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We investigate alternating sign matrices that are not permuta-
tion matrices, but have finite order in a general linear group. 
We classify all such examples of the form P +T , where P is a 
permutation matrix and T has four non-zero entries, forming a 
square with entries 1 and −1 in each row and column. We show 
that the multiplicative orders of these matrices do not always 
coincide with those of permutation matrices of the same size. 
We pose the problem of identifying finite subgroups of general 
linear groups that are generated by alternating sign matrices.
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1. Introduction

An alternating sign matrix (ASM) is a (0, 1, −1)-matrix with the property that the 
non-zero entries in each row and column alternate in sign, beginning and ending with 
+1. Alternating sign matrices were first investigated by Mills, Robbins, and Rumsey 
[1], in a context arising from the classical theory of determinants. Connections to fields 

* Corresponding author.
E-mail addresses: obrien.cian@outlook.com (C. O’Brien), rachel.quinlan@nuigalway.ie (R. Quinlan).
https://doi.org/10.1016/j.laa.2022.06.001
0024-3795/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.laa.2022.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2022.06.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:obrien.cian@outlook.com
mailto:rachel.quinlan@nuigalway.ie
https://doi.org/10.1016/j.laa.2022.06.001
http://creativecommons.org/licenses/by/4.0/


C. O’Brien, R. Quinlan / Linear Algebra and its Applications 651 (2022) 332–358 333
such as statistical mechanics [2] and enumerative combinatorics [3] were subsequently 
discovered, and ASMs continue to attract sustained interest from diverse viewpoints. We 
refer to Bressoud’s book [4], for a comprehensive account of the emergence of attention 
to ASMs and the mathematical developments that ensued.

A recurrent theme in the study of ASMs is their occurrence, in independent contexts, 
as natural generalisations of permutation matrices. This invites the question of whether 
and how familiar themes in the study of permutations can be applied or adapted to ASMs. 
For example, ASMs first emerged in the definition of the λ-determinant of a square 
matrix, which involves adapting the technique of Dodgson condensation by replacing 
the usual 2 × 2 determinant with a version involving a parameter λ. Alternating sign 
matrices play the role for the λ-determinant that permutations do for the special case 
of the classical determinant, which arises if the value of λ is set to 1. Lascoux and 
Schützenberger showed in [5] that the set of n × n ASMs is the unique minimal lattice 
extension of the set of n × n permutation matrices under the Bruhat partial order. An 
extension of the concept of Latin squares, which arise by replacing permutation matrices 
with ASMs, is investigated in [6] and [7].

Our focus in this article is on non-singular ASMs with the special property of having 
finite order as elements of the general linear group. This topic connects to the position 
of permutations among all ASMs, and also to some recent attention in the literature to 
the behaviour on ASMs of algebraic invariants such as the spectral radius, characteristic 
polynomial and Smith normal form [8–10].

In [9], Brualdi and Cooper study the maximum possible spectral radius of an ASM. 
They note that the minimum spectral radius of an ASM is more easily identified, since 
every ASM has common row sum 1 and hence has 1 as an eigenvalue; moreover the 
permutation matrices are examples of ASMs whose eigenvalues all have modulus 1. The 
following example is presented in [9], to show that the minimum possible spectral radius 
of 1 may also occur in the case of an ASM that includes negative entries.

Example 1.1. The matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0
1 0 −1 1 0
0 0 1 −1 1
0 0 0 1 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

is an ASM satisfying A6 = I5, the 5 × 5 identity matrix. Its characteristic polynomial is 
(x − 1)2(x + 1)(x2 − x + 1) and its minimum polynomial is (x − 1)(x + 1)(x2 − x + 1).

Within the set An of all n × n ASMs, the set Sn of permutation matrices is a multi-
plicative group of n! elements. In the following lemma, we observe that a set of ASMs 
that is a group under matrix multiplication must consist of permutation matrices.
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Lemma 1.2. Suppose that A and B are n × n ASMs that satisfy AB = In. Then A and 
B are permutation matrices.

Proof. The first row of A has a 1 as its only nonzero entry; suppose that this occurs in 
position j. Then a 1 in the (j, 1) position is the only nonzero entry of Column 1 of B. 
Every subsequent column of B is orthogonal to Row 1 of A, so Row j of B has only 
zeros after its first entry. Similarly, Rows 2, . . . , n of A are all orthogonal to Column 1 of 
B, so the only nonzero entry of Column j of A is the first. Deleting Row 1 and Column 
j from A, and deleting Column 1 and Row j from B, leaves a pair of matrices A′ and 
B′ in An−1 that satisfy A′B′ = In−1. The conclusion follows by induction on n. �

While Lemma 1.2 eliminates the possibility that An could contain multiplicative 
groups other than subgroups of Sn, Example 1.1 demonstrates the existence of finite 
multiplicative groups that are generated by (non-permutation) ASMs. The matrix A of 
this example generates a cyclic group of order 6 in GL(5, R), in which A itself is the only 
non-identity ASM. While this cyclic group of order 6 is isomorphic to a subgroup of the 
symmetric group S5, we note that it is not similar in GL(5, R) to a group of permutation 
matrices. Since every element of order 6 in S5 consists of a 2-cycle and a 3-cycle, disjoint 
from each other, every 5 ×5 permutation matrix of order 6 has characteristic polynomial 
(x2 − 1)(x3 − 1) = (x − 1)2(x + 1)(x2 + x + 1). Thus A is not similar to a permutation 
matrix.

One may pose the question of which finite subgroups of GL(n, R) are generated by 
invertible alternating sign matrices, and which such groups do not have isomorphic copies 
within Sn. In this article, we consider the case of finite cyclic subgroups and investigate 
elements of finite multiplicative order in a particular subset of An.

In order to describe the class of ASMs of interest, we introduce the notion of a T -
block, adapted from [11,12]. A T-block is a n × n matrix whose non-zero entries form a 
(not necessarily contiguous) copy of

±
(

1 −1
−1 1

)
.

We denote by T (i1, j1, i2, j2) the T -block with 1 in positions (i1, j1) and (i2, j2), and 
−1 in positions (i1, j2) and (i2, j1), where i1 �= i2 and j1 �= j2. We remark that this nota-
tional designation implies that T (i1, j1, i2, j2) = T (i2, j2, i1, j1). Whenever the situation 
is sufficiently specified, we will choose the version with i1 < i2. The following assertion 
is essentially Theorem 6.2 of [11].

Theorem 1.3. Every n × n ASM can be obtained from the identity matrix In through a 
sequence of additions of T -blocks, in such a way that an ASM is obtained at every step.

An extension of Theorem 1.3 to n × n × n alternating sign hypermatrices appears in 
[7].



C. O’Brien, R. Quinlan / Linear Algebra and its Applications 651 (2022) 332–358 335
In this article, we consider ASMs that differ from a permutation matrix by the addition 
of a single T -block, having the form P + T for a permutation matrix P and T -block 
T . We refer to any matrix of this form as a PT -matrix, and note that a PT -matrix 
may or may not be an ASM. While the class of PT -matrices includes all permutation 
matrices, our attention will be focused on non-permutation PT -matrices. The goal of this 
article is to identify all ASMs of finite multiplicative order that are PT -matrices, up to 
permutation similarity and transposition (where the matrices A and B are permutation 
similar if B = PTAP for a permutation matrix P ). We note that the properties of being 
a permutation matrix, a T -block, or a PT -matrix, are all preserved under conjugation 
by a permutation matrix. This is not generally true of an ASM however.

In Section 2, we recall some properties of rational matrices of finite multiplicative 
order. In Section 3, we introduce the directed graph of a PT -matrix and use graph-
theoretic considerations to identify candidates for finite multiplicative order. In Section 4, 
analysis of the minimum polynomials of matrices determined by these candidate graphs 
leads to a complete description of PT -matrices of finite order. In Section 5, we show that 
all but a few exceptions are permutation similar to alternating sign matrices.

2. Rational matrices of finite multiplicative order

In this section we recall some relevant properties of the characteristic and minimum 
polynomials of matrices of finite order in GL(n, Q). For information on the minimum 
polynomial of a matrix, the companion matrix of a polynomial, and related algebraic 
background, we refer to Chapter 3 of [13].

For a positive integer d, we write Φd(x) for the dth cyclotomic polynomial, the monic 
polynomial in Z[x] whose roots are the primitive roots of unity of order d in C. Then 
Φd(x) is irreducible in Q[x] and its degree is φ(d), where φ denotes the Euler totient 
function.

Suppose that A ∈ GL(n, Q) has multiplicative order t. Then At − In = 0, and so 
the minimum polynomial mA(x) of A divides xt − 1 in Q[x]. It follows that mA(x) is a 
product of distinct cyclotomic polynomials Φd(x), where d runs through a set of divisors 
of t whose least common multiple is t. On the other hand, any matrix whose minimum 
polynomial has this form does have finite order, equal to the least common multiple of 
the orders of its roots in C×.

The possible finite orders of elements of GL(n, Q) are integers of the form lcm(d1, . . . ,

dk), where the di are positive integers with

k∑
i=1

φ(di) = n.

For example, the possible finite orders of elements of GL(5, Q) are 1, 2, 3, 4, 5, 6, 8, 10, 12. 
The possible orders of n × n permutation matrices are those integers that occur as the 
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least common multiple of the parts in a partition of n. In the case n = 5, these are 
1, 2, 3, 4, 5 and 6.

For the PT -matrices of interest in this article, the characteristic polynomial is gener-
ally more easily computed than the minimum polynomial. Both have the same irreducible 
factors, but they may occur with higher multiplicity in the characteristic polynomial. We 
will identify PT -matrices with the property that their characteristic polynomial is a prod-
uct of cyclotomic factors. For every d � 2, the polynomial Φd(x) is palindromic, meaning 
that the sequence of its coefficients remains unchanged when reversed, or equivalently 
that Φd(x) = xφ(d)Φd( 1

x ). The polynomial Φ1(x) = x − 1 is skew-palindromic; revers-
ing the sequence of its coefficients negates each term. Every product of palindromic and 
skew-palindromic polynomials is itself palindromic or skew-palindromic, according as the 
number of skew-palindromic factors is even or odd. Thus we may restrict our attention 
to PT -matrices with palindromic or skew-palindromic characteristic polynomials.

We recall that a square matrix in GL(n, C) is diagonalizable in GL(n, C) if and only if 
its minimum polynomial has distinct roots. It follows that every rational square matrix of 
finite order is diagonalizable over C, since its minimum polynomial divides xt−1 for some 
t. Indeed a matrix whose characteristic polynomial is a product of cyclotomic polynomials 
has finite multiplicative order if and only if it is diagonalizable. This observation will be 
useful at times in Sections 3 and 4. In a case where the characteristic polynomial has no 
repeated irreducible factor, the characteristic and minimum polynomials coincide and 
the matrix is diagonalizable.

Given a monic polynomial p(x) = xn + an−1x
n−1 + · · · + a1x + a0, we define the 

companion matrix of p(x) to be the n × n matrix C that has 1 in the (i + 1, i)-position 
for 1 � i � n − 1, has the entries −a0, −a1, . . . , −an−1 in Column n and has zeros in 
all other positions. Then p(C) = 0n×n and p(x) is the minimum polynomial (and the 
characteristic polynomial) of C. For a positive integer k, we write Ck for the companion 
matrix of the polynomial xk − 1. We note that Ck is a permutation matrix, representing 
a cycle of length k.

3. Graphs and (0, 1, −1)-matrices

We associate a 2-arc-coloured directed graph ΓA to a n × n (0, 1, −1)-matrix A as 
follows. The vertex set of ΓA is {v1, . . . , vn} and the coloured arcs are as follows:

• (vi, vj) is a blue arc if Aij = 1;
• (vi, vj) is a red arc if Aij = −1;
• (vi, vj) is not an arc if Aij = 0.

The same interpretation of arcs and entries yields an association of a square (0, 1, −1)-
matrix to a given 2-arc-coloured digraph, upon the choice of an ordering of the vertices. 
Each graph corresponds to a permutation equivalence class of matrices.
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Fig. 1. Possible structures of ΓT . (For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.)

We refer to a 2-arc-coloured digraph that is associated to a PT -matrix by the above 
correspondence, as a PT -graph. Every PT -graph has at most two red arcs, since a 
PT -matrix has at most two negative entries. A PT -matrix with no negative entry is 
a permutation matrix, whose graph consists of disjoint directed cycles, with all arcs 
coloured blue. A PT -matrix with exactly one negative entry has the form P + T , where 
exactly one of the negative entries of the T -block T occurs in the same position as a 1 in 
the permutation matrix P . If this occurs in Row i, then Row i of P +T is a duplicate of 
another row, and hence P +T has zero determinant and cannot have finite multiplicative 
order. Since our interest is in PT -matrices that have finite order and are not permuta-
tions, we may confine our attention to PT -graphs that have exactly two red arcs. While 
is it possible for a PT -graph to have a double blue arc, such a graph corresponds to a 
PT -matrix with an entry equal to 2, which cannot be permutation similar to an ASM. 
Our concern is thus with PT -graphs having exactly two red arcs and no multiple arcs, 
corresponding to matrices of the form P + T , where the positions of non-zero entries 
in the permutation matrix P and the T -block T do not coincide. If Γ is such a graph, 
with n vertices, then its arcset is the disjoint union of a set of four arcs (two of each 
colour) corresponding to the entries of a T -block, and a set of n blue arcs corresponding 
to the entries of a permutation matrix. These two sets are uniquely determined by the 
two red arcs. We write ΓT for the subgraph of Γ consisting of the four arcs determined 
by entries of T and their incident vertices, and ΓP for the subgraph similarly determined 
by the arcs arising from P . The vertex set of ΓP is the same as that of Γ, and its n arcs 
comprise disjoint directed cycles. The arc set of ΓT is disjoint from that of ΓP , and ΓT

has one of the forms presented in Fig. 1.
The graph ΓT is weakly connected, meaning that its underlying undirected graph 

is connected. The weakly connected component of Γ that includes ΓT involves arcs 
from at most four cycles of ΓP , since each vertex of ΓT occurs in one cycle of ΓP . 
Since any additional weakly connected components of Γ are directed cycles, a (0, 1, −1)-
matrix corresponding to Γ has finite multiplicative order if and only if the submatrix 
corresponding to the weakly connected component that includes ΓT does. For this reason, 
for the remainder of this section we only consider weakly connected PT -graphs. We 
consider separately the cases where the vertices of ΓT are incident with one, two, three 
or four cycles of ΓP .
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The reverse of a digraph Γ is the graph obtained from Γ by reversing the directions of 
all arcs, while maintaining any arc colouring. The operation of reversing the arc directions 
in a two-arc-coloured digraph has the effect of transposing the corresponding (0, 1 − 1)-
matrix. Since the matrix property of having finite multiplicative order is preserved under 
transposition, this observation is useful in limiting the number of graph types requiring 
analysis.

Given any digraph Γ with arcs coloured red and blue, we say that a walk in Γ is 
negative if it includes an odd number of red arcs (counted with repetition), and positive
if it includes an even number of red arcs. For a positive integer k, we write w+

k (u, v)
and w−

k (u, v) respectively for the numbers of positive and negative walks of length k
(abbreviated to k-walks) from the vertex u to the vertex v in Γ. Let A be the (0, 1, −1)-
matrix determined by the ordering v1, . . . , vn of the vertices of Γ. It is routine to show 
that for a positive integer k, the entry in the (i, j)-position of Ak is

w+
k (vi, vj) − w−

k (vi, vj). (1)

Suppose that Ak = In, for a positive integer k. Then the numbers of positive and negative 
k-walks from u to v in Γ coincide, for any pair u and v of distinct vertices. For any vertex 
u, the number of positive k-walks from u to u exceeds the number of negative k-walks 
by 1. By applying these observations to directed graphs corresponding to PT -matrices, 
we will be able to reduce to four general classes of weakly connected PT -graphs, whose 
corresponding PT -matrices include all examples of finite multiplicative order that are 
not permutations, up to permutation equivalence and transposition.

3.1. Type 1: a single cycle

We refer to PT -graphs and matrices involving a permutation with a single cycle as 
being of type 1. The following schematic diagram represents a typical PT -graph of type 
1, with the black segments representing the arcs of a cycle of length n, corresponding to 
a permutation matrix P , and the four coloured arcs representing the entries of a T -block. 
There is no assumption that these four arcs are collectively incident with four distinct 
vertices, they may have any of the configurations in Fig. 1. Also shown is an example of 
a PT -matrix of type 1.

⎛
⎜⎜⎜⎜⎜⎝

0 1 −1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 −1 0

⎞
⎟⎟⎟⎟⎟⎠

Necessary and sufficient conditions for a PT -matrix of type 1 to have finite multi-
plicative order are established in Section 4.1.
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3.2. Type 2: a pair of cycles

The distinct PT -graph structures (up to arc reversal, or equivalently, matrix transpo-
sition), where the vertices of ΓT belong to exactly two cycles of ΓP , are depicted below. 
We refer to these graphs and their corresponding matrices as type 2(a), type 2(b), type 
2(c), and type 2(d), respectively. In the case of type 2(d), the relative positions of the 
three vertices of ΓT along the directed cycle C2 is not considered to be prescribed.

Type 2(a): Let M be a matrix corresponding to a graph of type 2(a). Every walk from 
a vertex of C1 to a vertex of C2 involves an odd number of red arcs, and is therefore a 
negative walk. Because there is a walk of length k from a vertex in C1 to a vertex in C2
for every k � 1, this means that there are negative entries in off-diagonal positions of 
Mk for every k � 1. Thus matrices of type 2(a) cannot have finite multiplicative order.

Type 2(b): Let Γ be a PT -graph of type 2(b), where m1 and m2 are the lengths of the 
cycles C1 and C2 respectively. We may order the vertices of Γ so that the corresponding 
matrix is

A = Cm1 ⊕ Cm2 + T1,m1+k2;m1+1,k1 ,

where ⊕ denotes the matrix direct sum. A routine calculation using row operations shows 
that the characteristic polynomial of the A given by

p(x) = xm1+m2 + xm1+m2−k1 + xm1+m2−k2 − xm1 − xm2 − xm1−k1 − xm2−k2 + 1

If A has finite order, then p(x) must be either palindromic or skew-palindromic.

• If p(x) is skew-palindromic, then the leading coefficient has opposite sign to the 
constant term. It follows that xm1−k1 = xm2−k2 = x0. So k1 = m1 and k2 = m2.

• If p(x) is palindromic, then (m1 + m2 − k1) + (m1 + m2 − k2) = m1 + m2, so 
k1 + k2 = m1 + m2. Because k1 � m1 and k2 � m2, it follows that k1 = m1 and 
k2 = m2 as above.
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The conditions k1 = m1 and k2 = m2 hold only if the negative entries of the T -block in 
A cancel positive entries of Cm1 ⊕Cm2 , which means that A = Cm1+m2 and in particular 
A is a permutation matrix. Thus every PT -matrix of type 2(b) that has finite order is a 
permutation matrix.

Type 2(c) and Type 2(d) are considered in Sections 4.2 and 4.3; non-permutation 
examples of finite order occur in these cases.

3.3. Type 3: three cycles

The distinct PT -graph structures (up to arc reversal) where the vertices of ΓT belong 
to three cycles in ΓP are depicted below. We refer to these cases as type 3(a), type 3(b), 
and type 3(c), respectively.

Type 3(a): In a PT -graph of type 3(a), every walk from a vertex in C1 to a vertex in C2

involves exactly one red arc, and is therefore a negative walk. Since there is a walk of 
length k from a vertex of C1 to a vertex of C2 for every k � 1, it follows that negative 
entires occur in all positive powers of PT -matrices of type 3(a). Hence no PT -matrix of 
this type has finite order.

Type 3(b): If the vertices of a PT -graph of type 3(b) are listed with those of the cycle C3

first, followed by those of C1 and then C2, the corresponding PT -matrix is block upper-
triangular with three square blocks on the diagonal. Subject to a suitable ordering of 
the vertices of C1, the second diagonal block is the companion matrix of a polynomial 
of the form xm + xk − 1, where k < m. Such a polynomial cannot be palindromic or 
skew-palindromic and hence cannot be a product of cyclotomic polynomials. Hence a 
PT -matrix of type 3(b) cannot have finite multiplicative order.

Matrices of type 3(c) are considered in Section 4.4.

3.4. Type 4: four cycles

The case where the vertices of ΓT belong to four different cycles of ΓP is depicted 
below.
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Every walk from a vertex of C1 in the above graph to a vertex of C3 involves only 
blue arcs and is therefore positive. Such walks occur of all positive lengths, and so every 
power of a PT -matrix of type 4 has positive off-diagonal entries. Hence no PT -matrix 
of type 4 has finite multiplicative order.

We summarise the conclusions of Section 3 below.

Theorem 3.1. Let Γ be a weakly connected PT -graph with two red arcs (u1, v1) and 
(u2, v2), and with no multiple blue arcs. Let ΓT be the subgraph of Γ with vertex set 
{u1, v1, u2, v2}, whose arc set includes the two red arcs and the blue arcs (u1, v2) and 
(u2, v1). Let ΓP be the subgraph of Γ on the full vertex set, whose arcs are exactly those 
that do not belong to ΓT . Then ΓP is composed of disjoint directed cycles. If the (0, 1, −1)-
matrices corresponding to Γ have finite multiplicative order, then either Γ or its reverse 
is of one of the following four types.

• Type 1: ΓP is a single directed cycle.
• Type 2(c): The graph ΓP consists of two disjoint directed cycles, with u1 and u2

belonging to one of these cycles and v1 and v2 to the other. The vertices u1, u2, v1, v2
are distinct.

• Type 2(d): The graph ΓP consists of two disjoint directed cycles, with u1 belonging 
to one of these cycles and u2, v1 and v2 to the other. The vertices v1 and u2 are 
distinct, but v2 may coincide with one of these.

• Type 3(c): The graph ΓP consists of three disjoint directed cycles. The vertices u1
and u2 belong to the same cycle of ΓP , and the other two cycles each includes one 
of v1 and v2. The vertices u1, u2, v1, v2 are distinct in this case.

4. Elementary PT -matrices of finite multiplicative order

We refer to a PT -matrix as elementary if its graph is weakly connected. Every PT -
matrix is permutation similar to the matrix direct sum of an elementary PT -matrix and 
a permutation matrix, so we focus on the elementary case.

In this section we analyse elementary PT -matrices of finite order, which correspond 
to graphs of one of the four types identified in Theorem 3.1. We establish a classifica-
tion, up to permutation similarity and transposition, of elementary PT -matrices of finite 
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multiplicative order. Examples of finite order exist in all four cases, but their orders can 
differ from those of permutation matrices of the same size only for Types 1 and 2(d). 
No generality is lost by restricting to PT -matrices with weakly connected graphs, since 
the addition of a new connected component to a graph is equivalent to extending the 
corresponding matrix via a direct sum. Central to our analysis is the fact that the char-
acteristic polynomials of PT -matrices have a particularly amenable form in the cases 
of interest. This enables us to identify all PT -matrices whose characteristic polynomial 
is a product of cyclotomic polynomials. As we noted in Section 2, such a matrix has 
finite multiplicative order if and only if it is diagonalizable. Lemma 4.1 below is the 
main technical tool that we employ to determine necessary and sufficient conditions for 
diagonalisability of PT -matrices of the four types.

Lemma 4.1. Let A be a block upper triangular matrix in Mn(Q), with diagonalizable 
square p × p and q × q blocks P and Q in the upper left and lower right respectively, 
where p + q = n. Let g(x) be the greatest common divisor of the minimum polynomials 
of P and Q respectively, and let N be the upper right p × q block of g(A). Then A is 
diagonalizable if and only if Nv belongs to the columnspace of g(P ), for every vector v
in the right nullspace of g(Q).

Proof. We write mP (x), mQ(x) and mA(x) respectively for the minimum polynomials 
of P, Q and A. Since P and Q are diagonalizable, neither mP (x) nor mQ(x) has any re-
peated irreducible factors. We define the polynomials p(x) and q(x) by mP (x) = p(x)g(x)
and mQ(x) = q(x)g(x). We note that gcd(p(x), q(x)) = 1. Since A is diagonalizable if 
and only if its minimum polynomial has distinct roots, and since the irreducible factors 
of mA(x) are exactly those of mP (x) and mQ(x), it follows that A is diagonalizable if 
and only if mA(x) = p(x)q(x)g(x).

We now consider under what conditions the matrix product A′ = p(A)q(A)g(A) is 
equal to zero. Since P and Q are diagonalizable, Cp and Cq have bases consisting of 
eigenvectors of P and Q respectively. Thus Cn has a basis {u1, . . . , up, v1, . . . , vq} where 
each ui is an eigenvector of P with q zeros appended, and each vi is an eigenvector of Q
with p zeros prepended. Then A′ui = 0 for 1 � i � p, since p(A)ui = 0.

The last q entries of each the vectors v1, . . . , vq comprise an eigenvector of Q whose 
corresponding eigenvalue is a root either of q(x) or g(x). If vi corresponds to a root of 
q(x), then q(A)vi has zeros in its last q positions and A′vi = mP (A)q(A)vi = 0.

Now let v be a vector in {v1, . . . , vq} that corresponds to an eigenvalue of Q that is a 
root of g(x). Then

A′v = q(A)p(A)g(A) = q(A)p(A)
(

Nv

0q×1

)
=

(
q(P )p(P )Nv

0q×1

)
.

Since no root of q(x) is an eigenvalue of P , the matrix q(P ) is nonsingular, and A′v = 0 if 
and only if p(P )Nv = 0; that is if and only if the vector Nv belongs to the right nullspace 
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of p(P ). Since the minimum polynomial of P is p(x)g(x) and P is diagonalizable, the 
right nullspace of p(P ) is equal to the columnspace of g(P ). We conclude that A is 
diagonalizable if and only if Nv belongs to the columnspace of g(P ) for every vector v
in the right nullspace of g(Q). �

The condition of Lemma 4.1 is equivalent to the assertion that the zero eigenvalue 
of g(A) has full geometric multiplicity, but our analysis will employ the formulation in 
the lemma. This depends on the feasibility of calculating the entries of g(A) and the 
right nullspace of g(Q). In most cases of interest, Q is the companion matrix Cq of the 
polynomial xq − 1, whose entries are 1 in the first subdiagonal and upper right position, 
and 0 elsewhere. Typically, P is the companion matrix of a polynomial with few non-zero 
coefficients. The upper-right p × q block M of A is a sparse matrix of rank 1, with at 
most four non-zero entries spread over at most two columns. The polynomial g(x) has 
the form xg ± 1 for some integer g, so N is the upper right block of Ag. This is given 
by

P g−1M + P g−2MQ + P g−3MQ2 + · · · + MQg−1.

The effect of right multplication by Cq on an entry of M is to shift it one step left, or into 
Column q if it is in Column 1. The effect of left multiplication by a companion matrix 
P is to shift the entry one step downward, unless it is in Row q, in which case the final 
column of P enters. In most cases of interest, an entry a in position (i, j) of M leads to 
g appearances of a in Ag, in a diagonal pattern of positions starting at (i, j− g + 1) and 
proceeding downwards and to the right.

We proceed to consider each of the four possible graph types listed in Theorem 3.1, 
where the above remarks will apply. For a positive integer t, we write [t]2 for the high-
est power of 2 that divides t. We note the following properties of common divisors of 
polynomials of the form xt ± 1.

Lemma 4.2. Let s and t be positive integers. Then

• gcd(xs − 1, xt − 1) = xgcd(s,t) − 1.

• gcd(xs + 1, xt + 1) =
{

xgcd(s,t) + 1 if [s]2 = [t]2
1 if [s]2 �= [t]2

• gcd(xs − 1, xt + 1) =
{

xgcd(s,t) + 1 if [s]2 > [t]2
1 if [s]2 � [t]2

4.1. PT -matrices of Type 1: a single n-cycle

We may order the vertices of a PT -graph of Type 1 so that its corresponding PT -
matrix has the form Cn+T (1, j1, d +1, j2), where d � n . We write A for Cn+T (1, j1, d +
2
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1, j2) and observe (using cofactor expansion on the first row), that the characteristic 
polynomial p(x) of A has the following simple form, with at most six non-zero terms. 
For an integer t, we write [t] for the remainder on dividing t by n.

Theorem 4.3. For d � n
2 , the characteristic polynomial of A = Cn + T (1, j1, d + 1, j2) is

p(x) = xn − xn−j1 + x[n−j1+d] + xn−j2 − x[n−j2+d] − 1.

We wish to determine when p(x) is a product of cyclotomic polynomials. We begin by 
considering its constant term, which may differ from −1 only if either j1 or j2 is equal to 
either n or d. The only such case in which the constant term is 1 or −1 is when j1 = d

and j2 = n. In this case A is a permutation matrix, corresponding to a pair of cycles of 
lengths d and n − d.

We assume now that neither j1 nor j2 is equal to n or d. Since its constant term is −1, 
the polynomial p(x) of Theorem 4.3 can be a product of cyclotomic polynomials only if 
it is skew-palindromic. This occurs in the following two cases.

Case 1 n − j1 + n − j2 = n and [n − j1 + d] + [n − j2 + d] = n.
From the first equation, j1 + j2 = n, so the second equation reduces to [j2 + d] =
[j1 + d] = n, which means that j1 + j2 + 2d is a multiple of n. Since j1 + j2 = n

and d � n
2 , this can be satisfied only if 2d = n. We note that |j1 − j2|, which is 

the distance between the columns occupied by entries of T , is even in this situa-
tion.
In this case, Γ(A) consists of a directed cycle of length n = 2d, which we write 
as

v1 → vn → vn−1 → · · · → v2 → v1,

with additional blue and red arcs from v1 and vn
2 +1 to vj1 and vj2 , corresponding to 

the entries of T , where j1 �= j2 and j1 − j2 is even. It remains to identify the values 
of j1 and j2 for which A has finite order.

Case 2 n − j1 + [n − j1 + d] = n and n − j2 + [n − j2 + d] = n.
This occurs only if {n + d − 2j1, n + d − 2j2} = {0, n}. This means that d and n are 
both even and {j1, j2} = {d

2 , 
n+d

2 }. In particular, |j1 − j2| = n
2 .

In this situation we may label the vertices so that the graph Γ(A) consists of a 
directed n-cycle on blue arcs as in Case 1 above, with four additional arcs corre-
sponding to the entries of T , directed from v1 and vd+1 to some vj and vj+n

2
, where 

d is even.

Reversing all arcs in a graph arising in Case 2 results in a graph of the type described 
in Case 1. It follows that every PT -matrix arising in Case 2 above is permutation sim-
ilar to the transpose of one that arises in Case 1. For this reason, we consider Case 1 
only.
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We now write j for the minimum of j1 and j2, and write n = 2d.

• If j1 < j2, then j = j1, A = Cn + T (1, j, d + 1, n − j), and

p(x) = xn − xn−j − xd+j + xd−j + xj − 1 = (xj − 1)(xd−j − 1)(xd − 1).

• If j1 > j2, then j = j2, A = C + T (1, n − j, d + 1, j), and

p(x) = xn + xn−j + xd+j − xd−j − xj − 1 = (xj + 1)(xd−j + 1)(xd − 1).

In any case where p(x) is a product of distinct cyclotomic factors, we can conclude 
that the matrix has finite multiplicative order. In the case where p(x) is a product of 
cyclotomic factors with repetition, we need to consider the relationship between p(x) and 
the minimum polynomial m(x) of A. To this end we consider the minimal A-invariant 
subspace of Cn that contains the vector v1, which has 1 in position 1, −1 in posi-
tion d + 1, and zeros elsewhere. This vector spans the 1-dimensional column space of 
T .

For i = 1, . . . , d, we write vi for the vector in Cn that has 1 in position i, −1 in position 
d + i and zeros elsewhere. We write V for the span of the vi which clearly has dimension 

d and consists of all vectors in Cn of the form 

(
v

−v

)
, where v ∈ Cd. It is evident that 

V is A-invariant, since it is Cn-invariant, and Tx ∈ 〈v1〉 ⊆ V for all x ∈ Cn. Moreover, 
Ci

nv1 = vi+1, for i = 1, . . . , d − 1, and Cd
nv1 = −v1. We note that Av1 = v2 +αv1, where 

α ∈ {−1, 0, 1}. Applying A repeatedly, it follows for i � d −1 that Aiv1 = vi+1+w, where 
w is a linear combination of v1, . . . , vi. In particular, B1 = {v1, Av1, A2v1, . . . , Ad−1v1}
is a linearly independent set and a basis of V . It follows that the restriction to V of 
the linear transformation determined by A is non-derogatory; its minimum polynomial 
has degree d. We extend B1 to a basis B of Cn by appending the standard basis vectors 
ed+1, . . . , en. Rewriting with respect to the basis B, we find that A is similar to the 
matrix A′ with the following block upper triangular form.

• The lower right d × d block of A′ is Cd, the companion matrix of xd − 1. That 
Aei ∈ ei+1 + V is clear for i = d + 1, . . . , n − 1, and Aen = e1 = v1 + ed+1, since the 
last column of A is just e1.

• The upper right d × d block of A′ has only zero entries outside its first row. In the 
first row, the entry in the (1, n − j) position of A′ is 1 or −1 (according as A1,n−j

is positive or negative), and the entry in the (1, n)-position is 1. All other entries in 
this region are zeros.

• The lower left d × d block of A′ is 0d×d.
• The upper left d × d block of A′ is the companion matrix of the minimum poly-

nomial of the restriction to V of the linear transformation determined by A. 
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This is p(x)
xd−1 , which is (xj − 1)(xd−j − 1) if A1j = 1, or (xj + 1)(xd−j + 1) if 

A1j = −1.

Since (xj − 1)(xd−j − 1) has 1 as a repeated root, the upper left block of A′ can have 
finite order only if A1j = −1. In this situation, the block has finite order if and only if 
the polynomials xj + 1 and xd−j + 1 are relatively prime, which occurs if and only if 
[j]2 �= [d − j]2, as noted in Lemma 4.2. We assume that this condition holds, so that the 
upper left block of A′ has finite order.

Since [j]2 �= [d − j]2, it follows that [d]2 = min([j]2, [d − j]2) and hence that xd − 1
is relatively prime to both xj + 1 and xd−j + 1. Thus A = C2d + T (1, 2d − j, d + 1, j)
has finite multiplicative order in any case where j < d and [j]2 �= [d − j]2. Since the 
minimum polynomial of A in this situation is (xj + 1)(xd−j + 1)(xd − 1), the order is 
lcm(2j, 2d − 2j, d).

For PT -graphs and PT -matrices of Type 1, we have the following conclusions. The 
PT -graph Γ is defined here as in Theorem 3.1. For vertices u and v of Γ, dP (u, v) denotes 
the length of the path from u to v along the cycle ΓP .

Theorem 4.4. Let Γ be a PT -graph of type 1 of order n, with red arcs (u1, v1) and (u2, v2). 
Then the (0, 1, −1)-matrix corresponding to Γ (with respect to a vertex ordering) has finite 
multiplicative order if and only if n = 2d is even, the 2-parts of the integers dP (v1, u1) +1
and dP (u2, v1) −1 are different, dP (v1, u1) +dP (v2, u2) = d −2, and either dP (u1, u2) = d

or dP (v1, v2) = d.

The two versions of the final condition in the statement of Theorem 4.4 correspond 
to the cases where Γ itself, or its reverse, is described by a matrix having the form in 
the above discussion.

Theorem 4.5. A n × n PT -matrix A of Type 1 has finite multiplicative order if and only 
if n is even and either A or its transpose is permutation similar to a matrix of the form

Cn + T (1, n− j, d + 1, j),

where n = 2d, j < d and [j]2 �= [d − j]2. In this case the multiplicative order of A is 
lcm(2j, 2d − 2j, d).

It is possible for a n ×n PT -matrix of Type 1 to have a multiplicative order that does 
not occur as the order of a permutation matrix in Sn. For example if n = 10, choosing 
j = 1 or j = 2 gives PT -matrices (shown below) whose respective multiplicative orders 
are lcm(2, 8, 5) = 40 and lcm(4, 6, 5) = 60. Neither 40 nor 60 occurs as the order of an 
element in the symmetric group S10, since neither occurs as the least common multiple 
of the integers in a partition of 10.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C10 + T (1, 9, 6, 1), order 40

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 −1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C10 + T (1, 8, 6, 2), order 60

It will be shown in Section 5 that the PT -matrices arising in Theorem 4.5 are all per-
mutation similar to alternating sign matrices.

4.2. Type 2(c): two cycles connected by four arcs of T

In a PT -graph of Type 2(c) in Theorem 3.1, the permutation component consists of 
a pair of cycles of lengths p and q respectively, where p + q = n and each of p and q is 
at least 2. The T -component contributes four additional arcs, a pair of red arcs directed 
from distinct vertices x1 and x2 of the p-cycle to distinct vertices y1 and y2 respectively 
of the q-cycle, and a pair of blue arcs from x1 to y2 and from x2 to y1. We assume that 
y1 and y2 are labelled so that the directed path along the q-cycle from y2 to y1 is no 
longer that the one from y1 to y2.

We order the vertices of Γ as follows. We begin with the vertices of the p-cycle, 
starting with x1 and proceeding against the direction of the arcs in C. We continue with 
the vertices of the q-cycle, proceeding against the direction of the arcs of the cycle, to 
end with y2.

With respect to this ordering, the n × n matrix A of Γ has the following description, 
where ⊕ denotes the matrix direct sum.

A = (Cp ⊕ Cq) + T (1, n, h + 1, n− l),

where h is the length of the path from x2 to x1 in the p-cycle, and l is the length of the 
path from y2 to y1 in the q-cycle. We derive conditions on h, l, p and q, for A to have 
finite order. Since A is block upper triangular with Cp and Cq as its diagonal blocks, it 
has finite order if and only if its minimum polynomial is lcm(xp − 1, xq − 1), and in this 
case its order is lcm(p, q). If this occurs, then neither p nor q can be a divisor of the other, 
since inspection of walks of length max(p, q) from vertices of C to vertices of C ′ shows 
that Amax(p,q) has non-zero entries in its upper right p × q region. For example, there 
is at least one positive q-walk from u to the in-neighbour of v′ in C ′, and no negative 
one. There is at least one positive p-walk from the out-neighbour of v in C to u′, and 
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no negative one. Thus it is not possible that A has order p or q, and we may confine our 
attention to cases where neither p nor q divides the other.

We write g for gcd(p, q) and note that g � q
2 , and so n − l � p + g, since l � q

2 . We 
apply Lemma 4.1 with g(x) = gcd(xp − 1, xq − 1) = xg − 1. Then

g(A) = Ag − In = (g(Cp) ⊕ g(Cq)) +
g∑

i=1
T (i, [h + i], n− g + i, n− l − g + i), (2)

where [h + i] = h + i −p if h + i exceeds p, and is otherwise equal to h + i. In place of the 
1 in the upper right position of A, Ag (or Ag − In) has a strip of g entries equal to 1, in 
a diagonal arrangement from position (1, n − g + 1) to position (g, n). A similar pattern 
occurs for each of the three other non-zero entries in the upper right p × q block of A.

We write N for the upper right block of g(A). By Lemma 4.1, we need to consider 
whether Nv belongs to the column space U of g(Cp), for every vector v satisfying 
g(Cq)v = 0. The column space of Cg

p − Ip consists of all vectors u ∈ Cp for which 
the sum of the pg entries ui, ui+g, . . . , ui+( p

g−1)g is zero, for i = 1, . . . g − 1.
A basis for the right nullspace of g(Cq) is given by {w1, . . . , wg}, where wi has entries 

equal to 1 in the qg positions with indices congruent to i modulo g, and zeros elsewhere.
According to (2), the non-zero columns of N occur in two (possibly overlapping) 

contiguous bands, from Column q − g + 1 to Column n, and from Column q − l − g + 1
to Column q − l of N . The nonzero entries of N occur as follows, where 1 � i � g.

• Column q − l − g + i of N has −1 in position i and 1 in position [h + i].
• Column q − g + i has 1 in position i and −1 in position [h + i].

It follows that Nvi is either equal to Column q − g + i of N (if i � g − l) or to the sum 
of Columns q − g + i and q − l − g + l + i of N , where l + i is the reminder on dividing 
l + i by g. This sum is zero if g|l, otherwise it is the vector with 1 in positions i and 
[l + i + h], −1 in positions l + i and [i + h], and zeros elsewhere. This vector belongs to 
the columnspace of g(P ) only if g|h. It now follows from Lemma 4.1 that A has finite 
multiplicative order if and only if g divides either l or h, giving the following conclusions 
for PT -graphs and PT -matrices of type 2(c), as described in Theorem 3.1.

Theorem 4.6. Let Γ be a PT -graph of type 2(c), in which the two cycles have lengths p
and q, the vertices u1 and u2 belong to the p-cycle, and the vertices v1 and v2 belong to 
the q-cycle. Then a (0, 1, −1)-matrix corresponding to Γ has finite multiplicative order if 
and only if at least one of dP (u1, u2) and dP (v1, v2) is a multiple of gcd(p, q).

Theorem 4.7. Let A be a PT -matrix of type 2(c). Then A has finite multiplicative order 
if and only if A or its transpose is permutation similar to the matrix Cp⊕Cq+T (1, n, h +
1, n − l), where 1 � h < p, 1 � l < q, and gcd(p, q) divides at least one of h and l. When 
this occurs, the order of A is lcm(p, q).



C. O’Brien, R. Quinlan / Linear Algebra and its Applications 651 (2022) 332–358 349
Every matrix arising in Theorem 4.7 is similar to a permutation matrix. Those that 
are permutation similar to alternating sign matrices will be identified in Section 5.

4.3. Type 2(d): two cycles connected by two arcs of T

We now consider PT -matrices corresponding to graphs of Type 2(d), in the clas-
sification given in Theorem 3.1. The matrix of Example 1.1 is of this type, with the 
underlying permutation involving a 4-cycle and a fixed point. Let Γ be a PT -graph of 
order n = p + q, consisting of disjoint directed cycles of lengths p and q, whose arcs are 
coloured blue, and the following four additional arcs involving vertices x1, x2, y1 of the 
p-cycle (with x1 �= x2) and a vertex y2 of the q-cycle: (x1, y1) and (x2, y2), both coloured 
red, and blue arcs (x1, y2) and (x2, y1).

We order the vertices of Γ as follows. Vertices of the p-cycle are listed first, ordered 
against the direction of the arcs of the cycle, and ending with y1. Vertices of the q-cycle 
follow, again against the direction of the arcs, and with y2 appearing last.

With respect to this ordering, the matrix A of Γ has the form

A = (Cp ⊕ Cq) + T (i1, n, i2, p),

where i1 and i2 are the (distinct) respective positions of x1 and x2 in the vertex ordering. 
We write P for the upper left p × p block of A and note that P is the companion matrix 
of the polynomial

p(x) = xp + xi1−1 − xi2−1 − 1.

Since A is block upper triangular with P as its upper-left block, A may have finite 
multiplicative order only if P does. The polynomial p(x) cannot be palindromic, since its 
leading and constant coefficients cannot coincide. It is skew-palindromic only if i1 + i2 =
p + 2. We assume that this holds and rewrite i2 as i. Then

p(x) = (xp−i+1 − 1)(xi−1 + 1),

and, by Lemma 4.2, P has finite order if and only if [i − 1]2 � [p − i + 1]2. We assume 
that this condition holds, and hence that the order of P is the least common multiple of 
p − i + 1 and 2(i − 1). We proceed to consider when A has finite order.

First we consider the case where [q]2 > [i − 1]2. We write d and g respectively for 
gcd( q2 , i − 1) and gcd(q, p − i + 1). Then the greatest common divisor of the minimum 
polynomials of P and Cq is m(x) = (xd + 1)(xg − 1).

By Lemma 4.1, a necessary and sufficient condition for A to be diagonalizable, or 
equivalently to have finite multiplicative order, is that the zero eigenvalue has full geo-
metric multiplicity in the matrix (Ad + In)(Ag − In). Since the polynomials xd + 1 and 
xg − 1 are relatively prime, this condition holds if and only if it holds separately for 
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Ad + In and Ag − In. We consider Ad + In first. The right nullspace of Cd
q + Iq has di-

mension d and is spanned by the vectors u1, . . . , ud, where for i = 1, . . . , d, ui has entries 
alternating between 1 and −1 in positions i, i + d, i + 2d to q− d + i, starting with 1 in 
position i. The columnspace of P d+Ip has dimension p −d, and is spanned by the vectors 
w1, . . . , wp−d in Cp, where wi has 1 in positions i and i + d, and zeros elsewhere. This 
space consists of all vectors in Cp with the property that for i = 1, . . . , d, the alternating 
sum of the sequence of entries in positions congruent to i modulo d is zero.

The non-zero entries of the matrix Nd are confined to the last d columns. Since ui

has −1 in position q − d + i and its last d entries are otherwise zero, the vectors Ndui

are respective scalar multiples of the last d columns of Nd. Thus Ad + In satisfies the 
condition of Lemma 4.1 if and only if the columnspace of Nd is contained in that of 
P d + Ip. Column q − d + 1 of Nd is equal to column q of the upper right block of the 
original A. It has two non zero entries; −1 and 1 in positions i and p + 2 − i. This 
vector v belongs to the columnspace of P d + I if and only if d divides p + 2 − 2i and 
(p + 2 − 2i)/d is even. This condition is equivalent to the statement that d|p and p/d is 
even, since d divides i − 1. Every column of Nd is a linear combination of vectors with 
two non-zero entries of opposite sign, whose positions are separated either by |p +2 −2i|
or by 2i −2. Thus the condition that p/d is an even integer, which is necessary to ensure 
that v belongs to the columnspace of P d+Ip, is also sufficient to ensure that Ndu belongs 
to this space, for every u in the right nullspace of Qd + I.

We now consider the corresponding question for the matrix Ag − In. The analysis 
and conclusion here closely mirror those of Section 4.2. The column space of P g − Ip has 
dimension p and consists of all vectors in Cp with the property that for each i ∈ {1, . . . , g}
the sum of all entries in positions congruent to i modulo g is zero. If Ng is the upper 
right p ×q block of Ag−In, then every column of Ng occurs as the product Ngu for some 
u with (Qg − Iq)u = 0. As above, Column q− g + 1 of Ng has only two non-zero entries, 
of opposite sign and separated by a vertical distance of |p + 2 − 2i|. This vector belongs 
to the column space of P g − Ip only if g divides p +2 − 2i, and as above this condition is 
sufficient to ensure that the column space of Ng is contained in that of P g − Ip. Since g
is a divisor of p − i +1, the condition g|p −2i +2 is equivalent to g|i −1 and hence to g|p.

Theorem 4.8. The PT -matrix A = (Cp ⊕Cq) + T (i1, n, i2, p), where i1, i2 � p, has finite 
multiplicative order if and only if the following conditions are satisfied.

• i1 + i2 = p + 2, and [i2 − 1]2 � [p − i2 + 1]2;
• g|p, where g = gcd(q, p − i2 + 1);
• [q]2 � [i2−1]2, or [q]2 > [i2−1]2 and p/d is an even integer, where d = gcd( q2 , i2−1).

If the conditions in Theorem 4.8 hold, then the order of A is

lcm(p− i2 + 1, 2i2 − 2, q).
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If [q]2 � [i2 − 1]2, this is equal to lcm(p − i2 + 1, i2 − 1, q), which is the order of a 
permutation of degree p + q. In general however, the order of A need not coincide with 
that of a permutation. For example, we may set p = i2 = 2k + 1, and q = 1, for any 
positive integer k. We obtain a (2k +2) × (2k +2) matrix of order lcm(1, 2k+1, 1) = 2k+1. 
An n × n permutation matrix of order 2k+1 exists only if n � 2k+1.

The 10 × 10 example with k = 3 and order 16 is below, along with an ASM to which 
it is permutation similar.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 −1 1
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 −1
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 −1 1 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.4. Type 3(c): three cycles

The remaining case concerns PT -matrices corresponding to graphs of type 3(c) in 
Corollary 3.1. The analysis for this resembles that of type 2(c), although it is simpler. 
A graph of Type 3(c) has three cycles of lengths p, q and m. Additionally, it has a pair 
of blue arcs directed from distinct vertices x1 and x2 of the first cycle, respectively to 
vertices y and z of the second and third cycles, and a pair of red arcs from x1 to z and 
x2 to y. With respect to a suitable ordering of the vertices, the corresponding matrix is

A = (Cp ⊕ Cq ⊕ Cm) + T (1, p + q, i, p + q + m),

where 1 < i � p. Applying Lemma 4.1 as in previous cases, we find that the upper left 
(p + q) × (p + q) block Ap+q of A has finite multiplicative order if and only if gcd(p, q)
divides i − 1. We assume that this holds, and note that Ap+q is then similar to Cp ⊕Cq, 
via a change of basis that does not affect the first p basis elements. It follows that A
itself is similar to the matrix A′ = (Cp ⊕ Cq ⊕ Cm) − E1,p+q+m + Ei,p+q+m, where Ei,j

has 1 in the (i, j)-position and zeros elsewhere. Now A′ has finite order if and only if the 
(p +m) × (p +m) matrix (Cp ⊕Cm) −E1,p+m +Ei,p+m does, and applying Lemma 4.1
confirms that this occurs if and only if gcd(p, m) divides i − 1.

Theorem 4.9. Let p, q, m be positive integers, with p � 2, and let i be an integer with 
1 < i � p. The matrix

A = (Cp ⊕ Cq ⊕ Cm) + T (1, p + q, i, p + q + m),
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which represents a PT -graph of Type 3(c), has finite multiplicative order if and only if 
gcd(p, q) and gcd(p, m) both divide i − 1. In this case the order of A is lcm(p, q, m) and 
A is similar to the permutation matrix Cp ⊕ Cq ⊕ Cm.

5. ASM-permutability

It remains to determine which of the PT -matrices of finite multiplicative order are 
permutation similar to alternating sign matrices, or ASM-permutable. We consider this 
question separately for the four types, using the following strategy in all cases. In 
Section 4, we identified a standard form for a PT -matrix of each of the four types, 
selected with ease of calculation of characteristic and minimum polynomials in mind. 
This amounts to a choice of ordering of the vertices of the corresponding digraph, which 
we now label as 1, 2, . . . n. We need to determine whether the same n vertices can be 
rearranged to an ASM-ordering, which means that the corresponding (0, 1, −1)-matrix 
is an ASM. An ASM-ordering must satisfy four constraints, one arising from each of the 
four rows and columns in which the matrix has three non-zero entries, which are the rows 
and columns occupied by entries of the T -block. Each of the four constraints stipulates 
that a particular vertex, labelling the position of the −1 in the relevant row or column, 
must occur between two other vertices, which label the positive entries in the same row 
or column. The consistency of the four constraints needs to be checked.

5.1. Type 1

By Theorem 4.5, every PT -matrix of finite order of Type 1 (or its transpose) is 
permutation similar to a matrix of the form

A = Cn + T (1, n− j, d + 1, j),

where n = 2d is even, 1 � j < d and [j]2 �= [d − j]2, which implies that d � 3. We write 
Γ for the graph determined by the above matrix A, and write 1, 2, . . . , n, for the vertices 
of Γ, in the order determined by A. An ordering of the vertices of Γ is an ASM-ordering 
if and only if it satisfies the following conditions, determined respectively by Rows 1 and 
d + 1 of A, and by Columns j and n − j.

1. j occurs between n − j and n;
2. n − j occurs between j and d;
3. 1 occurs between d + 1 and j + 1;
4. d + 1 occurs between 1 and n − j + 1.

The vertices j, d, n − j and n that appear in the first two conditions are distinct. The 
first two conditions imply that in any ASM-ordering, these four occur either in the order 
d, n −j, j, n or n, j, n −j, d. Since the reverse of an ASM-ordering is an ASM-ordering, we 
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may concentrate on the former case, and consider whether the remaining n − 4 vertices 
can be inserted so that the conditions arising from Columns j and n − j also hold.

The vertices 1, j + 1, d + 1 and n − j + 1 are distinct, and can be ordered so that 
conditions 3 and 4 are satisfied. If all eight vertices that appear in the above conditions 
are distinct, then the two sets of four can be ordered independently, and the arrangement 
can be completed to an ASM-ordering of the full vertex set.

We note the only possible coincidences between the four-vertex sets {d, n − j, j, n}
and {1, j + 1, d + 1, n − j + 1}, as follows.

1 = j, n− j + 1 = n, d + 1 = n− j, j + 1 = d.

The first two possibilities above are equivalent, and so are the second two. All four cannot 
be satisfied simultaneously, since j cannot be simultaneously equal to 1 and d − 1, as 
d � 3. The positions of 1 and n − j + 1, or of d +1 and j + 1, may be constrained by the 
appearance of d, n − j, j, n in that order in a candidate ASM-ordering. In the first case, 
d + 1 and j + 1 may be inserted freely and independently, in order to satisfy conditions 
3 and 4. In the second case, the same applies to 1 and n − j + 1, hence the following 
statement.

Theorem 5.1. Every PT -matrix of finite multiplicative order of Type 1 is permutation 
similar to an alternating sign matrix.

5.2. Type 2(c)

By Theorem 4.7, a PT -matrix of Type 2(c) of finite order (or its transpose) is per-
mutation similar to

A = Cp ⊕ Cq + T (1, n, h + 1, n− l), (3)

where 1 � h < p, 1 � l < q, and gcd(p, q) divides at least one of h and l. We write 
1, . . . , n for the vertices of the graph Γ determined by A, ordered according to the rows 
and columns of A. From Rows 1 and h + 1 and Columns n − l and n of A, we observe 
that an ordering of the vertices 1, . . . , n is an ASM-ordering if and only if it satisfies the 
following four conditions.

1. n − l occurs between p and n;
2. n occurs between n − l and h;
3. 1 occurs between h + 1 and n − l + 1;
4. h + 1 occurs between 1 and p + 1.

The four vertices that appear in the first two conditions are distinct, and so are the four 
that appear in conditions 3 and 4. If an ASM-ordering exists, then one exists in which 
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the vertices p, n − l, n, h occur in that order. We consider when conditions 3 and 4 are 
compatible with this constraint.

Potential intersections of the four-vertex sets {n −l, p, n, h} and {1, h +1, n −l+1, h +1}
are limited to the following possibilities:

1 = h, h + 1 = p, n− l + 1 = n, p + 1 = n− l.

If at most two of the above equalities hold, it is possible to insert the remaining vertices 
from {1, h, n − l + 1, p + 1} to ensure that conditions 3 and 4 are satisfied. If any 3 of 
them hold however, conditions 3 and 4 are incompatible and cannot be simultaneously 
satisfied. This occurs in the following two cases.

Case 1: h = 1 and h + 1 = p, and l is either equal to 1 or q − 1. In this case p = 2, and 
the two vertices in the q-cycle that have indegree 3 are consecutive in the q-cycle.

Case 2: Alternatively, l = 1 and l = q − 1, and h is either equal to 1 or p − 1. In this 
case q = 2 and the two vertices of the p-cycle that have outdegree 3 are consecutive 
in the p-cycle.

We conclude as follows.

Theorem 5.2. Let Γ be a PT -graph of type 2(c) as defined in Theorem 3.1. Then there is 
an ordering of the vertices of Γ whose corresponding (0, 1, −1)-matrix is an ASM, unless 
one of the cycles in ΓP has length 2, and the two vertices of ΓT in the other cycle are 
consecutive in that cycle.

Theorem 5.3. If the matrix A of (3) has finite order, then it is permutation similar to 
an ASM, except in the following two cases

• p = 2, q is odd, q � 3 and l ∈ {1, q − 1};
• q = 2, p is odd, p � 3 and h ∈ {1, p − 1}.

The stipulation that q or p is odd in the two cases of Theorem 5.3 arise from the finite 
order conditions in Theorem 4.7, and not from considerations of ASM-permutability.

5.3. Type 2(d)

By Theorem 4.8, a PT -matrix of finite order of Type 2(d) (or its transpose) is per-
mutation similar to

A = Cp ⊕ Cq + T (i1, n, i2, p), (4)

where n = p + q, i1 �= i2, i1 � p, i2 � p and i1 + i2 = p + 2, with some additional 
conditions that do not enter our analysis here. The condition i1 + i2 = p +2 ensures that 
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i1 � 2 and i2 � 2. A vertex ordering of the corresponding graph is an ASM-ordering if 
and only if it satisfies the following conditions, arising respectively from Rows i1 and i2
and from Columns p and n.

1. p occurs between i1 − 1 and n;
2. n occurs between i2 − 1 and p;
3. i1 occurs between 1 and i2;
4. i2 occurs between 1 and p + 1.

The four indices occurring in the first two conditions are distinct, and if an ASM-ordering 
exists, then one exists in which the entries i1 − 1, p, n, i2 − 1 occur in that order. 
Possible repetitions among the eight vertices that appear in the four conditions above 
are as follows.

i1 = p or i1 = i2 − 1, 1 = i1 − 1 or 1 = i2 − 1, i2 = p or i2 = i1 − 1, p + 1 = n. (5)

In each of the first three points above, the two possibilities are mutually exclusive. As in 
previous cases, if up to two elements of {i1, 1, i2, p + 1} belong to {i1 − 1, p, n, i2 − 1}, 
an ASM-ordering of all n vertices may be completed.

First we suppose that i1 and i2 are not consecutive, so that i1 �= i2−1 and i2 �= i1−1. 
In this case {i1, 1, i2, p + 1} and {i1 − 1, p, n, i2 − 1} can intersect in at most three 
elements, and this occurs if and only if {i1, i2} = {2, p} and p + 1 = n, so q = 1. If 
(i1, i2) = (2, p), then 1, i2, p + 1 appear in that order and i1 can be inserted between 
1 and i2, so that all four requirements are satisfied. If (i1, i2) = (p, 2), then i2, p + 1, 1
occur in that order, and i1 cannot be inserted so that the third and fourth conditions 
are simultaneously satisfied.

Suppose now that i1 and i2 are consecutive, and suppose first that i1 = i2 − 1. Then 
if at least three of the four equalities of (5) are satisfied, either 1 = i1−1 or i2 = p. Since 
i1 + i2 = p + 2, each of these conditions implies that p = 3. If either of them is satisfied 
then both are, and in this situation condition 3 is not satisfied; i1 does not occur between 
1 and i2.

On the other hand if i2 = i1 − 1 and three or more of the conditions of (5) hold, 
then i1 = p = 3 and i2, i1, 1 occur in that order, so that the third ordering condition is 
satisfied. The fourth can be satisfied by a suitable choice of position for p + 1, provided 
that p + 1 �= n in which case the fourth condition cannot be satisfied. No ASM-ordering 
exists in the case (i1, i2, q) = (3, 2, 1).

Our conclusion for PT -matrices of type 2(d) is as follows.

Theorem 5.4. The PT -matrix A of (4) is permutation similar to an ASM, except where 
q = 1, i2 = 2 and i1 = p.
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5.4. Type 3(c)

A n × n PT -matrix of Type 3(c) is permutation similar to

A = (Cp ⊕ Cq ⊕ Cm) + T (1, p + q, i, p + q + m), (6)

where p, q and m are positive integers with p � 2 and p + q +m = n, and 1 < i � p. An 
ordering of the vertices 1, . . . , n of the graph Γ determined by A is an ASM-ordering if 
and only if it satisfies the following conditions.

1. n occurs between p and p + q;
2. p + q occurs between i − 1 and n;
3. i occurs between 1 and p + 1;
4. 1 occurs between i and p + q + 1.

From the first two conditions we deduce that if an ASM-ordering exists, then one exists 
in which the vertices p, n, p + q and i − 1 occur in that order. The possible repetitions 
among the eight vertices that appear above are

i = p, 1 = i− 1, p + 1 = p + q, p + q + 1 = n.

If any three of the above equalities hold, then conditions 3. and 4. cannot be simultane-
ously satisfied by the insertion of the remaining element, hence the following conclusion 
on ASM-permutability for PT -matrices and graphs of type 3(c).

Theorem 5.5. The matrix A of (6) is permutation similar to an ASM, except in the 
following three cases:

• p = i = 2, and 1 ∈ {q, m};
• i = p and q = m = 1;
• i = 2 and q = m = 1.

6. Conclusion

The results of this article identify all PT -matrices of finite order, whose associated 
graphs are weakly connected, or equivalently have the property that every cycle of the 
permutation component includes a vertex that is incident with an arc corresponding to 
an entry of the T -block. Such examples can be augmented by the addition of permutation 
matrices as new diagonal blocks. We have observed that n ×n elementary PT -matrices of 
types 1 and 2(d) may have finite multiplicative orders that do not occur in the symmetric 
group of degree n.
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It is not true that every alternating sign matrix of finite multiplicative order is permu-
tation equivalent to a matrix direct sum of permutations and elementary PT -matrices, 
as the following example shows.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 −1 0 1 0 0
0 1 −1 0 0 1
0 0 1 −1 1 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

This matrix A has multiplicative order 12 and its minimum polynomial is

Φ2(x)Φ12(x) = (x− 1)(x4 − x2 + 1).

It is clear that A is not a PT -matrix since it has three negative entries; however it may 
be obtained from a permutation matrix by the addition of two T -blocks.

While there exist 6 × 6 elementary PT -matrices of order 12, the analysis in Section 2
confirms that none of their characteristic polynomials has Φ12(x) as a factor. Thus A is 
not similar to a PT -matrix. Since the symmetric group of degree 6 has no element of 
order 12, A is not similar to a permutation matrix either.

It would be of interest to know the maximum possible number of negative entries in 
a n × n ASM of finite multiplicative order. The maximum possible number of negative 
entries in an ASM of specified size occurs in the diamond ASMs, which never have finite 
order, since their spectral radii exceed 1, as shown in [9].

By Lemma 1.2, a finite cyclic group generated by a non-permutation ASM A must 
contain elements that are not ASMs. It would be of interest to investigate the number of 
ASMs that can occur in such a group. The following 8 × 8 example A generates a cyclic 
group of order 24, in which A2 is also a (non-permutation) ASM. This example has type 
2(d) in our classification.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 1
0 0 1 0 0 −1 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 −1 1 0 0
0 0 0 0 1 0 −1 1
0 0 1 0 0 −1 1 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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