

1

Design Computing and Cognition DCC’22. J.S. Gero (ed),

pp. xx-yy. © Springer Nature 2022

Classifying Building and Ground Relationships Using

Unsupervised Graph-Level Representation Learning

Abdulrahman Alymani, Andrea Mujica, Wassim Jabi and Padraig

Corcoran

Cardiff University, UK

Alymaniaa@Cardiff.ac.uk

When designing, architects must always consider the ground on which their

buildings are supported. Our aim is to use data mining and artificial

intelligence (AI) techniques to help architects identify emerging patterns

and trends in building design and suggest relevant precedents. Our paper

proposes a novel approach to unsupervised building design representation

learning that embeds a building design graph in a vector space whereby
similar graphs have comparable vectors or representations. These learned

representations of building design graphs can, in turn, act as input to

downstream tasks, such as building design clustering and classification.

Two primary technologies are used in the paper. First, is a software library

that enhances the representation of 3D models through non-manifold

topology entitled Topologic. Second, an unsupervised graph-level

representation learning method is entitled InfoGraph. Result experiments

with unsupervised graph-level representation learning demonstrates high

accuracy on the downstream task of graph classification using the learned

representation.

Introduction

Studies have shown that graphs are an effective representational tool for a

significant variety of data, including architecture, urban and planning

designs [1], [2]. A graph is a network of nodes and edges [3]. With the use

of graphs, explicit information can be obtained not only from the general

graph network but also from smaller units inside the same graph.

Additionally, graphs provide an intuitive way of assigning properties to

nodes and edges. Recent developments have seen a rapid rise in the study of

graphs because they can model rich information, which is critical in

numerous architectural applications. For example, researchers have

2 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

presented several graph theoretical approaches to the generation of

architectural floor plans [4], [5]. Another application involves graph

geometric measures and models for architectural planning to find the

‘minimum-path graph’, which constitutes a proposed analysis of all

shortest-path traversals between any two locations in a network [2].

However, architectural works using machine learning usually consider 2D

image-based representations of data. Recent graph research has focused on

3D topological supervised learning [6]. Despite this development, applying

supervised learning approaches to graphs presents a challenge in that

difficulties often occurs when collecting annotated label data. Furthermore,

many data mining methods for tasks such as classification and clustering,

demand that elements in the input data be fixed-length feature vectors. A

graph in native form does not have such a representation and therefore such

methods cannot be directly applied.

Unsupervised learning approaches are a promising method of overcoming

the aforementioned limitations. Unsupervised learning focuses on

unlabelled data and generates a representation, which can aid future

downstream tasks, such as classification. For example, the unsupervised

learning approach, like word2vec and Bert in the domain of natural language

processing has demonstrated the potential of this approach.

 The use of representation learning in the context of graphs corresponding

to 3D meshes was examined by [7]. During the workflow, unsupervised

deep learning of representation in a latent vector space classified the room

types in design samples. Bouritsas and Bokhnyak utilised a research method

to introduce a graph convolutional operator that explicitly models the

inductive bias of the underlying fixed graph, implemented directly on the

3D mesh. The spiral operator enforces consistent local orderings of the

graph's vertices, thus breaking the permutation invariance property existing

in all prior work on Graph Neural Networks [8].

 This paper aims to design a novel proof of concept workflow that applies

unsupervised graph level representation learning to building/ground

relationship data. The objective is to provide a vector for each graph to

encode the relationship similarity between two 3D building/ground

topological graphs. Our workflow is divided into two stages. The first stage

uses the Topologic software library that enhances the representation of 3D

models through non-manifold topology with embedded semantic

information. The plug-in automatically and generatively creates a synthetic

dataset of building and ground relationships with respective typological

categories. A topological dual graph is then automatically generated by

Classifying Building and Ground Relationships Using (UGLRL) 3

labelling the geometric models. The dual graph of a building consists of one

node for each space or element that are then connected by edges if they share

a surface. The ground is segmented into a grid of cells and therefore several

‘ground nodes’ are created to represent it. Similarly, columns are segmented

as well and thus multiple ‘column nodes’ are created. In the second stage,

this dataset acts as input to run the unsupervised graph level representation

learning for generating fixed-length feature vector representations of graphs.

 By implementing this framework, a similar precedent can be introduced

into the design process, which will allow designers to estimate the

performance consequences of their choices quickly. As examples of this

application, the designer can use this workflow to generate their new design,

and then the machine learning models classifier can determine the type of

design. This class information could then be used to retrieve other design

precedents (from our 500-dataset archived) of the same type, which may

inspire the designer.

 Building and Ground Relationships

Building and ground relationships have long undergone discussion in the

architectural field. For centuries, architects have used the ground as a

reliable physical and conceptual support for their work. However, the notion

of ground connections has improved with recent technological,

philosophical, and geopolitical advances [9]. Modern architects respond to

these conditions by inventing formal topologies. Several materials help

provide a physical disengagement with the building form and the ground.

For instance, the Convent of La Tourette by Le Corbusier facilitated a

diverse range of approaches relative to the ground [10]. Other architects

deconstructed the architectural objects by integrating the interior space into

the surrounding landscape [11]. Contemporary architects have used similar

methods to work with the ground; some have disregarded it, while others

have focused on the division between landscape and building. However, T.

Berlanda, a graphic lexicon, illustrates that buildings touching the ground

are divided into three principal categories: Separation, Adherence and

Interlock [12] (see Figure 1).

4 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

Fig. 1 The three main types of building and ground relationships are displayed.

 Graph Representation Learning

 Graph embedding represents a method of mapping a graph into a fixed-

length vector that captures key features or properties of the graph. This

approach means the graph embedding helps to translate a complex graph

into a form that many popular machine learning, and data mining methods
can use. Graph embedding machine learning models typically learn what is

significant in an unsupervised generalised way. There are two major graph

embedding types: Monopartite graphs, which have nodes with a single label,

such as Deep Walk, and Multipartite graphs, which have nodes with several

labels, such as the Knowledge Graph. Moreover, there are three different

aspects of the graph that are trying to represent as embedding: 1) vertex

embedding, which describes the connectivity of each node; 2) path

embedding for traversal across the graph; and 3) graph embedding, to

encode the graph into a single vector (see Figure 2) [3].

Fig. 2 Example of embedding a graph into 2D space with different granularities

(author after [3]).

Classifying Building and Ground Relationships Using (UGLRL) 5

 Unsupervised Graph Level Representation Learning (UGLRL)

In Graph Level Representation Learning, the graph is encoded into a single

vector. Two graphs are said to be similar if they are represented by

corresponding vectors that are embedded close together. A whole graph

embedding provides a straightforward and efficient way of calculating graph

similarities, which is essential to graph classification.

 In 2020, Yun-Sun et al. introduced InfoGraph, a machine learning model

that studies the representations of whole graphs in both unsupervised and
semi-supervised scenarios [13]. The unsupervised InfoGraph accomplishes

this task by providing both the number of nodes in and all graph matrix

representations as The InfoGraph model focuses on graph neural networks

(GNNs). Repeated aggregation of local neighbourhood node representations

in embedding architectures produces node representations. By aggregating

the features of neighbours, one can learn the representations of nodes, called

patch representations. In a GNN, the READOUT function summarises all

the obtained patch representations into a fixed-length graph representation.

 Figure 3 illustrates the UGLRL model process: a) with graph convolutions

and jumping concatenation, an input graph is encoded into a feature map; b)

(global representation, patch representation) pairs are input to the

discriminator, which determines whether they belong to the same graph; and

c) InfoGraph generates all possible positive and negative samples using a

batch-wise fashion. For example, consider the two input graphs in the batch

and seven nodes in total (above). The global representation of the graph (A)

will apply seven input pairs to the discriminator as well as the graph (B). In

this case, the discriminator will take 14 (global representation, patch

representation) pairs as input.

Fig. 3 Unsupervised graph-level representation learning model (author after [13].

6 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

 Topology

The use of topology can help represent architectural designs, graphs and

topological structures. The primary difference between geometry and

topology is that the latter abstracts away the concepts of form and physical

distance but retains the notion of connectivity. Consequently, one can

explore complex designs at a much higher abstraction level than geometry

allows. Different topologies can represent a multitude of designs [14].

 Recently, Jabi discovered the potential of non-manifold topology in early
design stages [15], by modelling architectural spaces using concepts from

non-manifold topology [16]. This approach resulted in the Topologic

toolkit[17]. Topologic is a software library that enhances the representation

of space in 3D parametric and generative modelling environments. To date,

the Topologic tool has shown its compatibility with Grasshopper [18],

Dynamo [19] and Sverchok [20].

 Topologic’s classes include Vertex, Edge, Wire, Face, Shell, Cell,

CellComplex, Cluster, Topology, Graph, Aperture, Content and Context.

 This paper focuses on two essential features of Topologic for the proposed

workflow: 1) the automatic derivation of 3D topological dual graphs using

the Cell, CellComplex and Graph classes; and 2) the embedding of semantic

information through custom dictionaries. In Topologic, a CellComplex is an

enclosed 3D spatial unit (Cell) with a shared Face. The Graph class and

associated methods are based on graph theory. A Graph comprises Vertices

and Edges that connect Vertices to each other. A graph in Topologic is

created with any 3D unit such as a CellComplex as input and outputs its dual

graph as a network of labelled edges and vertices. The dual graph connects

the centroids of adjacent cells with straight edges.

 Dictionary data structures consist of key/value pairs. In computing, a key

is any string identifying the data (e.g., 'ID', 'Type', 'Name'). Any type of data

can be used as a key-value (e.g., floats, integers, strings). Topologic allows

for the embedding of arbitrary dictionaries into any topology. Topologies

are modified geometrically (e.g., by subdividing or creating a Cell Complex)

so that dictionaries of operand topologies can be transferred to the resultant

topologies. Using a topology, one can construct a dual graph by transferring

dictionaries from constituent topologies to vertices. Using this capability,

we can label the vertices of the dual graph.

Classifying Building and Ground Relationships Using (UGLRL) 7

Methodology

Recent work on graphs has focused on learning node representations or

supervised learning tasks. These include graph analytic tasks, such as graph

classification, regression, and clustering. However, such tasks typically

require a fixed-length feature vector representing the entire graph. Graph-

level representations can be derived implicitly through node-level

representations. On the other hand, explicit graph extraction can be more

straightforward and advantageous for graph-oriented tasks [13].

 In this paper, the experimental workflow leverages two principal

technologies. The first is Topologic, a library that enhances the

representation of 3D models through non-manifold topology and embedded

semantic information. The second is an unsupervised machine learning

model that learns a representation of whole graphs as vectors for

classification purposes. The experimental workflow involves two stages. In

the first stage, an interactive system generates 3D prototypes of building and

ground relationships with numerous topological variations. The

architectural precedent’s geometric models generated a semantically rich

topological dual graph. In the second stage, the dual graphs were imported

into the unsupervised graph-level representation learning model. The for

graph classification. Using the results from the unsupervised embedding, the

graphs were passed through a t-SNE (t-distributed Stochastic Neighbour

Embedding) plot to visualise the locations and results of the classifications.

 We applied the following four classifications methods to the vector

representation learned by the InfoGraph method in an unsupervised manner.

The performance of these classifications methods acts as a proxy for

evaluating the usefulness of the representation in question.

1. Logreg, Logistic regression is used to describe data and its

relationships with independent and dependent variables.

2. SVC, which stands for Support Vector Classification.

3. linear SVC, which is similar to SVC, but it generates a linear

classifier; and

4. random forest, which is the result of the probability of an ensemble

of decision trees.

8 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

Experiment Case Study

This experimental case study used Grasshopper and the Topologic plug-in

to create 3D parametric models of buildings with different relationships with

the ground and their respective dual topological graphs. Five architectural

features generated the building/ground relationships: ground plate, building,

columns, central core and plinth 'base'. The different features followed a set

of rules. The ground plate was fixed in size. The plinth was then sized to be

a certain percentage of the ground plate with equal offsets. We then placed

the building geometries with the appropriate offsets and spacing. Buildings

vary in height, but in one model, all building objects had the same height. A

grid of cells also divided the building geometries internally. The models

varied in the main building and ground relationship and were divided into

three classes: 1) Separation; 2) Adherence; and 3) Interlock.

Fig. 4 Examples of the different classes of auto-generated building/ground

configuration with associated dual graphs.

Classifying Building and Ground Relationships Using (UGLRL) 9

 Completing three tasks created the dataset classes. The first task involves

labelling the overall graph on the Grasshopper script. Firstly, separation

follows five rules: ground, building, core, columns and plinth. Separation

classes occur when the building is elevated from the ground with columns

class (0) or when the building is elevated from the ground on the plinth and

columns class (1). Secondly, Adherence follows four rules: ground,

building, core and plinth. Interlocking follows three rules: ground, building

and core. Adherence classes occur when the building is set directly on the

ground class (2) or when the building is set on the plinth, which is set on the

ground directly in class (3). Thirdly, interlock follows three rules: ground,

building and core. Interlock classes occur when the building integrates and

overlaps with the topology of the ground class (4). The second task involves

the vertices. In our dataset, the vertices were classified into five categories:

0) Ground, 1) Plinth, 2) Columns, 3) Building, and 4) Core (see Figure 4).

The last step involves integrating the visual dataflow definition with a

custom Python script to convert Topological 3D dual graphs into text files

in the InfoGraph format.

 The dataset produced consisted of 900 graphs, as follows (see Figure 5):

● A total of 720 separation graphs comprising 90 building graphs

separated from the flat ground with small, medium, and large

columns; 90 building graphs separated from the flat ground with

small, medium, and large columns and set into the plinth; 270

building graphs separated from the sloping ground with small,

medium, and large columns; 270 building graphs separated from the

flat ground with small, medium, and large columns and set into the

plinth.

● A total of 96 adherence graphs comprising 12 building graphs set

directly into the flat ground; 12 building graphs set on the plinth

then into the flat ground; 36 building graphs set directly into the

sloping ground; 36 building graphs set on the plinth then into the

sloping ground.

● A total of 108 interlock graphs comprised 36 building graphs

interlocked with the flat ground and 72 building graphs interlocked

with the sloping ground.

10 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

 Utilizing grasshopper, topologic and python script, we created our

workflow that was used to develop the building and ground relationship

iterations. The workflow contains five stages (see Figure 6). The first stage

was to create the building and ground geometry. The second stage was to

slice the created geometry with curves into different cells. The third stage

was to feed the geometry into the Topologic tool, so the geometry

transferred from geometry to topology. The fourth stage was to implement

a dual graph to the created topology. Finally, we created two python scripts,

one to repeat all the iterations and the other to transfer the dual graph to the

required format.

Fig. 5 Sample of automatically generated building/ground relationship typologies.

Classifying Building and Ground Relationships Using (UGLRL) 11

Fig. 6 An example Grasshopper script of 3D models generated using parametric and

their associated topological dual graphs.

 The process of data creation resulted in numerous findings. The total

number of vertices was 55,081. The average number of vertices per graph

was 61. The minimum number of vertices per graph was 20. The maximum

number of vertices per graph was 197. The total number of ground vertices

in the data was 31,772, the total number of building vertices in the data was

18,626, the total number of plinth vertices in the data was 10,689, the total

number of columns vertices in the data was 16,923 and the total number of

core vertices in the data was 900.

 We prepared the following three text files as input to InfoGraph which is

the unsupervised graph representation learning model used.

1. DS_A.txt: Adjacency matrix for all graphs, in which each line

corresponds to (row, columns) for (node_id, node_id).

2. DS_graph_indicator: The column vector of graph identifiers for all

nodes of all graphs, the value in the i-th line is the graph_id of the

node with node_id i.

3. DS_node_labels: The column vector of node labels, the value in

the i-th line corresponds to the node with node_id I.

 It is crucial to mention that the data that worked with InfoGraph comprised

undirected graphs, so all the edges were bidirectional. Additionally, the

nodes needed to be in a continuous list, starting from 1 to 55,081 (the

number of nodes in the dataset). (Figure 7) below explains the different files'

connections and what each text file line represents.

12 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

Fig. 7 Graph 1 from data. Visualised with matplotlib. The table shows how an

adjacency matrix, node labels and graph indicators work within the text files.

 (Figure 7) clarifies the representations of the topological graph within the

3D environment and within the machine learning software. While the nodes

in the original dual graph (Left of Figure 7) are placed at the centre of the

model elements within 3D space, the topological graph (middle of Figure 7)

and its textual representation (Right of Figure 7) is geometry-independent

and thus the XYZ coordinates of the original dual graph nodes are not

needed.

 The code for InfoGraph was created to run using the TUDataset module

from Pytorch Geometric. Therefore, the input data required conversion into

the same format as all the TUDatasets. The original data containing all 900

graphs were created to work with the format from the DGCNN [22]. Using

the dataset MUTAG as an example, a code generated an adjacency matrix

for all 900 graphs (see Figure 8).

For our experiment, we maintained the default Graph Isomorphism Network

(GIN) model [13].

Experiment Results

Fer the experiment results below, and according to [13], we varied the

following hyperparameters: learning rate, number of epochs and batch size.

To visualise the graph, a t-SNE plot embedded the whole graph into a 2D

space for graph visualisation, where each graph becomes a point. Providing

human insights into the dataset facilitates further analysis of the data. The

code was run in CPU mode in a Dell XPS Intel Core i7 with 16 GB RAM.

Classifying Building and Ground Relationships Using (UGLRL) 13

Fig. 8 First 25 graphs of the data were created and visualized using network X and

matplotlib.

Learning Rate

In a convolutional neural network, the learning rate represents the rate at

which the model parameters are updated each time an optimisation step

occurs. Varying the learning rate can affect the model performance. We

experimented with four different learning rates (1e-5, 1e-4, 1e-3 and 1e-2)

and documented the results (see Table 1). Initially, the test had a fixed batch

size of 128 and epochs set at 20. All four runs achieved high representation

learning accuracy when used in the downstream classification task. The

highest prediction accuracy result (98.4%) was achieved through a learning

rate of 1e-4 (see Figure 9). To choose the learning rate for the next

experiments, the t-SNE plot for the last epoch of each run underwent

examination. All the t-SNE plots have a clear distributed representation of

14 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

every group of graphs (see Figure 10). Therefore, the best accuracy (98.4%)

with the learning rate of 1e-4 was selected to test other hyperparameters in

subsequent experiments.

Table 1 Accuracy results using various learning rates.

Learning

rate

Mutual

information

loss (MI)

Accuracies

logreg Svc Linear

svc

Random

forest

1e-5 20148.611 0.981 0.986 0.980 0.986

1e-4* 3774.354 0.984 0.985 0.987 0.978

1e-3 488.991 0.972 0.985 0.983 0.977

1e-2 142.172 0.963 0.987 0.988 0.975

Fig. 9 Best Learning rate (1e-4) and the number of epochs (20) performance.

Classifying Building and Ground Relationships Using (UGLRL) 15

Fig. 10 Best t-SNE plot for learning rates (1e-4) and the number of epochs (20).

Number of Epochs

Epochs refer to the number of complete training dataset iterations. The

number of epochs is an important hyperparameter to optimize because too

low or too high a value can result in under and overfitting respectively. We

experimented with several epochs while maintaining a testing rate of 1e-4

(see Table 2). The representation learning model accuracy results were

stabilised with 10, 20 and 50 epochs. Exceeding the 50 epochs resulted in

lower accuracy. Therefore, we used the t-SNE plot to examine the

distributed representation of every graph. According to the t-SNE plot (see

Figure 10), we chose the run with 20 epochs to continue testing other

hyperparameters in subsequent experiments.

16 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

Table 2 Accuracy results using various numbers of epochs.

Number

of

epochs

Mutual

information

loss (MI)

Accuracies

logreg Svc Linear

svc

Random

forest

10 5668.682 0.984 0.987 0.99 0.984

20* 3774.354 0.984 0.985 0.987 0.978

50 909.848 0.984 0.988 0.983 0.980

Batch Size

The gradient descent batch size controls the number of training samples to

iterate through before updating the model’s internal parameters. We

maintained a 1e-4 learning rate and 20 epochs for this last hyperparameter

experiment. We experimented with three different batch sizes of 32, 64 and

128, respectively (see Figure 11). All the experiments achieved high

accuracy; therefore, the t-SNE plot underwent examination to see the best-

distributed representation of each graph (see Figure 12). Moreover, we

documented the total processing/run time to see how the batch size affects

the run time. The total time was neglectable for two reasons. Firstly, the data

is limited and secondly, unsupervised representation learning takes less time

than its supervised equivalent.

Table 3 Accuracy results using various Batch sizes.

Batch

sizes

Accuracies
Total

processing

time
logreg Svc Linear

svc

Random

forest

32* 0.978 0.987 0.984 0.980 1:29:58

64 0.981 0.982 0.986 0.984 1:53:52

128 0.984 0.985 0.987 0.978 01:25:53

Classifying Building and Ground Relationships Using (UGLRL) 17

Fig. 11 Best batch size performance (32 batches).

Fig. 12 Best t-SNE plot for 32 batches.

18 A. Alymani, A. Mujica, W. Jabi and P. Corcoran

Conclusion

This paper aimed to determine the possibility of classifying architectural

building/ground relationship forms through a novel workflow that uses

unsupervised graph representation learning on 3D graphs rather than on 2D

images. We leveraged a sophisticated topology-based 3D modelling

environment to develop dual graphs from 3D models and label them

automatically. We then fed those graphs to an unsupervised graph

representation learning system. To discover the best accuracy rates, we

experimented with different hyperparameters, such as learning rates, the

number of epochs and the number of batches.

 At the conclusion of our experiments, we found that all the experiments

achieved high representation learning with more than 98% accuracy for all

four different accuracy measures, namely Logreg, Svc, Linear svc and

Random Forest. Our approach illustrates strong promise for recognising

architectural forms using more semantically relevant and structured data. A

novel workflow will undergo comparison to other approaches and will be

tested with other datasets and labelling schemes in future work.

 The findings have identified several new research areas. We will first try

to classify nodes instead of just the overall graph. Secondly, we plan to

classify the same dataset with a semi-supervised graph level representation

learning approach and compare the results with this paper. Finally, this

paper is part of ongoing PhD research devoted to developing a system that

may recognise the topological building/ground relationships designers may

build in near real-time and suggest precedents from a visual database.

References

1. G. Franz, H. A. Mallot, and J. M. Wiener, “Graph-based models of space

in architecture and cognitive science- a comparative analysis,” Proc. 17th

Int. Conf. Syst. Res. Informatics Cybern., pp. 30–38, 2005.

2. N. Napong, “The Graph Geometry for Architectural Planning,” J. Asian

Archit. Build. Eng., vol. 3, no. 1, pp. 157–164, 2004.

3. H. Cai, V. W. Zheng, and K. C. C. Chang, “A Comprehensive Survey of

Graph Embedding: Problems, Techniques, and Applications,” IEEE

Trans. Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, 2018..

Classifying Building and Ground Relationships Using (UGLRL) 19

4. J. Gilleard, “Layout—A Hierarchical Computer Model for the Production

of Architectural Floor Plans,” Environ. Plan. B Plan. Des., vol. 5, no. 2,

pp. 233–241, 1978.

5. K. Shekhawat, Pinki, and J. P. Duarte, “A Graph Theoretical Approach for

Creating Building Floor Plans,” Commun. Comput. Inf. Sci., vol. 1028, pp.

3–14, 2019.

6. W. Jabi and A. Alymani, “Graph Machine Learning Using 3D Topological

Models,” in SimAUD, 2020.

7. I. As, S. Pal, and P. Basu, “Artificial intelligence in architecture:

Generating conceptual design via deep learning,” Int. J. Archit. Comput.,

vol. 16, no. 4, pp. 306–327, 2018.

8. G. Bouritsas, S. Bokhnyak, S. Ploumpis, S. Zafeiriou, and M. Bronstein,

“Neural 3D morphable models: Spiral convolutional networks for 3D

shape representation learning and generation,” Proc. IEEE Int. Conf.

Comput. Vis., vol. 2019-Octob, pp. 7212–7221, 2019.

9. Z. T. Porter, “Assorted Grounds -.” [Online]. Available:

https://www.zacharytateporter.com/assorted-grounds. [Accessed: 25-Dec-

2018].

10. F. Samuel, Sacred concrete : the churches of Le Corbusier. Basel: Basel :

Birkhauser, 2013.

11. D. Leatherbarrow, “Topographical Stories : Studies in Landscape and

Architecture.” University of Pennsylvania Press, Philadelphia, 2004.

12. T. Berlanda, Architectural Topographies: a graphic lexicon of how

buildings touch the ground. 2014.

13. F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “InfoGraph: Unsupervised

and Semi-supervised Graph-Level Representation Learning via Mutual

Information Maximization,” ICLR 2020, no. 2019, pp. 1–22, 2019.

14. W. Jabi, “Linking design and simulation using non-manifold topology,”

Archit. Sci. Rev., vol. 59, no. 4, pp. 323–334, 2016.

15. W. Jabi, R. Aish, S. Lannon, A. Chatzivasileiadi, and N. M. Wardhana,

“Topologic A toolkit for spatial and topological modelling,” 2018.

16. R. Aish, W. Jabi, S. Lannon, N. Wardhana, and A. Chatzivasileiadi,

“Topologic: tools to explore architectural topology,” AAG 2018 Adv.

Archit. Geom. 2018, no. September, pp. 316–341, 2018.

17. “Topologic.” [Online]. Available: https://topologic.app. [Accessed: 01-

Dec-2021].

18. “Grasshopper.” [Online]. Available: https://www.grasshopper3d.com.

[Accessed: 01-Dec-2021].

19. “Dynamo.” [Online]. Available: https://dynamobim.org. [Accessed: 01-

Dec-2021].

20. “Sverchok.” [Online]. Available:

https://www.blender3darchitect.com/modeling-for-architecture/getting-

started-with-sverchok-for-3d-modeling/. [Accessed: 01-Dec-2021].

