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Terminal complement pathway activation 
drives synaptic loss in Alzheimer’s disease 
models
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Abstract 

Complement is involved in developmental synaptic pruning and pathological synapse loss in Alzheimer’s disease. It 
is posited that C1 binding initiates complement activation on synapses; C3 fragments then tag them for microglial 
phagocytosis. However, the precise mechanisms of complement-mediated synaptic loss remain unclear, and the role 
of the lytic membrane attack complex (MAC) is unexplored. We here address several knowledge gaps: (i) is comple-
ment activated through to MAC at the synapse? (ii) does MAC contribute to synaptic loss? (iii) can MAC inhibition 
prevent synaptic loss? Novel methods were developed and optimised to quantify C1q, C3 fragments and MAC in 
total and regional brain homogenates and synaptoneurosomes from WT and AppNL−G−F Alzheimer’s disease model 
mouse brains at 3, 6, 9 and 12 months of age. The impact on synapse loss of systemic treatment with a MAC block-
ing antibody and gene knockout of a MAC component was assessed in Alzheimer’s disease model mice. A significant 
increase in C1q, C3 fragments and MAC was observed in AppNL−G−F mice compared to controls, increasing with age 
and severity. Administration of anti-C7 antibody to AppNL−G−F mice modulated synapse loss, reflected by the density of 
dendritic spines in the vicinity of plaques. Constitutive knockout of C6 significantly reduced synapse loss in 3xTg-AD 
mice. We demonstrate that complement dysregulation occurs in Alzheimer’s disease mice involving the activation 
(C1q; C3b/iC3b) and terminal (MAC) pathways in brain areas associated with pathology. Inhibition or ablation of 
MAC formation reduced synapse loss in two Alzheimer’s disease mouse models, demonstrating that MAC formation 
is a driver of synapse loss. We suggest that MAC directly damages synapses, analogous to neuromuscular junction 
destruction in myasthenia gravis.
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Introduction
Alzheimer’s disease, one of the leading causes of mor-
bidity and mortality in the developed world, is a chronic 
neurodegenerative disease characterised pathologically 
by amyloid-β plaques and neurofibrillary tangles made 
up of hyperphosphorylated tau. Neuroinflammation is a 
critical driving force in the pathogenesis of Alzheimer’s 
disease, implicated in multiple aspects of the pathology, 
including synapse loss, the best known pathological cor-
relate of cognitive decline [1, 2].
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Complement, an important component of the innate 
immune system and defence against bacteria, is a cause 
of pathological inflammation in many diseases, including 
brain diseases [3, 4]. Complement dysregulation at sites 
of pathology attracts and activates pro-inflammatory 
cells through its chemotactic and anaphylactic products 
C3a and C5a, and directly damages cells via formation of 
the membrane attack complex (MAC) pore. Over the last 
20 years a substantial body of evidence has accumulated 
highlighting a critical role for complement in Alzheimer’s 
disease pathogenesis. Genome wide association studies 
(GWAS) have identified Alzheimer’s disease risk single 
nucleotide polymorphisms (SNPs) in complement recep-
tor 1 (CR1), clusterin (CLU) [5, 6] and C1S [7]. Biomarker 
studies have identified alterations in complement pro-
teins and activation products in blood and/or cerebrospi-
nal fluid (CSF) that distinguish controls, mild cognitive 
impairment and Alzheimer’s disease patients [8–11]. In 
post-mortem immunohistochemical studies of Alzhei-
mer’s disease brain C1q, C4b, C3b/iC3b and MAC co-
localise with both plaques and tangles [12–15]. Evidence 
from animal models has proved inconclusive, with com-
plement deficiency protecting from disease in some stud-
ies but having no impact, or even an exacerbating effect, 
in others [16–20].

A role of the complement pathway in the removal 
of redundant synapses during developmental synap-
tic pruning was described 15 years ago. In the develop-
ing rodent visual system, C1q and C3 fragments localise 
to and tag synapses for removal [21]. Mice deficient in 
either C1q, C4 or C3 all showed defects in this develop-
mental synaptic pruning with resultant supernumerary 
synapses [21–23]. The demonstration that developmen-
tal synaptic pruning was also impacted in mice deficient 
in complement receptor 3 (CR3), the microglial recep-
tor for the C3 opsonic fragment iC3b, provoked the sug-
gestion that synapses destined for elimination were first 
opsonised with iC3b then engulfed and removed by CR3-
expressing microglia [24]. Although these early studies 
focused on developmental synaptic pruning, the hypoth-
esis that similar complement-mediated processes were 
responsible for pathological synapse loss in Alzheimer’s 
disease and other dementias was soon proposed [25, 26]. 
Subsequent studies in murine models of Alzheimer’s dis-
ease supported the hypothesis; pathological synapse loss 
was reduced by inhibiting or deleting C1q, C3 or CR3, 
firmly implicating complement activation and opsonisa-
tion in synaptic elimination in the disease [18].

These findings underpin the accepted model of how 
complement causes synaptic loss in Alzheimer’s disease; 
C1q binds synapses and triggers activation of the classi-
cal pathway, coating the synapse with opsonic C3 frag-
ments that signal microglia to bind via CR3, engulf and 

eliminate. Missing from the current model is any contri-
bution of the MAC, surprising given the evidence that 
MAC colocalises with Alzheimer’s disease pathology 
and the well-known roles of MAC in causing cell damage 
and death in diverse diseases, including brain diseases 
[15, 27, 28]. Indeed, deficiencies of MAC components 
and/or MAC inhibition prevent or ameliorate disease 
in rodent models of stroke, head injury, demyelinating 
diseases and myasthenia gravis [29–31]. In myasthenia 
gravis, autoantibodies bind acetylcholine receptors at the 
neuromuscular junction, a neuron-muscle synapse, then 
engage C1q to activate the complement classical path-
way (CP) and cause MAC-dependent destruction [32]. 
We hypothesised that MAC played a similar role in the 
destruction of neuron-neuron synapses in Alzheimer’s 
disease models. To test this, we first utilised novel assays 
to measure the presence and distribution of complement 
activation products in Alzheimer’s model and control 
mouse brain, and specifically in isolated synaptic frac-
tions. We then tested the effects of systemic administra-
tion of a MAC-blocking monoclonal antibody (mAb) or 
deficiency of the MAC component C6 on synaptic loss 
in Alzheimer model mice. The data demonstrate that 
the complement terminal pathway is highly activated in 
the brain and on synapses in Alzheimer’s disease model 
mice and that inhibiting or preventing MAC formation 
reduces synapse loss in the models. The findings change 
concepts of how synapses are damaged by complement 
in neurodegeneration and indicate that MAC inhibition 
may have therapeutic benefit in Alzheimer’s disease and 
other dementias.

Materials and methods
Reagents
All chemicals, except where otherwise stated, were 
obtained from either Fisher Scientific UK (Loughbor-
ough, UK) or Merck (Sigma Aldrich; Gillingham, UK) 
and were of analytical grade. All plastics were from Invit-
rogen Life Technologies (Paisley, UK).

Animal models
All animal procedures were performed in accordance 
with Animals Scientific Procedures Act 1986 and local 
institutional guidelines.  Animals were group housed 
in open top cages with 12  h light–dark cycles and food 
and water available ad  libitum. C57BL/6  J (WT; Harlan, 
Bicester, UK), C1qa−/−, C6−/− (http:// www. infor mat-
ics. jax. org/ refer ence/J: 122430), C7−/−(Jackson Immu-
noResearch), Cd59a−/−, AppNL−G−F and 3xTg-AD mice 
have been described elsewhere [33–36]. 3xTg-AD mice 
were backcrossed with C6−/− mice to generate a 3xTg-
AD C6−/− line. Mice were genotyped for presence or 
absence of C6 using a customised Taqman SNP assay 
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(AHS09AM). AppNL−G−F knock-in mice carrying the 
APP Swedish (KM670/671NL), Iberian (I716F), and Arc-
tic (E693G) mutations were obtained from Dr. Takaomi 
Saido under a material transfer agreement. At appro-
priate time points, mice were humanely sacrificed with 
increasing  CO2 concentration and death confirmed by 
permanent cessation of circulation. Whole blood was col-
lected by transcardial puncture, left to clot for 10 min at 
room temperature (RT), incubated on ice for 1 h and cen-
trifuged; resultant serum was stored aliquoted at − 80 °C. 
Mice were perfused intracardially with phosphate buff-
ered saline (PBS), brains removed, dissected and either 
fixed or snap frozen, dictated by downstream application. 
A subset of brains was halved sagitally, one hemisphere 
immersed in 4% (w/v) paraformaldehyde (PFA) for 
immunohistochemistry and the other hemisphere snap 
frozen for western blotting and ELISAs. Another subset 
of brains were sub-dissected to isolate the hippocampus, 
frontal cortex and cerebellum; these were immediately 
snap frozen and stored at − 80 °C. A final subset of brains 
were allocated for DiOlistic spine labelling either as 
freshly harvested unfixed hippocampal slices or fixed in 
1.5% (w/v) PFA. No significant differences were observed 
between genders for C1q, C3b/iC3b or terminal comple-
ment complex (TCC) in any of the analyses; males and 
females were used for all ELISA experiments and only 
male mice for DiOlistics analysis.

Brain homogenate preparation and synaptoneurosome 
isolation
Total brain homogenates (TBH) and brain region 
homogenates were prepared and synaptoneurosomes 
(SN) isolated based on previously published protocols 
[37]. In brief, snap frozen brains or brain regions were 
homogenised in a Dounce glass homogeniser in 1 ml of 
homogenisation buffer (HB; 5  mM KCl, 1  mM  MgCl2, 
25  mM HEPES, 120  mM NaCl, 2  mM  CaCl2; pH 7.5), 
supplemented with protease inhibitors (cOmplete mini 
EDTA-free, Roche), and phosphatase inhibitor cocktail 
V (Millipore). Homogenates were passed through 80 µm 
nylon filters (Millipore) and either immediately frozen 
at − 80  °C in 100 µl aliquots as TBH, or passed through 
a 5 µm filter (Millipore) and centrifuged at 1000xg, 5 min 
at 4  °C to isolate SN. The pellet from the 5  µm filtrate 
was washed once by resuspension in HB and centrifuga-
tion; washed synaptoneurosome (SN) pellets were frozen 
at − 80 °C prior to extraction for western blot (WB) and 
ELISA. SN isolates were validated by WB for the pres-
ence of synaptic marker and loss of nuclear marker.

SDS‑page and WB
TBH, SN pellets, isolated hippocampi, cortex and cer-
ebellum were lysed in RIPA buffer (Sigma Aldrich, UK) 

supplemented with 1 × EDTA-free protease inhibitor 
(cOmplete mini EDTA-free, Roche) using a handheld 
motorised homogeniser. Lysed samples were centrifuged 
at 17,000xg for 20 min at 4 °C and supernatant retained. 
Total protein concentration was measured using bicin-
choninic acid (BCA) kit (Pierce). Samples (25 µg protein) 
were mixed with 5 × Laemmli sample buffer and resolved 
on 12.5% (w/v) polyacrylamide tris–glycine electropho-
resis gels under non-reducing or reducing  conditions. 
For proteins, gels were stained with Coomassie (0.25% 
(w/v) Coomassie Brilliant Blue R-250, 40% (v/v) metha-
nol, 10% (v/v) acetic acid). For WB, gels were transferred 
onto 0.45  µm nitrocellulose membrane (GE Health-
care) and blocked with 5% (w/v) bovine serum albumin 
(BSA) in PBS containing 0.05% (v/v) Tween-20 (PBS-T) 
for 1 h at RT. Membranes were incubated with antibod-
ies against PSD95 (Cell signalling technologies, 3450S), 
Histone H3 (Abcam, ab1791), C1q (Abcam, ab182451) or 
alpha-tubulin (Abcam, ab7291) or C3 biotinylated over-
night in 5% (w/v) BSA at 4  °C. After washing in PBS-T, 
membranes were incubated in donkey anti-mouse HRP 
or donkey anti-rabbit HRP secondary antibody (Jack-
son lmmunoresearch; #715–035-150, #715–035-152) at 
1:10,000 or Streptavidin-HRP (R&D Systems; #DY998) at 
1 in 1000 for 1 h at RT and washed again in PBS-T. Mem-
branes were developed using enhanced chemilumines-
cence (ECL, GE Healthcare) and visualised on a SynGene 
Gbox XX9.

ELISA for mouse complement proteins and activation 
products
Mouse C1q was measured in a sandwich ELISA as pre-
viously described [38]. In brief, NUNC Maxisorp ELISA 
plates were coated with anti-C1q mAb (9H10; 5  µg/ml 
in bicarbonate buffer, pH 9.6), blocked in 2% (w/v) BSA, 
then sample added; TBH (1  mg/ml), SN (1  mg/ml) or 
isolated brain region lysates (0.5 mg/ml), all at 50 µl per 
well, then incubated for 1 h at 37 °C. Mouse C1q purified 
in house was used as standard. Bound C1q was detected 
with biotinylated 2F6 anti-C1q (2 µg/ml) for 1 h at 37 °C 
followed by streptavidin-HRP (1:200, R&D Systems, 
#890,803) for 1 h at 37 °C. The assay was developed using 
OPD (SIGMAFAST OPD; Sigma-Aldrich) and absorb-
ance measured at 492 nm (FLUOstar Omega Microplate 
Reader; BMG LABTECH). TBH isolated from  C1q−/− 
mouse brains was used to confirm assay specificity.

Mouse C3b/iC3b was measured in a novel sandwich 
ELISA developed for this work. Plates were coated with 
2/11 mAb anti-mouse C3b/iC3b/C3c (5  µg/ml, Hycult 
HM1065) and blocked in BSA (3% w/v)-PBS-T. Standard 
curves were generated using zymosan-activated mouse 
serum, batch-generated by activating via both classical 
and alternative pathways by incubation with Zymosan 
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A (7  mg/ml; Pierce, #21,327) and aggregated human 
IgG (1  mg/ml; in house) for 32  h at 37  °C in a shaking 
water bath. The reaction was stopped by centrifugation 
at 4600 xg for 15 min at 4 °C and the supernatant (acti-
vated serum) collected and stored at − 80 °C in aliquots. 
For standard curves, activated normal mouse serum 
(Act-NMS) was double-diluted in BSA (1% w/v)-PBST 
supplemented with 20  mM ethylenediaminetetraacetic 
acid (EDTA; BSA-PBST-EDTA) from a starting dilu-
tion of 1:1000 in duplicate (Additional file  1: Fig.  S1a). 
Samples, including TBH, SN and isolated brain region 
lysates, were diluted in 1% BSA-PBS-T-EDTA to 7.5 µg/
ml-1.0 mg/ml (optimal concentration individually tested 
for each sample set), added to wells (50 µl in duplicate) 
and incubated overnight at 4  °C. Bound C3 fragments 
were detected either with biotinylated rabbit anti-human 
C3 (in house; cross-reactive with mouse; 1:500 in BSA 
(1% w/v)-PBS-T; Additional file 1: Fig. S1b) for 2 h at RT 
followed by streptavidin-HRP (1 in 200 dilution, R&D 
systems, #890,803) or with HRP labelled rabbit anti-
human C3 (1:500). Plates were washed and assays devel-
oped with OPD as above.

Mouse terminal complement complex (TCC) was 
measured in a new ELISA using a novel mouse TCC-
specific mAb, 12C3, developed for this work. The assay, 
like the widely used human TCC assays, measures both 
the fluid-phase product of terminal pathway activation, 
sC5b-9, and the membrane-inserted MAC; the term TCC 
encompasses both complexes. Plates were coated with 
rabbit anti-rat/mouse C9 (10 µg/ml) [39, 40] and blocked 
in BSA (3% w/v) -PBS-T. Standard curves were generated 
starting at 1:3 activated mouse serum then double-dilut-
ing in BSA (0.3% w/v) -PBS-T-EDTA (Additional file  1: 
Fig. S1c). Samples including TBH, SN and isolated brain 
regions, at 10 µg/ml-2 mg/ml in BSA (0.3% w/v) -PBS-T-
EDTA (50 µl per well, duplicates) were incubated for 16 h 
at 4 °C. Bound TCC was detected by incubation for 1.5 h 
at RT with anti-TCC mAb 12C3 (5ug/ml in BSA (0.3% 
w/v) -PBS-T- EDTA) either directly labelled with HRP or 
unlabelled and followed by HRP conjugated donkey anti-
mouse IgG (1:3000 dilution). Plates were washed and 
developed with OPD. A standard activated mouse serum 
sample was included as an inter-assay control across all 
plates and assays to calculate intra- and inter-assay coef-
ficients of variation (%CV; < 10%). Dilution linearity for 
both ELISAs is shown in (Additional file 1: Fig. S1d).

Mouse CD59a was measured in a sandwich ELISA as 
above using recombinant mouse CD59a-Fc protein as 
standard. Plates were coated with mAb 7A6 anti-mouse 
CD59a (2  µg/ml) and blocked in BSA (3% w/v) -PBS-T. 
TBH samples (0.5  mg/ml) were incubated overnight at 
4 °C. CD59a was detected with rabbit anti mouse CD59a 
anti-serum (in BSA (0.3% w/v)-PBS-T- EDTA) for 1 h at 

37  °C followed by HRP conjugated donkey anti-mouse 
IgG (1 in 1000 dilution) and developed with OPD. 
 CD59−/− TBH was used to confirm the validity of the 
assay.

All samples were run in duplicate in all assays. All 
plates contained inter-assay controls and calibrators.

Dendritic spine labelling, imaging and analyses
Brains were harvested either unfixed or fixed in  situ by 
perfusion with 1.5% (w/v) PFA. The hippocampus was 
isolated by dissection from unfixed brains and sliced 
(200  µm) in a septal to temporal progression using a 
McIlwain tissue chopper. Time to generate hippocam-
pal slices was less than 10  min from sacrifice, essential 
for DiOlistic neuronal labelling in unfixed tissue [41]. To 
eliminate the need for rapid processing, methods were 
modified to allow DiOlistic labelling in PFA-fixed brains; 
hemispheres were coronally sliced (80  µm free float-
ing sections) using a Leica VT1200S vibratome (Leica 
Biosystems); ten slices per mouse containing dorsal hip-
pocampal fields were transferred to superfrost plus his-
tology slides for labelling.

Neuronal DiOlistic labelling was performed as 
previously described [41–44]. Briefly, 1  µm tung-
sten particles coated with 1,1′-Dioctadecyl-3,3,3′,3′-
Tetramethylindocarbocyanine Perchlorate (DiI; Life 
Technologies) were fired at a pressure of 80–100 psi 
onto tissue slices through an inverted cell culture insert 
(8.0  µm; BD Falcon, BD Biosciences). Labelled, unfixed 
tissue slices were immersed in Neurobasal-A medium 
for 20  min at 37  °C with 5%  CO2 to aid dye diffusion. 
Labelled fixed tissue slices were immersed in PBS for 1 h 
at RT to allow for sufficient dye diffusion. Hippocam-
pal neuronal labelling was confirmed by fluorescence 
microscopy. All slices were post-fixed in 4% (w/v) PFA for 
20  min and nuclei stained with Hoechst 33,342 (1:500) 
in PBS for 10  min. Labelled fixed tissue slices were co-
stained for amyloid plaque deposition within the CA1 
field using Thioflavin S 0.1% (w/v) (T1892-25G, Sigma) 
in PBS followed by PBS washes. Slides were subsequently 
mounted in FluorSave (Millipore).

Slices were confocally imaged with a Leica SP8 Light-
ning confocal microscope using the 63 × objective 
(z-axis, interval 0.2  µm) and deconvolved using Leica 
Lightning Deconvolution software. Secondary dendrites 
within the striatum radium of CA1 hippocampal den-
dritic fields were selected based on minimal overlap with 
adjacent cells; dendritic segments, with the accompany-
ing dendritic spine protrusions were imaged and analysed 
using Imaris (version 9.2, Bitplane, Zurich, Switzerland). 
All analyses were performed blind and processed in one 
batch, in order to eliminate operator bias. Dendritic seg-
ments were reconstructed using the Filament Tracer 



Page 5 of 16Carpanini et al. Acta Neuropathologica Communications           (2022) 10:99  

module with default thresholding based around ‘regions 
of interests’, i.e. dendritic segments typically spanning at 
least 30 µm. Spine subtype (mushroom, stubby, thin) was 
automatically defined based on morphology using the 
SpineClassifer MATLAB extension. In stained Thiofla-
vin S labelled fixed tissue slices, dendritic segments were 
scored as peri-plaque (< 50  µm from plaques) or distal-
plaque (> 50 µm from plaques).

For immunofluorescence quantification of synap-
tic puncta, brain hemispheres from WT, 3xTg-AD and 
3xTg-AD C6−/− mice were fixed in 4% (w/v) PFA, cryo-
protected in 30% (w/v) sucrose, embedded in OCT and 
cryo-sectioned (10 µm) onto HistoBond slides. Sections 
were air-dried, washed in PBS, and subjected to citrate-
based Heat-Induced Epitope Retrieval and proteinase K 
Proteolytic-Induced Epitope Retrieval (MC1073930010; 
Merck). Sections were permeabilised with Triton X 1% 
(v/v) in PBS for 10 min and blocked with 5% (v/v) nor-
mal goat serum in 0.05% (v/v) Tween 20 in PBS for 1 h at 
RT. Primary antibodies against PSD95 (Abcam ab18258, 
rabbit) and Bassoon (Synaptic Systems 141,004, guinea 
pig) were diluted 1:500 in antibody buffer (5% normal 
goat serum with 0.05% Tween 20 in PBS) and incubated 
for 48 h at 4  °C. Species-specific Alexa Fluor Plus sec-
ondary antibodies (Invitrogen, 1:500) were then applied 
and incubated for 2  h at RT. Nuclei were stained with 
DAPI, and endogenous autofluorescence quenched 
with Sudan Black B. Slides were mounted in Fluor-
Save and stored in the dark at 4 °C until imaging using 
a Leica SP8 Lightning confocal microscope. For puncta 
quantification, three Z stack images (Z = 0.6 µm, inter-
val 0.12 µm), consisting of 12 regions of interest (ROI) 
(excluding nuclei) within the dorsal hippocampal CA1 
stratum radiatum field were collected from four mice 
per genotype. Maximum projections of ROIs were com-
bined into a timeseries and batch processed using the 
Imaris XTension ‘Normalise Time Points’ to normalise 
intensities across all images followed by quantification 
using the Spot function in Imaris.

Testing whether MAC modulates spine density in AD mice
To test the effects of inhibition of MAC assembly on 
complement activation and spine density, male AppNL−
G−F mice aged 6  months (groups of five) were injected 
intraperitoneally with the function-blocking anti-C7 
mAb 73D1 [39] or D1.3 irrelevant mAb control, each at 
40 mg/kg in endotoxin-free PBS, every 3 days for 2 weeks 
(day 0, 3, 6, 9, 12). Mice were tail bled on days 0 and 3, 
serum harvested and tested for haemolytic activity in a 
modified haemolysis assay as described [38, 45, 46]. Mice 
were sacrificed on day 14, bled and perfused as described 
above, brains harvested and dissected for quantification 

of complement activation markers and spine density by 
DiOlistic spine labelling.

To test the effects of eliminating the capacity to gen-
erate MAC, 3xTg-AD mice back-crossed onto C6 defi-
ciency and unmodified 3xTg-AD mice were compared 
with WT mice at 12–15 months. Brains were harvested 
as described, synapse density measured by DiOlistic 
labelling and C3b/iC3b and TCC quantified in TBH as 
described above. Excess 73D1 (100 µg/ml) was added to 
the TCC assay to ensure no interference with the assay 
(Additional file 1: Supplementary Fig. S1e).

Statistical analysis
All graphs and statistical analyses were generated using 
GraphPad Prism 5. The Shapiro–Wilk test was used to 
check for normal distribution in all datasets. One-way 
ANOVA with Tukey’s post-hoc test was used to test for 
differences between age groups of each genotype. Two-
way ANOVA with Bonferroni post-hoc test was used 
to compare between genotypes at each age. Where data 
were not normally distributed the Mann–Whitney test 
was used. Unpaired two-tailed t-test was used to com-
pare different groups in the C6 deficiency and anti-C7 
treatment experiments and spine densities in DiOlistics; 
one-way ANOVA with Tukey’s post-hoc test was used to 
test for differences between each genotype. Results are 
presented as mean ± standard error of the mean (SEM).

Results
Complement activation products are present in brains 
of AppNL−G−F mice and enriched at sites of pathology
Brains were isolated from wild type (WT) and AppNL−G−F 
mice at 3, 6, 9 and 12 months of age. Total brain homoge-
nates (TBH), brain region homogenates and synaptoneu-
rosomes (SN) were prepared as described in methods. 
Levels of C1q, C3b/iC3b and TCC were measured by 
ELISA in TBH and SN at each age-point, and region 
homogenates at 9  months. The specificity of the C1q 
assay was previously demonstrated [38]. Specificity for 
the C3b/iC3b and TCC assays was confirmed by absence 
of signal in C3 deficient and C7 deficient mouse brain 
homogenates respectively (negative data not shown). All 
results were expressed relative to total protein measured 
using the Bicinchoninic Acid (BCA) assay in the samples.

TBH from AppNL−G−F mice contained significantly 
more C1q at 6, 9 and 12  months compared to age-
matched WT (Fig.  1a; solid horizontal lines). While 
C1q levels remained relatively stable with increasing age 
in WT mice, levels increased significantly with age in 
AppNL−G−F (Fig.  1a; dashed horizontal lines). All sam-
ples were run in duplicate; the intra-assay % coefficient of 
variability (%CV) was 2.63%. TCC levels, measured using 
a novel mouse TCC assay, were significantly elevated in 
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Fig. 1 Complement activation products in wildtype and AppNL−G−F mouse brain. a C1q levels in total brain homogenate (TBH) were significantly 
increased in AppNL−G−F at 3, 6, 9 and 12 months (m) compared to age-matched wildtype (WT) mice (n = 5–8). C1q levels in TBH remained stable 
with age in WT mice but increased with age in AppNL−G−F peaking at 9 months of age. One-way ANOVA with Tukey’s post-hoc test was used to 
test for differences between age groups of each genotype (dashed horizontal lines). Two-way ANOVA with Bonferroni post-hoc test was used to 
compare between genotypes at each age (solid horizontal lines). b Terminal complement complex (TCC) levels in TBH were significantly increased 
in AppNL−G−F mice at 3, 6, 9 and 12 months (m) compared to age-matched wildtype (WT) mice (n = 6–8). TCC levels in TBH showed a small but 
significant increase with age in WT mice, but were significantly and progressively increased at 6, 9 and 12 months in AppNL−G−F mice. One-way 
ANOVA with Tukey’s post-hoc test was used to test for differences between age groups of each genotype (dashed horizontal lines). Two-way 
ANOVA with Bonferroni post-hoc test was used to compare between genotypes at each age (solid horizontal lines). c C3 fragment levels in TBH 
at 6 months of age were significantly increased in AppNL−G−F compared to WT (n = 6). Unpaired two-tailed t-test. d C1q levels were highest in 
hippocampus (Hp), intermediate in cortex (Cx), and lowest in cerebellum (Cb) in WT and AppNL−G−F mice at 9 months. C1q levels were significantly 
increased in AppNL−G−F compared to age-matched WT in all regions (n = 6). Unpaired two-tailed t-test was used to compare between genotypes 
(solid horizontal lines) and between regions (dashed horizontal lines). e C3 fragments were highest in hippocampus, intermediate in cortex, and 
lowest in cerebellum in WT and AppNL−G−F mice at 9 months. C3 fragment levels were higher in AppNL−G−F mice compared to WT in all regions, 
significantly in cortex (n = 6). Mann–Whitney test was used to compare between genotypes (solid horizontal lines) and between regions (dashed 
horizontal lines). f TCC levels were highest in hippocampus, intermediate in cortex, and lowest in cerebellum in WT and AppNL−G−F mice at 9 months. 
TCC levels were significantly increased in AppNL−G−F compared to WT in all regions tested (n = 5–6). Unpaired two-tailed t-test was used to compare 
between genotypes (solid horizontal lines) and between regions (dashed horizontal lines). Error bars correspond to SEM. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001 
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TBH from AppNL−G−F compared to WT mice at 3, 6, 9 
and 12  months, threefold higher at 9 and 12  months 
(Fig.  1b; solid horizontal lines). Notably, TCC levels in 
WT TBH barely changed with age with no significant 
difference apart from a borderline significant differ-
ence between 3 and 12 months; in contrast, TCC levels 
in AppNL−G−F TBH markedly increased with age, more 
than twofold between 3 and 12 months (Fig. 1b; dashed 
horizontal lines. The TCC ELISA had an intra-assay %CV 
of 2.75% for TBH. TBH from AppNL−G−F mice contained 
significantly more C3b/iC3b fragments at 6 months com-
pared to age-matched WT (Fig. 1c).

Levels of C1q, C3b/iC3b and TCC were measured 
by ELISA in 9  month old WT and AppNL−G−F regional 
homogenates. The cortex and hippocampus, sites of 
high amyloid burden in this model, and the cerebellum, 
an area that is relatively preserved in the model and the 
human disease, were analysed [47, 48]. C1q levels were 
significantly elevated in AppNL−G−F compared to WT 
mice in the three analysed brain regions (Fig.  1d). The 
cortex and the hippocampus had significantly more C1q 
than cerebellum (%CV 8.2%). C3b/iC3b levels were ele-
vated in AppNL−G−F compared to WT mice in all three 
analysed brain regions at 9  months but reached signifi-
cance only for cortex (Fig.  1e). The C3 fragment ELISA 
had an intra-assay %CV of 1.43% for isolated brain 
regions. Measurement of TCC in isolated brain regions 
showed significantly more TCC in AppNL−G−F mice com-
pared to WT in all brain regions examined (Fig. 1f ) (%CV 
1.16%).

The large differences in TCC levels between WT and 
AppNL−G−F TBH prompted measurement of the ter-
minal pathway regulator CD59a to ascertain whether 
increased TCC levels corresponded with altered levels of 
CD59a. An ELISA was developed using in-house mAbs 
and validated using TBH from  CD59a−/− mice as the 
specificity control [34]. CD59a was detected in TBH at 
9  months but no significant difference in CD59a levels 
was observed between WT and AppNL−G−F mice (Addi-
tional file 1: Fig. S1f ).

Complement activation products are present 
at the synapse of AppNL−G−F mice
SN were isolated from WT and AppNL−G−F mouse brain 
TBH at 3, 6, 9 and 12  months. Lysed SN pellets were 
western blotted and probed for PSD95 (post-synaptic 
marker) to confirm enrichment of synaptic proteins, and 
histone H3 to demonstrate exclusion of nuclear proteins 
compared to TBH (Additional file 2: Fig. S2) [49]. Levels 
of C1q and TCC were measured by ELISA in the isolated 
SN at the stated ages.

Comparison of AppNL−G−F versus WT SN demon-
strated significantly increased C1q at 6, 9 and 12 months 
in AppNL−G−F SN, more than double WT levels at 9 and 
12 months (Fig. 2a; solid horizontal lines). C1q levels in 
WT SN showed a small but significant increase between 
6–9 and 6–12 months; in contrast, C1q levels in AppNL−
G−F SN were markedly increased at 9 and 12 months com-
pared to 3 or 6 months (Fig. 2a; dashed horizontal lines). 
Increased C1q in AppNL−G−F TBH compared to WT at 
12 months was confirmed in a semi-quantitative manner 
by WB (Fig. 2b). Comparison of TCC levels in AppNL−G−F 
versus WT SN demonstrated a highly significant increase 
in TCC in APPNL−G−F at 6, 9 and 12 months, more than 
fourfold greater at 12  months (Fig.  2c; solid horizon-
tal lines). TCC levels in WT SN were low and did not 
increase with age; however, TCC levels in AppNL−G−F SN 
were markedly increased, approximately three-fold from 
3 to 9 months (Fig. 2c; dashed horizontal lines).

Systemic C7 inhibition reduces synapse loss in aged 
Alzheimer’s disease mice
To explore whether terminal pathway activation impacts 
neurodegeneration in AppNL−G−F mice, we tested the 
effects of a systemically delivered terminal pathway-
blocking mAb on synapse loss, an early index of neu-
rodegeneration in the model. We first confirmed that, 
compared to WT, AppNL−G−F mice had significantly 
reduced synapse numbers in hippocampus at 6  months 
(Additional file 3: Fig. S3a); overall spine density was sig-
nificantly reduced and subtype analysis showed that thin 
spines were most affected (Additional file  3: Fig.  S3b). 
We then treated 6  month old AppNL−G−F mice with the 
C7-blocking mAb 73D1 [39] for 14  days at a dose and 
schedule that completely blocked systemic complement 
activity for the duration of the study (demonstrated in 
haemolysis assays, data not shown) [39]; control AppNL−
G−F mice received an irrelevant control mAb at the same 
dose and intervals. At day 14, mice were sacrificed, blood 
collected, intracardiac perfused with PBS to remove 
complement components in blood vessels, and brains 
harvested. TCC levels were significantly decreased in 
TBH from AppNL−G−F mice treated with 73D1 compared 
to control mAb (Fig.  3a). Directly HRP-labelled 12C3 
anti-TCC neoepitope mAb detection antibody was used 
in these experiments to prevent cross-reactivity with the 
73D1 mAb which binds native C7 and C7 in TCC; inclu-
sion of an excess of 73D1 mAb did not impact standard 
curves in the TCC assay, eliminating the possibility that 
73D1 mAb interfered with MAC detection (Additional 
file 1: Fig. S1d).

Hippocampal dendritic spine analysis was performed 
using DiOlistics on fixed brain slices, using a modified 
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protocol to include localisation of amyloid plaques 
(Fig.  3b). Spine numbers and morphological subtypes 
were quantified in peri-plaque (< 50  µm from plaque) 
and plaque-distal (> 50  µm from plaque) regions (Addi-
tional file  3: Fig.  S3c). In control-treated AppNL−G−F 
mice, spine density was significantly lower in peri-plaque 
areas compared to plaque-distal as previously reported 
in other Alzheimer’s disease models [50]; however, in 
73D1-treated mice there was no demonstrable significant 
difference, consistent with a reduction in peri-plaque 
spine loss (Fig.  3c). Comparison of the different mor-
phological spine subtypes in peri-plaque areas showed 

increased stubby spine density in the 73D1-treated group 
compared to controls (Fig. 3d).

Deficiency of terminal pathway component prevents 
synapse loss in Alzheimer’s disease mice
To further explore the contribution of MAC to synapse 
loss in Alzheimer’s disease model mice we replicated 
the above analyses in 3xTg-AD mice; we had previously 
shown that hippocampal dendritic spine loss is a com-
mon feature across several AD mouse models, includ-
ing AppNL−G−F and 3xTg-AD mice [41]. Critically, a 

Fig. 2 Complement activation products in wildtype and AppNL−G−F mouse synaptoneurosomes (SN). a C1q levels were significantly increased in 
AppNL−G−F synaptoneurosomes (SN) at 6, 9 and 12 months (m) compared to age-matched wildtype (WT) (n = 5–8). SN C1q levels were significantly 
increased between 6 to 9 months, and 9 to 12 months in WT and between 9 to 12 months in AppNL−G−F SN. One-way ANOVA with Tukey’s post-hoc 
test was used to test significance of differences between age groups of each genotype (dashed horizontal lines). Two-way ANOVA with Bonferroni 
post-hoc test was used to compare between genotypes at each age solid horizontal lines. b Representative western blot confirming increased C1q 
levels in TBH and SN in AppNL−G−F compared to WT mice. Alpha-tubulin was used as loading control and C1q-deficient TBH and SN were included 
as controls. c TCC levels were significantly increased in AppNL−G−F SN at 6, 9 and 12 months compared to WT (n = 5–8). TCC levels in SN remained 
stable with increased age in WT mice but were significantly increased at 9 and 12 months compared with 3 months in AppNL−G−F. One-way ANOVA 
with Tukey’s post-hoc test was used to test for differences between age groups of each genotype (dashed horizontal lines). Two-way ANOVA with 
Bonferroni post-hoc test was used to compare between genotypes at each age (solid horizontal lines). Error bars correspond to SEM. **P < 0.01, 
***P < 0.001, ****P < 0.0001 
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C6-deficient 3xTg line had already been established in 
house. We first sought evidence of early and terminal 
pathway activation in 3xTg-AD mice by measuring C3b/
iC3b and TCC in brain homogenates. Compared to WT 
controls, C3b/iC3b (Fig.  4a) and TCC (Fig.  4b) levels 
were markedly increased in TBH from 3xTg-AD mice at 
12–15  months. To test whether genetic absence of C6, 
and hence MAC-forming capacity, impacts hippocampal 
dendritic loss, we measured hippocampal dendritic spine 
density in the hippocampus at 12 months in 3xTg-AD and 
3xTg-AD C6−/− mice (Fig.  4c). As previously reported 
[41], 3xTg-AD mice at this age showed a marked reduc-
tion in spine density compared to WT mice; in contrast, 
the overall spine density in 3xTg-AD C6−/− was compa-
rable to that in WT mice; comparison of C6-deficient and 
C6-sufficient 3xTg-AD mice confirmed a highly signifi-
cant difference in spine density (Fig. 4d). Comparison of 

the different morphological spine subtypes showed a sig-
nificant loss of stubby and thin spines in 3xTg-AD mice 
but not in 3xTg-AD C6−/− mice (Fig.  4e). Mushroom 
spines were not significantly lost in 3xTg-AD mice com-
pared to WT and not impacted by C6 deficiency (Fig. 4e). 
Impact of C6 deficiency on synapse loss in 3xTg-AD 
was further tested by immunofluorescence staining of 
synaptic puncta using the pre-synaptic marker Bassoon 
and post-synaptic marker PSD95 (Fig. 4f ). Both pre- and 
post- synaptic markers were significantly reduced in the 
3xTg-AD mice compared to WT; in contrast, 3xTg-AD 
C6−/− mice showed puncta densities that were compa-
rable to WT mice and significantly greater than C6-suf-
ficient 3xTg-AD, confirming that prevention of MAC 
assembly protects against complement-driven synaptic 
loss (Fig. 4g).

Fig. 3 C7 therapeutic inhibits complement and modulates synapse loss in the hippocampus of AppNL−G−F mice. a Terminal complement complex 
(TCC) levels were significantly lower in anti-C7 mAb treated AppNL−G−F mice compared to irrelevant IgG controls at 6 months (n = 4–5). Groups 
were compared using an unpaired two-tailed t-test. b Representative confocal images of DiI labelled CA1 hippocampal dendritic segments from 
6 month AppNL−G−F mice treated with anti-C7 mAb or IgG control. Scale bar 5 µm. DiI labelled dendritic spines were analysed from pre-fixed coronal 
brain slices. Spine densities were analysed from dendritic segments of at least 30 µm. c Dendrites were grouped based on proximity to thioflavin-S 
positive plaques. Dendritic segments within 50 µm of plaques were labelled peri-plaque (see Additional file 3: Fig. S3d), whereas dendrites with 
no adjacent plaques were labelled distal-plaque. Control IgG-treated but not anti-C7-treated mice showed significant reduction in peri-plaque 
compared to distal-plaque spine density. d Analysis of overall, stubby, mushroom and thin spine density in AppNL−G−F mice treated with control 
mAb. (C-D, n = 5 mice per group). Unpaired two-tailed t-test was used to compare spine densities between genotypes. Scale bar 5 µm. Error bars 
correspond to SEM. *P < 0.05, ** P < 0.01, ***P < 0.001 
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Fig. 4 Terminal complement activation is ablated and hippocampal spine loss reduced in C6 deficient 3xTg-AD mice. a C3b/iC3b levels 
were significantly increased in TBH from 12–15 month 3xTg-AD mice compared with matched WT and reduced in 3xTg-AD C6−/ −(n = 6; 
unpaired two-tailed t-test). b TCC levels were significantly increased in TBH from 3xTg-AD compared to WT; TCC levels were markedly reduced 
in 3xTg-AD C6−/− mice (all 12–15 months; n = 6 per group; unpaired two-tailed t-test). c Representative confocal images of DiI labelled CA1 
hippocampal dendritic segments from wild type (WT), 3xTg-AD and 3xTg-AD C6−/−. Scale bar 5 µm. Spine densities were analysed from dendritic 
segments of at least 30 µm. DiI labelled dendritic spines were analysed from fresh hippocampal tissue slices and post-fixed following dye diffusion. 
d Spine density was significantly reduced in 3xTg-AD compared to WT; spine density in 3xTg-AD C6−/− mice was significantly higher than in 
3xTg-AD and not different from WT controls. WT, n = 4 mice, 3xTg-AD n = 7 mice and 3xTg-AD C6−/− n 6 mice. One-way ANOVA with Tukey’s 
post-hoc test was used to test for differences between each genotype. e Sub-analysis of different spine types showed significant reduction in 
stubby and thin spines in 3xTg-AD mice compared to WT controls and 3xTg-AD-C6−/−mice. One-way ANOVA with Tukey’s post-hoc test was used 
to test for differences between each genotype. f Representative images of Bassoon (green) and PSD95 (red) immunoreactive synaptic puncta 
in the stratum radium of 12-month-old WT, 3xTg-AD and 3xTg-AD C6−/− mice. g Synaptic puncta, measured by staining with Bassoon or PSD95 
and quantified (ROI; 20 µm × 20 µm, twelve per mouse) using Imaris Spot function were reduced in 3xTg-AD mice compared with either WT 
or 3xTg-AD C6−/− mice (n = 4 per genotype), collated, and analysed. Unpaired two-tailed t-test was used to compare spine densities between 
genotypes. Scale bar 5 µm. Error bars correspond to SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 
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Discussion
There is an abundance of evidence demonstrating com-
plement activation in the Alzheimer’s disease brain but 
only limited understanding of whether and how com-
plement contributes to Alzheimer’s disease pathology. 
Evidence includes the co-localisation of complement pro-
teins and activation products with amyloid plaques and 
tau tangles in post-mortem Alzheimer’s disease brain 
[12–15], and the presence of complement activation 
products in Alzheimer’s disease CSF and plasma [8–11]. 
Evidence from animal models of Alzheimer’s disease 
has implicated complement as a trigger for and driver of 
synaptic loss, an early and critical event in neurodegen-
eration that strongly correlates with cognitive decline; 
indeed, mice deficient in C1q, C4 or C3 all show defects 
in developmental synaptic pruning leading to accumula-
tion of supernumerary synapses [51].

The first step in complement-driven synaptic loss 
involves binding of C1, the initiator of classical pathway 
activation, to synapses destined for elimination. This 
involves engagement of the synapse by C1 via C1q, the 
pattern recognition moiety of the classical complement 
pathway. Precisely what C1q recognises on the synapse 
remains unclear, although numerous “flags”, including 
pentraxins and apoptotic markers, notably phosphati-
dyl serine exposure, have been suggested [52–54]. As 
in other contexts, conformational changes in surface-
bound C1 induce activation of its enzymatic component 
C1s that sequentially cleaves C4 and C2 to generate the 
surface-bound C3 convertase C4b2a. Cleavage of C3 by 
the convertase generates C3b which covalently binds the 
synapse membrane. The enzyme factor I, in the presence 
of appropriate cofactors, cleaves C3b, leaving iC3b on the 
synapse surface. In the current model for synapse elimi-
nation, iC3b-tagged synapses are then engulfed by micro-
glia expressing the iC3b receptor CR3 (CD11b/CD18) 
(Fig.  5a) [21–23]. The mechanism by which microglia 
remove opsonised synapses from the neuronal processes 
is unclear; in other contexts, microglial phagocytosis 
involves the engulfment of debris and dead cells appro-
priately tagged for recognition [55]. It has been suggested 
that microglia might “chew off” the synapses, a process 
termed trogocytosis, important in lymphocyte biology 
but with limited evidence for microglia and none that 
implicates complement [56].

Generalised myasthenia gravis is a complement-medi-
ated disease involving destruction of the neuromuscular 
junction (NMJ), a synapse linking the motor neuron with 
the muscle cell [32]. Involvement of MAC in the process 
was demonstrated more than 40 years ago [57]; comple-
ment activation leads to MAC formation at the NMJ that 
causes “microlysis” and shedding of NMJ membranes 
coated with complement activation products. Infiltrating 

microglia then eliminate this debris through phagocyto-
sis. The essential role of MAC in NMJ destruction was 
subsequently confirmed in rodent models of generalised 
myasthenia gravis where C6 deficiency prevented NMJ 
destruction and disease [31, 58], and in man where MAC-
inhibiting drugs block NMJ destruction and ameliorate 
disease; indeed, C5-blocking drugs are now in the clinic 
for therapy of myasthenia gravis [31, 32]. Despite this 
powerful precedent, there has been no effort to ascertain 
whether MAC forms on brain synapses resulting in dam-
age that may precede or precipitate synaptic loss. Here 
we present evidence that complement mediated synaptic 
loss in neurodegeneration is indeed MAC-dependent.

We first sought evidence that complement dysregula-
tion in Alzheimer’s disease models involved activation 
through the terminal pathway with production of MAC. 
We confirmed that levels of C1q and C3 activation frag-
ments were increased in the models as anticipated from 
previous studies [18, 59, 60]. We then used a novel assay 
that measures both MAC and the soluble sC5b-9 com-
plex, generically termed TCC. In two mouse models, 
AppNL−G−F and 3xTg-AD, TCC levels in brain were mark-
edly elevated in older mice compared to matched WT 
controls, demonstrating that the terminal pathway was 
activated. In AppNL−G−F mice, brain areas reported to 
have the heaviest amyloid burden in the model contained 
the highest amounts of TCC; further, the age-related 
increase in C3b/iC3b and TCC levels correlated with 
the reported acquisition of AD pathology in the AppNL−
G−F model [47]. Isolated synaptoneurosomes from these 
mice, positive for the anticipated complement mark-
ers C1q and C3b/iC3b, were also strongly positive for 
TCC, providing the first direct demonstration of TCC/
MAC deposition at the synapse in an Alzheimer’s disease 
model. Although the source of complement proteins in 
the normal and pathological brain remains to be deter-
mined, expression of terminal pathway components has 
been reported in control and AD brain post-mortem [61] 
and in normal mouse brain [62].

Presence of MAC at the synapse does not alone pro-
vide evidence that it is contributing to synaptic loss. 
In order to address the functional relevance of MAC 
at the synapse in Alzheimer’s disease models, we first 
investigated the effect of a terminal pathway-blocking 
anti-C7 mAb on synapse loss in the AppNL−G−F model. 
We chose this model because we have previously dem-
onstrated significant synapse loss at 6  months [41], 
the age selected for anti-C7 treatment. Here we repli-
cated these findings and showed that loss of thin spines 
predominated. The antibody was administered intra-
peritoneally and completely blocked systemic comple-
ment activity over the 14-day course of the experiment. 
Remarkably, the systemically administered antibody 
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significantly reduced TCC levels in brains of treated 
mice at day 14, suggesting that enough antibody to 
block terminal pathway activation accessed the brain 
over the treatment period. BBB impairment in the 
context of mild inflammation has been reported in the 
AppNL−G−F model [63]. We measured spine density and 
morphology, robust and highly sensitive parameters 

that provide a reliable index of synaptic dysfunction 
[64]. Overall spine density was not significantly dif-
ferent between anti-C7 and irrelevant antibody con-
trol treated mice at day 14, provoking us to compare 
plaque-distal and peri-plaque areas; the latter are most 
affected in Alzheimer’s disease models and man and 
peri-plaque synaptic loss is the earliest pathological 

Fig. 5 Proposed role of membrane attack complex (MAC) in complement mediated synapse loss. a In the current model for synapse elimination, 
C1q in the C1 complex binds an unknown tag on synapses for removal. Activated C1 then cleaves C4 and C2 to generate the C3 convertase C4b2a. 
The convertase cleaves C3 to C3b which binds the synapse membrane. C3b is cleaved to iC3b by factor I in the presence of cofactors. iC3b-tagged 
synapses are then engulfed by microglia expressing the iC3b receptor CR3. b In the revised model, complement is activated on synapses as above 
but proceeds through to formation of MAC, resulting in shedding of complement-opsonised synaptic fragments and “microlytic” destruction of the 
synapse. Microglia then phagocytose the opsonised fragments. c Peri-plaque synapses may be subject to bystander seeding of MAC precursors 
(C5b-7) as a result of plaque complement activation, leading to MAC formation on the synapse with consequences as in (b). Figure created with 
Biorender.com
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indicator of neurodegeneration [50, 65]. Spine den-
sity was significantly lower in peri-plaque compared to 
plaque-distal areas in control AppNL−G−F mice, but this 
difference was lost in anti-C7 treated AppNL−G−F mice, 
implying an effect of C7 inhibition on spine loss. Peri-
plaque stubby spine density was significantly higher in 
anti-C7-treated versus control AppNL−G−F mice.

Although the observed effects of systemic anti-C7 
therapy on spine density were subtle, we considered it 
remarkable that even a brief period of MAC inhibition 
with a systemically administered antibody impacted 
spine loss. To further explore and validate the finding 
we utilised a second Alzheimer’s disease model, the 
3xTgAD mouse, already back-crossed to C6 deficiency 
in-house. We first demonstrated elevated TCC lev-
els in brain extracts from 3xTgAD mice compared to 
matched controls, confirming that the terminal path-
way was activated in this model. We then used DiOlis-
tics to test whether C6 deficiency, which prevents MAC 
formation, impacted dendritic spine loss in 3xTgAD 
mice. As expected from our previous work [41], 3xTg 
mice at 12  months showed a significant reduction in 
spine density compared to age-matched WT controls. 
Spine morphology analysis showed that thin spines, the 
most plastic and dynamic subtype, were most impacted 
in the 3xTg-AD model, similar to our observations in 
AppNL−G−F mice. Selective reduction in thin spine den-
sity has also been reported in other neurodegeneration 
models and in the aged mouse, provoking the sugges-
tion that they are the most susceptible spine type in 
neurodegeneration [66, 67]. In 3xTg-AD mice, C6 defi-
ciency completely prevented the loss; spine density in 
3xTg-AD C6−/− mice was not different from controls 
and was markedly increased compared to complement-
sufficient 3xTg-AD mice in both DiOistic and immuno-
histochemical analysis.

These data conclusively show that, in Alzheimer’s dis-
ease models, as in generalised myasthenia gravis, termi-
nal pathway activation and MAC formation are required 
for pathological synapse loss and suggest that thin spines 
may be particularly vulnerable. We suggest a revised 
model for complement-mediated synapse loss in which 
complement activation on the targeted synapse proceeds 
through to MAC formation causing “microlytic” shed-
ding of complement-opsonised synaptic fragments and 
eventual destruction of the synapse (Fig.  5b). The pro-
posed model and the previous model are not mutually 
exclusive. Although we show a requirement for MAC in 
pathological synapse loss, microglial contribute through 
clearance of iC3b-opsonised synaptic debris and may 
also facilitate the elimination of MAC-damaged syn-
apses. Importantly, levels of C3b/iC3b were also lower 
in C6-deficient AD model mouse brain, indicating that 

early pathway activation and opsonisation was reduced 
in the absence of MAC-mediated damage, likely impact-
ing microglial engagement of opsonised synapses and 
synaptic fragments. The selective loss of peri-plaque syn-
apses observed in models and man suggests an additional 
mechanism whereby complement activation on plaques 
initiates bystander injury of adjacent synapses through 
seeding of MAC precursors (Fig.  5c); a precedent has 
been reported in neuromyelitis optica, where aqua-
porin-4 autoantibodies trigger complement activation on 
astrocytes, releasing MAC precursors that seed damag-
ing MAC assembly on nearby neurons [68].

MAC-induced membrane shedding is a well-described 
process in many cell types, acting to protect the cell from 
lytic killing; however, non-lytic MAC is not without con-
sequence, allowing ion flux into the cell and initiating 
multiple pathways, including activation of the inflamma-
some and other pro-inflammatory systems, and apop-
totic triggers [69, 70]. Whether MAC formation at the 
synapse initiates such events locally or globally in the 
neuron remains to be ascertained. Future work should 
be directed at understanding the impact of MAC at the 
synapse on neuronal health and exploring whether com-
plement bystander injury through seeding of the MAC 
precursor complex C5b67 occurs on peri-plaque syn-
apses in Alzheimer’s disease.

Implication of MAC in pathological synapse loss opens 
the prospect of new therapies for neurodegenerative dis-
eases. Numerous drugs targeting the terminal pathway, 
mostly at the C5 stage, are already in the clinic, includ-
ing for generalised myasthenia gravis and neuromyeli-
tis optica [71, 72]. The evidence of impact of systemic 
therapy in this study and the recent suggestion that the 
blood brain barrier is impaired in Alzheimer’s disease, 
particularly around plaques, might provoke considera-
tion of whether current therapeutics can access the brain 
[73–77]. Novel brain-penetrant MAC-blocking drugs, 
developed either through modification of existing drugs 
or creation of new ones, could provide a much-needed 
new approach to therapy of neurodegenerative diseases 
[78].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40478- 022- 01404-w.

 Additional file 1: Fig. S1. Generation and characterisation of novel 
ELISAs to measure C3 fragments (C3b/iC3b) and TCC (a) C3b/iC3b ELISA 
showing clear differentiation between non-activated vs activated (with 
zymosan) mouse serum. (b) WB of mouse plasma under reducing and 
non-reducing conditions to demonstrate that the rabbit anti-human poly-
clonal C3 antibody used in the assay recognises mouse C3. (c) TCC ELISA 
showing clear differentiation between non-activated versus activated 
(with zymosan) mouse serum. (d) Dilution linearity for C3b/iC3b and TCC 
ELISAs. (e) Addition of excess 73D1 mAb had no effect on TCC standard 
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curves. (f ) CD59 levels in TBH at 9 months of age showed no significant 
difference between genotypes (n=5-6). 

Additional file 2: Fig. S2. Validation of synaptic protein isolates (synapto-
neurosomes) (a) Representative western blot from two wildtype (WT) and 
two AppNL-G-F mice at 12 months of age showing enrichment of synaptic 
marker (PSD95) and loss of nuclear marker (histone H3) in synaptoneuro-
some (SN) compared to total brain homogenate (TBH). (b) Representative 
Coomassie stained total protein gel to demonstrate equal protein loading 
and no protein degradation in the preparations. 

Additional file 3: Fig. S3. Hippocampal spine loss in AppNL-G-F mice 
Spine density analysis of overall (a) and stubby, mushroom and thin (b) 
spine density in 6 month old wildtype and AppNL-G-F mice. Error bars 
correspond to SEM. Unpaired two-tailed t-test was used to compare spine 
densities between genotypes (WT n=4 mice, AppNL-G-F n=8 mice). * 
P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. (c) Representative picture 
to illustrate peri-plaque synapse loss; plaque is stained with Thioflavin S 
(blue) and dendritic spines with DiI (red). Note the absence of proximal 
spines protrusions closer to the plaque. Scale bar is 5µm.
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