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 Abstract—The highly penetrated distributed generators 

(DGs) aggravate the voltage violations in active 

distribution networks (ADNs). The coordination of various 

regulation devices such as on-load tap changers (OLTCs) 

and DG inverters can effectively address the voltage issues. 

Considering the problems of inaccurate network 

parameters and rapid DG fluctuation in practical 

operation, multi-source data can be utilized to establish the 

data-driven control model. In this paper, a data-driven 

voltage control method with the coordination of OLTC 

and DG inverters on multiple time-scales is proposed 

without relying on the accurate physical model. First, 
based on the multi-source data, a data-driven voltage 

control model is established. Multiple regulation devices 

such as OLTC and DG are coordinated on multiple time-

scales to maintain voltages within the desired range. Then, 

a critical measurement selection method is proposed to 

guarantee the voltage control performance under the 

partial measurements in practical ADNs. Finally, the 

proposed method is validated on the modified IEEE 33-

node and IEEE 123-node test cases. Case studies illustrate 

the effectiveness of the proposed method, as well as the 

adaptability to DG uncertainties. 

 

Index Terms—active distribution network (ADN), dis-

tributed generator (DG), data-driven, coordinated voltage 

control, critical measurements. 

NOMENCLATURE 

Sets  𝒩, 𝒩𝑚  Set of all nodes of ADN/area 𝑚 Λ Set of typical scenarios 𝐶 Set of categories of similar nodes 𝑐𝑖  Set of nodes similar to node 𝑖 
Indices  𝑡 Indices of instants 𝑖, 𝑗, 𝑔 Indices of nodes 𝑚 Indices of areas 𝑛 Indices of DG clusters 

 
 

This work was supported by the National Natural Science Foundation of 
China (U1866207, 52007131) and Swedish Research Council (2018-06007). 

Y. Huo, P. Li, H. Ji, H. Yu, and C. Wang are with the Key Laboratory of 
Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, 

China (email: jihaoran@tju.edu.cn). (Corresponding author: Haoran Ji) 
J. Yan is with the School of Business, Society and Engineering, Mälardalen 

University, Västerås 72123, Sweden (email: jinyue.yan@mdh.se). 
J. Wu is with the Institute of Energy, School of Engineering, Cardiff Uni-

versity, Cardiff CF24 3AA, U.K. (email: wuj5@cardiff.ac.uk). 

𝜁 Indices of typical scenarios 𝑎𝑖 , ℎ𝑖 Row and column indices of the simi-

larity matrix related to node 𝑖 
Variables  𝑼[𝑡] Measurement of nodal voltage ampli-

tude at instant 𝑡 𝑼̃[𝑡] Estimation of nodal voltage amplitude 
at instant 𝑡 𝑶[𝑡], 𝑶[𝑡 − ∆𝑇] Tap step of OLTC at instant 𝑡 and 𝑡 −∆𝑇 𝑬[𝑡 + ∆𝑇] Prediction information during instant 𝑡 
to 𝑡 + ∆𝑇 𝑬′[𝑡] Information of DGs and loads at in-
stant 𝑡 𝚽̂O[𝑡] Estimation of Pseudo-Jacobi matrix of 

OLTC at instant 𝑡 𝚽̂E[𝑡] Estimation of Pseudo-Jacobi matrix of 
the prediction information at instant 𝑡 𝑷𝑚,𝑛DG [𝑡], 𝑺𝑚,𝑛DG [𝑡] Power production/capacity of DG 

cluster 𝑛 in area 𝑚 at instant 𝑡 𝑼̃𝑚[𝑡], 𝑼𝑚[𝑡] Estimation/measurement of nodal 
voltage amplitude at instant 𝑡 in area 𝑚 𝑿𝑚,𝑛[𝑡] Vector of the reactive power output of 
DG cluster 𝑛 at instant 𝑡 in area 𝑚 𝚽̂𝑚,𝑛[𝑡] Estimation of Pseudo-Jacobi matrix of 

DG cluster 𝑛 at instant 𝑡 in area 𝑚 ∆𝑃𝑔∗(𝜁), ∆𝑄𝑔∗ (𝜁) Variation of active/reactive power at 
node 𝑔 in scenario 𝜁 𝑆𝑖,𝑔(𝜁) Voltage-power sensitivity between 

node 𝑖 and node 𝑔 in scenario 𝜁 ∆𝑈𝑖∗(𝜁) Variation of voltage amplitude meas-
urement at node 𝑖 in scenario 𝜁 𝑭𝑖, 𝑭𝑔 Eigenvectors of nodes 𝑖 and 𝑔 𝑭̅𝑖, 𝑭̅𝑔 Average values of eigenvectors of 
nodes 𝑖 and 𝑔 𝑯𝑖 Sensitivity matrix of node 𝑖 𝜞𝑐,𝑖  Similarity matrix of category 𝑐𝑖  𝑏𝑖  Similarity index of node 𝑖 𝛾d, 𝛾c, 𝛾o Voltage deviation indices of the data-
driven approach/ centralized method/ 
original state of ADN 

Parameters  𝑁, 𝑁𝑚 Number of nodes of ADN/area 𝑚 𝑁𝑚DG Number of DG clusters in area 𝑚 𝑁s Number of typical scenarios 𝑁𝑐,𝑖 Number of nodes in the category 𝑐𝑖  𝜀 Threshold of similarity ∆𝑇 Slow time-scale 
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∆𝑡 Fast time-scale 𝑇 Control time horizon 𝜇O, 𝜂O, 𝜆O , 𝜌O, 𝜇E, 𝜂E, 𝜇X, 𝜂X, 𝜆X, 𝜌X, 𝑤 
Weight factors 𝑶max, 𝑶min Maximum/minimum tap steps of 
OLTC 𝑘 Maximum change of tap steps of 
OLTC 𝜖 Small positive constant 𝑼ref  Voltage reference of ADN 

I. INTRODUCTION 

ith the highly penetrated distributed generators (DGs) 

[1], issues of voltage violations in active distribution 

networks (ADNs) are exacerbated by the rapid fluctuation of 

DGs [2]. Various types of voltage control devices have been 

utilized to optimize the operation performance of ADNs [3]. 

However, because of the discrete and slow regulation speed, 

conventional regulators such as the on-load tap changers 

(OLTCs) are incapable of suppressing frequent voltage fluctu-

ations caused by DGs [4]. 

The regulation of reactive power generated from DG invert-

ers is also a promising approach to realizing real-time voltage 

control [5]. Since DG inverters provide the rated power only a 

fraction of the time, the surplus capacity is able to continuous-

ly regulate voltages [6]. Limited by the capacity of the DG 

inverter, it is necessary to involve both continuous and dis-

crete adjustments, such as DG inverters and OLTC to effi-

ciently regulate voltages. Therefore, a coordinated control 

approach involving multiple time-scales is required. 

Generally, the model-based voltage control methods with 

accurate network parameters are adopted to regulate voltage 

profiles in ADNs [7]. Ref. [8] proposed a novel analytical ex-

pression to curtail the renewable energy for voltage control, 

which effectively maximized the technical benefits of DG 

units in distribution systems. In Ref. [9], the voltage control 

was formulated as a convex quadratic problem with linear 

constraints for efficient solving. 

To coordinate various devices with different response times 

and control characteristics, hierarchical voltage control meth-

ods are widely utilized. In Ref. [10], a two-stage control 

framework was proposed to address the problem of optimally 

coordinated control. Ref. [11] proposed a two-stage voltage-

load sensitivity matrix-based demand response algorithm for 

regulating the voltages. In Ref. [12], a multi-stage voltage 

support optimization method was proposed for safeguarding 

the ADN operation and providing flexible power delivery ca-

pacity. A three-layer hierarchical voltage control strategy was 

proposed in Ref. [13], considering the customized charging 

navigation of electric vehicles. Ref. [14] proposed a coordina-

tion algorithm for OLTC-based voltage control and reactive 

power compensation to mitigate the overvoltage. In Ref. [15], 

a two-stage approach was introduced to coordinate the availa-

ble reactive power of DG and OLTC considering the multiple 

optimal objectives. Ref. [16] proposed a coordination control 

technique to utilize DG and minimize the interaction of OLTC 

based on the concept of control zone. These hierarchical con-

trol methods can effectively solve the voltage deviation when 

the accurate model parameters of ADNs can be obtained. 

However, the main obstacle to the application of model-

based optimization approaches is lacking accurate network 

parameters due to the complex operational environments of 

ADNs. In addition, integrated with various DGs and flexible 

loads, the operation state and topology information of ADNs 

change frequently [17]. Thus, the traditional model-based op-

timization approaches are challenged by inaccurate parameters 

and frequently changed states of ADNs. 

With the digitalization of distribution networks, massive re-

al-time operational data is available to the distribution network 

operators [18]. Important information can be revealed, includ-

ing the feature of user behaviors and the variation of system 

states [19]. Information utilization is of vital importance to 

enhance operational performances. Hence, data-driven optimi-

zation methods obtain widespread attention to cope with the 

problem of lacking accurate parameters [20]. It only utilizes 

the operational or historical data instead of the detailed physi-

cal models with accurate parameters. In addition, auxiliary 

assistance provided by data-driven methods can improve the 

effectiveness of model-based operation strategies. 

Preliminary studies of data-driven-based optimization have 

been conducted in ADNs. Data-based iteratively adaptive con-

trol and deep reinforcement learning-based approaches are the 

two main forms of data-driven methods. To simulate the com-

plex nonlinear characteristics of ADNs, a massive amount of 

offline data is utilized by deep reinforcement learning-based 

methods. Then neural networks are trained and implemented 

to achieve optimal operation. Ref. [21] established an infor-

mation-theoretic reinforcement learning framework for phase 

identification in power distribution systems. A deep rein-

forcement learning method was proposed in Ref. [22] to regu-

late nodal voltage without physical models. However, the 

training process of reinforcement learning is time-consuming 

and may be ineffective in adapting to state changes of ADNs. 

Iteratively adaptive control is an alternative data-driven 

method. It models the features of ADN on the basis of opera-

tional data and can realize real-time control through the itera-

tive interaction with ADN [23]. Model-free adaptive control 

(MFAC) represents a classic iteratively adaptive control algo-

rithm [24]. Ref. [25] proposed a basic framework of MFAC, 

of which convergence and stability could be guaranteed under 

some practical assumptions. Ref. [26] focused on the data-

driven operation strategy of soft open point (SOP) based on 

MFAC, which could improve the operational performance of 

ADN without accurate parameters. However, data-driven volt-

age control with various devices on multiple time-scales can 

be further considered. 

In addition, from the perspective of economy and engineer-

ing feasibility, full coverage installation of real-time meas-

urement devices is still difficult for large-scale ADNs [27]. 

How to use critical measurements to regulate voltage has be-

come a challenge for data-driven control of ADNs. Thus, it is 

essential to take incomplete measurements into account in 

practical voltage control. 
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To effectively reduce the voltage violation with various 

voltage control devices, a data-driven coordinated voltage 

control method on multiple time-scales is proposed in this 

paper. The main contributions are outlined as follows: 

1) Based on the multi-source data, a data-driven voltage 

control model is established for the coordination of OLTC and 

DG inverters on multiple time-scales to maintain voltages 

within the desired range. Considering the change rate of 

OLTC, the data-driven control on the slow time-scale is con-

ducted mainly based on the prediction information. By utiliz-

ing the real-time measurements, the reactive power of DG 

inverters is adjusted rapidly on the fast time-scale, to suppress 

voltage fluctuation. 

2) A critical measurement selection method is proposed to 

guarantee the voltage control performance under the incom-

plete measurements in practical ADNs. Based on the critical 

measurements, the data-driven control model is simplified 

while obtaining an approximate optimal solution. 

The organization of this paper is stated as follows. In Sec-

tion II, the data-driven coordinated voltage control method on 

multiple time-scales is elaborated. Section III describes the 

selection method of critical measurements in ADNs. In Sec-

tion IV, the case studies are conducted to verify the effective-

ness of the proposed data-driven control method. Finally, con-

clusions are drawn in Section V. 

II. DATA-DRIVEN COORDINATED VOLTAGE CONTROL 

The incorporation of multiple voltage control devices may 

create operational conflicts, which brings challenges to volt-

age control [28]. Taking the coordination of discrete and con-

tinuous regulation devices into account, a framework of data-

driven coordinated voltage control is formulated on multiple 

time-scales. 

A. Framework of Data-driven Coordinated Voltage Control 
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Fig. 1.  Framework of data-driven coordinated voltage control. 

Fig. 1 shows the framework of the proposed coordinated 

control method. It includes multiple time-scales: slow time-

scale ∆𝑇 and fast time-scale ∆𝑡. The role of OLTC is to adjust 

the tap step to prevent severe voltage deviation on the slow 

time-scale ∆𝑇. Considering the change frequency of OLTC, 

the data-driven control on the slow time-scale is mainly 

conducted based on the prediction information. Whereas the 

reactive power of DG inverters is adjusted rapidly on the fast 

time-scale ∆𝑡. By utilizing the real-time measurements, the 

data-driven control on the fast time-scale can adaptively 

suppress rapid voltage fluctuation. Since the slow time-scale 

may decrease the control accuracy, it is necessary to 

coordinate those regulation devices with fast control devices 

such as DG inverters. Thus, discrete and continuous regulation 

devices are coordinated on multiple time-scales to maintain 

voltages within the desired range. 

1) Modelling of data-driven voltage control problem 
On the basis of measurement information, the relationship 

between the nodal voltage and strategies of voltage control 
devices is established in Eq. (1). 𝒚 = 𝑓(𝒙)  (1.a) 

where 𝑓(∙) denotes the unknown function. 𝒙 denotes operation 

strategies of voltage control devices including discrete and 

continuous regulation devices. 𝒚  denotes measurements of 

ADN such as the voltage amplitude of each node. 

Assumption (1): The controlled system satisfies the Lip-

schitz condition. For ∀ 𝑘1 , 𝑘2, the Lipschitz condition of Eq. 

(1.a) is shown as follows. 𝐿 is a constant. ||𝒚[𝑡 + 𝑘1∆𝑡] − 𝒚[𝑡 + 𝑘2∆𝑡]||2  ≤ 𝐿||𝒙[𝑡 + (𝑘1 − 1)∆𝑡] − 𝒙[𝑡 + (𝑘2 − 1)∆𝑡]||2  
(1.b) 

Assumption (2): The partial derivative of 𝑓(∙) is continuous 

for the input 𝒙[𝑡]. 
In Eq. (1.a), ADN is equivalent to a black-box system, of 

which the inputs are the strategies of voltage control devices, 

and outputs are the measurements of nodal voltage. Thus, the 

relationship between the nodal voltage and strategies of volt-

age control devices is established based on a non-linear un-

known function 𝑓(∙).  

In the voltage control problem of ADN, the physical es-

sence of  ||𝒚[𝑡+𝑘1∆𝑡]−𝒚[𝑡+𝑘2∆𝑡]||2||𝒙[𝑡+(𝑘1−1)∆𝑡]−𝒙[𝑡+(𝑘2−1)∆𝑡]||2 is the voltage-to-power 

sensitivity during [𝑡 + 𝑘1∆𝑡, 𝑡 + 𝑘2∆𝑡]. According to the defi-

nition of voltage-to-power sensitivity, it is easy to obtain the 

following equation. ||𝒚[𝑡+𝑘1∆𝑡]−𝒚[𝑡+𝑘2∆𝑡]||2||𝒙[𝑡+(𝑘1−1)∆𝑡]−𝒙[𝑡+(𝑘2−1)∆𝑡]||2 ≤ 𝐿  (1.c) 

Eq. (1.c) can be satisfied by the practical ADNs according 

to the operational constraints of ADNs. Thus, Assumption (1) 

can be satisfied. In addition, Assumption (2) is generally con-

sidered valid in practical ADNs. 

Theorem A1: If Assumptions (1) and (2) are satisfied in the 

non-linear control systems, 𝚽[𝑡] ∈ 𝐑𝑚×𝑚  exists. Then Eq. 

(1.a) can be linearized to the form of Eq. (2) on different time 

scales. The proof of Theorem A1 is shown in Appendix. 𝑼̃[𝑡 + ∆𝑇] = 𝑼[𝑡] + 𝚽O[𝑡](𝑶[𝑡] − 𝑶[𝑡 − ∆𝑇])  (2.a) 𝑼̃[𝑡 + ∆𝑡] = 𝑼[𝑡] + 𝚽X[𝑡](𝑿[𝑡] − 𝑿[𝑡 − ∆𝑡])  (2.b) 

where 𝑼̃[𝑡 + ∆𝑇] and 𝑼̃[𝑡 + ∆𝑡] denote the nodal voltage es-

timation at instant 𝑡 + ∆𝑇 and 𝑡 + ∆𝑡. 𝑼[𝑡] is the nodal voltage 

measurement at instant 𝑡 . 𝑶[𝑡]  and 𝑶[𝑡 − ∆𝑇]  denote the 

strategies of discrete voltage regulation devices at instant 𝑡 

and 𝑡 − ∆𝑇. 𝑿[𝑡] and 𝑿[𝑡 − ∆𝑡] are the strategies of continu-

ous regulation devices at instant 𝑡  and 𝑡 − ∆𝑡 . 𝚽O[𝑡]  and 𝚽X[𝑡] are the Pseudo-Jacobi Matrix (PJM) at instant 𝑡, which 

represents the relationship between voltage measurements and 
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operation strategies of multiple voltage control devices. 

Eq. (2.a) represents the data-driven model of discrete devic-

es, which is established on a slow time-scale ∆𝑇. The strate-

gies of discrete devices remain unchanged during ∆𝑇 to avoid 

frequent operations. Eq. (2.b) denotes the data-driven model of 

continuous regulation devices, which is established to respond 

to the voltage fluctuation on a fast time-scale ∆𝑡. 

2) Coordination on multiple time-scales 

The discrete and continuous regulation devices can be coor-

dinated on multiple time-scales. Taking OLTC and DG invert-

ers as an example, OLTC adjusts the tap step to prevent severe 

voltage deviation on a slow time-scale ∆𝑇. Whereas the reac-

tive power of DG inverters is adjusted rapidly on a fast time-

scale ∆𝑡, which can adaptively suppress rapid voltage fluctua-

tion caused by DGs. Thus, discrete and continuous regulation 

devices are coordinated on multiple time-scales to maintain 

voltages within the desired range. 

For decentralized and efficient voltage control, the network 

of ADN is partitioned into multiple sub-areas based on the 

electrical distance. Since the partition of ADN can be de-

scribed as a clustering problem, the clustering algorithm can 

be utilized to determine the range and number of sub-areas. 

The proposed data-driven method models the features of sub-

areas in ADN based on real-time operational data and can re-

alize the real-time control through the iterative interaction 

with ADN without training process. Based on the dynamic 

linearization, the proposed method creates a data model of a 

nonlinear complex system without accurate parameters. 

The coordination among regulation devices in the same area 

is also taken into consideration. Taking DG inverters in area 𝑚 as an example, adjacent DGs can be divided into several 

clusters. As the voltage control effect of DG clusters in the 

same area is coupling, the relationship of DG clusters in the 

same area is mainly considered in this paper. Since the data-

driven control model of continuous regulation devices is line-

arized dynamically at each ∆𝑡 [23], the voltage control effect 

of each DG cluster satisfies linear superposition principles at 

each ∆𝑡 in the same area. 

Um

1
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DG cluster 2

AUm

Um
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Fig. 2.  The parallel relationship between DG clusters in the same area. 

Therefore, it is reasonable to assume that the DG clusters in 

each area are paralleled. Taking an area with two DG clusters 

as an example, the parallel relationship between two DG clus-

ters is shown in Fig. 2. 𝑼𝑚  denotes the measurements of nodal 

voltage amplitude in area 𝑚. 𝑨1 and 𝑨2 are the voltage control 

effect of DG clusters 1 and 2. 𝑨𝑚 represents the voltage con-

trol effect of DG clusters in area 𝑚. 

B. Data-driven Coordinated Voltage Control Model 

1) Modelling of data-driven control on the slow time scale 

Taking OLTC as an example, the data-driven model on the 

slow time-scale ∆𝑇 is established. To determine the strategy of 

OLTC during each optimization horizon ∆𝑇, the influence of 

prediction information of DGs and loads is considered. Then 

Eq. (2.a) can be transformed to a prediction model at each ∆𝑇: 𝑼̃[𝑡 + ∆𝑇] = 𝑼[𝑡] + 𝚽O[𝑡](𝑶[𝑡] − 𝑶[𝑡 − ∆𝑇])            +𝑤𝚽ET[𝑡](𝑬[𝑡 + ∆𝑇] − 𝑬′[𝑡])  
(3) 

where 𝑼̃[𝑡 + ∆𝑇]  denotes the estimation of nodal voltage 

amplitude at instant 𝑡 + ∆𝑇 . 𝚽O[𝑡]  denotes the PJM which 

represents the relationship between the tap steps of OLTC and 

nodal voltages. 𝚽E[𝑡] is the PJM at instant 𝑡, which represents 

the relationship between prediction information and nodal 

voltage. 𝑶[𝑡] and 𝑶[𝑡 − ∆𝑇] are tap steps of OLTC at instant 𝑡 

and 𝑡 − ∆𝑇. 𝑬[𝑡 + ∆𝑇] denotes prediction information during 

instants 𝑡 to 𝑡 + ∆𝑇, including prediction information of DGs 

and loads. 𝑬′[𝑡]  denotes information of DGs and loads at 

instant 𝑡 . 𝑤  represents the influence of the voltage 

measurement from the prediction information of DGs and 

loads. 𝑤 can be adjusted according to the practical experiences 

of the distribution system operator. 

There exists two unknown PJMs in Eq. (3), which need to 

be estimated, namely 𝚽O[𝑡] and 𝚽E[𝑡]. Based on measure-

ment information, the estimation functions of 𝚽O[𝑡]  and 𝚽E[𝑡] can be represented as follows. 𝚽̂O[𝑡] = argmin (‖𝑼[𝑡] − 𝑼̃[𝑡]‖22 + 𝜇O‖𝚽̂O[𝑡] − 𝚽̂O[𝑡 − ∆𝑇]‖22)  (4) 𝚽̂E[𝑡] = argmin (‖𝑼[𝑡] − 𝑼̃[𝑡]‖22 + 𝜇E‖𝚽̂E[𝑡] − 𝚽̂E[𝑡 − ∆𝑡]‖22)  (5) 

Then based on the gradient descent algorithm, the iterative 

expressions for solving 𝚽̂O[𝑡] and 𝚽̂E[𝑡] are formulated. 𝚽̂O[𝑡] = 𝚽̂O[𝑡 − ∆𝑇] +                  𝜼O(∆𝑼[𝑡]−𝚽̂O[𝑡]∆𝑶[𝑡−∆𝑇]−𝚽̂E[𝑡]∆𝑬′[𝑡−∆𝑡])∆𝑶[𝑡−∆𝑇]𝜇O+‖∆𝑶[𝑡−∆𝑇]‖22   
(6) 𝚽̂O[𝑡] = 𝚽̂O[𝑡0], if 𝚽̂O[𝑡] ≤ 𝜖 or  ∆𝑶[𝑡 − ∆𝑇] ≤ 𝜖 or  

                  sign(𝚽̂O[𝑡])≠sign(𝚽̂O[𝑡0]) (7) 

𝚽̂E[𝑡] = 𝚽̂E[𝑡 − ∆𝑡] + 𝜼E(∆𝑼[𝑡]−𝚽̂E[𝒕]∆𝑬′[𝑡−∆𝑡])∆𝑬′𝐓[𝑡−∆𝑡]𝜇E+‖∆𝑬′[𝑡−∆𝑡]‖22    (8) 𝚽̂E[𝑡] = 𝚽̂E[𝑡0], if 𝚽̂E[𝑡] ≤ 𝜖 or  ∆𝑬′[𝑡 − ∆𝑡] ≤ 𝜖 or  

                sign(𝚽̂E[𝑡])≠sign(𝚽̂E[𝑡0])  
(9) 

where ∆𝑼[𝑡]  denotes 𝑼[𝑡] − 𝑼[𝑡 − ∆𝑡] . ∆𝑶[𝑡 − ∆𝑇]  denotes 𝑶[𝑡 − ∆𝑇] − 𝑶[𝑡 − 2∆𝑇] . ∆𝑬′[𝑡 − ∆𝑡]  denotes 𝑬′[𝑡 − ∆𝑡] −𝑬′[𝑡 − 2∆𝑡]. 𝚽̂O[𝑡0] and 𝚽̂E[𝑡0] are the initial values of 𝚽̂O[𝑡] 
and 𝚽̂E[𝑡]. 𝚽̂O[𝑡0]  is assigned based on the sensitivities of 

nodal voltage and tap steps of OLTC. 𝚽̂E[𝑡0] is assigned on 

the basis of sensitivities of nodal voltage and information of 

DGs and loads at instant 𝑡0. Eqs. (7) and (9) are introduced to 

enable Eqs. (6) and (8) be with a stronger parameter tracking 

ability [24]. 

Note that both the gradient descent method and Newton 

method are typical iterative methods for finding the minimum 

of an objective function [29]. The Newton method is an effi-

cient algorithm for solving the day-ahead optimization prob-

lems of ADNs [30]. From the perspective of applicability, the 

gradient descent method is suitable for the iterative calculation 
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in the proposed data-driven method. The reasons are elaborat-

ed as follows. a) If the second derivative of the objective func-

tion is undefined in the objective function’s root, gradient de-
scent methods can still be applied. b) The time complexity of 

the gradient descent method is O(𝑛). The Hessian matrix and 

its inverse matrix are unnecessary to be calculated in the gra-

dient descent method, which is time-saving. c) In addition, the 

gradient descent method is not sensitive to its initial values. 

In the proposed data-driven method, it puts forward higher 

requirements for the calculation speed in each iteration for the 

real-time control, which requires a sample and time-saving 

method. Thus, the gradient descent method is utilized to itera-

tively solve equations such as Eqs. (4) and (5). 

Considering the minimum voltage deviation and the change 

rate of the tap steps of OLTC, the objective function of OLTC 

is expressed as: 𝐽(𝑶[𝑡]) = min (‖ 𝑼ref − 𝑼̃[𝑡 + ∆𝑇]‖22         +𝜆O‖𝑶[𝑡] − 𝑶[𝑡 − ∆𝑡]‖22)  
(10) 

The iterative formulation for calculating 𝑶[𝑡] based on the 

gradient descent algorithm is expressed as Eq. (11). 𝑶[𝑡] = 𝑶[𝑡 − ∆𝑇] + 𝜌O𝚽̂O[𝑡](𝑼ref−𝑼̃[𝑡]−𝚽̂E[𝑡]∆𝑬[𝑡+∆𝑇]) 𝜆O+||𝚽̂O[𝑡]||22   (11) 

where 𝚽̂O[𝑡] and 𝚽̂E[𝑡] can be solved by Eq. (4) and Eq. (5). 

Considering the variation range limits of the tap steps, 𝑶[𝑡] 
are constrained by the following equations. 𝑶[𝑡] = 𝑶[𝑡 − ∆𝑇] + 𝑘, if 𝑶[𝑡] − 𝑶[𝑡 − ∆𝑇] > 𝑘  (12.a) 𝑶[𝑡] = 𝑶[𝑡 − ∆𝑇] − 𝑘, if 𝑶[𝑡] − 𝑶[𝑡 − ∆𝑇] < −𝑘  (12.b) 𝑶[𝑡] = 𝑶max, if 𝑶[𝑡] > 𝑶max   (13.a) 𝑶[𝑡] = 𝑶min, if 𝑶[𝑡] < 𝑶min  (13.b) 

Eqs. (12.a) and (12.b) limit the maximum variation of the 

tap steps during the considered time horizon. Eqs. (13.a) and 

(13.b) represent the variation range of the discrete tap steps. 

2) Modelling of data-driven control on the fast time scale 

Taking paralleled DG clusters in area 𝑚 as an example, the 

data-based model of DG cluster 𝑛 is established during a fast 

time-scale ∆𝑡. Influence from other DG clusters in the same 

area is taken into consideration, as shown in Eq. (14). 𝑼̃𝑚[𝑡 + ∆𝑡] = 𝑼𝑚[𝑡] + ∑ 𝚽𝑚,𝑛T [𝑡](𝑿𝑚,𝑛[𝑡] − 𝑿𝑚,𝑛[𝑡 − ∆𝑡])𝑁𝑚DG𝑛=1 (14) 

where 𝑼̃𝑚[𝑡 + ∆𝑡] represents the estimation of nodal voltage 

amplitude in area 𝑚  at instant 𝑡 + ∆𝑡 . 𝑼𝑚[𝑡]  denotes nodal 

voltage measurement in area 𝑚 at instant 𝑡. 𝑁𝑚DG represents the 

number of DG clusters in area 𝑚. 𝚽𝑚,𝑛[𝑡] is the PJM of DG 

cluster 𝑛 in area 𝑚 at instant 𝑡, which denotes the relationship 

between nodal voltage measurement and the reactive power 

output of DG cluster 𝑛 in area 𝑚. 𝑿𝑚,𝑛[𝑡] is the reactive pow-

er output vector of DG cluster 𝑛 at instant 𝑡 in area 𝑚. 

In Eq. (14), the PJM 𝚽𝑚,𝑛[𝑡] can be estimated as Eq. (15). 

Different from the Jacobi Matrix of ADN, the PJM utilized in 

this paper is calculated based on the multi-source data. It rep-

resents the relationship between voltage measurements and 

operation strategies of multiple voltage control devices. 

𝚽̂𝑚,𝑛[𝑡] = argmin (‖𝑼𝑚[𝑡] − 𝑼̃𝑚[𝑡]‖22                                  +𝜇X‖𝚽̂𝑚,𝑛[𝑡] − 𝚽̂𝑚,𝑛[𝑡 − ∆𝑡]‖22)  
(15) 

Considering the influence of other DG clusters in area 𝑚, 𝚽̂𝑚,𝑛[𝑡] can be calculated at each instant. The iterative expres-

sion for estimating 𝚽̂𝑚,𝑛 [𝑡] is shown as follows. 𝚽̂𝑚,𝑛[𝑡] = 𝚽̂𝑚,𝑛[𝑡 − ∆𝑡] + (∆𝑼𝑚[𝑡] −  ∑ 𝚽𝑚,𝑖[𝑡]∆𝑿𝑚,𝑖[𝑡 − ∆𝑡]𝑁𝑚DG𝑖=1 ) 𝜂∆𝑿𝑚,𝑖T [𝑡−∆𝑡]𝜇+‖∆𝑿𝑚,𝑛[𝑡−∆𝑡]‖22  
(16) 

𝚽̂𝑚,𝑛[𝑡] = 𝚽̂𝑚,𝑛[𝑡0], if 𝚽̂𝑚,𝑛 [𝑡] ≤ 𝜖  or   ∆𝑿𝑚,𝑛[𝑡 − ∆𝑡] ≤ 𝜖 or sign(𝚽̂𝑚,𝑛[𝑡])≠sign(𝚽̂𝑚,𝑛[𝑡0])  
(17) 

where ∆𝑼𝑚[𝑡]  represents 𝑼𝑚[𝑡] − 𝑼𝑚[𝑡 − ∆𝑡] . ∆𝑿𝑚,𝑛[𝑡 −∆𝑡]  represents 𝑿𝑚,𝑛[𝑡 − ∆𝑡] − 𝑿𝑚,𝑛 [𝑡 − 2∆𝑡] . 𝚽̂𝑚,𝑛 [𝑡0]  de-

notes the initial value of 𝚽̂𝑚,𝑛[𝑡], which can be initialized by 

sensitivities between nodal voltages and reactive power of DG 

clusters. 

Considering the minimum voltage deviation and the change 

rate of DG outputs, the objective function of DG cluster 𝑛 in 

area 𝑚 is expressed as: 𝐽(𝑿𝑚,𝑛[𝑡]) = min (‖𝑼ref − 𝑼̃𝑚[𝑡 + ∆𝑡]‖22                +𝜆X‖𝑿𝑚,𝑛[𝑡] − 𝑿𝑚,𝑛[𝑡 − ∆𝑡]‖22)  
(18) 

In the data-driven voltage control of DG, the control strate-

gies of DG’s reactive power are obtained with an iterative 
process. If the reactive power output changes too fast at the 

adjacent control instants, it may lead to rapid voltage fluctua-

tion to impact on the secure operation of ADN. Thus, the 

change rate of DG outputs is included in the objective func-

tion. 

Considering the control strategies of other DG clusters in 

area 𝑚, 𝑿𝑚,𝑛[𝑡], the control strategy of DG cluster 𝑛 at instant 𝑡 in area 𝑚, is iteratively calculated as follows. 𝑿𝑚,𝑛[𝑡] = 𝑿𝑚,𝑛[𝑡 − ∆𝑡] + (𝑼ref − 𝑼𝑚[𝑡] −∑ 𝚽̂𝑚,𝑙[𝑡](𝑿𝑚,𝑙[𝑡] − 𝑿𝑚,𝑙[𝑡 − ∆𝑡])𝑁𝑚DG𝑙=1,𝑙≠𝑛 ) 𝜌X𝚽̂𝑚,𝑛[𝑡]𝜆X+||𝚽̂𝑚,𝑛[𝑡]||22  
(19) 

where 𝚽̂𝑚,𝑛[𝑡] can be solved by Eq. (16). 

To further consider the limitation of DG inverters’ capaci-

ties, operational constraints of DGs are shown as follows. 𝑿𝑚,𝑛[𝑡] = √(𝑺𝑚,𝑛DG )2 − (𝑷𝑚,𝑛DG [𝑡])2
 , 

if 𝑿𝑚,𝑛[𝑡] > √(𝑺𝑚,𝑛DG )2 − (𝑷𝑚,𝑛DG [𝑡])2 

(20) 𝑿𝑚,𝑛[𝑡] = −√(𝑺𝑚,𝑛DG )2 − (𝑷𝑚,𝑛DG [𝑡])2
 ,  

if 𝑿𝑚,𝑛[𝑡] < −√(𝑺𝑚,𝑛DG )2 − (𝑷𝑚,𝑛DG [𝑡])2  

Constraint (20) represents the variation range of reactive 

power outputs of DG clusters at each instant. Limited by the 

capacity of DG inverter, it is necessary to involve both contin-

uous and discrete adjustments, such as DG inverters and 

OLTC to efficiently regulate voltages. Thus, when DG invert-

ers achieve their maximum allowable reactive power, the pro-

posed coordinated control approach method will dispatch volt-
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age regulation devices involving multiple time-scales to miti-

gate the voltage violation. 

Remark 1: In practical ADNs, there are mainly two forms of 

the system structure updating. a) The integration of new de-

vices, such as DGs, switches on the original structure of 

ADNs. b) The expanded planning of ADNs. 

The integration of new devices does not change the observ-

ability of ADN. However, as the controlled resources have 

been integrated, the communication links with these new de-

vices need to be supplemented. With the application of 5G 

technology, local communication will be convenient to realize. 

Then, the proposed method can be compatible with new de-

vice integration by properly extending the data-driven model. 

As for the expanded planning of ADNs, the observability of 

ADNs will be influenced. Thus, new measurements should be 

added to incorporate the observability of expanded ADNs. The 

proposed method is still scalable after the supplement of 

measurements devices. 

Remark 2: The proposed data-driven method mainly in-

cludes two kinds of parameters: time-varying parameters 

(𝚽O[𝑡] and 𝚽X[𝑡]) and fixed parameters (𝜇O , 𝜂O, 𝜆O , 𝜌O, 𝜇E , 𝜂E, 𝜇X, 𝜂X, 𝜆X, 𝜌X, 𝑤). As for the influence of parameters, the 

time-varying parameters in the proposed method represent the 

internal structure and parameters of ADNs. 

Parameter tuning is important for the control performance 

of the data-driven method. To adapt to the variation of system 

states, the time-varying parameters ( 𝚽O[𝑡]  and 𝚽X[𝑡] ) are 

estimated by Eqs. (4)-(8) and Eq. (15), according to the multi-

ple-source data. As for the fixed parameters, it is proved in 

[23] that stability can be guaranteed when the fixed parameters 

are within the predefined range, namely 𝜂O, 𝜂X, 𝜂E ∈ (0,1] , 𝜇O , 𝜇X , 𝜇E > 0, 𝜆O , 𝜆X > 0 and 𝜌O, 𝜌X ∈ (0,1]. 
III. SELECTION OF CRITICAL MEASUREMENTS 

The coordinated voltage control approach described in Sec-

tion II mainly relies on the system's whole voltage measure-

ments. Considering the incomplete measurements in practical 

ADNs, it is indispensable to reduce the requirement of total 

measurement amounts while obtaining an approximate opti-

mal solution. Thus, critical measurements should be selected 

beforehand. 

A. Critical Measurement Selection 

To reduce the requirements of measurement amount, nodes 

with similar voltage variation to the fluctuation of DGs and 

loads are clustered into a category. Then critical measurements 

of nodes can be selected from each category. 

1) Clustering of measurement nodes 

To quantify the similarities between nodes, the modified 

cosine similarity is utilized, which is widely used to measure 

the difference between two vectors [31]. Taking node 𝑖 in area 𝑚 as an example, by using the modified cosine similarity, the 

similarity between node 𝑖 with other nodes in area 𝑚 can be 

quantified as follows. 

cos(𝑭𝑖 , 𝑭𝑔) = ∑ (𝑭𝑖(𝑘)−𝑭̅𝑖)𝜎𝑘=1 (𝑭𝑔(𝑘)−𝑭̅𝑔)√∑ (𝑭𝑖(𝑘)−𝑭̅𝑖)2𝜎𝑘=1 √∑ (𝑭𝑔(𝑘)−𝑭̅𝑔)2𝜎𝑘=1  𝑖, 𝑔 ∈ 𝒩𝑚   (21) 

where cos(𝑭𝑖, 𝑭𝑔) indicates the cosine similarity of node 𝑖 and 

node 𝑔. 𝑭𝑖  and 𝑭𝑔  are eigenvectors of nodes 𝑖  and 𝑔, which 

denote the voltage variation in typical scenarios. 𝑭̅𝑖  and 𝑭̅𝑔 

represent the average values of the eigenvectors. 𝜎 is the di-

mension of the eigenvector 𝑭𝑖 , and 𝜎 = 𝑁𝑚 × 𝑁s . 𝑁s  is the 

number of typical scenarios, which are clustered based on the 

historical data [32]. 

The eigenvector 𝑭𝑖 is transformed by the vectorization from 

a sensitivity matrix 𝑯𝑖  of node 𝑖, which contains sensitivities 

of node 𝑖 in typical scenarios. 

𝑯𝑖 = [ 𝑆𝑖,1(1) ⋯ 𝑆𝑖,1(𝑁s)⋮ 𝑆𝑖,𝑔(𝜁) ⋮𝑆𝑖,𝑁𝑚 (1) ⋯ 𝑆𝑖,𝑁𝑚(𝑁s)], 𝑖, 𝑔 ∈ 𝒩𝑚 , 𝜁 ∈ Λ  (22) 

where 𝑆𝑖,𝑔(𝜁)  indicates the voltage-to-power sensitivity [33] 

between nodes 𝑖  and 𝑔 in scenario 𝜁, which can be obtained 

based on the historical data. 𝑆𝑖,𝑔(𝜁) = α𝜕∆ 𝑈𝑖∗(𝜁) 𝜕⁄ ∆𝑃𝑔∗(𝜁) + 𝛽𝜕∆ 𝑈𝑖∗(𝜁) 𝜕⁄ ∆𝑄𝑔∗ (𝜁)   𝑖, 𝑔 ∈ 𝒩𝑚 , 𝜁 ∈ Λ  
(23) 

Note that the number of clusters is not a predefined parame-

ter. In the clustering step, categories are formed in the cluster-

ing process based on node similarities. As the similarities be-

tween nodes are quantified, nodes with larger cosine similarity 

value than threshold 𝜀 can be classified into a category denot-

ed by 𝑐𝑖|𝑐𝑖 ∈ 𝐶 , as shown in Eq. (24). Then the number of 

clusters can be determined. 𝑖, 𝑔 ∈ 𝑐𝑖    if cos(𝑭𝑖 , 𝑭𝑔) > ε (24) 

2) Selection of critical measurements 

Then a similarity matrix 𝜞𝑐,𝑖 can be formed based on cate-

gory 𝑐𝑖|𝑐𝑖 ∈ 𝐶, which contains a group of similar nodes includ-

ing node 𝑖. 
𝜞𝑐,𝑖 = [cos(𝑭𝑖 , 𝑭𝑖) ⋯ cos(𝑭𝑖 , 𝑭𝑗)⋮ ⋱ ⋮cos(𝑭𝑗 , 𝑭𝑖) ⋯ cos(𝑭𝑗 , 𝑭𝑗)] 𝑖, 𝑗 ∈ 𝑐𝑖   (25) 

where element cos(𝑭𝑖, 𝑭𝑗) in the matrix 𝜞𝑐,𝑖  denotes the co-

sine similarity between node 𝑖 and node 𝑗. 
To select representative nodes as critical measurements, the 

similarity index is defined as follows. 𝑏𝑖 = ∑ 𝜞𝑐,𝑖(𝑎𝑖 , ℎ𝑖)𝑁𝑐,𝑖ℎ𝑖=1  𝑖 ∈ 𝑐𝑖   (26) 

where 𝑏𝑖  denotes the similarity index of node 𝑖 . 𝑁𝑐  is the 

number of nodes in a category 𝑐𝑖 . 𝜞𝑐,𝑖(𝑎𝑖 , ℎ𝑖) is the element in 

row 𝑎𝑖 and column ℎ𝑖. 
The nodes in a category are sorted according to the similari-

ty index values. Then the most representative nodes with the 

highest similarity index in a category are recommended as the 

critical measurement nodes. Based on the critical measure-

ments, the data-driven coordinated voltage control model de-

scribed in Section II can be simplified, and the requirement of 

total measurement amounts is reduced. 
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There are mainly two application conditions for the 

selection of the critical measurements, namely the existing 

ADN, and the expanded planning of ADN. a) In the existing 

ADN, if the historical operation data can be obtained, the 

critical measurement selection can be carried out with the 

proposed method. If the historical data is insufficient, the 

critical measurement selection can also be expanded based on 

the state estimation and physical model of ADN. The voltage-

to-power sensitivities can be calculated by the differential of 

nodal voltage variation and injection power variation based on 

multiple state estimation results. With the voltage-to-power 

sensitivities of all nodes, critical measurements can be 

obtained. Note that, the model-based state estimation is only 

utilized in the critical measurement selection, instead of the 

data-driven control process. b) As for the extended planning of 

ADN, operation data can be simulated through the physical 

model of ADN. The network structure can be provided from 

the planning information of ADN. The photovoltaic (PV), 

wind turbine (WT) and load curves can be obtained by 

forecasting information. Based on the physical model, the 

voltage-to-power sensitivities of the extended ADN are 

calculated. Then the critical measurement selection can be 

carried out. 

Through critical measurement selection based on historical 

data, a data-driven control model can be established without 

the requirement of the measurements in the whole network. It 

helps to reduce the measurement demand as well as the di-

mension of the data-driven control model, which is beneficial 

to the convergence speed and the control performance. 

B. Implementation of the Coordinated Voltage Control 

Fig. 3 shows the flowchart of data-driven coordinated volt-

age control on multiple time-scales. 

1) The similarities of nodes are quantified based on the 

modified cosine similarity. Nodes with high similarity values 

are classified as one category. In each category, the most rep-

resentative nodes are recommended as critical measurements. 

2) Concerning the critical measurements at instant 𝑡 and the 

prediction information during ∆𝑇, a data-driven model of dis-

crete regulation devices on the slow time scale is established. 

The operation strategies of discrete regulation devices are 

solved and implemented to mitigate the voltage deviation on 

the slow time-scale ∆𝑇. 

3) Based on the critical measurements in each area, the da-

ta-driven models of continuous regulation devices are respec-

tively established on each fast control period ∆𝑡. The operation 

strategies of continuous regulation devices are calculated and 

implemented on each ∆𝑡, which can adaptively suppress fre-

quent voltage fluctuations. 

4) The operation strategies of continuous regulation devices 

are adjusted continuously until ∆𝑇 is reached. Then Steps 2) 

and 3) are repeated, until the total control horizon 𝑇 is reached. 

Remark 3: The proposed data-driven voltage control 

method is mainly oriented for medium-voltage distribution 

networks, which are three-phase balanced and can be 

generally equivalent to a single phase. To address the voltage 

control problem in unbalanced three-phase ADN, a three-

phase data-driven control method can be further extended. 

Correspondingly, the data-driven model and variables will be 

expanded from the single-phase to three-phase. Considering 

the asymmetric integration of DGs in unbalanced ADNs [34], 

it is assumed that three-phase data-driven voltage control is 

conducted separately. First, nodal voltage measurements are 

obtained to establish the data-driven voltage control model in 

each phase. Then, operational strategies of the regulation 

devices can be calculated and implemented in each phase. 

Thus, voltage control problem of unbalanced ADNs can be 

solved by conducting data-driven control in each phase. 

Start

Select critical measurement  based on modified 
the cosine similarity and sensitivity   

t=t+ t

d=d+1

Establish and solve the coordinated voltage 
control model of continuous adjusting devices 

with Eqs. (14)-(18) 

End

Set d=0

 t*d< T?

Calculate and implement the voltage control 
strategies of continuous adjusting devices with 

Eqs. (19)-(20) 

Yes

No

Input the topology and historical operation data 
of ADN, and the control time horizon T

 T*s< T?
Yes

No

Initialize the slow time-scale  T, fast time-scale  t, set t=0, set s=0

Slow time-scale

Fast time-scale

Establish the data-driven voltage control model 
of discrete regulation devices with Eqs. (3)-(10)

Voltage 
violation

No

Yes

s=s+1

Calculate and implement voltage control 
strategies of discrete regulation devices with 

Eqs. (11)-(13)

 
Fig. 3.  Flowchart of data-driven coordinated voltage control. 

Thus, by establishing the data-driven model of coordinated 

voltage control on multiple time-scales, the nodal voltage can 

be maintained within the desired range. In addition, by select-

ing the critical measurements, the requirement of total meas-

urement amounts is reduced in the data-driven model. 

IV. CASE STUDIES AND ANALYSIS 

To verify the advantages of the proposed data-driven coor-

dinated voltage control approach on multiple time-scales, two 

standard IEEE test cases are adopted. The case studies are 

performed in MATLAB R2016b, which is installed on a com-

puter with an Intel(R) Core(TM) i7-6700HQ CPU@2.60GHz 

and 16 GB of RAM. 
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A. Modified IEEE 33-node System 

The topology of the tested 33-node distribution system is il-

lustrated in Fig. 4, including a substation and 33 nodes. A ten-

tap step OLTC with 1% voltage adjustment per tap is connect-

ed to node 1. And the rated voltage level and total power de-

mands of the tested system can refer to Ref. [35]. 
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OLTC

 
Fig. 4.  Topology of the tested 33-node system. 

Accounting for the high penetration of DGs, 13 units of PV 

are installed at nodes 11, 12, 17, 18, 20, 21, 23, 24, 25, 31, 32, 

and 33, of which capacities are 100 kWp each. 3 units of WT 

are installed at nodes 13, 15, and 16, of which capacities are 

500 kVA each. 3 units of WT are installed at nodes 22, 29, 

and 30, of which capacities are 100 kVA each. 

B. Selection of Critical Measurements 

Typical scenarios are clustered based on the annual histori-

cal data of ADN, as shown in Fig. 5. 

 
Fig. 5.  48 typical scenarios of ADN. 

Then the voltage-to-power sensitivities of nodes in each 

typical scenario can be obtained based on the historical data. 

Subsequently, the characteristic graph of each node can be 

obtained under typical scenarios. Taking nodes 5, 6, 19, and 

20 in area 1 as examples, the sensitivity characteristic graphs 

are shown in Fig. 6. 
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(a) Sensitivity matrix of node 5 
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(b) Sensitivity matrix of node 6 
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(c) Sensitivity matrix of node 19 
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(c) Sensitivity matrix of node 20 

Fig. 6.  Graphs of the sensitivity matrixes. 

On the basis of the sensitivity matrix mentioned in Section 

III.A, the modified cosine similarity is calculated to quantify 

the similarity between nodes. Table I shows the results of the 

modified cosine similarity calculation. 

It is illustrated from Fig. 6 and Table I that the similarity 

between nodes 5 and 6 is higher than the similarity between 

nodes 5 and 19, or nodes 5 and 20. Assuming the threshold 𝜀 

is 0.99, nodes 5 and 6 can be clustered into one category, 

while nodes 19 and 20 belong to different categories due to 

lower similarities. Then in a category, the most representative 

nodes are recommended as the critical measurements. The 

result of critical measurements selection is shown in Fig. 7. 

TABLE I 

SIMILARITY RESULTS BETWEEN NODES 

Nodes 5-6 5-19 5-20 6-19 6-20 19-20 

Similarity 0.9989 0.9509 0.7064 0.9487 0.7059 0.8488 
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Fig. 7.  Results of critical measurements selection. 

C. Analysis of Voltage Control Results 

1) Data-driven coordinated voltage control 

 
Fig. 8.  Daily curves of power loads and DGs. 

Fig. 8 shows the typical daily curves of power loads and 

DGs, which are used to analyse the voltage control results. 

The time resolution of the fast time-scale is set as 0.5-minute. 

[0.95, 1.05] p.u. is set as the limited operational range of volt-

age profiles. The weight factors are all set as 1.0. Based on the 

operational data, the data-driven control method needs to se-

lect an identical optimal reference for both upper and lower 

violation of nodal voltage. Thus, the voltage reference 𝑼ref  is 

set as 𝟏. 

Considering that frequent switching actions of OLTC 

increase security risks to ADN, set the duration of slow time-

scale ∆𝑇 as 4 hours. The prediction information of the hourly 

operation curves is obtained based on Fig. 8. To obtain 

prediction information with higher accuracy, a graph neural 

network can be utilized in future work [36]. Considering the 

frequent fluctuation of DGs, set the fast time-scale ∆𝑡 and the 

sampling interval of voltage measurements as 0.5-minute. 

Then three scenarios are utilized to demonstrate the ad-

vantages of the proposed data-driven coordinated voltage con-

trol with critical measurements. The description of the studied 

scenarios is shown in Table II. 

TABLE II 

DESCRIPTION OF THE THREE SCENARIOS 

Scenario Description 

I 
The initial state of ADN is obtained without the regulation of 

nodal voltage. 

II 
The proposed data-driven coordinated operation strategies of 

DGs and OLTC are adopted. 

III The uncoordinated voltage control strategies are adopted. 

In Scenario III, the discrete and continuous regulation de-

vices are not coordinated on multiple time-scales. OLTC is 

regulated only based on real-time information without the pre-

diction information of DGs. In addition, the cooperation be-

tween multiple DG clusters is not taken into consideration. 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
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Scenario I Scenario II  Dynamic Process

Fig. 9.  Voltage control performance at 10:00 am. 

The proposed data-driven coordinated voltage control with 

critical measurements is adopted for mitigating the voltage 

violation of ADN. The operation state of ADN from 10:00 am 

to 10:05 am is taken as an example. Fig. 9 illustrates the volt-

age control performance in which the grey areas indicate the 

voltage adjustment process of Scenario II. 

 
(a) Dynamic process of PVs' reactive power outputs at nodes 18 and 33 

 
(b) Voltage adjustment process of nodes 18 and 33 

Fig. 10.  Dynamic adjustment process from 10:00 am to 10:05 am. 

The dynamic process of reactive power outputs of PVs is 

shown in Fig. 10(a). The voltage adjustment process of nodes 

18 and 33 is shown in Fig. 10(b). DGs are utilized to regulate 

nodal voltage by generating reactive power to mitigate the 

voltage deviation. As for the computation efficiency, the 

proposed data-driven coordinated voltage control with critical 

measurements relieves the computation burden as it only 

requires a simple algebraic operation. Also, convergence can 

be ensured within limited iterations [25]. 

2) Analysis of voltage control performance 

To test the daily voltage control performance, the proposed 

data-driven coordinated voltage control with critical meas-

urements is carried out on the whole day. 

The daily voltage control performances of the three scenari-

os are illustrated in Fig. 11. 

 
(a) Comparison of voltage control performances of Scenarios I and II 
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(b) Comparison of voltage control performances of Scenarios II and III 

Fig. 11.  Comparison of voltage control performances of three scenarios. 

Fig. 11(a) compares the voltage control performances of 

Scenarios I and II. In Scenario I, the highly penetrated DGs 

creates serious voltage violation. However, in Scenario II, by 

implementing the proposed coordinated voltage control ap-

proach, the OLTC regulates voltage on a slow time scale. 

While DGs are coordinated on a fast time scale to suppress the 

voltage fluctuation. Consequently, the nodal voltage of ADN 

is regulated and maintained within a reasonable operation 

range. However, the multiple regulation devices are operated 

uncoordinatedly in Scenario III, which fails to mitigate the 

voltage violation, as illustrated in Fig. 11(b). 

 
Fig. 12.  Daily adjustment strategies of OLTC. 

 
Fig. 13.  Daily voltage control performance of node 18. 

 
Fig. 14.  Daily operation strategies of DG at node 18 

The daily adjustment strategies of OLTC in Scenarios II 

and III are represented in Fig. 12. The daily voltage profiles of 

node 18 are shown in Fig. 13. Daily operation strategies of DG 

at node 18 are shown in Fig. 14. It can be seen from Figs. 12, 

13, and 14 that the adjustment strategies of OLTC and DGs 

are coordinated to maintain the voltage within the intended 

limitation. From 0:00 am to 6:00 am, the power generated 

from DGs is beyond the power demands. The OLTC adjusts 

the tap step, while DGs coordinately absorb the reactive power 

to regulate the voltages. Conversely, from 6:00 am to 12:00 

am, DGs cannot satisfy the high power demand. The OLTC 

adjusts the tap step to increase nodal voltages. Meanwhile, 

DGs generate reactive power to alleviate voltage deviation. 

In addition, on the slow time scale, the OLTC changes the 

tap step based on the prediction information, to prevent further 

exacerbation of voltage profiles. At each operation time of 

OLTC, the voltage fluctuation appears and DGs are coordinat-

ed to suppress the voltage fluctuation. 

To quantify the voltage control effect, the voltage deviation 

index (𝑉𝐷𝐼) of the three scenarios is stated in Table III, which 

can be defined in Eq. (27). 

TABLE III 

VOLTAGE CONTROL PERFORMANCES OF THE THREE SCENARIOS 

Scenario 
Min. voltage 

(p.u.) 

Max. voltage 

(p.u.) 
𝑉𝐷𝐼 

Number of tap 

movement 

I 0.9332 1.0658 0.0179 0 

II 0.9615 1.0454 0.0087 5 

III 0.9374 1.0540 0.0152 4 

Table III illustrates that the improvement of voltage profiles 

is much more obvious in Scenario II compared to Scenarios I 

and III. In Scenario II, the 𝑉𝐷𝐼 is diminished by 51.40% com-

pared with Scenario I, while decreased by 42.76% than the 

uncoordinated voltage control in Scenario III. 𝑉𝐷𝐼 = ∑ ∑ |𝑈𝑡,𝑖−1|𝑁𝑖=1𝑇𝑡=1 𝑇∙𝑁   (27) 

To evaluate the suppression of voltage fluctuations, the 

daily voltage flicker index (𝑉𝐹𝐼) can be calculated according 

to Ref. [37]. The definition of the 𝑉𝐹𝐼 is shown in Eq. (28). 𝑉𝐹𝐼 = ∑ |𝑈𝑡,𝑖 − 𝑈𝑡−∆𝑡,𝑖|𝑡∈𝑇 (𝑇 ∙ 𝑁)⁄  𝑖 ∈ 𝒩  (28) 

In Scenario II, the 𝑉𝐹𝐼 is decreased by 30.32% compared 

with Scenario I, namely from 1.88e-3 to 1.31e-3. 

The computational efficiency of the proposed data-driven 

voltage control with critical measurements in Scenario II is 

0.029 second for each iteration, which is demonstrated to be 

suitable for real-time voltage control. 

3) Comparison with existing approaches 

To demonstrate the effectiveness and advantage of the 

proposed method, another two existing voltage control 

methods are studied and compared. The former one is the 

model-based centralized optimization approach, which 

requires accurate physical models and parameters of ADNs. 

The latter one is a deep reinforcement learning-based 

approach, which may need the retraining process under 

topology changes of ADNs. 

a) Ref. [35] proposed a mixed-integer second-order cone 

programming model for voltage control in ADNs with accu-

rate network parameters. Based on Ref. [35], the model-based 

centralized control approach is adopted in Scenario IV, which 

has the optimal voltage control performance. 

b) Deep deterministic policy gradient network (DDPG) is a 

typical deep reinforcement learning-based algorithm with two-

layer actor-critic networks, that is suitable for large-scale con-

trol problems with deterministic and continuous actions [38]. 

Based on the training process, the operational strategies can be 

determined by DDPG without the interaction with ADNs. To 

compare the control performance of the proposed data-driven 

coordinated voltage control, a DDPG-based voltage control 

approach is further adopted in Scenario V. 

The comparisons of voltage control performance in Scenar-

ios II, IV, and V are illustrated in Fig. 15 and Table IV. 
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(a) Comparison of voltage control performances of Scenarios II and IV 

 

(b) Comparison of voltage control performances of Scenarios II and V 

Fig. 15.  Comparison of voltage control performances of three scenarios. 

TABLE IV 

VOLTAGE CONTROL PERFORMANCES OF THE THREE SCENARIOS 

Scenario 
Min. voltage 

(p.u.) 

Max. voltage 

(p.u.) 
𝑉𝐷𝐼 

Number of tap 

movement 

II 0.9615 1.0454 0.0087 5 

IV 0.9611 1.0254 0.0076 4 

V 0.9503 1.0446 0.0130 4 

As shown in Table IV, it is illustrated that the proposed 

data-driven method has similar control performance to the 

model-based centralized control approach and the DDPG-

based voltage control approach. All three methods can 

effectively mitigate the voltage deviation and maintain 

voltages within the desired ranges. Considering the influence 

of hyperparameters, the results of DDPG approach can be 

further improved in the future work. 

To assess the optimization effect of the data-driven method 

in Scenario II, the average optimization rate (𝐴𝑂𝑅) is defined 

as follows [39]. 𝐴𝑂𝑅 = (1 − |(𝛾d − 𝛾c)/(𝛾c − 𝛾O)|) ∗ 100%  (29) 

where 𝛾d denotes the voltage deviation index of the proposed 

data-driven voltage control approach. 𝛾c  is the voltage 

deviation index of the model-based centralized control 

approach. While 𝛾O denotes the voltage deviation index of the 

initial operational state of ADN. The 𝐴𝑂𝑅  of the proposed 

data-driven method is 89.32%. It means the proposed data-

driven voltage control method reaches 89.32% of the optimal 

solution without relying on accurate physical models. 

4) Adaptability to the uncertainty of ADN 

The uncertainties of ADN generally include rapid fluctua-

tions of DGs and loads, as well as the topology changes. When 

the DG outputs fluctuate, the measurements of ADN will 

change. Based on the real-time measurements, the proposed 

data-driven control model is updated correspondingly. Then, 

the data-driven control model can rapidly adjust the operation-

al strategies of controlled devices to adapt to the uncertainty of 

DGs and loads. The rapid fluctuations of loads and DGs from 

11:30 am to 12:00 am are considered to test the adaptability of 

the proposed data-driven voltage control method. Considering 

10% random disturbance of loads and DGs, 100 scenarios are 

randomly generated by Monte Carlo method to conduct the 

proposed data-driven control. 

 
(a) Random disturbance of loads and DGs 

Scenario I Scenario II  
(b) Voltage control performances of node 18 of Scenarios I and II 

Fig. 16.  The dynamic process with DG fluctuation. 

TABLE V 

VOLTAGE CONTROL PERFORMANCES WITH DG UNCERTAINTY 

Scenario 
Expected min. 
voltage (p.u.) 

Expected max. 
voltage (p.u.) 

𝑉𝐷𝐼 

I 0.9647 1.0466 0.0103 

II 0.9697 1.0276 0.0087 

IV 0.9725 1.0462 0.0088 

The random disturbance of loads and DGs is shown in Fig. 

16(a). The voltage profiles of node 18 in Scenarios I and II are 

shown in Fig. 16(b). The voltage control performance of the 

whole ADN is illustrated in Table V. It can be seen from Fig. 

16 and Table V that the proposed data-driven method can re-

spond to the random fluctuations of DG and loads and miti-

gate the voltage deviation. However, the control performance 

of model-based approach is deteriorated under DG uncertainty. 

In addition, to test the adaptability of the proposed data-

driven method to the topology change of ADN, an economic 

network reconfiguration is further considered. The economic 

network reconfiguration is presumed to be carried out at 10:30 

am. The tie switches between nodes 12 and 22, as well as 

nodes 25 and 29, are closed, and branch switches between 

nodes 10 and 11, as well as nodes 27 and 28, are disconnected. 

Fig. 17 illustrates the voltage control performances during 

the network reconfiguration process. It can be seen from Fig. 

17(a) that the proposed data-driven method can dynamically 

adjust voltage profiles to adapt to the new topology. 

 
(a) Voltage control performances of Scenario II 
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(b) Voltage control performances of Scenario IV 

Fig. 17.  The adaptive process to the topology changes. 

D. Modified IEEE 123-node System 

The modified IEEE 123-node distribution system is adopted 

to verify the scalability of the proposed data-driven method on 

ADNs with three-phase unbalanced conditions. Fig. 18 shows 

the topology of the test system. A ten-tap step OLTC with 1% 

voltage adjustment per tap is connected to node 1. To fully 

consider the impact of asymmetric access of DGs, six PVs 

with a capacity of 1000 kWp and three WTs with a capacity of 

1000 kVA are integrated into the distribution networks. The 

locations of DGs are listed in Table VI. The same Scenarios I 

and II in Section IV.C are also carried out in the test case. 

The voltage control performance of node 78 is taken as an 

example to illustrate the control effects on the three-phase 

ADNs. The daily voltage control performance is demonstrated 

in Table VII. 

TABLE VI 

INSTALLATION PARAMETERS OF DGS 

Parameter PV WT 

Location 33 42 59 77 86 91 28 51 76 

Phase A B B C C A A C B 

2

4 6 7

5

3

8 9

10

15

12

11

14

35

16 1817

13

192021

2223

2425

26
2728

34
32

33

29

30 31 121

49 48 50

51

52 117 112 111 113 114 115

110109

106

102

98

122

68

73

77

87

78 79 80

81

828384 85

8688

89

90

91

92

93

56 5755

585960 61

63

64

6566

67

5453119
74 75 76

69 70 71 72

99 100 101 116

107 108

103 104 105

95

94

97

96

45 46 47

43 44

41 42

120
36

3837 39 40

62

118

1

123

OLTC

WT

PV

PV

WT

PV

PV

Nodes with Critical Measurement

PV PV

WT

 
Fig. 18.  Topology of the tested 123-node system. 

 
(a) Voltage control performances of node 78 in Scenario I 

 
(b) Voltage control performances of node 78 in Scenario II 

Fig. 19.  Voltage profiles of the unbalanced three-phase ADN. 

TABLE VII 

VOLTAGE CONTROL PERFORMANCES OF THE THREE-PHASE CASE 

Phase 

Min. voltage (p.u.) Max. voltage (p.u.) 𝑉𝐷𝐼 

Scenario 
I 

Scenario 
II 

Scenario 
I 

Scenario 
II 

Scenario 
I 

Scenario 
II 

Phase A 0.9385 0.9503 1.0573 1.0375 0.0270 0.0084 

Phase B 0.9719 0.9526 1.0850 1.0484 0.0146 0.0068 

Phase C 0.9301 0.9504 1.0724 1.0463 0.0226 0.0085 

It can be seen from Table VII, in Scenario II, the 𝑉𝐷𝐼 of 

three phases are diminished by 68.89%, 53.42% and 62.39% 

respectively, compared with Scenario I. Thus, the proposed 

data-driven voltage control method can effectively mitigate 

voltage deviation from the nominal value in each phase, as 

shown in Fig. 19. The scalability of the proposed data-driven 

voltage control method is verified. 

Thus, the proposed data-driven coordinated voltage control 

approach with critical measurements can effectively alleviate 

the impact of DG integration and suppress the serious voltage 

violation in ADNs. In addition, the proposed voltage control 

approach is also capable of responding to the frequent topolo-

gy and state variations of ADNs. 

V. CONCLUSIONS 

A data-driven coordinated voltage control method is 

presented for the coordination of OLTC and DG inverters on 

multiple time-scales to maintain voltages within the desired 

range. By utilizing the real-time measurement data, a data-

driven coordinated voltage control model is established, in 

which discrete and continuous regulation devices are 

considered and coordinated on multiple time-scales. In 

addition, a method of critical measurement selection method is 

proposed to guarantee the voltage control performance under 

the partial measurements in practical ADNs. Comprehensive 

case studies with different scenarios are conducted to verify 

the effectiveness of the proposed data-driven method. The 

results demonstrate that the proposed method can effectively 

suppress the voltage fluctuation on multiple time-scales and 

rapidly adapts to the frequent variations in ADNs. 

Several research directions are worth to be investigated in 

the future. A combination of data-driven model and physical 

model can be researched for better control performance. Then, 

the time-series features of the energy storage system should be 

further taken into account. In addition, a graph neural network 

can be further considered for a better prediction accuracy. 
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APPENDIX 

Proof of Theorem A1: 

Based on the general expression of nonlinear systems in 

Ref. [24], a brief proof of Theorem A1 is provided as follows: 

The discrete data model of ADN can be transformed from 

Eq. (1), which is formulated as Eq. (A.1). 𝒚[𝑡 + ∆𝑡] = 𝑓 (𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡], 𝒙[𝑡],⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡] )  (A.1a) 𝑓(∙) = (𝑓1(∙), ⋯ , 𝑓𝑚(∙))T ∈ ∏ 𝐑𝑚𝑛𝑦+𝑛𝑥+2   (A.1b) 

where 𝑡 denotes the indices of instants. 𝒚 ∈ 𝐑𝑚 , denotes the 
measurements vector of ADN such as the voltage amplitude of 

each node. 𝒙 ∈ 𝐑𝑚 . 𝑛𝑦 and 𝑛𝑥 are two unknown constants. ∆𝒚[𝑡 + ∆𝑡] = 𝚽[𝑡] ∗ ∆𝒙[𝑡]  (A.2a) ∆𝒚[𝑡 + ∆𝑡] = 𝒚[𝑡 + ∆𝑡] − 𝒚[𝑡] (A.2b) ∆𝒙[𝑡] = 𝒙[𝑡] − 𝒙[𝑡 − ∆𝑡] (A.2c) 

Then Eq. (A.3) can be obtained by Combining Eq. (A.1) 

and Eq. (A.2). ∆𝒚[𝑡 + ∆𝑡] = 𝒚[𝑡 + ∆𝑡] − 𝒚[𝑡] = 𝑓(𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡], 𝒙[𝑡], ⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡]) −𝑓(𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡],𝒙[𝑡 − ∆𝑡], 𝒙[𝑡 − ∆𝑡], ⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡]) +𝑓(𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡],𝒙[𝑡 − ∆𝑡], 𝒙[𝑡 − ∆𝑡], ⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡]) −𝑓 (𝒚[𝑡 − ∆𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡 − ∆𝑡], 𝒙[𝑡 − ∆𝑡],⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡 − ∆𝑡] )  

(A.3) 

Based on the Cauchy mean value theorem, Eq. (A.4) can be 

further obtained. 𝑓(𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡],𝒙[𝑡], ⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡]) −𝑓 (𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡], 𝒙[𝑡 − ∆𝑡], 𝒙[𝑡 − ∆𝑡],⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡] )  = (𝜕𝑓(∙)/𝜕𝒙[𝑡])∆𝒙[𝑡] (A.4) (𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡], 𝒙[𝑡 − ∆𝑡], 𝒙[𝑡 − ∆𝑡], ⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡])T
 ≤ 𝜕𝑓(∙)/𝜕𝒙[𝑡] ≤ (𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡], 𝒙[𝑡], ⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡])T

where 𝜕𝑓(∙)/𝜕𝒙[𝑡] is the partial derivative value of 𝑓(∙) with 
respect to 𝒙[𝑡]. 

Define a time-varying variable 𝑩[𝑡] as follows: 𝑩[𝑡] = 𝑓 (𝒚[𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡], 𝒙[𝑡 − ∆𝑡], 𝒙[𝑡 − ∆𝑡],⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡] ) −𝑓 (𝒚[𝑡 − ∆𝑡], ⋯ , 𝒚[𝑡 − 𝑛𝑦∆𝑡 − ∆𝑡], 𝒙[𝑡 − ∆𝑡],⋯ , 𝒙[𝑘 − 𝑛𝑥∆𝑡 − ∆𝑡] ) 

(A.5) 

Introducing Eq. (A.3) and Eq. (A.5) into Eq. (A.2), Eq. 

(A.6) can be obtained. ∆𝒚[𝑡 + ∆𝑡] = 𝜕𝑓(∙)𝜕𝒙[𝑡] ∆𝒙[𝑡] + 𝑩[𝑡]  (A.6) 

Introducing a variable 𝝕[𝑡], in each control instant 𝑡, the 

functional relationship between 𝑩[𝑡] and ∆𝒙[𝑡] yields: 𝑩[𝑡] = 𝝕[𝑡]∆𝒙[𝑡]  (A.7) 

When ∆𝒙[𝑡] ≠ 0, there is a unique solution of 𝝕[𝑡], such 

that Eq. (A.7) holds.  𝚽[𝑡] = 𝜕𝑓(∙)𝜕𝒙[𝑡] + 𝝕[𝑡]  (A.8) 

By defining 𝚽[𝑡] as Eq. (A.8), Eq. (A.2) can be obtained. 

Thus, theorem A1 is proved. 
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