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Abstract
Objective: Recent work has shown that people with common epilepsies have 
characteristic patterns of cortical thinning, and that these changes may be pro-
gressive over time. Leveraging a large multicenter cross- sectional cohort, we 
investigated whether regional morphometric changes occur in a sequential man-
ner, and whether these changes in people with mesial temporal lobe epilepsy and 
hippocampal sclerosis (MTLE- HS) correlate with clinical features.
Methods: We extracted regional measures of cortical thickness, surface area, and 
subcortical brain volumes from T1- weighted (T1W) magnetic resonance imag-
ing (MRI) scans collected by the ENIGMA- Epilepsy consortium, comprising 804 
people with MTLE- HS and 1625 healthy controls from 25 centers. Features with a 
moderate case– control effect size (Cohen d ≥ .5) were used to train an event- based 
model (EBM), which estimates a sequence of disease- specific biomarker changes 
from cross- sectional data and assigns a biomarker- based fine- grained disease stage 
to individual patients. We tested for associations between EBM disease stage and 
duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance.
Results: In MTLE- HS, decrease in ipsilateral hippocampal volume along with in-
creased asymmetry in hippocampal volume was followed by reduced thickness in 
neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase 
in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of 
illness (Spearman ρ = .293, p = 7.03 × 10−16), age at onset (ρ = −.18, p = 9.82 × 10−7), 
and ASM resistance (area under the curve = .59, p = .043, Mann– Whitney U test). 
However, associations were driven by cases assigned to EBM Stage 0, which repre-
sents MTLE- HS with mild or nondetectable abnormality on T1W MRI.
Significance: From cross- sectional MRI, we reconstructed a disease progres-
sion model that highlights a sequence of MRI changes that aligns with previous 
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1  |  INTRODUCTION

Epilepsy is characterized by recurrent seizures caused 
by excessive and abnormal neuronal activity in the cor-
tex. Moreover, there is consistent evidence indicating 
decreased gray matter volume in people with epilepsy 
(PWE) compared to healthy controls. Quantitative 
analysis of MRI data from PWE in a large multicenter 
cohort showed reduced cortical thickness and subcor-
tical volume in specific brain regions according to epi-
lepsy type.1 In people with focal epilepsy, differences 
tend to be more pronounced ipsilateral to the seizure 
focus.1,2 Beyond cortical thickness and subcortical 
volume differences, surface area reduction in the me-
sial and anterior temporal cortex has been previously 
reported.3

Whether seizures, antiseizure medication (ASM), 
head injuries, the epileptogenic process, the maintenance 
of seizure occurrence, or other comorbidities cause the 
observed loss of brain tissue is a much- discussed ques-
tion. Many studies have found that gray matter thickness 
is correlated with the duration of illness in the common 
epilepsies, indicating that these cross- sectional differ-
ences may be progressive.1,4– 7 Deciphering how gray 
matter reductions unfold over time in epilepsy is of great 
importance, but progress has been limited by the scarcity 
of longitudinal imaging cohorts. Recent work in this field 
has leveraged advanced mathematical models to infer 
longitudinal atrophy patterns from cross- sectional data. 
For instance, in a dataset of people with mesial temporal 
lobe epilepsy (MTLE), Zhang et al. used Granger causal-
ity analysis to determine whether a previously affected 
region, or a group of regions, helped to predict the next 
brain region to exhibit atrophy; they found that subcor-
tical regions such as the hippocampus and thalamus 
causally affected other regions, most prominently the pre-
frontal cortex and cerebellum.8 This approach, however, 
does not allow direct inference of a temporal sequence. 
A major step toward addressing the question of progres-
sion was provided by previous longitudinal studies that 
assessed progressive atrophy in patients with TLE,5,7,9 

and prior meta- analytical studies on the topic.10 One re-
cent study investigated people with focal epilepsy and 
longitudinal MRI scans at least 6 months apart, showing 
that the annualized rate of atrophy within brain regions 
structurally connected to the ipsilateral hippocampus ex-
ceeded the rate associated with healthy aging11; although 
they demonstrated the progressive nature of atrophy, 
their approach did not address whether there is an ex-
plicit sequence in which these structural changes occur 
or whether this sequence can be used to stage epilepsy. 
Moreover, lower hippocampal volume has been reported 
in nonaffected siblings and thus may reflect a genetic or-
igin12– 15 predating any further changes such as cortical 
thinning, which was not observed in siblings.16 We sur-
mise that staging epilepsy in patients using a single MRI 
scan will help future research to assess the effectiveness 
of ASMs and disease- modifying agents, for example, by 
directly establishing a link between disease stage and 
drug response or by improving efficacy of inclusion crite-
ria for clinical trials of ASM candidates. Furthermore, un-
derstanding the spatial progression of atrophy in MTLE 
could help answer questions such as whether unilateral 

longitudinal studies. This model could be used to stage MTLE- HS subjects in other 
cohorts and help establish connections between imaging- based progression staging 
and clinical features.

K E Y W O R D S

disease progression, duration of illness, event- based model, MTLE, patient staging

Key Points
• We estimated the sequence of progression of 

subcortical and neocortical atrophy in MTLE 
with HS

• Abnormality started in the hippocampus, fol-
lowed by decreased cortical thickness in the pa-
rietal and frontal lobes, thalamic volume, and 
ventricular expansion

• Image- based disease stages were correlated 
with duration of illness, age at onset, and drug 
resistance

• Associations were driven by MTLE- HS cases 
showing mild volume loss in the ipsilateral hip-
pocampus that was indistinguishable from vari-
ation in the control group
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MTLE with hippocampal sclerosis (HS) can lead to bilat-
eral HS in an individual patient.

In this work, we investigated disease progression in 
patients with radiographically identified sclerosis of the 
hippocampus or the mesial temporal lobe (MTLE- HS) 
using the event- based model (EBM). In brief, the 
EBM is a machine learning approach that learns the 
most likely ordering of biomarker changes from cross- 
sectional data. The EBM was originally developed to 
study progressive loss of brain tissue in Alzheimer and 
Huntington diseases.17 A trained EBM can be used to 
assign a disease stage to each patient based on their at-
rophy pattern.18 Since it was introduced, the EBM has 
been used across a wide range of neurological diseases, 
including multiple sclerosis,19,20 amyotrophic lateral 
sclerosis,21 and Parkinson disease.22 By applying the 
EBM to cross- sectional data from PWE, we aimed to an-
swer two questions. First, is there a characteristic order 
in which regional brain MRI morphometric changes 
develop in MTLE- HS? Second, is the accumulation of 
imaging changes related to clinical markers of disease 
duration or severity?

2  |  MATERIALS AND METHODS

2.1 | Data

We analyzed data from the ENIGMA- Epilepsy work-
ing group23 comprising imaging data from controls and 
people with epilepsy from 25 centers (Table  1). Each 
center received approval from its local institutional re-
view board or ethics committee. Written informed con-
sent was provided according to local requirements. As 
previously described,1 T1- weighted (T1W) brain MRI 
scans were acquired using 1.5- T or 3- T MRI scanners 
from different manufacturers and different imaging se-
quences. Brain scans were processed at each contribut-
ing center using the same pipeline based on FreeSurfer 
version 5.3.0.24,25 Diagnosis of left and right MTLE was 
made by an epilepsy specialist at each center, based on 
seizure semiology and electroencephalographic find-
ings. Presumed sclerosis of the hippocampus or the 
mesial temporal lobe was diagnosed according to es-
tablished features on MRI (i.e., a T2- weighted or fluid- 
attenuated inversion recovery scan). In some cases, HS 
was confirmed based on histology from resected tissue. 
A common set of 156 regional features was extracted 
based on the Desikan– Killiany atlas26: 68 measures of 
regional cortical thickness (CT), 68 measures of regional 
surface area (SA), two measures of hemispheric average 
CT, two measures of hemispheric SA, and 16 subcortical 
brain volumes as previously described in detail.1 Since 

the initial study,1 five new centers were added, provid-
ing an additional 244 subjects. Overall, the ENIGMA- 
Epilepsy dataset features preprocessed MRI scans from 
1625 controls as well as 446 left MTLE- HS and 358 right 
MTLE- HS patients. After segmentation quality assur-
ance, certain regional brain measures were removed for 
some subjects in the acquired dataset (about .02% of the 
values). We removed subjects with >10 missing values 
(66 subjects). Missing measures in the remaining sub-
jects were imputed within each center using a singular 
value decomposition- based approach.27 Additionally, 
age, sex, case– control status, lateralization (left or right 
MTLE- HS), age at onset, and duration of illness were 
available. Furthermore, drug- resistance status (defined 
as one or more seizures in the 12 months before MRI) 
was obtained for 408 MTLE- HS cases.

2.2 | Data harmonization and 
confound adjustment

Because ENIGMA- Epilepsy is a multicentric study, the 
data are subject to center- specific biases arising from vari-
ous factors. Thus, all 156 regional brain measures were 
harmonized for center biases using NeuroCombat,28,29 
while retaining variation originating from age, sex, in-
tracranial volume (ICV), and diagnosis. Following the 
harmonization, the regional measures were adjusted for 
ICV, age, and sex using linear regression. As in previous 
work,30 the residuals for each regional measure plus the 
intercept of the model were used as confound- adjusted 
measures for the remaining analysis.

2.3 | Ipsilateral and 
contralateral features

Studies have shown unilateral and bilateral alterations of 
structural connectivity and structural measures in left and 
right MTLE- HS patients, with the ipsilateral regions being 
more strongly affected.30– 33 To estimate a progression pat-
tern for MTLE- HS regardless of lateralization, we jointly 
analyzed left and right MTLE- HS cases. Therefore, we re-
placed "left" and "right" with "ipsilateral" and "contralat-
eral" (e.g., left hemisphere is ipsilateral in left MTLE- HS 
and contralateral in right MTLE- HS). For the controls, 
we randomly sampled half as controls for left MTLE- HS, 
where left and right hemispheres were defined as ipsi-
lateral and contralateral regions, respectively. Similarly, 
the remaining half acted as controls for right MTLE- HS 
with the hemispheres swapped. Overall, this enabled us 
to study brain regions commonly affected in both left and 
right MTLE- HS.
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2.4 | Brain asymmetry index features

Previous studies2,34 have used the asymmetry of brain re-
gions to model atrophy in people with MTLE- HS. The ra-
tionale is that contralateral brain regions of each subject 
act as a personalized healthy reference region (in cases 
where pathology manifests unilaterally) and therefore 
may act as an earlier, more sensitive marker, in the EBM. 
We computed the brain asymmetry index (BASI) for re-
gional cortical thickness, surface area, and volume as the 
following ratio:

2.5 | Feature selection

First, we sought to identify brain regions with sufficient 
epilepsy- related atrophy to be used for progression mod-
eling. We used a robust variant of Cohen d35 between 
MTLE- HS cases and controls for all 234 features (78 ip-
silateral, 78 contralateral, and 78 BASI). Robust Cohen 
d uses the median and mean absolute deviation in place 
of the mean and SD, respectively, and is more resilient 
against outliers.36 A medium effect size (robust Cohen 
|d| ≥ .5) was required for inclusion into disease progres-
sion modeling. We also evaluated a more lenient thresh-
old (robust Cohen |d| ≥ .4).

2.6 | Event- based modeling

The selected regions were used as inputs to the EBM.17 
The EBM relies on two main assumptions: (1) biomark-
ers become abnormal sequentially; and (2) biomarkers 
follow a monotonic trajectory during disease progression, 
where an abnormal marker will not revert to a normal 
stage. Thus, the model assumes that for any given cross- 
sectional dataset, a greater proportion of patients will 
show abnormalities for early stage biomarkers, whereas 
fewer patients will also have abnormal later stage bio-
markers. Furthermore, the model requires distributions 
that define what normal and disease- specific measures 
look like for every biomarker. In practice, an overlap 
between the normal and disease- specific distributions 
for biomarkers is expected. We used a kernel density 
estimation- based (KDE)37 mixture model that provides 
estimations of case and control distributions even when 
they are skewed or do not follow a parametric distribu-
tion.38 Next, the EBM determines the most likely order-
ing of biomarkers for the given dataset, as illustrated in 
Figure 1. Practically, the  ordering is obtained using a max-
imum likelihood approach. Greedy ascent is used to ini-
tialize the sequence estimation, and Markov chain Monte 
Carlo (MCMC) sampling is used to perform the maximum 
likelihood estimation. The MCMC samples are used to de-
rive a characteristic ordering of the events along with its 
variability. We used 10 000 iterations per chain during the 
greedy ascent initialization and generated 500 000 MCMC 

BASI =
(ipsilateral − contralateral)

(ipsilateral + contralateral)∕2

F I G U R E  1  Event- based model (EBM) workflow. A set of k biomarkers and case– control status are provided for each subject. Then, 
mixture modeling is used to estimate distributions of the biomarkers in cases and controls, respectively. The maximum likelihood sequence 
(i.e., optimal ordering) of the k biomarkers is estimated using Markov chain Monte Carlo (MCMC) with 500 000 iterations. The MCMC 
sequence is initialized using 10 random starting solutions and a greedy ascent (GA) run for 10 000 iterations. Finally, in a third step, we used 
100 bootstrap samples to determine the uncertainty and variability of the sequence. Init, initialization.
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samples. Finally, to generate a conservative, upper- bound 
estimate of the variability of the sequence, we combined 
the sequence estimation with bootstrapping (100 repeats) 
and generated positional variance diagrams from these 
bootstraps. The patient staging mechanism18 is then used 
to assign each of the control subjects and MTLE- HS cases 
to a disease stage ranging from 0 (i.e., no abnormality) 
to an asymptotic endpoint, which equals the number of 
biomarkers selected for analysis (i.e., all biomarkers ab-
normal). To investigate whether the biomarker sequence 
is consistent in cases with left and right MTLE- HS, we 
trained EBMs for these two groups separately.

2.7 | Association of EBM stages with 
duration of illness, age at onset, and 
treatment response

We hypothesized that subjects with advanced EBM stages 
were more likely to have a longer duration of illness, to 
have earlier disease onset, and to be drug- resistant. To de-
termine whether individuals' EBM stage is related to ill-
ness duration or age at onset, we computed Spearman rank 
correlations between EBM stage and the duration of illness 
(in years) at the time of imaging and age at onset, respec-
tively. Furthermore, we used the Mann– Whitney U test to 
test for a difference in EBM- assigned stage regarding drug- 
resistant status.

3  |  RESULTS

Table 1 displays the overall cohort split by center. On aver-
age, each center contributed a range of individuals, rang-
ing from young adults in their 20s to adults over 60 years 
old (median  =  33.0 years, interquartile range [IQR] 
= 18.08 years). The binary sex distribution within the data-
set was well balanced, with a slight majority of women 
(56.0% of MTLE- HS patients and 55.9% of healthy con-
trols). The duration of illness ranged from recently diag-
nosed to 68 years (median = 20.0 years, IQR = 24.0 years).

3.1 | Effect sizes of selected features

The seven selected features (robust Cohen |d| ≥ .5) were 
ipsilateral hippocampal volume and its BASI, ipsilateral 
thalamic volume, cortical thickness of bilateral superior 
parietal gyrus, and ipsilateral precuneus and ipsilateral 
lateral ventricle volume (Table  S1). Figure  2 provides a 
visual representation of the effect sizes rendered using 
the ENIGMA toolbox.39 Our mega- analysis replicated the 
finding of the original ENIGMA- Epilepsy meta- analysis.1 

Effect sizes (robust Cohen d) ipsilateral to the seizure 
focus were stronger than those in the corresponding con-
tralateral region for the surface area (t = 4.01, p = .00033, 
df  =  33, paired t- test) but not for cortical thickness 
(t = 1.95, p = .06, df = 33, paired t- test) nor for subcorti-
cal volumes (t = 1.60, p = .15, df = 7, paired t- test). Effect 
sizes for cortical thickness were stronger than effect sizes 
for surface area (t = 8.08, p = 1.09 × 10−11, df = 67, paired 
t- test). Use of the lower Cohen d cutoff of .4 produced 12 
additional features for EBM modeling (Table S1).

3.2 | Sequence of abnormal biomarkers 
in left and right MTLE- HS

The EBM estimated the sequence for the seven selected 
imaging biomarkers using the KDE mixture models 
(Figure S1) and placed them in Stages 0 to 7 (Figure 3). 
The bootstrapped version of the EBM placed reduced ip-
silateral hippocampal volume and increased asymmetry 

F I G U R E  2  Regional differences in sclerosis of hippocampus or 
mesial temporal lobe (MTLE- HS) compared to controls. Effect sizes 
between MTLE- HS cases and controls measured as robust Cohen 
d for surface area, cortical thickness, and volume are depicted 
ipsilateral or contralateral to the seizure focus (top three rows). The 
bottom two rows depict effect sizes for asymmetry features.
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in hippocampal volume at the beginning of the sequence. 
This was followed by decreased cortical thickness and 
decreased ipsilateral thalamic volume (Figure 3). We an-
alyzed left and right MTLE- HS cases separately, with sim-
ilar progression patterns in both syndromes (Figure S2). 
Reducing the inclusion threshold to Cohen |d| ≥ .4 led to 
19 biomarkers and provided a more fine- grained staging, 
but with essentially the same progression sequence as in 
the original analysis (Figure S3).

3.3 | Cross- sectional distribution of 
patients across disease stages as defined 
by EBM

We used the trained EBM to stage participants based on 
brain regions with structural alterations18; controls and 
PWE were assigned to Stages 0– 7. Most of the MTLE- HS 
cases (71.1%) were staged at Stage 1 or greater (Figure 4). 
However, a large proportion of MTLE- HS cases (28.9%) 
were staged at 0, indicating mild or nondetectable ab-
normality on T1W MRI. Approximately 44.4% were as-
signed to Stages 1 and 2, reflecting reduced volume of the 
ipsilateral hippocampus and abnormal asymmetry in the 

hippocampus. The remaining MTLE- HS cases (26.7%) 
were staged beyond Stage 2, suggesting neocortical in-
volvement, reduction of ipsilateral thalamic volume, and 
increase in ipsilateral lateral ventricle volume. The distri-
bution of stages differed between left and right MTLE- HS 
cases (H = 7.35, p = .0067, Kruskal– Wallis test; Figure S4).

Ipsilateral hippocampal volumes in cases at Stage 0 
were significantly larger than in cases assigned to later 
stages (t  =  32.35, p  =  7.77 × 10−146, t- test; Figure  S5). 
Consequently, effect size of ipsilateral hippocampal vol-
ume was d = −.31 and d = −2.09 for cases at Stage 0 and 
non- 0 stages, respectively. In addition, cases assigned to 
EBM Stages 3– 7 exhibited reduced contralateral hippo-
campal volume compared to controls (d = −.54), which 
was not observed in cases assigned to Stage 0 (d = −.17) or 
Stages 1– 2 (d = .16).

3.4 | EBM stage is associated with 
duration of illness and with response to 
ASMs in MTLE patients

MTLE- HS patients assigned to early EBM stages showed 
a relatively shorter illness duration than those in later 
stages (Figure 5). Duration of illness and Stages 0– 7 were 
significantly correlated in all MTLE- HS cases (Spearman 

F I G U R E  3  Sequential accumulation of pathology in sclerosis 
of hippocampus or mesial temporal lobe. Data- driven sequence of 
atrophy or increased asymmetry of brain regions is shown. Color 
intensity in the positional variance diagram (PVD) the proportion 
of certainty (.0 in white to 1.0 in dark blue) in which biomarkers 
(y- axis) appear in a particular position (x- axis) in the event order 
obtained through bootstrapping. BASI, brain asymmetry index; C, 
contralateral; CT, cortical thickness; I, ipsilateral; V, volume.

F I G U R E  4  Event- based model (EBM) stage distribution. 
Histogram shows stages (x- axis) assigned to controls and people 
with mesial temporal lobe epilepsy and hippocampal sclerosis 
(MTLE- HS) and the corresponding count (y- axis). Stage 0 is 
assigned to subjects with no statistically detectable abnormal brain 
region based on the T1- weighted magnetic resonance imaging 
scans. EBM places subjects with abnormal features progressively, 
such that subjects in Stage 7 exhibit abnormality in all seven 
regional measures.
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ρ  =  .293, p  =  7.03 × 10−16). After excluding cases at 
Stage 0, the correlation remained marginally significant 
(Spearman ρ  =  .099, p  =  .024). Thus, the correlation is 
driven by the significant difference in duration of illness 
between EBM Stage 0 (mean  =  15.7 years) and non- 0 
(mean  =  25.1 years, t  =  −8.23, p  =  8.63 × 10−16). The 
same pattern was observed for age at onset; EBM stage 
and age at onset were negatively correlated (ρ  =  −.18, 
p = 9.82 × 10−7), but the effect vanished in the subset of 
cases at Stages 1– 7 (ρ = .004, p = .92). Age at onset was sig-
nificantly later for Stage 0 cases compared to non- 0 cases 
(t = 5.69, p = 1.75 × 10−8). EBM stages differed between 
MTLE- HS cases that were resistant (n = 363) or respon-
sive (n = 45) to ASMs in the 12 months prior to MRI (area 
under the curve = .589, p = .043, Mann– Whitney U test).

4  |  DISCUSSION

We applied data- driven disease progression modeling to a 
large, multicenter imaging study of epilepsy to character-
ize the progression of MTLE- HS. We identified a charac-
teristic order of MRI morphometric changes originating in 
the ipsilateral hippocampus. We did not identify statisti-
cally significant correlations between the accumulation of 
imaging changes (EBM Stages 1– 7) and available clinical 
markers of disease duration or severity in this cohort.

For the progression modeling, we retained features 
exhibiting a medium effect size between cases and con-
trols (|d| ≥ .5; |d| ≥ .4 for a sensitivity analysis; Table S1). 
Our most interesting observation was a pattern of brain 
atrophy that appears to progress from the ipsilateral hip-
pocampus to bilateral neocortical regions (e.g., precu-
neus and superior parietal lobule) as well as the bilateral 
thalamus (Figure  S3). Volume reduction and increased 
asymmetry in the hippocampus may represent a genetic 
predisposition to HS, because hippocampal abnormali-
ties have frequently been observed in healthy siblings of 

people with MTLE,12– 15 and an association was observed 
in a genome- wide association study.40 However, cortical 
thinning likely represents disease- related effects, because 
these changes have not been reported in healthy siblings.16 
Furthermore, the progression pattern included decline in 
thalamic volume, which is a common feature in MTLE- 
HS41– 44 and may be linked to the strong structural connec-
tivity between the hippocampus and the thalamus.42,45,46

At first glance, it appears surprising that many 
MTLE- HS cases were assigned to Stage 0 despite the loss 
of hippocampal volume being one of the hallmark signs 
of MTLE- HS. Two factors contribute to this discrepancy. 
First, the radiologic diagnosis of HS is based on multiple 
imaging sequences, whereas hippocampal atrophy, as 
defined on T1W images, is only one component of HS.47 
Second, although we observed a large group effect size 
for hippocampal volume difference in the whole cohort 
(d  =  −1.76), there is significant variability in volume 
loss at the individual level. Approximately half the sub-
jects with HS exhibit hippocampal volume that is within 
the normal range48; this is also the case in the ENIGMA- 
Epilepsy cohort (Figures S1 and S1).

Duration of illness is typically used as a proxy for 
progression in cross- sectional studies.5,10,49 Moreover, 
within ENIGMA- Epilepsy,1 changes in numerous neocor-
tical regions, subcortical volumes, and hippocampal vol-
ume were negatively correlated with duration of illness. 
However, these results were driven by epilepsies without 
HS; no correlations within the left MTLE- HS subgroup 
were found to be statistically significant, and within the 
right MTLE- HS group significant correlations were lim-
ited to the ipsilateral hippocampus, putamen, thalamus, 
contralateral transverse temporal gyrus, and ipsilateral 
caudal middle frontal gyrus. Therefore, the marginal cor-
relations between EBM Stages 1– 7 and duration of illness 
in subjects with MTLE- HS agree with these earlier obser-
vations. Furthermore, Zhang et al.8 reported that mea-
sures of the ipsilateral hippocampus, the bilateral frontal 

F I G U R E  5  Distribution of duration of illness per event- based model (EBM) stage. Violin plots showing distribution of duration of 
illness (in years) of corresponding EBM Stages 0– 7 of sclerosis of hippocampus or mesial temporal lobe (MTLE- HS) patients. MTLE- HS 
cases assigned to EBM Stage 0 showed a shorter duration of illness compared to cases assigned to the remaining EBM stages.
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lobes, and cerebellar hemispheres negatively correlated 
with duration of illness. However, in the same study, the 
lifetime number of seizures, another proxy for disease se-
verity, was investigated and was correlated with atrophy 
in a different set of brain regions. Thus, either measure 
may capture different aspects of disease severity, and the 
relationship between disease duration and atrophy may 
be more complex. Disease duration and the other mea-
sures examined here are the most obvious and plausible 
factors to examine, and those most available, but may not 
be those that most influence the EBM- derived sequence of 
changes we detect.

Longitudinal studies of PWE reveal cortical atro-
phy beyond the expected range of normal aging.5,7,50,51 
Moreover, recent longitudinal studies of people with focal 
epilepsy11,52 found progressive atrophy in the contralateral 
regions of the parietal and frontal lobes, which was also 
featured in our study when using the more lenient cutoff 
(Figure S3). Overall, we find that our regional disease pro-
gression sequence, which is based on cross- sectional data, 
agrees with previous findings in longitudinal cohorts that 
show the progressive nature of atrophy in MTLE- HS.5,9,10 
Contralateral hippocampal volume (d = −.14) missed the 
inclusion threshold for the EBM. Thus, the analysis could 
not provide further insights on whether untreated unilat-
eral HS will lead to bilateral HS. However, PWE assigned 
to later EBM stages did present with reduced volume in 
the contralateral hippocampus, whereas this was not the 
case for PWE assigned to earlier stages, illustrating the po-
tential of EBM.

The staging of individual MTLE- HS patients using the 
trained EBM allowed us to investigate associations with 
duration of illness and clinical markers such as ASM resis-
tance. In agreement with Whelan et al.1 and Zhang et al.,8 
EBM- based stages (Stages 0– 7) and duration of illness 
were found to be correlated. However, this association was 
mainly driven by patients who were assigned to Stage 0. 
MTLE- HS cases assigned to EBM Stage 0 did not show pro-
nounced changes in ipsilateral hippocampal volume com-
pared to controls (Figure S5) and as a group had shorter 
duration of illness and later age at onset than the other 
MTLE- HS cases. Of note, the fraction of Stage 0 MTLE- HS 
varied across centers (Figure  S6) and may reflect differ-
ences between regional practices and capabilities to detect 
and diagnose mesial temporal sclerosis or HS.

There were several limitations in our study. First, 
this ENIGMA- Epilepsy cohort is not a population- based 
cohort but represents data mostly from tertiary epilepsy 
centers, and therefore the findings may not be generaliz-
able to the overall epilepsy population. Also, within the 
ENIGMA- Epilepsy cohort, we observed sampling bias re-
garding availability of ASM response data (Table S2); PWE 
with missing response data were younger, diagnosed more 

recently, and had later age at onset. Second, although the 
results were robust under bootstrap validation, they would 
benefit from validation in a longitudinal cohort. However, 
designing well- powered longitudinal studies in controls 
and patients is challenging, especially because drug- 
resistant TLE patients may eventually undergo epilepsy 
surgery.10 Third, clinical features such as lifelong ASM 
exposure were not available in the ENIGMA- Epilepsy 
dataset and would prove difficult to ascertain retrospec-
tively but should be considered in future work. The use of 
specific ASMs may affect disease progression and, in some 
cases, even amplify tissue loss in epilepsy.53 Finally, our 
model could be improved by considering measures from 
diffusion MRI scans to understand the role of white mat-
ter abnormalities in disease progression.23,54

In conclusion, we estimated a sequence of progressive 
pathology in MTLE- HS that can be used to assign patients 
to fine- grained, image- based disease stages. Beyond Stage 
0, the EBM staging did not correlate with duration of ill-
ness, age at onset, or drug- resistance. However, our EBM 
model trained on the ENIGMA- Epilepsy data can be used 
to stage MTLE- HS subjects in other cohorts with rele-
vant clinical data and help establish connections between 
imaging- based progression staging and other clinical fea-
tures such as the lifetime number of seizures and detailed 
information on ASM exposure.
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