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When designing, architects must always consider the ground on which their 

buildings are supported. Our aim is to use data mining and artificial 

intelligence (AI) techniques to help architects identify emerging patterns 

and trends in building design and suggest relevant precedents. Our paper 

proposes a novel approach to unsupervised building design representation 

learning that embeds a building design graph in a vector space whereby 
similar graphs have comparable vectors or representations. These learned 

representations of building design graphs can, in turn, act as input to 

downstream tasks, such as building design clustering and classification. 

Two primary technologies are used in the paper. First, is a software library 

that enhances the representation of 3D models through non-manifold 

topology entitled Topologic. Second, an unsupervised graph-level 

representation learning method is entitled InfoGraph. Result experiments 

with unsupervised graph-level representation learning demonstrates high 

accuracy on the downstream task of graph classification using the learned 

representation. 

Introduction 

Studies have shown that graphs are an effective representational tool for a 

significant variety of data, including architecture, urban and planning 

designs [1], [2]. A graph is a network of nodes and edges [3]. With the use 

of graphs, explicit information can be obtained not only from the general 

graph network but also from smaller units inside the same graph. 

Additionally, graphs provide an intuitive way of assigning properties to 

nodes and edges. Recent developments have seen a rapid rise in the study of 

graphs because they can model rich information, which is critical in 

numerous architectural applications. For example, researchers have 
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presented several graph theoretical approaches to the generation of 

architectural floor plans [4], [5]. Another application involves graph 

geometric measures and models for architectural planning to find the 

‘minimum-path graph’, which constitutes a proposed analysis of all 

shortest-path traversals between any two locations in a network [2]. 

However, architectural works using machine learning usually consider 2D 

image-based representations of data. Recent graph research has focused on 

3D topological supervised learning [6]. Despite this development, applying 

supervised learning approaches to graphs presents a challenge in that 

difficulties often occurs when collecting annotated label data. Furthermore, 

many data mining methods for tasks such as classification and clustering, 

demand that elements in the input data be fixed-length feature vectors. A 

graph in native form does not have such a representation and therefore such 

methods cannot be directly applied. 

Unsupervised learning approaches are a promising method of overcoming 

the aforementioned limitations. Unsupervised learning focuses on 

unlabelled data and generates a representation, which can aid future 

downstream tasks, such as classification. For example, the unsupervised 

learning approach, like word2vec and Bert in the domain of natural language 

processing has demonstrated the potential of this approach. 

 The use of representation learning in the context of graphs corresponding 

to 3D meshes was examined by [7]. During the workflow, unsupervised 

deep learning of representation in a latent vector space classified the room 

types in design samples. Bouritsas and Bokhnyak utilised a research method 

to introduce a graph convolutional operator that explicitly models the 

inductive bias of the underlying fixed graph, implemented directly on the 

3D mesh. The spiral operator enforces consistent local orderings of the 

graph's vertices, thus breaking the permutation invariance property existing 

in all prior work on Graph Neural Networks [8]. 

  This paper aims to design a novel proof of concept workflow that applies 

unsupervised graph level representation learning to building/ground 

relationship data. The objective is to provide a vector for each graph to 

encode the relationship similarity between two 3D building/ground 

topological graphs. Our workflow is divided into two stages. The first stage 

uses the Topologic software library that enhances the representation of 3D 

models through non-manifold topology with embedded semantic 

information. The plug-in automatically and generatively creates a synthetic 

dataset of building and ground relationships with respective typological 

categories. A topological dual graph is then automatically generated by 
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labelling the geometric models. The dual graph of a building consists of one 

node for each space or element that are then connected by edges if they share 

a surface. The ground is segmented into a grid of cells and therefore several 

‘ground nodes’ are created to represent it. Similarly, columns are segmented 

as well and thus multiple ‘column nodes’ are created. In the second stage, 

this dataset acts as input to run the unsupervised graph level representation 

learning for generating fixed-length feature vector representations of graphs. 

  By implementing this framework, a similar precedent can be introduced 

into the design process, which will allow designers to estimate the 

performance consequences of their choices quickly. As examples of this 

application, the designer can use this workflow to generate their new design, 

and then the machine learning models classifier can determine the type of 

design. This class information could then be used to retrieve other design 

precedents (from our 500-dataset archived) of the same type, which may 

inspire the designer. 

 Building and Ground Relationships 

Building and ground relationships have long undergone discussion in the 

architectural field. For centuries, architects have used the ground as a 

reliable physical and conceptual support for their work. However, the notion 

of ground connections has improved with recent technological, 

philosophical, and geopolitical advances [9]. Modern architects respond to 

these conditions by inventing formal topologies. Several materials help 

provide a physical disengagement with the building form and the ground. 

For instance, the Convent of La Tourette by Le Corbusier facilitated a 

diverse range of approaches relative to the ground [10]. Other architects 

deconstructed the architectural objects by integrating the interior space into 

the surrounding landscape [11]. Contemporary architects have used similar 

methods to work with the ground; some have disregarded it, while others 

have focused on the division between landscape and building. However, T. 

Berlanda, a graphic lexicon, illustrates that buildings touching the ground 

are divided into three principal categories: Separation, Adherence and 

Interlock [12] (see Figure 1).  
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Fig. 1 The three main types of building and ground relationships are displayed. 

 Graph Representation Learning 

  Graph embedding represents a method of mapping a graph into a fixed-

length vector that captures key features or properties of the graph. This 

approach means the graph embedding helps to translate a complex graph 

into a form that many popular machine learning, and data mining methods 
can use. Graph embedding machine learning models typically learn what is 

significant in an unsupervised generalised way. There are two major graph 

embedding types: Monopartite graphs, which have nodes with a single label, 

such as Deep Walk, and Multipartite graphs, which have nodes with several 

labels, such as the Knowledge Graph. Moreover, there are three different 

aspects of the graph that are trying to represent as embedding: 1) vertex 

embedding, which describes the connectivity of each node; 2) path 

embedding for traversal across the graph; and 3) graph embedding, to 

encode the graph into a single vector (see Figure 2) [3]. 

 

Fig. 2 Example of embedding a graph into 2D space with different granularities 

(author after [3]). 
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 Unsupervised Graph Level Representation Learning (UGLRL) 

In Graph Level Representation Learning, the graph is encoded into a single 

vector. Two graphs are said to be similar if they are represented by 

corresponding vectors that are embedded close together. A whole graph 

embedding provides a straightforward and efficient way of calculating graph 

similarities, which is essential to graph classification. 

  In 2020, Yun-Sun et al. introduced InfoGraph, a machine learning model 

that studies the representations of whole graphs in both unsupervised and 
semi-supervised scenarios [13]. The unsupervised InfoGraph accomplishes 

this task by providing both the number of nodes in and all graph matrix 

representations as  The InfoGraph model focuses on graph neural networks 

(GNNs). Repeated aggregation of local neighbourhood node representations 

in embedding architectures produces node representations. By aggregating 

the features of neighbours, one can learn the representations of nodes, called 

patch representations. In a GNN, the READOUT function summarises all 

the obtained patch representations into a fixed-length graph representation. 

  Figure 3 illustrates the UGLRL model process: a) with graph convolutions 

and jumping concatenation, an input graph is encoded into a feature map; b) 

(global representation, patch representation) pairs are input to the 

discriminator, which determines whether they belong to the same graph; and 

c) InfoGraph generates all possible positive and negative samples using a 

batch-wise fashion. For example, consider the two input graphs in the batch 

and seven nodes in total (above). The global representation of the graph (A) 

will apply seven input pairs to the discriminator as well as the  graph (B). In 

this case, the discriminator will take 14 (global representation, patch 

representation) pairs as input. 

 

Fig. 3 Unsupervised graph-level representation learning model (author after [13]. 
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 Topology 

The use of topology can help represent architectural designs, graphs and 

topological structures. The primary difference between geometry and 

topology is that the latter abstracts away the concepts of form and physical 

distance but retains the notion of connectivity. Consequently, one can 

explore complex designs at a much higher abstraction level than geometry 

allows. Different topologies can represent a multitude of designs [14]. 

  Recently, Jabi discovered the potential of non-manifold topology in early 
design stages [15], by modelling architectural spaces using concepts from 

non-manifold topology [16]. This approach resulted in the Topologic 

toolkit[17]. Topologic is a software library that enhances the representation 

of space in 3D parametric and generative modelling environments. To date, 

the Topologic tool has shown its compatibility with Grasshopper [18], 

Dynamo [19] and Sverchok [20]. 

  Topologic’s classes include Vertex, Edge, Wire, Face, Shell, Cell, 

CellComplex, Cluster, Topology, Graph, Aperture, Content and Context. 

  This paper focuses on two essential features of Topologic for the proposed 

workflow: 1) the automatic derivation of 3D topological dual graphs using 

the Cell, CellComplex and Graph classes; and 2) the embedding of semantic 

information through custom dictionaries. In Topologic, a CellComplex is an 

enclosed 3D spatial unit (Cell) with a shared Face. The Graph class and 

associated methods are based on graph theory. A Graph comprises Vertices 

and Edges that connect Vertices to each other.  A graph in Topologic is 

created with any 3D unit such as a CellComplex as input and outputs its dual 

graph as a network of labelled edges and vertices. The dual graph connects 

the centroids of adjacent cells with straight edges. 

  Dictionary data structures consist of key/value pairs. In computing, a key 

is any string identifying the data (e.g., 'ID', 'Type', 'Name'). Any type of data 

can be used as a key-value (e.g., floats, integers, strings). Topologic allows 

for the embedding of arbitrary dictionaries into any topology. Topologies 

are modified geometrically (e.g., by subdividing or creating a Cell Complex) 

so that dictionaries of operand topologies can be transferred to the resultant 

topologies. Using a topology, one can construct a dual graph by transferring 

dictionaries from constituent topologies to vertices. Using this capability, 

we can label the vertices of the dual graph. 
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Methodology 

Recent work on graphs has focused on learning node representations or 

supervised learning tasks. These include graph analytic tasks, such as graph 

classification, regression, and clustering. However, such tasks typically 

require a fixed-length feature vector representing the entire graph. Graph-

level representations can be derived implicitly through node-level 

representations. On the other hand, explicit graph extraction can be more 

straightforward and advantageous for graph-oriented tasks [13]. 

  In this paper, the experimental workflow leverages two principal 

technologies. The first is Topologic, a library that enhances the 

representation of 3D models through non-manifold topology and embedded 

semantic information. The second is an unsupervised machine learning 

model that learns a representation of whole graphs as vectors for 

classification purposes. The experimental workflow involves two stages. In 

the first stage, an interactive system generates 3D prototypes of building and 

ground relationships with numerous topological variations. The 

architectural precedent’s geometric models generated a semantically rich 

topological dual graph. In the second stage, the dual graphs were imported 

into the unsupervised graph-level representation learning model. The for 

graph classification. Using the results from the unsupervised embedding, the 

graphs were passed through a t-SNE (t-distributed Stochastic Neighbour 

Embedding) plot to visualise the locations and results of the classifications. 

  We applied the following four classifications methods to the vector 

representation learned by the InfoGraph method in an unsupervised manner. 

The performance of these classifications methods acts as a proxy for 

evaluating the usefulness of the representation in question. 

1. Logreg, Logistic regression is used to describe data and its 

relationships with independent and dependent variables. 

2. SVC, which stands for Support Vector Classification. 

3. linear SVC, which is similar to SVC, but it generates a linear 

classifier; and 

4. random forest, which is the result of the probability of an ensemble 

of decision trees. 
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Experiment Case Study 

This experimental case study used Grasshopper and the Topologic plug-in 

to create 3D parametric models of buildings with different relationships with 

the ground and their respective dual topological graphs. Five architectural 

features generated the building/ground relationships: ground plate, building, 

columns, central core and plinth 'base'. The different features followed a set 

of rules. The ground plate was fixed in size. The plinth was then sized to be 

a certain percentage of the ground plate with equal offsets. We then placed 

the building geometries with the appropriate offsets and spacing. Buildings 

vary in height, but in one model, all building objects had the same height. A 

grid of cells also divided the building geometries internally. The models 

varied in the main building and ground relationship and were divided into 

three classes: 1) Separation; 2) Adherence; and 3) Interlock. 

Fig. 4 Examples of the different classes of auto-generated building/ground 

configuration with associated dual graphs. 
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  Completing three tasks created the dataset classes. The first task involves 

labelling the overall graph on the Grasshopper script. Firstly, separation 

follows five rules: ground, building, core, columns and plinth. Separation 

classes occur when the building is elevated from the ground with columns 

class (0) or when the building is elevated from the ground on the plinth and 

columns class (1). Secondly, Adherence follows four rules: ground, 

building, core and plinth. Interlocking follows three rules: ground, building 

and core. Adherence classes occur when the building is set directly on the 

ground class (2) or when the building is set on the plinth, which is set on the 

ground directly in class (3). Thirdly, interlock follows three rules: ground, 

building and core. Interlock classes occur when the building integrates and 

overlaps with the topology of the ground class (4). The second task involves 

the vertices. In our dataset, the vertices were classified into five categories: 

0) Ground, 1) Plinth, 2) Columns, 3) Building, and 4) Core (see Figure 4). 

The last step involves integrating the visual dataflow definition with a 

custom Python script to convert Topological 3D dual graphs into text files 

in the InfoGraph format. 

  The dataset produced consisted of 900 graphs, as follows (see Figure 5): 

● A total of 720 separation graphs comprising 90 building graphs 

separated from the flat ground with small, medium, and large 

columns; 90 building graphs separated from the flat ground with 

small, medium, and large columns and set into the plinth; 270 

building graphs separated from the sloping ground with small, 

medium, and large columns; 270 building graphs separated from the 

flat ground with small, medium, and large columns and set into the 

plinth. 

● A total of 96 adherence graphs comprising 12 building graphs set 

directly into the flat ground; 12 building graphs set on the plinth 

then into the flat ground; 36 building graphs set directly into the 

sloping ground; 36 building graphs set on the plinth then into the 

sloping ground. 

● A total of 108 interlock graphs comprised 36 building graphs 

interlocked with the flat ground and 72 building graphs interlocked 

with the sloping ground. 
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  Utilizing grasshopper, topologic and python script, we created our 

workflow that was used to develop the building and ground relationship 

iterations. The workflow contains five stages (see Figure 6). The first stage 

was to create the building and ground geometry. The second stage was to 

slice the created geometry with curves into different cells. The third stage 

was to feed the geometry into the Topologic tool, so the geometry 

transferred from geometry to topology. The fourth stage was to implement 

a dual graph to the created topology. Finally, we created two python scripts, 

one to repeat all the iterations and the other to transfer the dual graph to the 

required format. 

 

Fig. 5 Sample of automatically generated building/ground relationship typologies. 
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Fig. 6 An example Grasshopper script of 3D models generated using parametric and 

their associated topological dual graphs.   

  The process of data creation resulted in numerous findings. The total 

number of vertices was 55,081. The average number of vertices per graph 

was 61. The minimum number of vertices per graph was 20. The maximum 

number of vertices per graph was 197. The total number of ground vertices 

in the data was 31,772, the total number of building vertices in the data was 

18,626, the total number of plinth vertices in the data was 10,689, the total 

number of columns vertices in the data was 16,923 and the total number of 

core vertices in the data was 900. 

  We prepared the following three text files as input to InfoGraph which is 

the unsupervised graph representation learning model used. 

1. DS_A.txt: Adjacency matrix for all graphs, in which each line 

corresponds to (row, columns) for (node_id, node_id). 

2. DS_graph_indicator: The column vector of graph identifiers for all 

nodes of all graphs, the value in the i-th line is the graph_id of the 

node with node_id i. 

3.  DS_node_labels: The column vector of node labels, the value in 

the i-th line corresponds to the node with node_id I. 

  It is crucial to mention that the data that worked with InfoGraph comprised 

undirected graphs, so all the edges were bidirectional. Additionally, the 

nodes needed to be in a continuous list, starting from 1 to 55,081 (the 

number of nodes in the dataset). (Figure 7) below explains the different files' 

connections and what each text file line represents.  
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Fig. 7 Graph 1 from data. Visualised with matplotlib. The table shows how an 

adjacency matrix, node labels and graph indicators work within the text files. 

   (Figure 7) clarifies the representations of the topological graph within the 

3D environment and within the machine learning software. While the nodes 

in the original dual graph (Left of Figure 7) are placed at the centre of the 

model elements within 3D space, the topological graph (middle of Figure 7) 

and its textual representation (Right of Figure 7) is geometry-independent 

and thus the XYZ coordinates of the original dual graph nodes are not 

needed. 

  The code for InfoGraph was created to run using the TUDataset module 

from Pytorch Geometric. Therefore, the input data required conversion into 

the same format as all the TUDatasets. The original data containing all 900 

graphs were created to work with the format from the DGCNN [22]. Using 

the dataset MUTAG as an example, a code generated an adjacency matrix 

for all 900 graphs (see Figure 8). 

For our experiment, we maintained the default Graph Isomorphism Network 

(GIN) model [13]. 

Experiment Results 

Fer the experiment results below, and according to [13], we varied the 

following hyperparameters: learning rate, number of epochs and batch size. 

To visualise the graph, a t-SNE plot embedded the whole graph into a 2D 

space for graph visualisation, where each graph becomes a point. Providing 

human insights into the dataset facilitates further analysis of the data. The 

code was run in CPU mode in a Dell XPS Intel Core i7 with 16 GB RAM. 
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Fig. 8 First 25 graphs of the data were created and visualized using network X and 

matplotlib. 

Learning Rate 

In a convolutional neural network, the learning rate represents the rate at 

which the model parameters are updated each time an optimisation step 

occurs. Varying the learning rate can affect the model performance. We 

experimented with four different learning rates (1e-5, 1e-4, 1e-3 and 1e-2) 

and documented the results (see Table 1). Initially, the test had a fixed batch 

size of 128 and epochs set at 20. All four runs achieved high representation 

learning accuracy when used in the downstream classification task. The 

highest prediction accuracy result (98.4%) was achieved through a learning 

rate of 1e-4 (see Figure 9). To choose the learning rate for the next 

experiments, the t-SNE plot for the last epoch of each run underwent 

examination. All the t-SNE plots have a clear distributed representation of 
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every group of graphs (see Figure 10). Therefore, the best accuracy (98.4%) 

with the learning rate of 1e-4 was selected to test other hyperparameters in 

subsequent experiments. 

Table 1 Accuracy results using various learning rates. 

Learning 

rate 

Mutual 

information 

loss (MI) 

 

Accuracies 

logreg Svc Linear 

svc 

Random 

forest 

1e-5 20148.611 0.981 0.986 0.980 0.986 

1e-4* 3774.354 0.984 0.985 0.987 0.978 

1e-3 488.991 0.972 0.985 0.983 0.977 

1e-2 142.172 0.963 0.987 0.988 0.975 

  

Fig. 9 Best Learning rate (1e-4) and the number of epochs (20) performance. 
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Fig. 10 Best t-SNE plot for learning rates (1e-4) and the number of epochs (20). 

Number of Epochs 

Epochs refer to the number of complete training dataset iterations. The 

number of epochs is an important hyperparameter to optimize because too 

low or too high a value can result in under and overfitting respectively. We 

experimented with several epochs while maintaining a testing rate of 1e-4 

(see Table 2). The representation learning model accuracy results were 

stabilised with 10, 20 and 50 epochs. Exceeding the 50 epochs resulted in 

lower accuracy. Therefore, we used the t-SNE plot to examine the 

distributed representation of every graph. According to the t-SNE plot (see 

Figure 10), we chose the run with 20 epochs to continue testing other 

hyperparameters in subsequent experiments. 
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Table 2 Accuracy results using various numbers of epochs. 

Number 

of 

epochs 

Mutual 

information 

loss (MI) 

 

Accuracies 

logreg Svc Linear 

svc 

Random 

forest 

10 5668.682 0.984 0.987 0.99 0.984 

20* 3774.354 0.984 0.985 0.987 0.978 

50 909.848 0.984 0.988 0.983 0.980 

Batch Size 

The gradient descent batch size controls the number of training samples to 

iterate through before updating the model’s internal parameters. We 

maintained a 1e-4 learning rate and 20 epochs for this last hyperparameter 

experiment. We experimented with three different batch sizes of 32, 64 and 

128, respectively (see Figure 11). All the experiments achieved high 

accuracy; therefore, the t-SNE plot underwent examination to see the best-

distributed representation of each graph (see Figure 12). Moreover, we 

documented the total processing/run time to see how the batch size affects 

the run time. The total time was neglectable for two reasons. Firstly, the data 

is limited and secondly, unsupervised representation learning takes less time 

than its supervised equivalent. 

Table 3 Accuracy results using various Batch sizes. 

Batch 

sizes 

 

Accuracies 
Total 

processing 

time 
logreg Svc Linear 

svc 

Random 

forest 

32* 0.978  0.987 0.984 0.980 1:29:58 

64 0.981 0.982 0.986 0.984 1:53:52 

128 0.984 0.985 0.987 0.978 01:25:53 
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Fig. 11 Best batch size performance (32 batches). 

 

Fig. 12 Best t-SNE plot for 32 batches. 



18 A. Alymani, A. Mujica, W. Jabi and P. Corcoran 

 

Conclusion 

This paper aimed to determine the possibility of classifying architectural 

building/ground relationship forms through a novel workflow that uses 

unsupervised graph representation learning on 3D graphs rather than on 2D 

images. We leveraged a sophisticated topology-based 3D modelling 

environment to develop dual graphs from 3D models and label them 

automatically. We then fed those graphs to an unsupervised graph 

representation learning system. To discover the best accuracy rates, we 

experimented with different hyperparameters, such as learning rates, the 

number of epochs and the number of batches. 

  At the conclusion of our experiments, we found that all the experiments 

achieved high representation learning with more than 98% accuracy for all 

four different accuracy measures, namely Logreg, Svc, Linear svc and 

Random Forest. Our approach illustrates strong promise for recognising 

architectural forms using more semantically relevant and structured data. A 

novel workflow will undergo comparison to other approaches and will be 

tested with other datasets and labelling schemes in future work. 

  The findings have identified several new research areas. We will first try 

to classify nodes instead of just the overall graph. Secondly, we plan to 

classify the same dataset with a semi-supervised graph level representation 

learning approach and compare the results with this paper. Finally, this 

paper is part of ongoing PhD research devoted to developing a system that 

may recognise the topological building/ground relationships designers may 

build in near real-time and suggest precedents from a visual database. 
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