(f ) = 0 , TN(g) =
√
2 − 1 , TN(h) = 0 and TN(i) = 1 , so the 

ranking is f ≈ h ≺ g ≺ i . Note that fact g fares better under Sums than Voting, due to its 
association with the highly-trusted source t.

3.3 � Recursive truth discovery operators

The iterative and recursive aspect of Sums is hoped to result in the desired mutual depend-
ence between trust and belief scores: namely that sources claiming high-belief facts are 
seen as trustworthy, and vice versa. In fact, this recursive approach is near universal across 
the truth discovery literature (see for instance [14, 17, 28, 44, 48, 49]). As such it is appro-
priate to identify the class of recursive operators as an important subset of TNum . To make a 
formal definition we first define an iterative operator.

Definition 3.2  An iterative operator is a sequence (Tn)n∈ℕ of numerical operators. An iter-
ative operator is said to converge to a numerical operator T∗ if limn→∞ Tn

N
(z) = T∗

N
(z) for 

all networks N and z ∈ S ∪ F  . In such case the iterative operator can be identified with the 
ordinal operator induced by its limit T∗.

Note that it is possible that an iterative operator (Tn)n∈ℕ converges for only a sub-
set of networks. In such case we can consider (Tn)n∈ℕ to converge to a ‘partial 

(3.1)T �
N
(s) =

∑
f∈�����N (s)

TN(f ); T �
N
(f ) =

∑
s∈���N (f )

T �
N
(s)
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operator’ and identify it with the induced partial ordinal operator; that is, a partial function 
N → L(S) × L(F) . Recursive operators can now be defined as those iterative operators 
where Tn+1 can be obtained from Tn.

Definition 3.3  An iterative operator (Tn)n∈ℕ is said to be recursive if there is a function 
U ∶ TNum → TNum such that Tn+1 = U(Tn) for all n ∈ ℕ.

In this context the mapping U ∶ TNum → TNum is called the update function, and the ini-
tial operator T1 is called the prior operator. For a prior operator T and update function U, 
we write ���(T ,U) for the associated recursive operator; that is, T1 = T  and Tn+1 = U(Tn).

Returning to Sums, we see that Eq. (3.1) defines a mapping TNum → TNum and conse-
quently an update function USums . The normalisation step can be considered a separate 
update function ���� which maps any numerical operator T to T ′ , where4

It can then be seen that Sums is the recursive operator ���(Tfixed, ����◦USums) , where 
Tfixed
N

≡ 1∕2.
Many other existing algorithms proposed in the literature can also be realised as recur-

sive operators in the framework, such as Investment, PooledInvestment [34], TruthFinder 
[45], LDT [48] and others.

4 � Axioms for truth discovery

Having laid out the formal framework, we now introduce axioms for truth discovery. To 
start with, we consider axioms which encode a desirable theoretical property that we 
believe any ‘reasonable’ operator T should satisfy. Several properties of this nature can be 
obtained by adapting existing axioms from the social choice literature (e.g. from voting [8], 
ranking systems [2, 36] and judgement aggregation [15]), to our framework.

However, the correspondence between truth discovery and classical social choice prob-
lems—such as voting—has its limits. To show this, we translate the famous Independence 
of Irrelevant Alternatives (IIA) axiom [4] to our setting, and argue that it is actually an 
undesirable property. Indeed, it will be seen that this translated axiom, in combination 
with two basic desirable axioms, leads to Voting-like behaviour in every network, which 
is undesirable for the reasons given in Sect. 3.1. Furthermore, a slight strengthening of the 
IIA axiom completely characterises the fact ranking component of Voting. These results 
formalise the intuition that truth discovery’s consideration of source-trustworthiness leads 
to fundamental differences from classical social choice problems.

Afterwards, we will revisit the specific operators of the previous section to check which 
axioms are satisfied.

T �
N
(s) =

TN(s)

max
x∈S

|TN(x)| , T �
N
(f ) =

TN(f )

max
y∈F

|TN(y)|

4  If maxx∈S |TN (x)| = 0 then the above is ill-defined; we set T �
N
(s) = 0 for all s in this case. Fact belief 

scores are defined similarly if the maximum is 0.
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4.1 � Coherence

As mentioned previously, a guiding principle of truth discovery is that sources claiming 
highly believed facts should be seen as trustworthy, and that facts backed by highly trusted 
sources should be seen as believable.

Whilst this intuition is difficult to formalise in general, it is possible to do so in par-
ticular cases where there are obvious means by which to compare the set of facts for two 
sources (and vice versa). This situation is considered in the axiomatic analysis of ranking 
and reputation systems under the name Transitivity [2, 36], and we adapt it to truth discov-
ery in this section. A preliminary definition is required.

Definition 4.1  Let T be a TD operator, N be a TD network and Y , Y ′ ⊆ F  . We say Y is 
less believable than Y ′ with respect to N and T if there is a bijection � ∶ Y → Y � such that 
f ⪯T

N
�(f ) for each f ∈ Y  , and f̂ ≺T

N
𝜑(f̂ ) for some f̂ ∈ Y .

For X,X′ ⊆ S we define X less trustworthy than X′ with respect to N and T in a similar 
way.

In plain English, Y less believable than Y ′ means that the facts in each set can be paired 
up in such a way that each fact in Y ′ is at least as believable as its counterpart in Y, and at 
least one fact in Y ′ is strictly more believable. Now, consider a situation where �����N(s1) 
is less believable than �����N(s2) . In this case the intuition outlined above tells us that s2 
provides ‘better’ facts, and should thus be seen as more trustworthy than s1 . A similar idea 
holds if ���N(f1) is less trustworthy than ���N(f2) for some facts f1, f2 . We state this formally 
as our first axiom.

Axiom 1  (Coherence) For any network N, �����N(s1) less believable than �����N(s2) implies 
s1 ⊏

T
N
s2 , and ���N(f1) less trustworthy than ���N(f2) implies f1 ≺T

N
f2.

Coherence can be broken down into two sub-axioms: Source-Coherence, where the first 
implication regarding source rankings is satisfied; and Fact-Coherence, where the second 
implication is satisfied. We take Coherence to be a fundamental desirable axiom for TD 
operators.

4.2 � Symmetry

Our next axiom requires that rankings of sources and facts should not depend on their 
‘names’, but only on the structure of the network. To state it formally, we need a notion of 
when two networks are essentially the same but use different names.

Definition 4.2  Two TD networks N and N′ are equivalent if there is a graph isomorphism 
� between them that preserves sources, facts and objects, i.e., �(s) ∈ S , �(f ) ∈ F  and 
�(o) ∈ O for all s ∈ S , f ∈ F  and o ∈ O . In such case we write �(N) for N′.

Axiom 2  (Symmetry) Let N and N� = �(N) be equivalent networks. Then for all s1, s2 ∈ S , 
f1, f2 ∈ F  , we have s1 ⊑T

N
s2 iff 𝜋(s1) ⊑

T
N� 𝜋(s2) and f1 ⪯T

N
f2 iff �(f1) ⪯

T
N� �(f2).

In the theory of voting in social choice, Symmetry as above is expressed as two axioms: 
Anonymity, where output is insensitive to the names of voters, and Neutrality, where output 
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is insensitive to the names of alternatives [50]. Analogous axioms are also used in judg-
ment aggregation.

Symmetry can also be broken down into sub-axioms where the above need only hold 
for a subset of permutations � satisfying some condition: Source-Symmetry (where � must 
leave facts and objects fixed) and Fact-Symmetry (where � leaves sources and objects 
fixed). For truth discovery we have the additional notion of objects, and thus Object-Sym-
metry can defined be similarly.

4.3 � Fact ranking axioms

Next, we introduce axioms that dictate the ranking of particular facts in cases where there 
is an ‘obvious’ ordering. Unanimity and Groundedness express the idea that if all sources 
are in agreement about the status of a fact, then an operator should respect this in its ver-
dict. Two obvious ways in which sources can be in agreement are when all sources believe 
a fact is true, and when none believe a fact is true.

Axiom 3  (Unanimity) Suppose N ∈ N  , f ∈ F  , and ���N(f ) = S . Then for any other 
g ∈ F  , g ⪯T

N
f .

Axiom 4  (Groundedness) Suppose N ∈ N  , f ∈ F  , and ���N(f ) = � . Then for any other 
g ∈ F  , f ⪯T

N
g.

That is, f cannot do better than to be claimed by all sources when T satisfies Unanimity, 
and cannot do worse than to be claimed by none when T satisfies Groundedness. Unanim-
ity here is a truth discovery rendition of the same axiom in judgment aggregation, and can 
also be compared to the weak Paretian property in voting [8]. Groundedness is a version of 
the same axiom studied in the analysis of collective annotation [25].

The next axiom is a monotonicity property, which states that if f receives extra support 
from a new source s, then its ranking should receive a strictly positive boost.5 Note that we 
do not make any judgement on the new ranking of s.

Axiom 5  (Monotonicity) Suppose N ∈ N  , s ∈ S , f ∈ F ⧵ �����N(s) . Write E for the set 
of edges in N, and let N′ be the network in which s claims f; i.e. the network with edge set

Then for all g ≠ f  , g ⪯T
N
f implies g ≺T

N� f .

Note that the axioms in this section assume sources do not have ‘negative’ trust levels. 
That is, we assume that support from even the most untrustworthy source still has a posi-
tive effect on the believability of a fact. Consequently, these axioms are not suitable in the 
presence of knowledgable but malicious sources who always claim false facts. Indeed, oth-
erwise a fact claimed only by a ‘negative’ source should rank strictly worse than a fact with 
no sources, but this goes against Groundedness. Similarly, receiving extra support from 

E� = {(s, f )} ∪ E ⧵ {(s, g) ∶ g ≠ f , ���N(g) = ���N(f )}

5  One could also consider the weak version, in which we only require g ⪯T
N� f  in the consequent; we discuss 

this in Sect. 7.
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a negative source should worsen a fact’s ranking, contrary to Monotonicity. Moreover, 
Monotonicity implicitly assumes sources act independently, i.e. they do not collude with 
one another.6

While these assumptions may appear somewhat strong, we argue that this ‘simple’ 
case—with no ‘negative’ sources or collusion—is already non-trivial and permits interest-
ing axiomatic analysis. We therefore view Unanimity, Groundedness and Monotonicity as 
desirable properties for TD operators.

4.4 � Independence axioms

We now come to exploring the differences between truth discovery and other social choice 
problems via independence axioms. In voting, this takes the form of Independence of 
Irrelevant Alternatives (IIA), which requires that the ranking of two alternatives A and B 
depends only on the individual assessments of A and B, not on some ‘irrelevant’ alternative 
C.

An analogous truth discovery axiom states that the ranking of facts f1 and f2 for some 
object o depends only on the claims relating to o. Intuitively, this is not a desirable prop-
erty. Indeed, we have already seen in example 1.1 that the claims for object p in the net-
work from Fig. 1 can play an important role in determining the ranking of f and g for object 
o, but the adapted IIA axiom precludes this.

This undesirability can be made precise. First, we must state the axiom formally.

Axiom 6  (Per-object Independence (POI)) Let o ∈ O . Suppose N1 , N2 are networks such 
that Fo = ���−1

N1
(o) = ���−1

N2
(o) and ���N1

(f ) = ���N2
(f ) for each f ∈ Fo . Then the restrictions 

of ⪯T
N1

 and ⪯T
N2

 to Fo are equal; that is, f1 ⪯T
N1

f2 iff f1 ⪯
T
N2

f2 for all f1, f2 ∈ Fo.

Considering Fig. 1 again, POI implies that the ranking of f and g remains the same if 
the claims for h and i are removed. But in this case, Symmetry implies f ≈ g . Similarly, 
the ranking of h and i remains the same if the claims for f and g are removed. In this case, 
Symmetry together with Monotonicity implies h ≺ i , since |���N(h)| < |���N(i)|.

This observation forms the basis of the following result, which formalises the undesir-
ability of POI: in the presence of our less controversial requirements of Symmetry and 
Monotonicity, it forces Voting-like behaviour within ���−1

N
(o) for each o ∈ O . We note that, 

for the special case of binary networks, similar results have been shown in the literature on 
binary aggregation with abstentions [9].

Theorem 4.1  Let T be any operator satisfying Symmetry, Monotonicity and POI. Then for 
any N ∈ N  , o ∈ O and f1, f2 ∈ ���−1

N
(o) we have f1 ⪯T

N
f2 iff |���N(f1)| ≤ |���N(f2)|.

Proof  (sketch) We will sketch the main ideas of the proof here with some technical 
details omitted; see appendix A for the full proof. Let N be a network, o be an object and 
f1, f2 ∈ ���−1

N
(o) . Consider N′ obtained by removing from N all claims for objects other 

than o. By POI, we have f1 ⪯T
N
f2 iff f1 ⪯T

N� f2 . Since |���N(fj)| = |���N� (fj)| also ( j ∈ {1, 2} ), 
it is sufficient for the proof to show that f1 ⪯T

N� f2 iff |���N� (f1)| ≤ |���N� (f2)|.

6  Note that collusion has been studied in the truth discovery literature (e.g. [6, 12, 13]).
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For the ‘if’ direction, first suppose |���N� (f1)| = |���N� (f2)| . Let � be the permutation 
which swaps f1 with f2 and swaps each source in ���N� (f1) with one in ���N� (f2) ; then we 
have �(N�) = N� , and Symmetry of T gives f1 ≈T

N� f2 . In particular f1 ⪯T
N� f2 as required.

Otherwise, |���N� (f2)| − |���N� (f1)| = k > 0 . Consider N′′ where k sources from ���N� (f2) 
are removed, and all other claims remain. By Symmetry as above, f1 ≈T

N�� f2 . Applying 
Monotonicity k times we can produce N′ from N′′ and get f1 ≺T

N′ f2 as desired.
For the ‘only if’ statement, suppose f1 ⪯

T
N� f2 but, for contradiction, 

|���N� (f1)| > |���N� (f2)| . Applying Monotonicity again as above we get f1 ≻T
N′ f2 and the 

required contradiction. 	�  ◻

Recall that Coherence formalises the idea that source-trustworthiness should inform 
the fact ranking, and vice versa. Clearly Voting does not conform to this idea, and in 
fact even the object-wise voting patterns in Theorem  4.1 are incompatible with Coher-
ence. This can easily be seen in the network in Fig. 1 where, regarding object p, we have 
|���N(h)| < |���N(i)| (hence h ≺T

N
i ) and, regarding object o, we have |���N(f )| = |���N(g)| 

(hence f ≈T
N
g ). Hence �����N(s) is less believable than �����N(t) . If Coherence held this 

would give s ⊏T
N
t , but then ���N(f ) is less trustworthy than ���N(g) , giving f ≺T

N
g —a con-

tradiction. From this discussion and Theorem 4.1 we obtain as a corollary the following 
first impossibility result for truth discovery.

Theorem 4.2  There is no TD operator satisfying Coherence, Symmetry, Monotonicity and 
POI.

Given that Theorem 4.1 characterises the fact ranking of Voting for facts relating to a 
single object, it is natural to ask if there is a stronger form of independence that guarantees 
this behaviour across all facts. As our next result shows, the answer is yes, and the neces-
sary axiom is obtained by ignoring the role of objects altogether for fact ranking.

Axiom 7 (Strong Independence)  For any networks N1,N2 and facts f1, f2 , if 
���N1

(fj) = ���N2
(fj) for each j ∈ {1, 2} then f1 ⪯T

N1
f2 iff f1 ⪯T

N2
f2.

That is, the ranking of two facts f1 and f2 is determined solely by the sources claiming 
f1 and f2 . In particular, the fact-object affiliations and claims for facts other than f1, f2 are 
irrelevant when deciding on f1 versus f2 . Note that Strong Independence implies POI. We 
have the following result.

Theorem 4.3  Suppose |O| ≥ 3 . Then an operator T satisfies Strong Independence, Monoto-
nicity and Symmetry if and only if for any network N and f1, f2 ∈ F  we have

Theorem 4.3 can be seen as a characterisation of the class of TD operators that rank 
facts in the same way as Voting. The proof is similar to that of Theorem 4.1, but uses a dif-
ferent transformation to obtain a modified network N′ in the first step.

We have established that neither POI nor Strong Independence are satisfactory axioms 
for truth discovery, and a weaker independence property is required. Figure 1 can help us 
once again in this regard. Whereas POI and Strong Independence would say that facts h 
and i are irrelevant to f, the argument with Coherence for Theorem 4.2 suggests otherwise 
due the indirect links via the sources. We therefore propose that only when there is no 

f1 ⪯
T
N
f2 ⟺ |���N(f1)| ≤ |���N(f2)|
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(undirected) path between two nodes can we consider them to be truly irrelevant to each 
other. That is, nodes are relevant to each other iff they lie in the same connected component 
of the network.

Our final rendering of independence states that the ordering of two facts in the same 
connected component does not depend on any claims outside of the component, and simi-
larly for sources.

Axiom 8 (Per‑component Independence (PCI))  For any TD networks N1 , N2 with a com-
mon connected component G, the restrictions of ⊑T

N1
 and ⊑T

N2
 to G ∩ S are equal, and the 

restrictions of ⪯T
N1

 and ⪯T
N2

 to G ∩ F  are equal; that is, s1 ⊑T
N1

s2 iff s1 ⊑
T
N2

s2 and 
f1 ⪯

T
N1

f2 iff f1 ⪯
T
N2

f2 for s1, s2 ∈ G ∩ S and f1, f2 ∈ G ∩ F .

In analogy with Source/Fact Coherence and Source/Fact Symmetry, it is possible to 
split the two requirements of PCI into sub-axioms Source-PCI (in which only the constraint 
on source ranking is imposed) and Fact-PCI (in which only the fact ranking is constrained).

Note that while our framework can be easily adapted to require by definition that a net-
work is itself connected (and therefore has only one connected component), we have found 
that datasets with multiple connected components do indeed occur in practise.7 This means 
that failure of PCI is a real issue, and consequently we consider PCI to be another core 
axiom that all reasonable operators should satisfy.

5 � Satisfaction of the axioms

With the axioms formally defined, we can now consider whether they are satisfied by the 
example operators of Sect. 3. Voting can be analysed outright; for Sums we require some 
preliminary results giving sufficient conditions for iterative and recursive operators to sat-
isfy various axioms. It will be seen that neither Voting nor Sums satisfy all our desirable 
axioms, but it is possible to modify each operator to gain some improvement with respect 
to the axioms.

5.1 � Voting

As the simplest operator, we consider Voting first. The following theorem shows that all 
axioms except Coherence are satisfied. Since Coherence is a fundamental principle of truth 
discovery, and we actually consider POI and Strong Independence to be undesirable, this 
formally rules out Voting as a viable operator.

Theorem  5.1  Voting satisfies Symmetry, Unanimity, Groundedness, Monotonicity, POI, 
Strong Independence and PCI. Voting does not satisfy Coherence.

7  For example, the Book and Restaurant datasets found at the following web page each contain two con-
nected components: http://​lunad​ong.​com/​fusio​nData​Sets.​htm

http://lunadong.com/fusionDataSets.htm
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The proof is straightforward, and is deferred to appendix A. Note that once Symmetry, 
Monotonicity and POI are shown, the fact that Voting fails Coherence follows from our 
impossibility result (Theorem 4.2), and Fig. 1 serves as an explicit counterexample.

5.2 � Iterative and recursive operators

In this section we give sufficient conditions for iterative and recursive operators to sat-
isfy various axioms. These results will be useful in what follows when analysing Sums, 
although they may also be applied more generally to other operators.

Coherence. To analyse whether the limit of a recursive operator satisfies Coherence, we 
consider how the update function U behaves when the difference in belief scores between 
the facts of s1 and s2 is ‘small’ (and similarly for the sources of f1 , f2 ). To that end, we 
introduce a numerical variant of a set of facts Y being ‘less believable’ than Y ′.

Definition 5.1  Let T be a numerical TD operator, N a network, Y , Y ′ ⊆ F  and 𝜀, 𝜌 > 0 . 
We say Y is (�, �)-less believable than Y ′ with respect to N and T if there is a bijection 
� ∶ Y → Y � such that TN(f ) − TN(�(f )) ≤ � for all f ∈ Y  , and TN(f̂ ) − TN(𝜑(f̂ )) ≤ 𝜀 − 𝜌 for 
some f̂ ∈ Y .

For X,X′ ⊆ S , we define X (�, �)-less trustworthy than X′ similarly.

This generalises definition 4.1 by relaxing the requirement that f ⪯T
N
�(f ) , and instead 

requiring that f can only be more believable than �(f ) by some threshold 𝜀 > 0 . Definition 
4.1 is recovered in the limiting case � → 0 . We obtain a sufficient condition on the update 
function U for a recursive operator to satisfy Source-Coherence.

Lemma 5.1  Let U ∶ TNum → TNum . For any prior operator Tprior , ���(Tprior,U) satisfies 
Source-Coherence if the following condition is satisfied: there exist C,D > 0 such that for 
all networks N and numerical operators T it holds that if �����N(s1) is (�, �)-less believable 
than �����N(s2) with respect to N and T, then T �

N
(s1) − T �

N
(s2) ≤ C� − D� , where T � = U(T)

.

The proof of Lemma 5.1 uses the following result, the proof of which is a straightfor-
ward application of the definition of the limit.

Lemma 5.2  Let N be a truth discovery network and (Tn)n∈ℕ be a convergent iterative oper-
ator with limit T∗ . Then for f1, f2 ∈ F  , f1 ⪯T∗

N
f2 if and only if

Also, f1 ≺T∗

N
f2 if and only if

Analogous statements for source rankings also hold.

Proof (Lemma 5.1)  Let N be a network. Suppose U has the stated property and that 
���(Tprior,U) = (Tn)n∈ℕ converges to T∗ . Suppose �����N(s1) is less trustworthy than 
�����N(s2) with respect to N and T∗ under a bijection � . We must show that s1 ⊏T∗

N
s2.

∀𝜀 > 0 ∃K ∈ ℕ ∶ ∀n ≥ K ∶ Tn
N
(f1) − Tn

N
(f2) ≤ 𝜀

∃𝜌 > 0 ∶ ∀𝜀 > 0 ∃K ∈ ℕ ∶ ∀n ≥ K ∶ Tn
N
(f1) − Tn

N
(f2) ≤ 𝜀 − 𝜌
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Now, there is some f̂ ∈ �����N(s1) with f̂ ≺T∗

N
𝜑(f̂ ) . The second part of Lemma 

5.2 therefore applies; let � be as given there. Now let 𝜀 > 0 . Since f ⪯T∗

N
�(f ) for each 

f ∈ �����N(s1) , we may apply Lemma 5.2 with f ,�(f ) and 𝜀̄ = 𝜀∕C to get that there is 
K ∈ ℕ such that

and

for all n ≥ K . In other words, �����N(s1) is (𝜀̄, 𝜌)-less believable than �����N(s2) with respect 
to N and Tn for all n ≥ K.

Now, recall that Tn+1 = U(Tn) . For m ≥ K� = K + 1 we therefore have, applying our 
condition on U,

Since D� is positive and does not depend on � , we get s1 ⊏T∗

N
s2 by Lemma 5.2. This shows 

that T∗ satisfies Source-Coherence. 	�  ◻

A similar result gives conditions under which Fact-Coherence is satisfied.

Lemma 5.3  ���(Tprior,U) satisfies Fact-Coherence if there exist E,F > 0 such that for all 
networks N and numerical operators T it holds that if ���N(f1) is (�, �)-less trustworthy than 
���N(f2) with respect to N and T ′ , then T �

N
(f1) − T �

N
(f2) ≤ E� − F� , where T � = U(T).

Proof  The proof proceeds in an identical way to Lemma 5.1; the only difference is that we 
may simply take K� = K in the final step. 	�  ◻

Note that there is asymmetry between Lemmas 5.1 and 5.3—in the condition on U in 
Lemma 5.1 we have �����N(s1) (�, �)-less trustworthy than �����N(s2) with respect to T, 
whereas in Lemma 5.3 the corresponding condition is with respect to T � = U(T) . This 
reflects the manner in which Sums and other TD operators are typically defined: source 
trust scores are updated based on the fact scores of the previous iteration, whereas fact 
belief scores are updated based on the (new) trust scores in the current iteration.

Also note that the above results still hold if U has the stated property only for ‘small’ 
� ; that is, if there is a constant 0 < 𝜆 < 1 such that the property holds for all � and for all 
𝜀 < 𝜆𝜌.

Symmetry and PCI. When considering either Symmetry or PCI for an iterative opera-
tor (Tn)n∈ℕ , it is not enough to know that each Tn satisfies the relevant axiom. The fol-
lowing example illustrates this fact for Symmetry.

Example 5.1  Fix some f̂ ∈ F  , and define an iterative operator by

Tn
N
(f ) − Tn

N
(𝜑(f )) ≤ 𝜀̄

Tn
N
(f̂ ) − Tn

N
(𝜑(f̂ )) ≤ 𝜀̄ − 𝜌

Tm
N
(s1) − Tm

N
(s2) ≤ C𝜀̄ − D𝜌 = 𝜀 − D𝜌

Tn
N
(s) =1

Tn
N
(f ) =

{ |���N(f )| + (1 −
1

n+1
) if |���N(f )| = |���N(f̂ )|

|���N(f )| otherwise
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That is, each Tn is a modification of Voting in which we boost the score of all facts tied 
with f̂  under Voting by 1 − 1

n+1
 . Since this additional weight is (strictly) less than 1 for each 

n, the ordinal operator induced by Tn is simply Voting, and therefore satisfies Symmetry. 
However, it is easy to see that the limit operator T∗ has T∗

N
(f̂ ) = |���N(f̂ )| + 1 ; this means 

T∗ uses extra information beyond the structure of the network N in its ranking (namely, the 
identity of a selected fact f̂  ) which violates Symmetry.

Using a similar tactic, one can construct a sequence of numerical operators (Tn)n∈ℕ 
such that each Tn satisfies PCI, but the limit operator T∗ does not.

Fortunately, there is a natural strengthening of both Symmetry and PCI for numerical 
operators which is preserved in the limit. Let us say that a numerical operator T satisfies 
numerical Symmetry if for any equivalent networks N,�(N) we have TN(z) = T�(N)(�(z)) 
for all z ∈ S ∪ F  . Similarly, T satisfies numerical PCI if for any networks N1 and N2 
with a common connected component G, we have TN1

(z) = TN2
(z) for all z ∈ G ∩ (S ∪ F) . 

Clearly numerical Symmetry implies Symmetry, and numerical PCI implies PCI. The 
following result is immediate.

Lemma 5.4  Suppose (Tn)n∈ℕ converges to T∗ . Then

•	 If Tn satisfies numerical Symmetry for each n ∈ ℕ , then T∗ satisfies Symmetry.
•	 If Tn satisfies numerical PCI for each n ∈ ℕ , then T∗ satisfies PCI.

As a consequence of Lemma 5.4, any recursive operator ���(Tprior,U) satisfies Sym-
metry whenever Tprior satisfies numerical Symmetry and U preserves numerical Symme-
try, in the sense that U(T) satisfies numerical Symmetry whenever T does (and similarly 
for PCI).

Unanimity, Groundedness and Monotonicity. In contrast to Symmetry and PCI, 
both Unanimity and Groundedness are preserved when taking the limit of an iterative 
operator.

Lemma 5.5  Suppose (Tn)n∈ℕ converges to T∗ . Then

•	 If Tn satisfies Unanimity for each n ∈ ℕ , then T∗ satisfies Unanimity.
•	 If Tn satisfies Groundedness for each n ∈ ℕ , then T∗ satisfies Groundedness.

For Monotonicity, we require the following (stronger) property to hold for each Tn.

Definition 5.2  A numerical operator T satisfies Improvement if for each N,N′ and f as in 
the statement of Monotonicity, we have 𝛿(f ) > 𝛿(g) for all g ≠ f  , where

In this case we write 𝜌N,N� = ming≠f (𝛿(f ) − 𝛿(g)) > 0.

�(g) = TN� (g) − TN(g)
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Here �(g) is the amount by which the belief score for g increases when going from the 
network N to N′ . Improvement simply says that when adding a new source to a fact f, it is f 
that sees the largest increase.

Proposition 5.1  Suppose (Tn)n∈ℕ converges to T∗ , and Tn satisfies Improvement for each 
n ∈ ℕ . Suppose also that infn∈ℕ 𝜌nN,N� > 0 for each N,N′ arising in the statement of Mono-
tonicity. Then T∗ satisfies Monotonicity.

Proof  Let N,N′ and f be as in the statement of Monotonicity, and suppose g ⪯T∗

N
f  for some 

g ≠ f  . We will show g ≺T∗

N� f  using Lemma 5.2.
Write 𝜌∗ = infn∈ℕ 𝜌

n
N,N� > 0 and let 𝜀 > 0 . Since g ⪯T∗

N
f  , there is K ∈ ℕ such that 

Tn
N
(g) − Tn

N
(f ) ≤ � for all n ≥ K . For such n, we have

By Lemma 5.2, we have g ≺T∗

N� f  as required. 	�  ◻

The requirement that infn∈ℕ 𝜌nN,N� > 0 is a technical condition which ensures the strict 
inequality g ≺T∗

N� f  holds in the limit, as required for Monotonicity. If this condition fails T∗ 
still satisfies a natural ‘weak Monotonicity’ axiom, in which the strict inequality g ≺T∗

N� f  is 
replaced with g ⪯T∗

N� f .

5.3 � Sums

We come to the axiomatic analysis of Sums. Coherence and the simpler axioms are satis-
fied here, and the undesirable independence axioms (POI and Strong Independence) are 
not. However, Monotonicity and PCI do not hold. Since PCI is one of our most important 
axioms that we expect any reasonable operator to satisfy, this potentially limits the useful-
ness of Sums in practise.

Theorem  5.2  Sums satisfies Coherence, Symmetry, Unanimity and Groundedness. Sums 
does not satisfy POI, Strong Independence, PCI or Monotonicity.

Proof (sketch)  Symmetry, Unanimity and Groundedness can be easily shown from Lem-
mas 5.4 and 5.5; the details can be found in the appendix. In the remainder of the proof, 
(Tn)n∈ℕ will denote the iterative operator Sums, T∗ will denote the limit operator, and 
U = ����◦USums will denote the update function for Sums.

Coherence. We will show Source-Coherence using Lemma 5.1. The argument for Fact-
Coherence is similar (using Lemma 5.3) and can be found in the appendix.

Suppose N ∈ N  , T ∈ TNum , 𝜀, 𝜌 > 0 , and �����N(s1) is (�, �)-less believable than 
�����N(s2) with respect to N and T under a bijection � ∶ 𝖿𝖺𝖼𝗍𝗌N(s1) → 𝖿𝖺𝖼𝗍𝗌N(s2) . By 

Tn
N� (g) − Tn

N� (f ) = (Tn
N
(g) + �n(g)) − (Tn

N
(f ) + �n(f ))

= Tn
N
(g) − Tn

N
(f )

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
≤�

− (�n(f ) − �n(g))
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

≥�n
N,N�

≤ � − �n
N,N�

≤ � − �∗
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definition there is f̂ ∈ �����N(s1) such that TN(f̂ ) − TN(𝜑(f̂ )) ≤ 𝜀 − 𝜌 . By the remark after 
the proof of Lemma 5.1, we may assume without loss of generality that 𝜀 <

1

|F|𝜌.
Recall that the update function for Sums is U = ����◦USums . Write T � = USums(T) 

and T̃ = U(T) = ����(USums(T)) so that T̃ = ����(T �) . We must show that 
T̃N(s1) − T̃N(s2) ≤ C𝜀 − D𝜌 for some constants C,D > 0.

Note at this stage that it is possible to further weaken the hypotheses of Lemma 5.1: the 
result follows if U has the stated property not for all operators T, but only for those such 
that T = Tn for some n ∈ ℕ . Next, note that if T �

N
(x) = 0 for all x ∈ S then trust and belief 

scores are 0 in all subsequent iterations, and thus all sources rank equally in the limit T∗ . 
But this means the hypothesis for Source-Coherence cannot be satisfied (there are no strict 
inequalities). We may therefore assume without loss of generality that T �

N
(x) ≠ 0 for at least 

one x ∈ S . Therefore, by definition of ����,

where

Applying the definition of USums and using the pairing of �����N(s1) and �����N(s2) via � , 
we have

To complete the proof, we need to find a lower bound for � that is independent of T and N 
(note that a lower bound on � is required since |F|� − � is negative). It is here that we use 
the assumption that T = Tn for some n ∈ ℕ . Since Tn

N
(x) ∈ [0, 1] for any n ∈ ℕ and x ∈ S , 

we have

T̃N(s) = 𝛼T �
N
(s)

� =
1

max
x∈S

|T �
N
(x)|

T̃N(s1) − T̃n(s2) = 𝛼[T �
N
(s1) − T �

N
(s2)]

= 𝛼

� �
f∈�����N (s1)

TN(f ) −
�

f∈�����N (s1)

TN(𝜑(f ))

�

= 𝛼
�

f∈�����N (s1)

�
TN(f ) − TN(𝜑(f ))

�

= 𝛼
���

>0

⎡⎢⎢⎢⎢⎣

�
TN(f̂ ) − TN(𝜑(f̂ ))

�

�������������������������
≤𝜀−𝜌

+
�

f∈�����N (s1)⧵{f̂ }

�
TN(f ) − TN(𝜑(f ))

�

�������������������������
≤𝜀

⎤⎥⎥⎥⎥⎦

≤ 𝛼

⎡⎢⎢⎣
𝜀 − 𝜌 +

�
f∈�����N (s1)⧵{f̂ }

𝜀

⎤⎥⎥⎦
≤ 𝛼 ⋅

�
�F�𝜀 − 𝜌

�

���������
<0
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and so

Combining this with the above bound for T̃N(s1) − T̃n(s2) , we get

Taking C = 1 and D =
1

|F| , the hypotheses of Lemma 5.1 are satisfied; thus Sums satisfies 
Source-Coherence.

POI, Strong Independence, PCI and Monotonicity. The remaining axioms are handled 
by counterexamples derived from the network shown in Fig. 2. It can be shown that, if N 
denotes this network, we have T∗

N
(f ) = T∗

N
(g) = 0 , so f ≈T∗

N
g.

Let N′ denote the network whose claims are just those of the top connected component. 
Then it can be shown that T∗

N� (f ) = 1 and T∗
N� (g) = 0 , i.e. g ≺T∗

N� f  . However it is easily veri-
fied that our three independence axioms, if satisfied, would each imply f ⪯T∗

N
g iff f ⪯T∗

N� g . 
Therefore none of POI, Strong Independence and PCI can hold for Sums.

For Monotonicity, consider the network N′′ obtained from N by removing the edge 
(u, g). Then we still have T∗

N�� (f ) = T∗
N�� (g) = 0 , and in particular f ⪯T∗

N�� g . Returning to N 
amounts to adding extra support for the fact g. Monotonicity would give f ≺T∗

N
g here, but 

this is clearly false. Hence Monotonicity is not satisfied by Sums. 	� ◻

The key to the counterexamples derived from Fig.  2 in the above proof lies in the 
lower connected component, which—restricted to S ∪ F—is a connected bipartite 
graph. That is, each source xi claims all facts in the component, and each fact yj is 
claimed by all sources in the component. Moreover, sources elsewhere in the network 
claim fewer facts than the xi , and facts elsewhere are claimed by fewer sources than the 
yj.

Since Sums assigns scores by a simple sum, this results in the scores for the xi and 
yj dominating those of the other sources and facts. The normalisation step then divides 

|T �
N
(x)| = T �

N
(x) =

∑
f∈�����N (x)

TN(f )
⏟⏟⏟

≤1

≤ |�����N(x)| ≤ |F|

� =
1

max
x∈S

|T �
N
(x)| ≥

1

|F|

T̃N(s1) − T̃n(s2) ≤
1

|F|
(
|F|𝜀 − 𝜌

)
= 𝜀 −

1

|F|𝜌

Fig. 2   Network which yields 
counterexamples for POI, Strong 
Independence, PCI and Monoto-
nicity for Sums 
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these scores by the (comparatively large) maximum. As the next result shows, under 
certain conditions this causes scores to decrease exponentially and become 0 in the 
limit. In particular, we can generate pathological examples such as Fig. 2 where a whole 
connected component receives scores of 0, which leads to failure of Monotonicity and 
the independence axioms.

Proposition 5.2  Let N be a network. Suppose there is X ⊆ S , Y ⊆ F  such that 

1.	 �����N(x) = Y  for each x ∈ X

2.	 ���N(y) = X for each y ∈ Y

3.	 �����N(s) ∩ Y = � and |�����N(s)| ≤ |Y|
2

 for each s ∈ S ⧵ X

4.	 ���N(f ) ∩ X = � and |���N(f )| ≤ |X|
2

 for each f ∈ F ⧵ Y

Then, with (Tn)n∈ℕ denoting Sums, for all n > 1 we have

In particular, if T∗ denotes the limit of Sums then T∗
N
(s) = T∗

N
(f ) = 0 for all s ∈ S ⧵ X and 

f ∈ F ⧵ Y .

Proof  We proceed by induction. The result is easy to show in the base case n = 2 since 
|�����N(s)| ≤ 1

2
|�����N(x)| for any x ∈ X and s ∉ X (and similarly for facts). Assume the 

result holds for some n > 1 . Write T � = USums(Tn) , so that Tn+1 = ����(T �) . If s ∉ X then 
�����N(s) ⊆ F ⧵ Y  , so

Similarly, if f ∉ Y  then ���N(f ) ⊆ S ⧵ X , so

On the other hand, the fact that Tn
N
(x) = Tn

N
(y) = 1 for x ∈ X and y ∈ Y  gives

Tn
N
(s) ≤

1

2n−1
(s ∈ S ⧵ X)

Tn
N
(f ) ≤

1

2n−1
(f ∈ F ⧵ Y)

Tn
N
(x) =1 (x ∈ X)

Tn
N
(y) =1 (y ∈ Y)

T �
N
(s) =

∑
f∈�����N (s)

Tn
N
(f )

⏟⏟⏟

≤
1

2n−1

≤
|�����N(s)|

2n−1
≤

1

2
|Y|

2n−1
=

|Y|
2(n+1)−1

T �
N
(f ) =

∑
s∈���N (f )

T �
N
(s)

⏟⏟⏟

≤
|Y|

2(n+1)−1

≤
|���N(f )| ⋅ |Y|

2(n+1)−1
≤

1

2
|X| ⋅ |Y|
2(n+1)−1

=
|X| ⋅ |Y|
2(n+2)−1

T �
N
(x) =

∑
y∈Y

Tn
N
(y) = |Y|

T �
N
(y) =

∑
x∈X

T �
N
(x) = |X| ⋅ |Y|
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Clearly the x ∈ X and y ∈ Y  are the sources and facts with maximal trust and belief scores, 
respectively. This means that after normalisation via ���� , Tn+1

N
(x) = Tn+1

N
(y) = 1 and for 

s ∉ X and f ∉ Y ,

This shows that the claim holds for n + 1 ; by induction, the proof is complete. 	�  ◻

5.4 � Modifying Voting and Sums

So far we have seen that neither of the basic operators Voting or Sums are completely satis-
factory with respect to the axioms of Sect. 4. Armed with the knowledge of how and why 
certain axioms fail, one may wonder whether it is possible to modify the operators accord-
ingly so that the axioms are satisfied. Presently we shall show that this is partially possible 
both in the case of Voting and Sums.

5.4.1 � Voting

A core problem with Voting is that it fails Coherence. Indeed, all sources are ranked equally 
regardless of the ‘votes’ for facts, so in some sense it is obvious that the source ranking 
does not cohere with the fact ranking.8 An easy improvement is to explicitly construct the 
source ranking to guarantee Source-Coherence.

Definition 5.3  For a network N, define a binary relation ⊲N on S by s1 ⊲N s2 iff �����N(s1) 
is less believable than �����N(s2) with respect to Voting. The numerical operator SC-Voting 
(Source-Coherence Voting) is defined by

It can be seen that SC-Voting satisfies Source-Coherence, which is a significant improve-
ment over regular Voting. Since ⊲N relies on ‘global’ properties on N, however, this comes 
at the expense of Source-PCI. Satisfaction of the other axioms is inherited from Voting.

Theorem 5.3  SC-Voting satisfies Source-Coherence, Symmetry, Unanimity, Groundedness, 
Monotonicity, Fact-PCI, POI and Strong Independence. It does not satisfy Fact-Coherence 
or Source-PCI.

The following properties of ⊲N are useful for showing Source-Coherence.

Lemma 5.6  ⊲N is transitive and irreflexive.

Tn+1
N

(s) =
T �
N
(s)

|Y| ≤
1

2(n+1)−1

Tn+1
N

(f ) =
T �
N
(f )

|X| ⋅ |Y| ≤
1

2(n+2)−1
≤

1

2(n+1)−1

TSCV
N

(s) = |{t ∈ S ∶ t ⊲N s}|, TSCV
N

(f ) = |���N(f )|

8  Fact-Coherence is vacuously satisfied, however: since all sources rank equally we can never have ���N (f1) 
less trustworthy than ���N (f2).
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Proof  For transitivity, suppose s ⊲N t and t ⊲N u . Then �����N(s) is less believable than 
�����N(t) (with respect to Voting) via some bijection � ∶ 𝖿𝖺𝖼𝗍𝗌N(s) → 𝖿𝖺𝖼𝗍𝗌N(t) , and 
�����N(t) is less believable than �����N(u) via some bijection � ∶ 𝖿𝖺𝖼𝗍𝗌N(t) → 𝖿𝖺𝖼𝗍𝗌N(u) . It 
is easily seen that �����N(s) is less believable than �����N(u) via the composition � = �◦� , 
so s ⊲N u.

For irreflexivity, suppose for contradiction that s ⊲N s for some s ∈ S , i.e. F = �����N(s) 
is less believable than itself under some bijection � ∶ F → F . Then f ⪯T

N
�(f ) for each 

f ∈ F , and there is f̂  such that f̂ ≺T
N
𝜑(f̂ ) . Iterating applications of � , we get

for each n ≥ 1 , where �n is the n-th iterate of � and T denotes Voting.
Since F is finite, the sequence 𝜑(f̂ ),𝜑(𝜑(f̂ )),… must repeat at some point, i.e. there 

is i < j such that 𝜑i(f̂ ) = 𝜑j(f̂ ) . But then injectivity of � implies that f̂ = 𝜑j−i(f̂ ) . Taking 
n = j − i in Eq. (5.1) we get f̂ ≺T

N
f̂  —a contradiction. 	�  ◻

Proof (Theorem  5.3 (sketch))  Note that SC-Voting inherits Unanimity, Groundedness, 
Monotonicity, Fact-PCI, POI and Strong Independence from Voting, since these axioms 
only refer to the rankings of facts (which is the same for SC-Voting as for Voting).

We take the remaining axioms in turn. To simplify notation, write 
WN(s) = {t ∈ S ∶ t ⊲N s} in what follows.

Source-Coherence. Suppose �����N(s1) is less believable than �����N(s2) with respect to 
TSCV . We need to show s1 ⊏TSCV

N
s2.

Note that since the fact ranking for TSCV coincides with Voting, we have s1 ⊲N s2 . Transi-
tivity of ⊲N gives WN(s1) ⊆ WN(s2) . Moreover, s1 ∈ WN(s2) but by irreflexivity, s1 ∉ WN(s1) . 
Therefore WN(s1) ⊂ WN(s2) , which means TSCV

N
(s1) = |WN(s1)| < |WN(s2)| = TSCV

N
(s2) , i.e. 

s1 ⊏
TSCV

N
s2 as required.

Symmetry. Since the fact ranking of TSCV is the same as Voting, which satisfies Symme-
try, we only need to show that s1 ⊑TSCV

N
s2 iff 𝜋(s1) ⊑TSCV

𝜋(N)
𝜋(s2) for all equivalent networks 

N,�(N) and s1, s2 ∈ S.

(5.1)f̂ ≺T
N
𝜑(f̂ ) ⪯T

N
𝜑(𝜑(f̂ ) ⪯T

N
⋯ ⪯T

N
𝜑n(f̂ )

Fig. 3   Fact-Coherence counter-
example for SC-Voting 

Fig. 4   Source-PCI counterexam-
ple for SC-Voting 
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In can be shown, and we do so in the appendix, that the Symmetry of Voting implies a 
symmetry property for ⊲N and ⊲�(N) : we have s1 ⊲N s2 iff �(s1) ⊲�(N) �(s2) . Consequently, 
t ∈ WN(si) iff �(t) ∈ W�(N)(�(si)) ; in particular, |WN(si)| = |W�(N)(�(si))| . This means

as required for Symmetry.
Fact-Coherence Consider the network shown in Fig. 3. We have f ≈ g ≈ i ≺ h . Source-

Coherence between s and t gives t ⊏ s . If Fact-Coherence held we would then get g ≺ f  , 
but this is not the case.

Source-PCILet N1 denote the top connected component of the network shown in Fig. 4, 
and let N2 denote the network as a whole. The fact ranking is the same in both networks: 
g ≈ h ≈ i ≺ f  . In N1 sources s and t claim a different number of facts, so neither s ⊲N1

t nor 
t ⊲N1

s . Consequently WN1
(s) = WN1

(t) = � and s ≃TSCV

N1
t.

In N2 sources t and u can be compared for Source-Coherence, and we see that u ⊲N2
t 

since i ⪯TSCV

N2
g and h ≺TSCV

N2
f  . Hence WN2

(t) = {u} and WN2
(s) = � , which means s ⊏TSCV

N2
t . 

This contradicts Source-PCI, which requires the ranking of s and t to be the same in both 
networks. 	�  ◻

Note that the idea behind SC-Voting can be generalised beyond Voting: it is possible 
to define ⊲N in terms of any operator T, and to construct a new operator T ′ whose source 
ranking is given according to ⊲N as above, and whose fact ranking coincides with that of T. 
This ensures T ′ satisfies Source-Coherence whilst keeping the existing fact ranking from T.

Moreover we can go in the other direction and ensure Fact-Coherence whilst retaining 
the source ranking of T by defining a relation ◀N on F  in a analogous manner to ⊲N , and 
proceeding similarly.

5.4.2 � Sums

Our main concern with Sums is the failure of PCI and Monotonicity. We have seen that this 
is in some sense caused by the normalisation step: in Fig. 2 the scores of f, g etc go to 0 in 
the limit after dividing the ‘global’ maximum score across the network, which happens to 
come from a different connected component.

A natural fix for PCI is to therefore divide by the maximum score within each compo-
nent. In this case the score for a source s depends only on the structure of the connected 
component in which it lies, which is exactly what is required for PCI.

However, this approach does not negate the undesirable effects of proposition 5.2. 
Indeed, suppose the network in Fig. 2 was modified so that fact y1 is associated with object 
o instead of p1 . Clearly proposition 5.2 still applies after this change, and all sources and 
facts shown now belong to the same connected component. Therefore the ‘per-component 
Sums’ operator gives the same result as Sums itself, and in particular our Monotonicity 
counterexample still applies. Perhaps even worse, one can show that Coherence fails for 
this operator. We consider the loss of Coherence too high a price to pay for PCI.

Instead, let us take a step back and consider if normalisation is truly necessary. On the 
one hand, without normalisation the trust and belief scores are unbounded and therefore do 
not converge. On the other, we are not interested in the numeric scores for their own sake, 

s1 ⊑
TSCV

N
s2 ⟺ |WN(s1)| ≤ |WN(s2)|

⟺ |W𝜋(N)(𝜋(s1))| ≤ |W𝜋(N)(𝜋(s2))|
⟺ 𝜋(s1) ⊑

TSCV

𝜋(N)
𝜋(s2)
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but rather for the rankings that they induce. It may be possible that whilst the scores diverge 
without normalisation, the induced rankings do converge to a fixed one, which we may take 
as the ‘ordinal limit’. This is in fact the case. We call this new operator UnboundedSums.

Definition 5.4  UnboundedSums is the recursive operator ���(Tprior,USums) where 
T
prior

N
(s) = 1 , Tprior

N
(f ) = |���N(f )| and USums is defined as in Sect. 3.2.9

Theorem  5.4  UnboundedSums is ordinally convergent in the following sense: there 
is an ordinal operator T∗ such that for each network N there exists JN ∈ ℕ such that 
Tn
N
(s1) ≤ Tn

N
(s2) iff s1 ⊑T∗

N
s2 for all n ≥ JN and s1, s2 ∈ S (and similarly for facts).

That is, the rankings induced by Tn remain constant after JN iterations, and are identical 
to those of T∗.

Proof  The proof will use some results from linear algebra, so we will work with a matrix 
and vector representation of UnboundedSums. Fix an enumeration S = {s1,… , sk} of S 
and F = {f1,… , fl} of F  . Write M for the k × l matrix given by

We also write vn and wn for the vectors of trust and belief scores of UnboundedSums at 
iteration n; that is

where (Tn)n∈ℕ denotes UnboundedSums.
Multiplication by M encodes the update step of UnboundedSums: it is easily shown 

that vn+1 = Mwn and wn+1 = M⊤vn+1 . Writing A = MM⊤ ∈ ℝ
k×k , we have vn+1 = Avn , and 

therefore vn+1 = Anv1.
To show that the rankings of UnboundedSums remain constant after finitely many itera-

tions, we will show that for each sp, sq ∈ S there is Jpq ∈ ℕ such that sign ([vn]p − [vn]q) is 
constant for all n ≥ Jpq . Since [vn]p and [vn]q are the trust scores of sp and sq respectively 
in the n-th iteration, this will show that the ranking of sp and sq remains the same after Jpq 
iterations. Since there are only finitely many pairs of sources, we may then take JN as the 
maximum value of Jpq over all pairs (p, q), and the entire source ranking ⊑Tn

N
 of Unbound-

edSums remains constant for n ≥ JN . An almost identical argument can be carried out for 
the fact ranking, and these together will prove the result.

So, fix sp, sq ∈ S . Write �n = [vn]p − [vn]q . First note that A = MM⊤ is symmetric, so 
the spectral theorem gives the existence of k orthogonal eigenvectors x1,… , xk for A [5, 
Theorem  7.29]. Let �1,… , �k be the corresponding eigenvalues. Form a (k × k)-matrix 
P whose i-th column is xi , and let D = diag(�1,… , �k) . Then A can be diagonalised as 
A = PDP−1 . It follows that for any n ∈ ℕ , An = PDnP−1.

[M]ij =

{
1 if si ∈ ���N(fj)

0 otherwise
(1 ≤ i ≤ k, 1 ≤ j ≤ l)

vn =[T
n
N
(s1),… , Tn

N
(sk)]

⊤ ∈ ℝ
k

wn =[T
n
N
(f1),… , Tn

N
(fl)]

⊤ ∈ ℝ
l

9  Note that to simplify proof of ordinal convergence we use a different prior operator to Sums, but this does 
not effect the operator in any significant way.
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Now, since x1,… , xk are orthogonal, P is an orthogonal matrix, i.e. P⊤ = P−1 . Hence 
An = PDnP⊤ . Note that

and

which means

We obtain an explicit formula for �n+1:

where ri = (xi ⋅ v1)
(
[xi]p − [xi]q

)
 . Note that ri does not depend on n.

Now, it is easy to see that A = MM⊤ is positive semi-definite, which means its eigenval-
ues �1,… , �k are all non-negative. We re-index the sum in Eq. (5.2) by grouping together 
the �i which are equal, to get

where K ≤ k , each Rt is a sum of the ri (whose corresponding �i are equal), and the �t are 
distinct and non-negative. Assume without loss of generality that 𝜇1 > 𝜇2 > ⋯ > 𝜇K ≥ 0 . 
If Rt = 0 for all t, then clearly sign (�n+1) = sign (0) = 0 which is constant, so we are done. 
Otherwise, let T be the minimal t such that Rt ≠ 0 . We may also assume 𝜇T > 0 (otherwise 
we necessarily have �T = 0 , T = K and sign (�n+1) = sign (RT ⋅ 0n) which is again constant 
0). Observe that

By our assumption on the ordering of the �t , we have 𝜇t < 𝜇T in the sum. Consequently 
|𝜇t∕𝜇T | < 1 , and (�t∕�T )

n → 0 as n → ∞ . This means

PDn =
�
x1 ∣ … ∣ xk

� ⎡⎢⎢⎣

�n
1

⋱

�n
k

⎤
⎥⎥⎦
=
�
�n
1
x1 ∣ … ∣ �n

k
xk
�

P⊤v1 =

⎡
⎢⎢⎢⎢⎣

x1
−

⋮

−

xk

⎤
⎥⎥⎥⎥⎦
v1 =

⎡
⎢⎢⎣

x1 ⋅ v1
⋮

xk ⋅ v1

⎤⎥⎥⎦

vn+1 = Anv1 = PDnP⊤v1 =
�
𝜆n
1
x1 ∣ … ∣ 𝜆n

k
xk
� ⎡⎢⎢⎣

x1 ⋅ v1
⋮

xk ⋅ v1

⎤⎥⎥⎦
=

k�
i=1

(xi ⋅ v1)𝜆
n
i
xi

(5.2)�n+1 = [vn]p − [vn]q =

k∑
i=1

(xi ⋅ v1)�
n
i

(
[xi]p − [xi]q

)
=

k∑
i=1

ri�
n
i

�n+1 =

K∑
t=1

Rt�
n
t

�n+1 =RT�
n
T
+

K∑
t=T+1

Rt�
n
t

=�n
T

[
RT +

K∑
t=T+1

Rt

(
�t

�T

)n
]
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Since this limit is non-zero, there is Jpq ∈ ℕ such that the sign of term in square brackets is 
equal to S = signRT ∈ {1,−1} for all n ≥ Jpq . Finally, for such n we have

i.e. sign �n is constant for n ≥ Jpq + 1 . This completes the proof.10 	� ◻

In light of Theorem 5.4, we may consider UnboundedSums itself as an ordinal opera-
tor T∗ , where s ⊑T∗

N
t iff s ⊑TJn

N
t for each network N (and similarly for the fact ranking). 

Moreover, with the normalisation problems aside, UnboundedSums provides an example of 
a principled operator satisfying our two key axioms—Coherence and PCI. In particular, we 
escape the undesirable behaviour of Sums in Fig. 2; whereas Sums trivialises the ranking of 
sources and facts in the upper connected component, UnboundedSums allows meaningful 
ranking (e.g. we have g ≺ f  ). In particular, the counterexample for Monotonicity for Sums 
is no longer a counterexample for UnboundedSums. We conjecture that UnboundedSums 
also satisfies Monotonicity, but this remains to be proven. For example, we have experi-
mentally verified that UnboundedSums satisfies all the specific instances of Monotonicity 
with the starting network N as in Fig. 1.

Theorem  5.5  UnboundedSums satisfies Coherence, Symmetry, Unanimity, Groundedness 
and PCI. UnboundedSums does not satisfy POI and Strong Independence.

Proof (sketch)  The proof that UnboundedSums satisfies Symmetry, PCI, Unanimity and 
Groundedness is routine, and we leave the details to the appendix. In what follows, let 
(Tn)n∈ℕ denote UnboundedSums, T∗ denote the ordinal limit of UnboundedSums, and for a 
network N let JN be as in Theorem 5.4. Then the rankings in N induced by Tn for n ≥ JN are 
the same as T∗.

Coherence. First we show Source-Coherence. Let N be a network and suppose �����N(s1) 
is less believable than �����N(s2) with respect to N and T∗ . Let � and f̂  be as in the defini-
tion of less believable.

Let n ≥ JN . Then f ⪯T∗

N
�(f ) and f̂ ≺T∗

N
𝜑(f̂ ) for each f ∈ �����N(s1) means 

Tn
N
(f ) ≤ Tn

N
(�(f )) and Tn

N
(f̂ ) < Tn

N
(𝜑(f̂ )) . Hence

lim
n→∞

⎡
⎢⎢⎢⎢⎣
RT +

K�
t=T+1

Rt

�
�t

�T

�n

⏟⏟⏟
→0

⎤
⎥⎥⎥⎥⎦
= RT ≠ 0

sign 𝛿n+1 = sign

⎛
⎜⎜⎜⎝

𝜇n
T

���
>0

�
RT +

K�
t=T+1

Rt

�
𝜇t

𝜇T

�n
�⎞
⎟⎟⎟⎠
= sign

�
RT +

K�
t=T+1

Rt

�
𝜇t

𝜇T

�n
�

= S

10  The argument which shows that the difference between fact belief scores is also eventually constant in 
sign is almost identical. Write B = M⊤M , and observe that wn+1 = Bnw

1
 . Since B is also symmetric and 

positive semi-definite, the proof goes through as above.
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i.e. Tn+1
N

(s1) < Tn+1
N

(s2) . But Tn+1
N

 gives the same ranking as Tn
N

 and therefore the same 
ranking as T∗ , so we get s1 ⊏T∗

N
s2 as required.

For Fact-Coherence, suppose ���N(f1) is less trustworthy than ���N(f2) with respect to 
N and T∗ . Again, let n ≥ JN and � , ŝ be as in the definition of less trustworthy. Recall that 
belief scores for facts in Tn

N
 are obtained from trust scores in Tn

N
 ; applying the same argu-

ment as above we get Tn
N
(f1) < Tn

N
(f2) and consequently f1 ⪯T∗

N
f2 as required. Hence T∗ 

satisfies Coherence.
POI and Strong Independence. To show POI and Strong Independence are not satisfied, 

consider the network N shown in Fig. 5. It can be seen (e.g. by induction) that

Tn+1
N

(s) =
∑

f∈�����N (s1)

Tn
N
(f )

= Tn
N
(f̂ ) +

∑
f∈�����N (s1)⧵{f̂ }

Tn
N
(f )

< Tn
N
(𝜑(f̂ )) +

∑
f∈�����N (s1)⧵{f̂ }

Tn
N
(𝜑(f ))

=
∑

f∈�����N (s1)

Tn
N
(𝜑(f ))

=
∑

g∈�����N (s2)

Tn
N
(g)

= Tn+1
N

(s2)

Tn
N
(f ) = 1, Tn

N
(g) = 2n−1

Fig. 5   Counterexample for POI 
and Strong Independence for 
UnboundedSums 

Table 1   Satisfaction of the 
axioms for the various operators. 
Recall that POI and Strong 
Independence are undesirable 
properties

Voting SC-voting Sums U-sums

Source-coherence X ✓ ✓ ✓

Fact-coherence ✓ X ✓ ✓

Symmetry ✓ ✓ ✓ ✓

Unanimity ✓ ✓ ✓ ✓

Ground. ✓ ✓ ✓ ✓

Mon. ✓ ✓ X ?
Source-PCI ✓ X X ✓

Fact-PCI ✓ ✓ X ✓

POI ✓ ✓ X X

Str. indep. ✓ ✓ X X
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for all n ∈ ℕ . Consequently f ≺T∗

N
g.11

Now let N′ be the network in which the claim (t,  h) is removed. Since 
���N(f ) = ���N� (f ) = {s} and ���N(g) = ���N� (g) = {t} , both POI and Strong Independence 
imply f ⪯T∗

N
g iff f ⪯T∗

N� g . Therefore assuming either of POI or Strong Independence we 
get f ≺T∗

N� g . However is is also clear that

for all n ∈ ℕ , so f ≈T∗

N� g . This is a contradiction, so neither POI nor Strong Independence 
are satisfied. ◻

To summarise this section, Table  1 shows which axioms are satisfied by each of the 
operators.

6 � Variable domain truth discovery

So far, we have considered an arbitrary but fixed (finite) domain of sources, facts and 
objects (S,F,O) . Our operators and axioms were defined with respect to this domain. 
However, the operators do not depend on the domain: they can be defined for any choice 
of S , F  and O . In this section we generalise the framework so that these sets are no longer 
fixed. This allows new situations to be modelled, such as new sources entering the network. 
Adapting the definition of a TD operator to this case, we can then see how the ranking of 
facts changes as new sources are added. Such variable domain operators are then analogues 
of variable electorate voting rules in social theory.

Formally, let � , �  and � be countably infinite sets of sources, facts and objects respec-
tively. A domain is a triple D = (S,F,O) , where S ⊆ � , F ⊆ �  and O ⊆ � are finite, non-
empty sets. We think of � , �  and � as being the ‘universe’ of possible sources, facts and 
objects, and a domain as the (finite) sets of entities under consideration in a particular TD 
problem. Given a domain D = (S,F,O) , we define D-networks and D-operators as in defi-
nitions 2.1 and 2.2.

Definition 6.1  A variable domain operator T is a mapping which maps each domain D to 
a D-operator TD.

Note that for a domain D = (S,F,O) and a D-network N, ⊑TD
N

 and ⪯TD
N

 are rankings only 
over the set of sources S and F  in the domain D , not all of � and �  . If D is clear from con-
text, we write ⊑T

N
 and ⪯T

N
 without explicit reference to the domain.

Since all the axioms so far were stated with respect to a fixed but arbitrary domain, they 
can be easily lifted to the variable domain case. For instance, we say a variable domain 
operator T satisfies Coherence if TD satisfies the instance of Coherence for domain D , for 
all D , and similar for the other axioms.

But we can now go further, and introduce axioms which make use of several 
domains. First, we generalise Symmetry to act across domains. Say networks N,N′ in 
domains D,D′ respectively are equivalent if there is a graph isomorphism � between 
them such that �(s) ∈ S

� , �(f ) ∈ F
� and �(o) ∈ O

� for all s ∈ S , f ∈ F  and o ∈ O.

Tn
N� (f ) = Tn

N� (g) = 1

11  Note that g ranks higher than f in this network simply because t makes more claims than s, and each fact 
is claimed only by a single source. This questionable property of UnboundedSums is inherited from Sums.
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Axiom 9 (Isomorphism)  Let N and N� = �(N) be equivalent networks. Then for all 
s1, s2 ∈ S , f1, f2 ∈ F  , we have s1 ⊑T

N
s2 iff 𝜋(s1) ⊑T

N� 𝜋(s2) and f1 ⪯T
N
f2 iff �(f1) ⪯T

N� �(f2).

Like Symmetry, Isomorphism simply says that operators only care about the structure 
of the network, not the particular ‘names’ chosen for sources, facts and objects. Symme-
try is obtained as the special case where N and N′ are equivalent when seen as networks 
in a common domain D . All the operators of Sects. 3 and 5.4 satisfy Isomorphism.

Next we introduce a new monotonicity property. In what follows, for a network 
N = (V ,E) in domain (S,F,O) , f ∈ F  and S′ ⊆ � finite and disjoint from S , write 
N + (S�, f ) for the network in domain (S ∪ S

�,F,O) with edge set E ∪ {(s, f ) ∣ s ∈ S
�} , 

i.e. the extension of N where a collection of ‘fresh’ sources S′ each claim f. For example, 
Fig. 6 shows N + (S�, h) for the network N from Fig. 1 and new sources S� = {x1,… , x4}.

Axiom 10 (Eventual Monotonicity)  Let D = (S,F,O) be a domain and N a D-network. 
Then for all f , g ∈ F  , f ≠ g , there is a finite, non-empty set S′ ⊆ � with S ∩ S

� = � and 
g ≺T

N+(S� ,f )
f .

This axiom says that, given any pair of distinct facts f, g, it is possible to add enough 
new claims for f to make f strictly more believable than g. Intuitively, this is less 
demanding that Monotonicity, which requires that f can become strictly more believable 
than g with the addition of just one additional claim. Note that Eventual Monotonicity is 
not possible to state in the fixed domain case (e.g. consider N already containing claims 
from all the available sources in S).

When paired with Isomorphism, Eventual Monotonicity takes on a form similar to 
postulates for Improvement and Majority operators in belief merging [22, 23]: there is a 
threshold n ∈ ℕ such that f becomes strictly more believable than g after n new claims 
are added for f. That is, the identities of the new sources S′ are irrelevant; it is just the 
size of S′ that matters. We require a preliminary lemma.

Fig. 6   N + (S�
, h) , where N is 

the network from Fig. 1 and 
S
� = {x1,… , x4}.
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Lemma 6.1  Suppose a variable domain operator T satisfies Isomorphism. Let 
D = (S,F,O) be a domain, N a network in D and f ∈ F  . Then for all non-empty, finite 
sets S′

1
,S′

2
⊆ � disjoint from S with |S�

1
| = |S�

2
|,

Proof  Write D1 = (S ∪ S
�

1
,F,O) and D2 = (S ∪ S

�

2
,F,O) . Then N + (S�

i
, f ) is a net-

work in domain Di (for i ∈ {1, 2} ). Since |S�

1
| = |S�

2
| by assumption, there is a bijection 

� ∶ S
�

1
→ S

�

2
 . Define a mapping � from D1 to D2 by

and �(g) = g , �(o) = o for g ∈ F  and o ∈ O . Then it is easily verified that � is an isomor-
phism from N + (S�

1
, f ) to N + (S�

2
, f ) . For g1, g2 ∈ F  , we have g1 ⪯T

N+(S�
1
,f )

g2 iff 
�(g1) ⪯

T

N+(S�
2
,f )

�(g2) by Isomorphism. Since �(g1) = g1 and �(g2) = g2 , this shows 
⪯T

N+(S�
1
,f )

= ⪯T

N+(S�
2
,f )

 . 	�  ◻

Note that since � is infinite and domains are finite, for any n ∈ ℕ and any domain 
D = (S,F,O) there is always some S′ ⊆ � , disjoint from S , with |S�| = n . For operators T 
satisfying Isomorphism, write ⪯T

N+(n×f )
 for ⪯T

N+(S�,f )
 ; Lemma 6.1 guarantees this is well-

defined (i.e. does not depend on the particular choice of S′ ). That is, ⪯T
N+(n×f )

 is the fact 
ranking resulting from adding n new claims for f from fresh sources. We obtain an equiva-
lent characterisation of Eventual Monotonicity, whose proof is almost immediate given 
Lemma 6.1.

Proposition 6.1  Suppose T satisfies Isomorphism. Then T satisfies Eventual Monotonicity if 
and only if for all domains D = (S,F,O) , all networks N in D and distinct f , g ∈ F  , there 
is n ∈ ℕ such that g ≺T

N+(n×f )
f .

Proof (sketch)  ‘if’: To show Eventual Monotonicity, take any S′ ⊆ � ⧵ S of size n.
‘Only if’: Given that Eventual Monotonicity holds, simply take n = |S�| . 	�  ◻

We can now show that all operators studied so far—when lifted to the variable domain 
case—satisfy Eventual Monotonicity.

Theorem 6.1  Voting, Sums, SC-Voting and UnboundedSums satisfy Eventual Monotonicity.

Proof (sketch)  Let D = (S,F,O) be a domain, N a network in D and f , g ∈ F  . Given that 
Isomorphism holds for each operator, we sketch the proof via proposition 6.1.

For Voting and SC-Voting, we may simply take n = 1 + |���N(g)| . For Sums and 
UnboundedSums, take n = 2|S| ⋅ |F| . Write N� = N + (S�, f ) for some S′ ⊆ � ⧵ S with 
|S�| = n

If (Tk)k∈ℕ denotes Sums, one can show by induction that Tk
N� (f ) = 1 and Tk

N� (h) ≤
1

2
 for 

any h ≠ f  and k > 1 , and thus g ≺TSums
N′ f .

Similarly, letting (Tk)k∈ℕ denote UnboundedSums, one can show by induction that 
Tk
N� (f ) > Tk

N� (h) for h ≠ f  , and thus g ≺TUnboundedSums
N′ g.

	�  ◻

⪯T

N+(S�
1
,f )

= ⪯T

N+(S�
2
,f )

�(s) =

{
s, s ∈ S

�(s), s ∈ S
�

1

(s ∈ S ∪ S
�

1
)
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To conclude this section, we show that the impossibility result of Theorem 4.2 holds 
in the variable domain case if one replaces Monotonicity with Eventual Monotonicity and 
Symmetry with Isomorphism.

Theorem  6.2  There is no variable domain operator satisfying Coherence, Isomorphism, 
Eventual Monotonicity and POI.

Proof  For contradiction, suppose T is an operator satisfying the stated axioms. Let N be 
the network from Fig.  1, viewed as a network in domain ({s, t, u, v}, {f , g, h, i}, {o, p}) . 
Applying Eventual Monotonicity with i and h, we have that there is N′ with i ≺T

N′ h , where 
N� = N + (S�, h) for some S� ⊆ � ⧵ {s, t, u, v} . Since N′ only adds claims for p-facts, POI 
applied to object o and Isomorphism give f ≈T

N� g (e.g. consider � which simply swaps 
s with t and f with g). From Source-Coherence we get t ⊏T

N′ s . But ���N� (f ) = {s} and 
���N� (g) = {t} , so Fact-Coherence gives g ≺T

N′ f  : contradiction! 	�  ◻

7 � Discussion

In this section we discuss the axioms and their limitations. First, the version of Mono-
tonicity we consider is a strict one: a new claim for f gives f a strictly positive boost in 
the fact believability ranking. This is also the case for Eventual Monotonicity in the vari-
able domain case, where we require that some number of new claims make f strictly more 
believable than any other fact g. As noted in Sect. 4.3, this assumes there is no collusion 
between sources. Indeed, suppose sources s1 , s2 are in collusion. For example, s2 may agree 
to unconditionally back up all claims made by s1 . In this case a claim of f from s1 alone 
should carry just as much weight as the claim from both s1 and s2 . However, Monotonicity 
requires that f becomes strictly more believable when moving to the latter case.

A natural solution is to simply relax the strictness requirement. We obtain the following 
weak version of Monotonicity.

Axiom 11 (Weak Monotonicity)  Let N, s, f ,N′ be as in the statement of Monotonicity. 
Then for all g ≠ f  , g ⪯T

N
 implies g ⪯T

N� f .

Weak Monotonicity only says says that extra support for a fact f does not make f less 
believable. Clearly Monotonicity implies Weak Monotonicity, but not vice versa. In the 
collusion example, an operator may select to leave the fact ranking unchanged when a new 
report of f from s2 arrives; this is inconsistent with Monotonicity but consistent with Weak 
Monotonicity. The weak analogue of Eventual Monotonicity can be defined in the same 
way.

In the same spirit, one could consider versions of Coherence only using weak compari-
sons. Say �����N(s1) is weakly less believable than �����N(s2) iff the condition in definition 
4.1 holds, but without the requirement that some f̂ ∈ �����N(s1) is strictly less believable 
than its counterpart 𝜑(f̂ ) in �����N(s2) , and define ���N(f1) weakly less trustworthy than 
���N(f2) in a similar way. The weak analogue of Coherence is as follows.
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Axiom 12 (Weak Coherence)  For any network N, �����N(s1) weakly less believable than 
�����N(s2) implies s1 ⊑T

N
s2 , and ���N(f1) weakly less trustworthy than ���N(f2) implies 

f1 ⪯
T
N
f2.

Note that Coherence does not imply Weak Coherence. This is because Weak Coher-
ence relaxes both the consequent and the antecedent in the implications in the statement 
of the axiom. Whereas Coherence imposes no constraint when �����N(s1) is only weakly 
less believable than �����N(s2) , Weak Coherence requires s1 ⊑T

N
s2 . Consequently, the 

‘weakness’ of Weak Coherence refers to its use of weak comparisons between sources 
and facts, not its logical strength in relation to Coherence.

A natural question now arises. Does the impossibility result of Theorem 4.2 still hold 
with these new axioms? We have an answer in the negative: the ‘flat’ operator, which 
sets all sources and facts equally ranked in all networks, satisfies all the axioms of the 
would-be impossibility.

Proposition 7.1  Define an operator T by s1 ≃T
N
s2 and f ≈T

N
f2 for all networks N, sources 

s1, s2 and facts f1, f2 . Then T satisfies Coherence, Weak Coherence, Symmetry, Weak Mono-
tonicity and POI.

Proof  Coherence holds vacuously since we can never have �����N(s1) less believable than 
�����N(s2) or ���N(f1) less believable than ���N(f2) . Since any weak ranking holds for T, the 
other axioms are straightforward to see. 	�  ◻

This shows that (strict) Monotonicity is required for the impossibility result, since 
the result is no longer true when relaxing to Weak Monotonicity.

We now consider the new axioms in relation to the operators. First, Weak Coherence.

Proposition 7.2  Voting, Sums and UnboundedSums satisfy Weak Coherence

Proof (sketch)  Voting Since s1 ⊑
TVoting

N
s2 always holds, Weak Source-Coherence clearly 

holds. For Weak Fact-Coherence, suppose ���N(f1) is weakly less trustworthy than ���N(f2) . 
Then there is a bijection � ∶ 𝗌𝗋𝖼N(f1) → 𝗌𝗋𝖼N(f2) , so |���N(f1)| = |���N(f2)| . By definition of 
Voting, f1 ≈

TVoting

N
f2 . In particular, f1 ≺

TVoting

N
f2.

Sums First, one may adapt definition 5.1 to a numerical variant of a set of facts Y being 
weakly less believable than Y ′ , by dropping all references to � . We then have an analogue of 
Lemma 5.1, and Weak Coherence for Sums follows by an argument similar to the one used 
to show Coherence using Lemma 5.1.

UnboundedSums The proof that UnboundedSums satisfies Coherence can be adapted in 
a straightforward way to show Weak Coherence. 	�  ◻

Proposition 7.2 indicates that Weak Coherence may in fact be too weak to capture the 
original intuition behind Coherence—namely, that there should be a mutual dependence 
between trustworthy sources and believable facts—since it does not even rule out Vot-
ing. Instead, Weak Coherence can be seen as a simple requirement which only rules out 
undesirable behaviour, and complements (strict) Coherence.
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Since Monotonicity implies Weak Monotonicity, it is clear that Voting satisfies Weak 
Monotonicity. We conjecture that Weak Monotonicity also holds for Sums and Unbounded-
Sums, but this remains to be proven.12

8 � Related work

In this section we discuss related work.
Ranking systems. Altman and Tennenholtz [2] initiated axiomatic study of ranking sys-

tems. First we discuss their framework in relation to ours, and then turn to their axioms. 
In their framework, a ranking system F maps any (finite) directed graph G = (V ,E) to a 
total preorder ≤F

G
 on the vertex set V. In their view this is a variation of the classical social 

choice setting, in which the set of voters and alternatives coincide. Nodes v ∈ V  “vote" on 
their peers in V by a form of approval voting [26]: an edge v → u is interpret as a vote for u 
from v. A ranking system then outputs a ranking of V, following the general intuition that 
the more “votes" v receives (i.e. the more incoming edges), the higher v should rank. As 
with the ranking of facts in truth discovery, this does not necessarily mean ranking nodes 
simply by the number of votes received, since the quality of the voters should also be taken 
in account. For example, a ranking system may prioritise nodes which receive few votes 
from highly ranked nodes over those with many votes from lower ranked nodes.

Note that our truth discovery networks N are themselves directed graphs on the ver-
tex set S ∪ F ∪O . However, naively applying a ranking system to N directly makes little 
sense: sources never receive any “votes", and the resulting ranking includes objects, which 
do not need to be ranked in our setting. Perhaps a more sensible approach is to consider the 
bipartite graph GN = (VN ,EN) associated with a network N, where

That is, we take the edges from sources to facts together with the reversal of such edges. 
The edges in GN have some intuitive interpretation: a source votes for the facts which it 
claims are true, and a fact votes for the sources who vouch for it. Any ranking system F 
thus gives rise to a truth discovery operator, where s1 ⊑T

N
s2 iff s1 ≤F

GN
s2 , and similar for 

facts.
However, some characteristic aspects of the truth discovery problem are lost in this 

translation to ranking systems. Notably, the objects play no role at all in GN . Sources and 
facts are also treated symmetrically, where they perhaps should not be. For example, a fact 
f receiving more claims than g is beneficial for f, all else being equal (see Monotonicity), 
but a source s claiming more facts than t does not tell us anything about the relative trust-
worthiness of s and t.

While other choices of GN may be possible to alleviate some of these problems, we 
believe the truth discovery is sufficiently specialised beyond general graph ranking so that 
a bespoke modelling is required to capture its nuances appropriately. Our framework pro-
vides this novel contribution.

VN = S ∪ F, EN =
⋃

(s,f )∈N

{(s, f ), (f , s)}.

12  Indeed, we conjectured in Sect. 5 that the stronger axiom (strict) Monotonicity holds for Unbounded-
Sums. As with Monotonicity, experimental evidence from various starting networks N suggests that Weak 
Monotonicity is likely to hold.
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In [2], Altman and Tennenholtz also introduce axioms for ranking systems. Their first 
set of axioms deal with the transitive effects of voting when the alternatives are the voters 
themselves. As mentioned in Sect. 4, these axioms provided the inspiration for Coherence. 
The core idea is that if the predecessors of a node v are weaker than those of u, then v 
should be ranked below u. If v additionally has more predecessors, v should rank strictly 
below. Coherence applies this idea both in the direction of sources-to-facts (Fact-Coher-
ence) and from facts-to-sources (Source-Coherence). A notable difference is that we only 
consider the case where the number of sources for two facts (or the number of facts, for two 
sources) is the same. For example, a source claiming more facts does not give it the strict 
boost Transitivity would dictate. Under the mapping N ↦ GN described above, any ranking 
system satisfying Transitivity induces a truth discovery operator which satisfies Coherence.

The other axiom in [2] is an independence axiom RIIA (ranked independence of irrel-
evant alternatives), which adapts the classical IIA axiom from social choice theory to the 
ranking system setting, although in a different manner to our independence axioms of 
Sect. 4.4. We describe the axiom in rough terms, deferring to the paper for the technical 
details. Suppose the relative ranking of u1 ’s predecessors compared to u2 ’s predecessors 
is the same as that of v1 ’s compared to v2’s. Then RIIA requires u1 ≤ u2 iff v1 ≤ v2 . Infor-
mally, “the relative ranking of two agents must only depend on the pairwise comparison of 
the ranks of their predecessors" [2]. While we do not have an analogous axiom, the idea 
can be adapted to truth discovery networks. Intuitively, such an axiom would state that the 
ranking of two facts depends only on comparisons between their corresponding sources 
(and similar for the ranking of sources).

However, the main result of Altman and Tennenholtz is an impossibility: Transitivity is 
incompatible with RIIA. Moreover, the result remains true even when restricting to bipar-
tite graphs, such as GN described above. Accordingly, we can expect a similar impossibility 
result to hold in the truth discovery setting between Coherence and any analogue of RIIA.

PageRank. PageRank [33] is a well-known algorithm for ranking web pages based 
on the hyperlink structure of the web, viewed as a directed graph. It has also been stud-
ied through the lens of social choice and characterised axiomatically [1, 40].13 In [1] the 
authors propose several invariance axioms, each of which requires that the ranking of pages 
is not affected by a certain transformation of the web graph. For example, the axiom Self 
Edge says that adding a self loop from a page a to itself does not change the relative rank-
ing of other pages, and results in a strictly positive boost for a (c.f. Monotonicity). How-
ever, if we identify a truth discovery network N with the graph GN as described above, most 
of the transformations involved do not respect the bipartite, symmetric structure of GN . 
That is, the transformed graph does not correspond to any GN′ , for a network N′ . Conse-
quently, the PageRank axioms have no truth discovery counterpart in our setting. The only 
exception is Isomorphism, where the transformation in question is graph isomorphism; this 
axiom is analogous to our Symmetry and Isomorphism axioms. However, since PageRank 
is similar to the Hubs and Authorities [21] algorithm on which Sums is based—which also 
uses the link structure of the web to rank pages—we expect there may be additional axioms 
which can be expressed both for general graphs and truth discovery networks, satisfied by 
PageRank and Sums. We leave the task of finding such axioms to future work.

13  Wąs and Skibski [40] axiomatise the numerical scores of PageRank, whereas Altman and Tennenholtz 
[1] axiomatise the resulting ranking. Moreover, Wąs and Skibski point out that Altman and Tennenholtz 
in fact only consider a simplified version of PageRank called Katz prestige, defined only for strongly con-
nected graphs.
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9 � Conclusion

In this paper we formalised a mathematical framework for truth discovery. While a 
number of simplifying assumptions were made compared to the mainstream truth dis-
covery literature, we are able to express several algorithms in the framework. This 
provided the setting for the axiomatic method of social choice to be applied. To our 
knowledge, this is the first such axiomatic treatment in this context.

It was possible to adapt many axioms from social choice theory and related areas. In 
particular, the Transitivity axiom studied in the context of ranking systems [2, 36] took 
on new life in the form of Coherence, which we consider a core axiom for TD opera-
tors. We proceeded to establish the differences between our setting and classical social 
choice by considering independence axioms. This led to an impossibility result and an 
axiomatic characterisation of the baseline Voting method.

On the practical side, we analysed the existing TD algorithm Sums and found that, 
surprisingly, it fails PCI. This is a serious issue for Sums which has not been dis-
cussed in the literature to date, and its discovery here highlights the benefits of the 
axiomatic method. To resolve this, we suggested a modification to Sums—which we 
call UnboundedSums—for which PCI is satisfied. However, while UnboundedSums 
resolves axiomatic problems with Sums, it may introduce computational difficulties 
(since the numeric scores involved grow without bound). We leave further investiga-
tion of such issues to future work.

A restriction of our analysis is that only one ‘real-world’ algorithm was considered. 
Further axiomatic analysis of algorithms provides a deeper understanding of how algo-
rithms operate on an intuitive level, but is made difficult by the complexity of the state-
of-the-art truth discovery methods. New techniques for establishing the satisfaction (or 
otherwise) of axioms would be helpful in this regard.

There is also scope for extensions to our model of truth discovery in the framework 
itself. For example, even in the variable domain setting of Sect. 6, we make the some-
what simplistic assumption that there are only finitely many possible facts for sources 
to claim. This effectively means we can only consider categorical values; modelling an 
object whose domain is the set of real numbers, for example, is not straightforward in 
our framework.

Next, our model does not account for any associations or constraints between 
objects, whereas in reality the belief in a fact for one object may strengthen or weaken 
our belief in other facts for related objects. These types of constraints or correlations 
have been studied both on the theoretical side (e.g. in judgment aggregation) and prac-
tical side in truth discovery [44].

The axioms can also be further refined to relax some of the simplifying assumptions 
we make regarding source attitudes; e.g. that they do not collude or attempt to manipu-
late. Most notably, Monotonicity should be weakened to account for such sources.

Finally, it may be argued that truth discovery as formulated in this paper risks sim-
ply to find consensus among sources, rather than the truth. To remedy this, the frame-
work could be extended to model the possible states of the world and thus the ground 
truth (c.f. [32]). Upon doing so one could investigate how well, and under what condi-
tions, an operator is able to recover the truth from a TD network. Such truth-tracking 
methods have also been studied in judgment aggregation and belief fusion [16, 20].
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Proofs

Proof of theorem 4.1

The following lemma is required before the proof.

Lemma A.1  Suppose a network N = (V ,E) contains claims only for a single object o ∈ O ; 
that is, there exists o ∈ O such that (s, f ) ∈ E implies objN(f ) = o for all s ∈ S, f ∈ F  . Then 
for any Symmetric operator T and f1, f2 ∈ F  , |���N(f1)| = |���N(f2)| > 0 implies f1 ≈T

N
f2.

Proof  Suppose N has the stated property, T satisfies symmetry, and 
|���N(f1)| = |���N(f2)| > 0 . Then there is a bijection � ∶ 𝗌𝗋𝖼N(f1) → 𝗌𝗋𝖼N(f2) . Note that since 
f1 and f2 are for the same object no source can claim both facts, i.e. ���N(f1) ∩ ���N(f2) = �.

Define a permutation � by

and �(o) = o for all o ∈ O . That is, � swaps facts f1 and f2 , and swaps the sources of f1 
with their counterparts in f2 . Note that � = �−1.

Write N� = �(N) . We claim that N� = N . Write E,E′ for the edges in N and N′ respec-
tively. First we will show E ⊆ E′ . Suppose (s, f ) ∈ E . There are three cases.

Case 1 f = f1 . Here we have (s, f1) ∈ E , so s ∈ ���N(f1) . Consequently 
�(s) = �(s) ∈ ���N(f2) , i.e. (�(s), f2) ∈ E . By the definition of a graph isomorphism we 
get (�(�(s)),�(f2)) ∈ E� . Noting that �(f2) = f1 = f  and �(�(s)) = s (since � = �−1 ), we 
have (s, f ) ∈ E� as desired.
Case 2 f = f2 . Similar to the above case, here we have s ∈ ���N(f2) and so 
�(s) = �−1(s) ∈ ���N(f1) , i.e. (�(s), f1) ∈ E . As before, applying the definition of a graph 
isomorphism and using � = �−1 , we get (s, f ) ∈ E�.
Case 3 f ∉ {f1, f2} . By hypothesis f relates to the same object as f1 and f2 . This 
means s ∉ ���N(f1) and s ∉ ���N(f2) , since otherwise s would make claims for mul-
tiple facts for a single object. Hence we have �(s) = s and �(f ) = f  . This means 
(s, f ) = (�(s),�(f )) ∈ E� as required.

To complete the claim E ⊆ E′ , suppose (f , o) ∈ E . There are again three cases: f = f1 , 
f = f2 , or f ∉ {f1, f2} . In each case the definition of � and �(N) easily yield (f , o) ∈ E� . 
Hence E ⊆ E′.

Now for the reverse direction: we must show E′ ⊆ E . Let (x, y) ∈ E� . By definition of 
a graph isomorphism, we have (�−1(x),�−1(y)) ∈ E . Using �−1 = � and the first part we 
get (𝜋(x),𝜋(y)) = (𝜋−1(x),𝜋−1(y)) ∈ E ⊆ E� . The definition of a graph isomorphism then 
yields (x, y) ∈ E and so E′ ⊆ E . Hence E = E� and N = N�.

�(s) =

⎧
⎪⎨⎪⎩

�(s) if s ∈ ���N(f1)

�−1(s) if s ∈ ���N(f2)

s otherwise

�(f ) =

⎧
⎪⎨⎪⎩

f2 if f = f1
f2 if f = f2
f otherwise
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To conclude the proof, we apply Symmetry of T to get

and so f1 ≈T
N
f2 as required. 	� ◻

Proof (Theorem  4.1)  Suppose T is an operator satisfying Symmetry, Monotonic-
ity and POI. Let N ∈ N  , o ∈ O and f1, f2 ∈ ���−1

N
(o) . We need to show that f1 ⪯T

N
f2 iff 

|���N(f1)| ≤ |���N(f2)|.
Let N′ be the network obtained from N by removing all claims for facts other than those 

for object o; that is, N� = (V ,E�) where E is the set of edges in N and

Note that the fact-object affiliations are the same in N′ as in N, and the set of sources for 
each fact in ���−1

N
(o) is the same. Therefore POI applies, and it is sufficient to show that 

f1 ⪯
T
N� f2 iff |���N� (f1)| ≤ |���N� (f2)|.

First suppose |���N� (f1)| ≤ |���N� (f2)| . If |���N� (f1)| = |���N� (f2)| , then we 
have f1 ≈

T
N� f2 by Symmetry and Lemma A.1; in particular f1 ⪯

T
N� f2 . Otherwise 

|���N� (f2)| − |���N� (f1)| = k > 0 . Removing k sources from f2 to obtain a new network N′′ , 
we can apply the lemma to get f1 ≈T

N�� f2 . We may then add these sources back to obtain N′ 
again; k applications of Monotonicity then give f1 ≺T

N′ f2 as required.
To complete the proof we show that f1 ⪯T

N� f2 implies |���N� (f1)| ≤ |���N� (f2)| . Indeed, 
suppose f1 ⪯T

N� f2 but |���N� (f1) > |���N� (f2)| . Then the argument above gives f1 ≻T
N′ f2 , 

which is clearly a contradiction. Hence the proof is complete. 	�  ◻

Proof of theorem 4.3

The proof of this theorem is similar in spirit to that of Theorem 4.1. Like in that case, a 
preliminary result is required first.

Lemma A.2  Let N be a network and f1, f2 ∈ F  . Write o1 = ���N(f1) , o2 = ���N(f2) . Suppose 
N has the following properties: 

1.	 There is o∗ ∈ O ⧵ {o1, o2} such that f ∈ F ⧵ {f1, f2} ⟹ ���N(f ) = o∗ ; and
2.	 ���N(f ) = � for all f ∈ F ⧵ {f1, f2}.

Then for any operator T satisfying Symmetry, |���N(f1)| = |���N(f2)| implies f1 ≈T
N
f2.

Proof  The proof is similar to that of Lemma A.1. Suppose |srcN(f1)| = |���N(f2)| . Write

f1 ⪯
T
N
f2 ⟺ �(f1) ⪯

T
N� �(f2)

⟺ f2 ⪯
T
N� f1

⟺ f2 ⪯
T
N
f1

E� = (E ∩ (S × ���−1
N
(o))) ∪ (E ∩ (F ×O))

Q1 = ���N(f1) ⧵ ���N(f2)

Q2 = ���N(f2) ⧵ ���N(f1)
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Then |Q1| = |Q2| , so there exists a bijection � ∶ Q1 → Q2 . Define a permutation � as 
follows:

That is, � swaps f1 and f2 , swaps o1 and o2 , and swaps sources in Q1 with their counter-
parts in Q2 . Note that � = �−1 . Write N� = �(N) . We claim that N� = N . Write E,E′ for the 
edges in N and N′ respectively. First we show that E ⊆ E′ . For this, first suppose (s, f ) ∈ E 
for some s ∈ S , f ∈ F  . By definition of E, either f = f1 or f = f2.

Case 1 f = f1 . Here �(f ) = f2 , and we have either s ∈ Q1 or s ∈ ���N(f1) ∩ ���N(f2) . 
In the first case, 𝜋(s) = 𝜑(s) ∈ Q2 ⊆ ���N(f2) = ���N(𝜋(f )) . In the second case 
�(s) = s ∈ ���N(f2) = ���N(�(f )) . In either case, (�(s),�(f )) ∈ E.
Applying the definition of a graph isomorphism we get (�(�(s)),�(�(f ))) ∈ E� . But 
� = �−1 , so this means (s, f ) ∈ E� as desired.
Case 2 f = f2 . This case is similar. Here �(f ) = f1 . If s ∈ Q2 , then 
𝜋(s) = 𝜑−1(s) ∈ Q1 ⊆ ���N(f1) = ���N(𝜋(f )) . Otherwise s ∈ ���N(f1) ∩ ���N(f2) and 
�(s) = s ∈ ���N(f1) = ���N(�(f )) . Again, we have (�(s),�(f )) ∈ E in either case, so 
(s, f ) ∈ E�.

Note that these two cases cover all possibilities since by hypothesis ���N(f ) = � if 
f ∉ {f1, f2}.

Next, suppose (f , o) ∈ E . If f = f1 then o = o1 , so (�(f ),�(o)) = (f2, o2) ∈ E . Similarly if 
f = f2 then o = o2 and (�(f ),�(o)) = (f1, o1) ∈ E . If f ∉ {f1, f2} then �(f ) = f  and o = o∗ , 
so �(o) = o . We see that in all cases, (�(f ),�(f )) ∈ E . Applying the same argument as in 
case 1 above, we see that (f , o) ∈ E� . This shows E ⊆ E′.

To complete the claim that N = N� we must show E′ ⊆ E . This can be shown using the 
same argument used in Lemma A.1. Indeed, suppose (x, y) ∈ E� . Then by definition of a 
graph isomorphism, (�−1(x),�−1(y)) ∈ E . Using the fact that � = �−1 and E ⊆ E′ we get 
(�(x),�(y)) ∈ E� , which then yields (x, y) ∈ E as required. Hence E = E� and N = N�.

Finally, using Symmetry of T we have

�(s) =

⎧
⎪⎨⎪⎩

�(s) if s ∈ Q1

�−1(s) if s ∈ Q2

s otherwise

�(f ) =

⎧
⎪⎨⎪⎩

f2 if f = f1
f1 if f = f2
f otherwise

�(o) =

⎧
⎪⎨⎪⎩

o2 if o = o1
o1 if o = o2
o otherwise

f1 ⪯
T
N
f2 ⟺ �(f1) ⪯

T
�(N)

�(f2)

⟺ f2 ⪯
T
N� f1

⟺ f2 ⪯
T
N
f1
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Consequently f1 ≈T
N
f2 . 	�  ◻

Proof (Theorem 4.3)  The ‘if’ direction is clear since Voting satisfies Strong Independence, 
Monotonicity and Symmetry (see Theorem 5.1). For the other direction, suppose T satis-
fies the stated axioms. Let N be a network and f1, f2 ∈ F  . We will construct a network N′ 
where all claims for facts other than f1, f2 are removed, and these facts are grouped under a 
single object. To do so, let o1 = ���N(f1) , o2 = ���N(f2) and take o∗ ∈ O ⧵ {o1, o2} . Define 
an edge set E′ by

Then let N′ be the network with edge set E′ . Note that ���N� (fj) = ���N(fj) . By Strong Inde-
pendence it is therefore sufficient to show that f1 ⪯T

N� f2 iff |srcN� (f1)| ≤ |���N� (f2)| . Note 
also that N′ satisfies the hypothesis of Lemma A.2.

Now, suppose |���N� (f1)| ≤ |���N� (f2)| . If |���N� (f1)| = |���N� (f2)| then by Lemma A.2 
f1 ≈

T
N� f2 , and in particular f1 ⪯T

N� f2.
Otherwise, |���N� (f2)| − |���N� (f1)| = k > 0 . Consider N′′ where k sources from ���N� (f2) 

are removed, and all other claims remain. By the lemma, f1 ≈T
N�� f2 . Applying Monotonicity 

k times we can produce N′ from N′′ and get f1 ≺T
N′ f2 as desired.

For the other implication, suppose f1 ⪯
T
N� f2 and, for contradiction, 

|���N� (f1)| > |���N� (f2)| . Applying Monotonicity again as above gives f1 ≻T
N′ f2 and the 

required contradiction. 	�  ◻

Proof of theorem 5.1

Proof  We will show that Voting satisfies Symmetry, Unanimity, Groundedness, Monoto-
nicity, POI, Strong Independence and PCI, and that Coherence is not satisfied. For Symme-
try and PCI we use the (stronger) numerical variants numerical Symmetry and numerical 
PCI, introduced in Sect. 5.2. T will denote the (numerical) Voting operator in what follows.

Symmetry. Suppose N and �(N) are equivalent networks. Let f ∈ F  . By definition of 
equivalent networks we have s ∈ ���N(f ) iff �(s) ∈ ����(N)(�(f )) for all s ∈ S . Consequently 
� restricted to ���N(f ) is a bijection into ����(N)(�(f )) , and hence

Now let s ∈ S . Clearly we have TN(s) = 1 = T�(N)(�(s)) . Hence T satisfies numerical Sym-
metry and therefore Symmetry.

Unanimity and Groundedness. Suppose N ∈ N  and f ∈ F  . If ���N(f ) = S then for any 
g ∈ F ,

so g ⪯T
N
f  and Unanimity is satisfied. If instead ���N(f ) = � , we have

so f ⪯T
N
g and Groundedness is satisfied.

(s, f ) ∈ E�
⟺ f ∈ {f1, f2} and s ∈ ���N(f )

(f , o) ∈ E�
⟺ (f ∈ {f1, f2} and o = ���N(f )) or (f ∉ {f1, f2} and o = o∗)

TN(f ) = |���N(f )| = |����(N)(�(f ))| = T�(N)(�(f ))

TN(g) = |���N(g)| ≤ |S| = |���N(f )| = TN(f )

TN(g) = |���N(g)| ≥ 0 = |���N(f )| = TN(f )
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Monotonicity. Let N,N′, s and f be as given in the statement of Monotonicity. It is clear 
that |���N� (f )| = |���N(f )| + 1 . Also, for any g ∈ F  , g ≠ f  , the set of sources in N′ is the 
same as in N but with s possibly removed. Hence |���N� (g)| ≤ |���N(g) . Therefore g ⪯T

N
f  

implies

and so g ≺T
N′ f  as required.

Independence axioms. Next we show Strong Independence, which implies POI. Sup-
pose N1,N2 ∈ N  , f1, f2 ∈ F  and ���N1

(fj) = ���N2
(fj) for each j ∈ {1, 2} . Clearly we have

Consequently

as required for Strong Independence.
For PCI we proceed as with Symmetry by showing numerical PCI. Let N1,N2 have a 

common connected component G. Let f ∈ G ∩ F  . By definition of a connected compo-
nent, s ∈ ���N1

(f ) iff s ∈ ���N2
(f ) , so ���N1

(f ) = ���N2
(f ) . Hence

For s ∈ G ∩ S , we trivially have TN1
(s) = 1 = TN1

(s) . Hence numerical PCI is satisfied.
Coherence. The violation of Coherence follows from Theorem  4.2, since we have 

already shown that Symmetry, Monotonicity and POI are satisfied. 	�  ◻

Proof of lemma 5.2

Proof  The first statement follows easily from the definition of the limit. We shall prove 
only the second one.

First we prove the ‘if’ direction. Write D = T∗
N
(f1) − T∗

n
(f2) . We need to show that D < 0 . 

Write dn = Tn
N
(f1) − Tn

N
(f2) so that D = limn→∞ dn . Take 𝜀 = 𝜌∕2 > 0 . Then for sufficiently 

large n we have dn ≤ −𝜌∕2 < 0 . Taking n → ∞ , we have D = limn→∞ dn ≤ −𝜌∕2 < 0 as 
required.

For the ‘only if’ direction, suppose D < 0 . Let � = −D . Then for any 𝜀 > 0 , by the 
definition of the limit there is K ∈ ℕ such that |dn − D| < 𝜀 for n ≥ K ; in particular, 
dn < 𝜀 + D = 𝜀 − 𝜌 as required. 	�  ◻

Proof of theorem 5.2

The following results will be helpful to simplify the Proof of Theorem 5.2.

Lemma A.3  ���� has the following properties. 

|���N� (g)| ≤ |���N(g)| ≤ |���N(f )| < |���N� (f )|

TN1
(fj) = |���N1

(fj)| = |���N2
(fj)| = TN2

(fj)

f1 ⪯
T
N1

f2 ⟺ TN1
(f1) ≤ TN1

(f2)

⟺ TN2
(f1) ≤ TN2

(f2)

⟺ f1 ⪯
T
N2

f2

TN1
(f ) = |���N1

(f )| = |���N2
(f )| = TN2

(f )
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1.	 ���� preserves numerical Symmetry, in the sense that ����(T) satisfies numerical Sym-
metry whenever T does.

2.	 ���� leaves rankings unchanged, in the following sense. For T ∈ TNum , N ∈ N  , 
s1, s2 ∈ S , f1, f2 ∈ F  , 

Proof  For part (i), suppose T satisfies numerical Symmetry, and write T � = U(T) . Let N 
and �(N) be equivalent networks. First note that

where the second equality follows since � restricted to S is a surjection into S by the defi-
nition of equivalent networks. If this maximum is 0, then T �

N
(s) = 0 = T �

�(N)
(s) for all s ∈ S . 

Otherwise,

One can show that T �
N
(f ) = T �

�(N)
(�(f )) by an identical argument. Hence T � = U(T) satisfies 

numerical Symmetry also.
Now we prove part (ii). First suppose s1 ⊑T

N
s2 . Write T � = ����(T) . We have 

T �
N
(x) = �TN(x) for some � ≥ 0 and all x ∈ S (either � = 1∕maxx∈S |TN(x)| or � = 0 ). We 

therefore have

as desired.
Now suppose s1 ⊑T ′

N
s2 , i.e. �TN(s1) ≤ �TN(s2) . If 𝛼 > 0 then dividing by � readily gives 

s1 ⊑
T
N
s2 . Otherwise, � = 0 . This means maxx∈S |TN(x)| = 0 , and thus TN(x) = 0 for all 

x ∈ S . In particular TN(s1) = 0 ≤ 0 = TN(s2) so s1 ⊑T
N
s2.

The second statement regarding fact ranking may be shown using an identical argu-
ment. 	�  ◻

Corollary A.1  ���� preserves Coherence, Unanimity, Groundedness and PCI.

Proof (Theorem 5.2)  Throughout this proof, (Tn)n∈ℕ will denote the iterative operator Sums, 
T∗ will denote the limit operator, and U = ����◦USums will denote the update function for 
Sums.

Coherence. Source-Coherence was shown in the body of the paper. The proof that Fact-
Coherence is satisfied is similar, and uses Lemma 5.3. Suppose N ∈ N  , T = Tn for some 
n ∈ ℕ , 𝜀, 𝜌 > 0 , and ���N(f1) is (�, �)-less trustworthy than ���N(f2) with respect to N and T̃  

s1 ⊑
T
N
s2 ⟺ s1 ⊑

����(T)

N
s2

f1 ⪯
T
N
f2 ⟺ f1 ⪯

����(T)

N
f2

max
x∈S

|TN(x)| = max
x∈S

|T�(N)(�(x))| = max
x∈S

|T�(N)(x)|

T �
N
(s) =

TN(s)

max
x∈S

|TN(x)| =
T�(N)(�(s))

max
x∈S

|T�(N)(x)| = T �
�(N)

(�(s))

s1 ⊑
T
N
s2 ⟹ TN(s1) ≤ TN(s2)

⟹ 𝛼TN(s1) ≤ 𝛼TN(s2)

⟹ T �
N
(s1) ≤ T �

N
(s2)

⟹ s1 ⊑
T �

N
s2
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under a bijection � , where T̃ = U(T) . Let ŝ ∈ ���N(f1) be such that T̃N(s) − T̃N(𝜑(s)) ≤ 𝜀 − 𝜌

.
Write T � = USums(T) so that T̃ = ����(T �) , and set

We may assume without loss of generality that 𝜀 <
1

|S|𝜌 . Note that for s ∈ S , T̃N(s) = 𝛼T �
N
(s) 

and therefore T �
N
(s) =

1

𝛼
T̃N(s) . Writing

and applying a similar argument as for showing Source-Coherence, we find

Now we need to bound �∕� from below. Since we assume T = Tn for some n ∈ ℕ , for any 
y ∈ F  we have

Therefore

Next, we claim there is some fact f̄ ∈ F  with TN(f̄ ) ≥ 1∕2 and ���N(f̄ ) ≠ � . Indeed, if 
T = T1 = Tfixed then take any fact with at least one associated source.14 Otherwise, since 
we assume not all scores are 0 in the limit, there is some f̄  with TN(f̄ ) = 1 due to the appli-
cation of ���� . Clearly ���N(f̄ ) ≠ � , since we would have TN(f̄ ) = 0 otherwise.

Let x̄ ∈ ���N(f̄ ) . Then

� =
1

max
x∈S

|T �
N
(x)|

� =
1

max
y∈F

|T �
N
(y)|

T̃N(f1) − T̃N(f2) = 𝛽
�

s∈���N (f1)

�
T �
N
(s) − T �

N
(𝜑(s))

�

=
𝛽

𝛼

�
s∈���N (f1)

�
T̃N(s) − T̃N(𝜑(s))

�

=
𝛽

𝛼

⎡⎢⎢⎢⎢⎣

�
T̃N(ŝ) − T̃N(𝜑(ŝ))

�

�������������������������
≤𝜀−𝜌

+
�

s∈���N (f1)⧵{ŝ}

�
T̃N(s) − T̃N(𝜑(s))

�

�������������������������
≤𝜀

⎤⎥⎥⎥⎥⎦
≤

𝛽

𝛼
⋅
�
�S�𝜀 − 𝜌

�

���������
<0

|T �
N
(y)| = ∑

s∈���N (y)

T �
N
(s)

⏟⏟⏟
≤|F|

≤ |���N(y)| ⋅ |F| ≤ |S| ⋅ |F|

� ≥
1

|S| ⋅ |F|

14  Note that this is always possible since a truth discovery network contains at least one claim by definition.
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This means

and so, finally,

Combined with what was shown before, this means

and Fact-Coherence follows from Lemma 5.3.
Symmetry. As a consequence of Lemma 5.4, to show Symmetry it is sufficient to show 

that Tfixed satisfies numerical Symmetry, and that U = ����◦USums preserves numerical 
Symmetry. Since Tfixed is constant with value 1/2, it is clear that numerical Symmetry is 
satisfied. Moreover, Lemma A.3 part (i) already shows that ���� preserves numerical Sym-
metry, so we only need to show that USums does.

To that end, suppose T ∈ TNum satisfies numerical symmetry, and write T � = USums(T) . 
Let N and �(N) be equivalent networks and s ∈ S . Then

Note that f ∈ �����N(s) iff �(f ) ∈ ������(N)(�(s)) . Rephrased slightly, we have 
y ∈ ������(N)(�(s)) iff �−1(y) ∈ �����N(s) . Hence we may make a ‘substitution‘ f = �−1(y) 
and sum over �����N(s) , i.e.

Applying numerical symmetry for T, we get

Following the same tactic, one may also show that T �
�(N)

(�(f )) = T �
N
(f ) for all f ∈ F  . 

Hence USums preserves numerical Symmetry, and we are done.
Unanimity and Groundedness.
Unanimity and Groundedness can be proved together using Lemma 5.5 and corollary 

A.1. By these results it is sufficient that Tfixed satisfies Unanimity and Groundedness—this 
is trivial—and that USums preserves them.

|T �
N
(x̄)| = T �

N
(x̄) = TN(f̄ )

���
≥1∕2

+
∑

f∈�����N (x̄)⧵{f̄ }

TN(f )

���������������������
≥0

≥
1

2

1

𝛼
= max

x∈S
|T �

N
(x)| ≥ |T �

N
(x̄)| ≥ 1

2

�

�
≥

1

|S| ⋅ |F| ⋅
1

2

T̃N(f1) − T̃N(f2) ≤
1

2 ⋅ |S| ⋅ |F|
(
|S|𝜀 − 𝜌

)

T �
�(N)

(�(s)) =
∑

y∈������(N)(�(s))

T�(N)(y)

T �
�(N)

(�(s)) =
∑

f∈�����N (s)

T�(N)(�(f ))

T �
�(N)

(�(s)) =
∑

f∈�����N (s)

TN(f )

= T �
N
(s)
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Suppose T satisfies Unanimity and Groundedness and write T � = USums(T) . Assume 
without loss of generality that T = Tn for some n ∈ ℕ so that T ′

N
≥ 0 . Suppose N ∈ N  , 

f ∈ F  and that ���N(f ) = S . Let g ∈ F  . We must show that g ⪯T �

N
f  . We have

i.e. g ⪯T �

N
f  as required for Unanimity. For Groundedness, suppose ���N(f ) = � . We must 

show f ⪯T �

N
g . Indeed, the sum in the expression for T �

N
(f ) is taken over the empty set, 

which by convention is 0. Since T �
N
(g) ≥ 0 , we are done. 	�  ◻

Proof of theorem 5.3

Proof  Here we give only the technical details for the argument showing SC-Voting satisfies 
Symmetry, since the results for the other axioms were given in the main text.

Symmetry. Since Voting satisfies Symmetry, it is clear that f1 ⪯
TSCV

N
f2 iff 

�(f1) ⪯
TSCV

�(N)
�(f2) for any equivalent networks N and �(N) . We need to show that s1 ⊑TSCV

N
s2 

iff 𝜋(s1) ⊑TSCV

𝜋(N)
𝜋(s2).

First we will show that ⊲N and ⊲�(N) have a similar symmetry property: 
s1 ⊲N s2 iff �(s1) ⊲�(N) �(s2) . Indeed, suppose s1 ⊲N s2 . Then there is a bijection 
� ∶ 𝖿𝖺𝖼𝗍𝗌N(s1) → 𝖿𝖺𝖼𝗍𝗌N(s2) with f ⪯TSCV

N
�(f ) , and there is some f̂  with f̂ ≺TSCV

N
𝜑(f̂ ).

It can be seen that � restricted to �����N(si) is a bijection into ������(N)(�(si)) . Let �1 
and �2 denote these restrictions for i = 1, 2 respectively. Set � = �2◦�◦�

−1
1

 , so that � maps 
������(N)(�(s1)) into ������(N)(�(s2)) . As a composition of bijections, � is itself bijective.

Let g ∈ ������(N)(�(s1)) . Write f = �−1
1
(g) ∈ �����N(s1) . By the property of � , we have

By the symmetry property of the fact-ranking (which follows from symmetry of Voting), 
we can apply � to the above to get

Since f ∈ �����N(s1) and �(f ) ∈ �����N(s2) , we have �(f ) = �1(f ) and �(�(f )) = �2(�(f )) . 
Using this fact in the above inequality and recalling f = �−1(g) we get

i.e. g ⪯TSCV

�(N)
�(g) . Applying the same argument with ĝ = 𝜋−1

1
(f̂ ) we get ĝ ≺TSCV

𝜋(N)
𝜃(ĝ).

This shows that ������(N)(�(s1)) is less believable than ������(N)(�(s2)) with respect 
to SC-Voting (whose fact-ranking coincides with Voting) in �(N) under � . Hence 
�(s1) ⊲�(N) �(s2).

We have shown s1 ⊲N s2 ⟹ �(s1) ⊲�(N) �(s2) . For the converse implication, apply 
the same argument starting from �(s1) ⊲�(N) �(s2) with the �−1.

Next, we note that for i = 1, 2 and any t ∈ S,

T �
N
(g) =

∑
s∈���N (g)

T �
N
(s) ≤

∑
s∈S

T �
N
(s) = T �

N
(f )

f ⪯TSCV

N
�(f )

�(f ) ⪯TSCV

�(N)
�(�(f ))

g = �1(f ) = �(f ) ⪯TSCV

�(N)
�(�(f )) = �2(�(f )) = �2(�(�

−1
1
(g))) = �(g)
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Consequently � restricted to WN(si) is a bijection into W�(N)(�(si)) , which means 
|WN(si)| = |W�(N)(�(si))| . Finally, this means

as required for Symmetry. 	�  ◻

Proof of theorem 5.5

Proof  Here we show that UnboundedSums satisfies Symmetry, PCI, Unanimity and 
Groundedness, since the other axioms were dealt with in the main body of the paper.

Throughout the proof, let (Tn)n∈ℕ denote UnboundedSums, T∗ denote the ordinal limit of 
UnboundedSums, and for a network N let JN be as in Theorem 5.4. Then the rankings in N 
induced by Tn for n ≥ JN are the same as T∗.

Symmetry. In the Proof of Theorem 5.2, we saw that the update function USums preserves 
numerical Symmetry, in the sense that if T satisfies numerical Symmetry then USums(T) 
does also. Since it is clear that the prior operator for UnboundedSums satisfies numerical 
Symmetry, Tn satisfies numerical Symmetry and consequently Symmetry for all n ∈ ℕ.

Now, let N and �(N) be equivalent networks. Let J, J� ∈ ℕ be such that T∗(N) and 
T∗(�(N)) are given by TJ

N
 and TJ�

�(N)
 respectively and take n ≥ max{J, J�} . For s1, s2 ∈ S we 

have by Symmetry of Tn,

as required for Symmetry. Using an identical argument, one can show that f1 ⪯T∗

N
f2 iff 

�(f ) ⪯T∗

�(N)
�(f2) . Hence T∗ satisfies Symmetry.

PCI. As with Symmetry, we will show that Tn satisfies numerical PCI, and consequently 
PCI, for all n ∈ ℕ . Let N1,N2 be networks with a common connected component G. Let 
s ∈ G ∩ S and f ∈ G ∩ F  . Note that �����N1

(s) = �����N2
(s) and ���N1

(f ) = ���N2
(f ) since 

by definition a source is connected to its facts and vice versa. For n = 1 we have

so T1 has numerical PCI. Supposing Tn has numerical PCI for some n ∈ ℕ , we have

t ∈ WN(si) ⟺ t ⊲N si

⟺ �(t) ⊲�(N) �(si)

⟺ �(t) ∈ W�(N)(�(si))

s1 ⊑
TSCV

N
s2 ⟺ |WN(s1)| ≤ |WN(s2)|

⟺ |W𝜋(N)(𝜋(s1))| ≤ |W𝜋(N)(𝜋(s2))|
⟺ 𝜋(s1) ⊑

TSCV

𝜋(N)
𝜋(s2)

s1 ⊑
T∗

N
s2 ⟺ s1 ⊑

Tn

N
s2

⟺ 𝜋(s1) ⊑
Tn

𝜋(N)
𝜋(s2)

⟺ 𝜋(s1) ⊑
T∗

𝜋(N)
𝜋(s2)

T1
N1
(s) = 1 = T1

N2
(s)

T1
N1
(f ) = |���N1

(f )| = |���N2
(f )| = T1

N2
(f )
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and similarly

Hence, by induction, Tn has numerical PCI for all n ∈ ℕ , and we are done.
Unanimity and Groundedness. For Unanimity, suppose ���N(f ) = S . For any g ∈ F  and 

n ∈ ℕ we have

so g ⪯Tn

N
f  for all n ∈ ℕ . Since the ranking of T∗ corresponds to Tn for large n, we have 

g ⪯T∗

N
f  as required

For Groundedness, suppose ���N(f ) = � . Then Tn
N
(f ) = 0 for all n ∈ ℕ . For any g ∈ F  , 

we have Tn
N
(g) ≥ 0 = Tn

N
(f ) . Consequently f ⪯Tn

N
g for all n ∈ ℕ . As above, this gives 

f ⪯T∗

N
g as required. 	�  ◻
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