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ABSTRACT

Homogeneous fine-grained patterns of urban form represent identifiable areas in cities 

and allow their classification. Urban morphology uses the concepts of “morphological 

period,” “urban tissue,” or “character areas” to link fine-grained homogeneity of form 

to historical origins and the social and economic characters associated with them. 

However, identifying such fine-grained spatial patterns is a labor-intensive, specialist 

operation, thus limiting replicability and scalability. Therefore, comprehensive urban 

form classification has rarely been conducted at a very large scale, hindering our 

understanding of how form contributes to social, economic, and environmental urban 

dynamics. 

With expanding capacity in geo-computation, urban analytics, and Earth Observation 

(EO) technology, new numerical approaches to the large-scale and detailed description 

of urban form have recently emerged. However, limitations due to availability, quality, 

and consistency of data still apply. We present an integrated approach to extra-large-

scale urban form analysis that combines a novel Urban MorphoMetrics (UMM) method 

for the generation of rich and unsupervised urban form taxonomies with advanced EO 

feature-extraction techniques. 

UMM utilizes extremely parsimonious input information to generate a comprehensive 

set of urban form characters for three morphometric elements (buildings, streets, and 

plots), over six categories (dimension, shape, spatial distribution, intensity, 

connectivity, and diversity) and three scales (small, medium, and large). All characters 

are measured at the building level and clustered into distinct homogeneous urban 

types, thus creating a comprehensive taxonomy of urban form. UMM is applicable 

across cases, allowing individual type profiling and cross-case comparison. We 

illustrate UMM outputs across a range of case studies covering formal and informal 

urban areas in sharply different geographical and cultural contexts worldwide. The 

results demonstrate an encouraging ability to map urban form in cities in ways that 

relate to historical origins, land uses, and other validating geographies.

The method also shows a pathway to address varying degrees of availability, quality, 

and consistency of input data, which is commonly poor, for example, in informal 

settlements. Explorations of ways to resolve this issue include integrating UMM with 

EO. The latter offers a way to generate globally consistent input data from freely 
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accessible repositories, hence ensuring full control of quality and consistency. Thus, we 

show that our first efforts to combine UMM and EO data into an integrated UMM+EO 

process are suitable for use at a global scale.

Introduction

Origins, nature, and context of Urban MorphoMetrics

Urban MorphoMetrics (UMM) is a method of urban morphology analysis aimed at 

extracting the inner spatial patterns that distinctively characterize urban places in a 

numerical form. The method is specifically designed to bring together richness of 

description with extra-large-scale coverage for the generation of a systematic 

hierarchical taxonomy of urban form. This is achieved via advanced geo-data 

processing techniques paired with an analytical architecture that is purposefully 

designed for scalability.

Early ideas at the root of UMM were proposed by one of the authors of this paper in 

the years 2005–2006 to students of the Polytechnic of Milan. The aim was to teach 

urban designers how to identify fundamental spatial patterns that have proved 

adaptable over time from existing urban structures. It also aims to allow them to use 

the same information in their design proposals for new areas of urban expansion or 

regeneration projects. Those early attempts were based on students’ labor-intensive 

surveys at the scale of the urban block, rooted in both the Conzenian and Muratorian 

traditions of urban morphology (Cataldi, Maffei, and Vaccaro 2002; Whitehand 2007). 

The term “urban morphometrics” appeared about five years later (Carneiro et al. 2010; 

Porta 2011) after the re-establishment of the leading research team at the University 

of Strathclyde in Glasgow. Since the very beginning, pivotal elements have been 1) 

connecting analysis and design; 2) comprehensive, numerical description; and 3) an 

evolutionary approach to urban change.

A first attempt at developing a truly systematic and scalable turn to this approach 

started in 2013 and made an early appearance in 2015–16 (Dibble et al. 2016), with a 

more mature one three years later (Dibble et al. 2019). In the meantime, further 

developments had started (Fleischmann 2019; Fleischmann et al. 2020, 2021b; 

Fleischmann, Romice, and Porta 2021a), leading to a comprehensive prototype. As 

recently acknowledged in the twenty-eighth International Seminar of Urban Form 

conference, a wide and diverse area of urban morphometric studies is now rapidly 

emerging, including the UMM method presented in this paper.
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Urban MorphoMetrics (UMM)

The UMM methodology illustrated in this work was developed in Venerandi et al. 

(2021) and derived from Fleischmann et al. (2021b). In this section, we present its 

main features and refer the reader to these two works for more detailed explanations. 

UMM is based on combining 300+ spatial characters of urban form in six main 

categories: dimension, shape, distribution, intensity, connectivity, and diversity. The 

rationale behind the selection of characters is comprehensiveness: aiming at the 

largest possible set of characters proposed in literature and technically viable in this 

specific research framework. This is preferred to selecting a limited number according 

to predetermined theories or criteria. All characters are generated from only two input 

data layers: buildings (with heights) and the street network. The computation of the 

characters is unsupervised and replicable for the purposes of scalability and rigor. The 

spatial unit of analysis is the morphological cell, a geometric derivative of the Voronoi 

tessellation generated from the building footprint (Fleischmann et al. 2020), a proxy of 

the plot or cadastral parcel.

UMM generates 74 primary characters and 296 (74x4) contextual characters. The 

former describe streets, cells, and buildings, as well as their relationships at three 

different scales: S (the element itself), M (the element and immediate neighboring 

elements), and L (the element and neighboring elements within k-th order of 

contiguity) (Fleischmann et al. 2021b). Examples of primary characters are the 

meshedness of the street network, the coverage area ratio, and the building 

elongation. We refer the reader to Table 1 in the Appendix for the full list. To account 

for the context around each morphological element, four contextual characters are 

derived from each primary character: the interquartile mean, the interquartile range, 

the interdecile Theil index, and Simpson’s index. The first is the average computed on 

the values between the first and third quartile of the distribution. The second is the 

range in values of the same values. The third is a measure of local inequality. The 

fourth is an index of the values’ heterogeneity (2021b).

The taxonomy is then generated by applying agglomerative hierarchical clustering 

(AHC) (Rokach, Lior, and Oded 2005) to the contextual characters. AHC is a 

hierarchical method of cluster analysis, which constructs a tree (dendrogram) of 

clusters, here named “urban types” (UTs), starting from single morphological cells up 

to a main branch. A connectivity constraint is used to avoid inhomogeneous 

classification of individual outliers in areas overwhelmingly characterized by one UT. 

The optimal number of UTs is identified using a silhouette diagram, a heuristic method 
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for the interpretation and validation of consistency in cluster analysis (Rousseeuw 

1987). Postprocessing workflows of consecutive rounds of clustering and silhouette 

can be implemented on the values pertaining to specific UTs to better differentiate 

subpatterns using local knowledge. A final dendrogram, fundamental for assessing 

levels of similarity between UTs, is built by recomputing the tree starting from the 

cluster centroids of each UT. The same technique of dendrogram merging can be 

utilized to compare UTs across multiple cities, hence achieving a systematic and 

rigorous account of morphological similarities and uniqueness of urban fabrics across 

a potentially unlimited geographical extent. An example of cross-case dendrogram 

merging can be found in (2021b).

In the following sections, we first illustrate the individual application of UMM to two 

European case studies, Amsterdam (NL) and Bologna (IT), with optimal data. Second, 

we illustrate how it can be applied to Kochi (IN), where there is limited data 

availability. Third, we show the potential of EO to support UMM in regions with no 

data availability, by applying an integrated EO+UMM approach to a sample area in 

Nairobi (KE), which is characterized by an urban divide between formal and informal 

areas as well as a range of types of informal settlements. Fourth, we provide a 

discussion on the potential and limitations of UMM and the integrated EO and UMM 

workflow.

Applications of UMM 

In this section, we present the outcomes of the application of UMM onto Amsterdam, 

Bologna, Kochi, and a sample area in Nairobi. These four case studies belong to very 

distinct geographical/cultural contexts, they grew by following different design 

paradigms, and they currently have different levels of data availability. To help orient 

the reader, Table 1 presents a summary of their main features.

Case study General info 

(country, metro 

population)

Data used Interest

Amsterdam The Netherlands, 

2,480,394

Buildings with heights, 

street network (official 

data sets)

Medieval origin, mixing 

different planning 

styles
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Amsterdam (NL)

Amsterdam was originally a fishing village, dating roughly to the twelfth century. In 

the seventeenth century, it became one of the most influential port cities in the world 

due to its excellence in finance and trade. In this same period, an extensive reshaping 

of the city took place through the construction of four concentric half-circles of canals, 

deemed necessary for defense, water management, and transport purposes. In the 

nineteenth and twentieth centuries, several new expansion plans were proposed and 

developed, in particular, the Plan Zuid and West, designed by H. P. Berlage in the 

nineteenth-century tradition, and modernist expansions located in the western, 

southeastern, and northern fringes. These latter developments purposely depart from 

any historical reference, featuring large stand-alone housing complexes surrounded by 

extensive open areas. Amsterdam’s layered morpho-historical complexity makes the 

city an interesting case study for the application of UMM.

AHC was recursively applied to the full set of 296 contextual characters previously 

computed in Fleischmann et al. (2021b): out of 30 possible UTs, 14 were optimal, 

combining the best silhouette score with the highest level of detail. In Figure 1, we 

present the numerical taxonomy of Amsterdam, where building/cell colors uniquely 

identify the UTs. Notably, similarity of color hues expresses similarity of detected 

patterns of urban form, as in the accompanying dendrogram (Figure 2).

Bologna Italy,

1,017,196

Buildings with heights, 

street network (official 

data sets)

Pre-Roman origin, 

mixing wide range of 

planning styles

Kochi India,

2,119,724

Buildings (manually 

extracted)

Generalized informal 

urban development

Nairobi (sample area) Kenya,

10,400,676

Buildings 

(automatically 

extracted)

Relatively recent 

foundation, presence of 

informal settlements

Table 1. Case studies, general information, data availability and particular points of interest for the application of 

UMM.
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Figure 1

Morphometric taxonomy of Amsterdam (14 UTs): building/cells’ colors identify UTs. 

Similarity of colors reflect similarity of form patterns. Source: Authors' own 

elaboration based on data from Dukai, Balázs. 2018. “3D Registration of Buildings 

and Addresses (BAG) / 3D Basisregistratie Adressen en Gebouwen (BAG).” 

4TU.ResearchData. Available at: https://data.4tu.nl/collections/_/5065523/1 

(accessed 3 November 2021).
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The most noticeable aspect of the taxonomy of Amsterdam is the stark split between 

modernist/industrial urban fabrics, at the extremes of the dendrogram (UT3, UT12, 

UT1, UT5, UT9 in Figure 2), and the most historical ones, in the middle of it (UT13, 

UT10, UT0, UT7). By inspecting the values of the cluster centroids of the contextual 

characters diverging the most from the average across UTs, we observe that the 

former group is mainly characterized by remarkably coarse and incoherent patterns, 

large morphological elements up to 6.5 standard deviations more than the average for 

Amsterdam, isolated, compact, bulky buildings, low local street network connectivity, 

and diversity of cell areas and building–cell alignments. Bullewijk, located southeast of 

the main center, classified UT12, is an example of this type of urban fabric. As for the 

latter group (UT13, UT10, UT0, UT7), the taxonomy distinctively captures different 

stages of Amsterdam’s historical development. UT13, for example, corresponds to the 

innermost historical core (up to 1850) characterized by an organic, compact, diverse 

and dense urban fabric, large range of height-to-width ratios, high and large range of 

built-up densities, high local street network connectivity, high coverage ratios, and low 

building footprint complexity, with elongated shapes and oblique corners with different 

Figure 2

Dendrogram of the 14 UTs of Amsterdam: similarity between UTs is expressed by 

both the y-value of their point of conjunction (the lower the value, the higher the 

similarity) and the similarity of their color. Source: Authors’ elaboration.
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degrees. UT0 partly corresponds to the 1851–1950 city development and, while it 

shares some of the features of UT13, such as high and large range of built-up 

densities, high coverage ratios, and more elongated buildings, it also shows 

differences that are typical of late-nineteenth-century urban planning, such as large 

proportions of four-way intersections and higher local accessibility. Amsterdam is an 

example of a data-rich city for which UMM shows a good capacity to capture the 

inherent correspondence between historicity and morphological similarity embedded 

in the city’s built form.

Bologna (IT) 

Bologna has two features that make it particularly interesting for UMM. The first is the 

presence of two markedly different urban forms: 1) the ancient historical core, which 

dates to the Etruscan and Roman settlements of the sixth and seventh and centuries 

B.C., is encircled by a ring road that follows the path of the former medieval city wall 

erected in the eighth century and demolished in the early twentieth century A.D., and 

features a mix of midrise medieval and renaissance buildings, small courtyards and 

squares, and narrow roads flanked by public arcades and 2) a large suburban 

expansion completely surrounding the historical core, most of which was built in 

successive waves starting in the early twentieth century. This vast area can be roughly 

subdivided into two subparts: 1) the inner suburb, built in the first half of the 1900s, 

characterized by a regular, gridded pattern and street-facing buildings of gradually 

declining densities, and 2) the outer periphery, featuring specialist districts (i.e., 

commercial, industrial or large transportation hubs) as well as isolated large-scale 

social housing estates comprehensively planned and built between the mid-1950s and 

the 1960s, with high-rise buildings and large traffic roads.

The second feature is its geomorphology. Due to its location between the Po Valley and 

the Apennines, Bologna’s topography changes considerably, from the northern part 

built on a largely flat piece of land that belongs to the high Po river valley to the 

southern part on the steep lower slopes of the Apennines, where urbanization was 

strongly constrained by the local orohydrography.

Data on building footprints and the street network were downloaded for free from the 

official Geo-Portal of the Emilia Romagna Region.1 We computed the 296 contextual 

characters from this data and recursively applied AHC on them to determine the 

optimal number for solutions of up to 20 UTs. After checking the silhouette score and 

the level of detail, we identified 11 as the optimal number of UTs. Both the spatial 
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distribution of the UTs (Figure 3) and the dendrogram (Figure 4) appear to accurately 

capture the main phases of the morphological history of this ancient city.

Figure 3

Numerical taxonomy of Bologna (11 UTs): building/cell colors identify UTs. 

Similarity of colors reflect similarity of form patterns. Source: Authors’ own 

elaboration based on data from Database Topografico Regionale (Regional 

Topographic Database) of Regione Emilia-Romagna (Emilia-Romagna Region) 

(2021).
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For example, the subbranch of the dendrogram formed by UT7 and UT8 corresponds 

to the ancient city core and expresses the concentric nature of its development. More 

specifically, UT8 closely follows the boundaries of the inner fortification wall, the 

eleventh-century Cerchia del Torresotti, which is now largely demolished. This 

innermost ring features the densest and most ancient urban core originally established 

in Roman and Etruscan times (Figure 5, top left). In turn, UT7 overlaps with the 

thirteenth-century circular wall (this, too, now demolished) and matches the later 

medieval expansion of the city: this is a compact but more porous urban fabric 

characterized by private and public gardens and small courtyards (Figure 5). Notably, 

the northwest part of this “rounder” historical core is correctly classified distinctly 

from UT7 and U8 and, in fact, belongs to UT11. This nicely captures the massive 

historical alteration of the original medieval pattern implemented after the wider XIX 

century post-national unification rehabilitation plan (Figure 5, top right). Furthermore, 

the same area was heavily bombed during World War II and almost entirely 

redeveloped in the postwar years. Therefore, its urban form is more similar—though 

Figure 4

Dendrogram of the 11 UTs of Bologna: similarity between UTs is expressed by both 

the y-value of their point of conjunction (the lower the value, the higher the 

similarity) and the similarity of their color. Source: Authors’ elaboration.
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not entirely identical—to that of the first suburban ring developed in the same years 

(e.g., UT9 and UT10).

UT2 and UT6 also validate the taxonomy. Both are found in peripheral portions of the 

city and were mostly developed in the second half of the twentieth century. In 

particular (Figure 5, bottom), UT2 captures most of Bologna’s specialist hubs, such as 

large warehouse complexes (e.g., Bologna International Exhibition Area), airports, 

military zones, large commercial and productive areas (e.g., Lame Commercial District 

and Bargellino Industrial District), regional tertiary hubs (e.g., CNR Bologna Research 

Area), and metropolitan hospitals (e.g., Maggiore Hospital). Analogously, UT6 captures 

most large-scale social housing estates planned and built according to modernist 

principles typical of the 1950s and 1960s (Figure 5), such as Villaggio INA Borgo 

Panigale, Villaggio INA Due Madonne, Barca, Pilastro, Beverara, and Corticella. 

Interestingly, though remarkably different in terms of function, these two UTs appear 

to share important similarities in terms of urban form, such as peripheral location, 

large building footprints, proximity to first-tier road infrastructure, campus-like layout, 

and extensive (rather than intensive) use of land. Remarkably, however, the taxonomy 

nicely captures that the two UTs both differ from the more consolidated parts of the 

city, originating after WWII.

Finally, UT4, UT1, and UT2 all capture a different type of progressively low-density 

peripheral development, one characterized by small building footprint and, particularly 

in the case of UT1 and UT4, a more organic pattern that follows the sloping landscape 

of the Bologna hills.
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The case of Bologna shows that, in urban areas for which quality building and street 

network data layers are available, UMM is capable of generating a taxonomy rich 

Figure 5

Top left: evolution of Bologna’s city walls up medieval times. Top right: first 

planned expansion of Bologna (1889) outside the XII Century walls (right). Source: 

website Regione Emilia Romagna. Bottom: planned urban residential and 

industrial interventions in the periphery of Bologna 1950–1970. Source: Baldeschi, 

Paolo, and Luciano Anceschi. 1970. Paesaggio e struttura urbana: aspetti della 

realtà urbana bolognese. Bologna, IT: Renana.
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enough to capture the subtleties of an urban region’s history and functionality that are 

reflected in the distinctive characters of urban form and that, in this case, were 

validated against expert, locally produced historic-functional evidence.

What happens when we work in contexts where the quality of the input data is 

suboptimal? Even when working solely with two widely available data layers, such as 

buildings and street networks, data consistency and reliability may drop remarkably 

when the scale of coverage goes beyond the national scale. This is particularly the case 

when analyzing areas in the Global South in urban contexts characterized by 

informality, poverty, or unusual environmental conditions. This remains a largely 

unresolved issue for scientific research, one that prevents implementation of the 

analysis of urban morphology at extra-large scale unless at enormous cost and/or 

through a radical reduction of information and/or sampling (Angel et al. 2016; 

Brelsford et al. 2018; Bettencourt 2020). This problem can be tackled in two ways: 1) 

by developing the capacity to generate satisfactory results from largely suboptimal 

input data and 2) by integrating into the workflow the generation of the input data 

itself, which necessarily involves EO technologies.

These two options are explored in the following section in the city of Kochi, IN, and in 

the city of Nairobi, KE.

Kochi (IN) 

Kochi started as a port city and a key node in the spice and silk trade route. Today, it is 

a cluster of islands connected to mainland Ernakulam (Liveable Urbanism 2021). The 

Mattancherry area, where the spice trade originated, has grown informally and 

organically, with small compact residential buildings and warehouses along the 

waterfront. To its west is Fort Kochi, more regular, with European influences dating 

from 1498 onward. Both are culturally and architecturally rich, dotted with historic 

warehouses, palaces, and civic buildings. The post-independence period (1947 onward) 

saw the development of dense markets and the expansion of residential neighborhoods 

inland, in the Ernakulam area. Here, the houses have larger footprints and the urban 

fabric is less compact, a result of a 1968 Kerala Building Regulation (Government of 

Kerala 2021) and planned low-income housing. Economic liberalization in the 1990s 

and large-scale infrastructure development saw the expansion of Kochi further inland 

and to neighboring islands and villages with commercial and retail developments of 

high-rises with large footprints on large blocks and the infill of all areas in between as 

well as ecologically sensitive floodplains around most of the waterfront, which explains 

the location of fisheries, warehouses, and large undeveloped land.
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UMM was applied in Kochi on a largely suboptimal data provision. With no official 

geographic information available, we explored a database manually created by 

students of the Masters in Urban Design at the University of Cardiff, UK, between 

October 2020 and January 2021, including building footprints and the street network. 

However, we discarded the latter due to inconsistencies in data coverage across the 

case study area. A common problem in cities in the Global South is that they are 

dominated by informal urban development, and the street network is very complex. 

Data repositories (e.g., OpenStreetMap) have very patchy street network data, and in 

general, the definition of what constitutes a street in the context of an informal area is 

anything but straightforward (e.g., whether to include internal footpaths or unassigned 

spaces between buildings). The taxonomy was ultimately generated solely from the 

building footprint information (Venerandi et al. 2021). Thus, rather than the entire set 

of 74 primary characters, only 26 were computed (those quantifying dimensions and 

spatial relations between buildings and cells), resulting in 104 contextual characters. 

We applied AHC recursively to the latter and identified 24 UTs as optimal.

The resulting taxonomy (Figure 6) proved to be surprisingly significant and still 

capable of reaching an appreciable degree of accuracy in reflecting morphological 

periods in the development of the city as embedded in patterns of current urban form. 

Further explorations conducted in contexts characterized by other kinds of suboptimal 

data confirmed that, despite the extreme complexity of the factors at play informing 

the evolution of urban form in time, buildings and streets alone, or even a very partial 

representation of them, seem sufficient to approximate, to some appreciable degree, 

the essential patterns of places’ distinct identities.
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Venerandi et al. (2021) explored one further advantage of the UMM method (i.e., the 

extraction of morphometric profiles for specific UTs: (UT7, UT18 and UT1, subsequent 

generation of form-based design codes, and potential spinoffs in the area of generative 

design.

Design Codes (DCs, 2004) are a traditional feature of urban design practice (Hakim 

2014) that have known a surge of interest as part of the place-making agenda in the 

last three decades (Form Based Codes Institute 2004; Parolek, Parolek, and Crawford 

2008) and are currently the core of a major reformation of the planning system in the 

Figure 6

Numerical taxonomy of Kochi (24 UTs), extract centered on the historical 

Ernakulam market (UT22, red): building/cells’ colors identify UTs. Similarity of 

colors reflect similarity of form patterns. Source: Authors' own elaboration based 

on data collected from the architecture students at Cardiff University (UK), 

between October 2020 and January 2021.
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United Kingdom, the National Model Design Code initiative (Ministry of Housing 

2021). Along these lines, UMM opens the way to basing DCs on large-scale evidence 

extracted from existing UTs in a numerical form. The case of Kochi adds a further 

dimension of interest to this, since DCs have never been applied in a city developed 

largely in an informal manner. This section summarizes the rationale of extracting DCs 

from UMM and using them to generate design proposals in one sample area within 

UT22, roughly corresponding to the area of the historical Ernakulam market.

While the 24 UTs of Kochi are identified from 26 primary characters, after a review of 

a range of DC sources and applications, including the UK government’s NMDC, we 

narrowed down the characters to only six: 1) plot size, 2) coverage ratio, 3) building 

footprint area, 4) building elongation, 5) alignment to surrounding buildings, and 6) 

distance between buildings (see Table 2 in the Appendix). The selected characters are 

easy to communicate to designers and stakeholders and, despite the significant 

reduction of complexity, provide enough indications to inform a preliminary skeleton of 

figure-grounds.

Starting from the morphometric profile of UT22, we tested the ability of the six 

characters to inform the (re)generation of a sample area within this UT. As part of the 

UNICITI “Third Way of Building Asian Cities” 2021 initiative,2 we engaged a group of 

professional architects and urban designers to act as final users of the UMM outputs. 

The designers were instructed to repopulate a sample area in UT22 with newly 

generated building footprints as if it were completely undeveloped, guided by the 

intervals of the six selected primary characters included in the morphometric profile 

(Table 2 in the Appendix). The outputs of such design experiments (Figure 7) seem 

aligned with the pre-existing “urban character” of UT22, while not being replicas.

In short, the ambition of UMM is to capture numerically the essential spatial structure 

that brings consistent identity and characters to endless local variations. With this 

abstract exercise—not to be confused with an actual master plan—we wanted to check 

to what degree figure-grounds generated by different designers could replicate a pre-

existing “urban character” without ever replicating identically its visible form and, 

importantly, without ever ending up with identical proposals.

Our experiment suggests that UMM-informed DCs—even in the limited version applied 

in Kochi—have the potential to bring both unity and diversity to the design of places. 

They have the capacity to inform the generation of a range of design proposals similar 

in character to the original UT but also somehow different from it as well as from each 

other in their final layout. This allows professional/user interpretation, adaptation, 
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accommodation of specific requirements or regulations, and all the complexities of an 

actual professional process of master planning to unfold, without losing the unique 

intangible character of a place.

Since morphometric profiles are provided in ranges of values for each primary 

descriptor, the potential variations of design outputs are countless, allowing for 

calibration, personal and collective creativity, adjustment, and co-creation of 

alternative and appropriate solutions.

The integrated EO perspective and the case of Nairobi (KE)

The two European cases show that UMM can provide accurate quantitative 

descriptions of urban form in data-rich regions. As we have just seen, UMM also has 

the potential to be used in urban environments with limited data availability (e.g., 

Figure 7

Design proposals for a portion of UT22, corresponding to the area of the historical 

Ernakulam Market in Kochi. The black dashed line identifies the sample area. 

Source: Authors' own elaboration based on data collected from the architecture 

students at Cardiff University (UK), between October 2020 and January 2021.
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Kochi) but requires, at least, a consistent building layer. However, in many regions of 

the world, even building footprint data is not available or, if it is available, it may not 

cover informal settlements. In this section, we delve deeper into the limitations of 

current EO techniques for extracting building footprints from satellite imagery, our 

proposal to tackle such limitations, and its application to the city of Nairobi (KE).

Limitations of current EO techniques

A major obstacle to deriving generalized knowledge of cities through the application of 

UMM at large scale is the limited availability of consistent building footprint geometry. 

Although several studies have shown the feasibility of mapping buildings through EO 

(Liu et al. 2019; Schuegraf and Bittner 2019), they tend to focus on parts of cities 

rather than entire metropolitan areas, thus having limited scientific validity in terms of 

reproducibility and generalizability. Google’s recently published Open Buildings data 

set,3 despite its continental coverage, largely relies on costly high resolution Maxar 

satellite imagery4 (i.e., commercial images costing $10,000–20,000 for a large city), 

which renders its reproducibility extremely expensive (Sirko et al. 2021).

Looking at existing workflows of building mapping, limited reproducibility and 

generalizability are magnified by issues of model and data unavailability and 

inconsistency. Many models claim to provide good performance (e.g., the Maxar 

building footprints); however, they are either insufficiently described or not openly 

accessible, leading to replicability and accessibility issues. Other models have only 

been tested with data sets not accessible to the public (e.g., the Microsoft Building 

Footprints),5 also limiting reproducibility.

Although convolutional neural networks (CNNs), state-of-the-art artificial intelligence 

(AI) algorithms, are capable of extracting buildings from imagery by automatically 

learning a set of representative image features, these learned features vary across 

cities, or even between places within the same city, due to distinctively different 

physical patterns of buildings. For instance, a CNN trained with images of formally 

built areas may be unable to capture building patterns in informally built areas, and a 

CNN trained with images of specific informal areas is not necessarily able to capture 

all informal areas, even within the same city (Wang et al. 2019). Thus, experiments 

validated only on small study areas with desirable but costly imagery data can hardly 

be generalized to produce consistent building information at large scale.
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The proposed EO workflow

To tackle the above limitations, we aim to overcome consistency and availability issues 

for both data and models. There are many types of free EO based imagery data sets 

available worldwide (e.g., via the Copernicus Program of ESA); however, requiring 

consistency with the UMM method narrows the available data sets significantly. 

Google Earth images and Bing Satellite Maps seem the only options fit for purpose, as 

they meet the requirement of worldwide coverage. However, we acknowledge that 

their resolution (0.6–1.2m) is suboptimal for building extraction. We argue that this is a 

typical trade-off in open science: less desirable but widely available data sets. In this 

study, we decided to use Google Earth imagery data, as it is more frequently updated 

than Bing Satellite Maps in urban areas (Lesiv et al. 2018).

The technical workflow to extract buildings from Google Earth images is 

straightforward: acquiring Google Earth image data for a specific city and extracting 

building footprints. Google Earth imagery data can be downloaded in multiple ways. 

Google Earth Pro6 provides direct image download at the highest resolution. A 

possible alternative is to use third-party open tools, such as SAS.PLANET, to acquire 

data from the Google Earth portal.7 Since our research largely focuses on urban areas, 

downloading imagery data from Google is not classified as a “mass data download” and 

thus does not violate any of the data usage guidelines.8 There are already several 

studies on the extraction of building footprints or roof outlines from Google Earth 

images; however, they provided limited discussion on their accuracy or results in 

informal areas (Xia et al. 2021). Thus, the technical challenge of our research is to 

improve the accuracy of building footprint mapping in not only formal areas but also 

informal ones, by using freely available Google Earth images. Recent advancements in 

CNN architectures for building footprint mapping (Pan et al. 2020) build on encoder-

decoder structured CNN architectures, such as the U-Net, and variation in the more 

detailed structure of the encoder or decoder (allowing diversity in model construction). 

Therefore, we adopted the U-Net architecture (Ronneberger, Fischer, and Brox 2015) 

and fine-tuned the detailed structure by replacing the encoder part of the model. The 

rationale of experimenting with the encoder structure is that representational features 

at different levels of detail are extracted from this part of the U-Net, which determines 

its capability to capture the targets. We use part of the pretrained, renowned ResNet-

50 as our encoder, as the residual network is good at handling overfitting and 

vanishing gradient (He et al. 2016). The reason for not using the entire ResNet-50 is 

that we only wanted to take advantage of the pretrained model to extract lower-level 

features, so that higher-level features, such as building edges and corners, can be 
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properly captured from the input images. Thus, once the pretrained part is integrated 

into the U-Net, the learned low-level features are transferred into the U-Net, and the 

model must be trained only to learn high-level abstract features, such as rectangular 

shapes of buildings. Apart from using the freely available Google Earth images, we also 

relied on an open data repository (the global building data set provided by Wuhan 

University)9 to train our model. In general, the availability of training data is a big 

challenge for urban EO, as training data are often not openly accessible and, when 

they are, they quickly become obsolete in fast-growing cities. In general, the proposed 

model works as follows: 1) load Google Earth data; 2) prepare training and test sets; 3) 

set up the experiment, including model configuration and training; and 4) predict the 

probability of building presence. For more details, we refer the reader to the full model 

accessible at https://www.kaggle.com/jonwang4/buildingenome-gpu. The extracted 

building footprints are raster data showing the probability of pixels belonging to a 

building footprint. Two further steps, building identification and polygonization, are 

necessary to extract the buildings and to produce georeferenced vector polygons 

needed for UMM. The first step produces a binary image, representing buildings and 

non-buildings. The second step automatically generates building footprints by 

vectorizing the raster shapes from the previous step. An “orthogonalize” procedure is 

finally applied to avoid overly irregular shapes

Nairobi (KE)

Nairobi, the capital of Kenya, was founded in the late nineteenth century in 

conjunction with the railroad development by the British colonial power. The city 

shows a stark urban divide between well-serviced urban areas and informal 

settlements. It is estimated that around 60% of its 4.3 million inhabitants live in 

informal settlements on around 6% of the built-up areas (leading to very high built-up 

densities) (Wamukoya et al. 2020). The city is strongly divided between well-serviced 

urban areas and informal settlements. This urban divide goes back to the British 

colonial history and the long-standing effects of residential racial zoning. More 

recently, the city was divided into European and Asian zones (Maganga 2021). The 

former is characterized by low coverage area ratio (around 50%) and is located in 

higher and thus less flood-prone lands, in the northwest of the city. The latter is 

located around the CBD and the industrial areas in the northeast. The low-lying 

eastern region and areas alongside main infrastructures (e.g., railroads) have been 

rapidly developing, in particular after independence in 1963. The rapid increase of 

Nairobi’s population combined with the low supply of low-income housing has led to 

the massive growth of informal areas (Gatabaki-Kamau and Karirah-Gitau 2004).

https://www.kaggle.com/jonwang4/buildingenome-gpu
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By applying the EO workflow presented above to the Google Earth images covering the 

entire city (roughly 20 GB of data), we obtained 506,435 building footprints (Figure 8). 

Through visual inspection, we observe a considerable morphological heterogeneity, 

with dense areas intermingled with more dispersed ones. By zooming in further 

(Figure 9), results show that buildings in very dense parts can be captured (Figure 9, 

right frame), including those in extremely dense informal areas (Figure 8, middle 

frame). Outputs seem to hold also in more dispersed/rural contexts (Figure 9, left 

frame). However, several incorrect predictions can be found in the northwestern 

corner of the study area (Figure 9, right frame), where rectangular bare crop parcels 

are predicted as buildings. These are very similar to building roofs in terms of shape, 

color, and texture; thus, our method, which uses RGB images as input, struggles to 

differentiate them from buildings.

Figure 8

Building footprints of Nairobi, Kenya, extracted through the proposed EO workflow. 

Source: Authors’ elaboration.
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To validate results, we focus on a heterogeneous area of Nairobi (mixing industrial, 

informal and formal fabrics) and visually compare the satellite Google Earth image 

(Figure 10a) and manually drawn buildings (Figure 10b) with Google AI Open 

Buildings using paid Maxar Technologies (CNES/Airbus) (Sirko et al. 2021) (Figure 

10c), OSM buildings10 (Figure 10d), and buildings extracted from free images through 

our proposed EO workflow (Figure 10e). We observe the following:

Figure 9

Map extracts of building footprints in Nairobi. Left: dispersed/rural setting. Middle: 

dense informal area. Right: dense area with bare crop parcels. Source: Author(s)’s 

elaboration and Google Earth.

In terms of data coverage, both Google’s (c) and our (e) extracted footprints cover a 

significant part of the existing buildings, as portrayed in the satellite image (a) and 

the manually drawn buildings (b). On the other hand, OSM’s coverage is very limited.

In terms of footprint shape, both our and Google’s automatically extracted outlines 

generally underestimate the size of building footprints.

In terms of granularity, our extraction seems to better reflect the actual condition on 

the ground, as represented in both satellite (a) and manually drawn representations 

(b). Google’s buildings, in some instances, tend to be larger than they should, as 

several small adjacent buildings are not accounted for. For comparison, see the 

bottom left of (c) and (e).
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Although the building footprints extracted through the proposed EO workflow are 

suboptimal, we nevertheless used them as input for the UMM method to understand to 

what extent the latter tolerates inaccuracies as a compromise of using an open data 

source. To do so, we applied the UMM method to both the manually drawn and 

automatically extracted data presented above. As in Kochi, only 26 of the original 74 

primary characters are computed, and thus only 104 of the original 296 contextual 

characters are derived for both data sets. AHC is then recursively applied to the 104 

contextual characters to test solutions drawn from 2–10 UTs. The silhouette score is 

then used to identify the optimal number for each data set (see Figure 12, in the 

Appendix). Figure 11 shows the results of the clustering for both manually drawn (left) 

and automatically extracted (right) building footprints. The optimal numbers of UTs 

were found to be five in the manually drawn and seven in the automatically extracted. 

It is possible to remark that, even with suboptimal data, the observed morphological 

patterns appear similar for the two data sources. In both cases, buildings belonging to 

the informal part in the center of the sample area are properly classified in a dedicated 

Figure 10

Validation of the building footprints extracted through the proposed EO workflow. 

(a) Original Google Earth image. Source: Google Earth. (b) Manually drawn 

building footprints. Source: Author(s)’s elaboration and Google Earth. (c) The 

Google AI Open Buildings from paid Maxar Technologies, CNES/Airbus. Source: 

Sirko et al . (2021) and Google Earth. (d) The OSM building layer. Source: OSM 

contributors and Google Earth. (e) Polygonized building footprints with further 

orthogonal corrections. Source: Author(s)’s elaboration and Google Earth.
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UT (i.e., UT0). A minor issue concerns the UT0 computed from the automatically 

extracted buildings, as it also incorporates the southwestern part of the sample area, 

which might not be fully informal. The noise obtained from the suboptimal data is 

largely classified in a distinct cluster (UT3 in Figure 11, right), thus not significantly 

impacting the classification of the existing urban form.

In this section, we illustrated how the proposed EO workflow can extract building 

footprints from available satellite imagery (i.e., Google Earth). Although the extracted 

data is found to be suboptimal, preliminary results show that it can still be used in 

UMM to obtain morphologically significant descriptions.

Figure 11

Numerical taxonomy of a sample area in Nairobi, KE; UTs generated through the 

UMM method from manually drawn (left) and automatically extracted (right) 

building footprints. Source: Author(s)’s elaboration.
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Discussion
Illustrated on two European cases (Amsterdam and Bologna), we showed that the 

UMM method allows the identification of UTs that meaningfully reflect the urban 

morphology of the cities under examination. In general, UMM requires consistent 

building footprints and street network data that are typically available in the Global 

North but are often lacking in the Global South. Therefore, we used an example from 

the Global South (Kochi) to test whether building footprints were sufficient for UMM. 

The results presented in this work confirmed that they were. However, in most cities of 

the Global South, access to consistent and up-to-date spatial data on buildings is a 

challenge. We thus created a composite EO/machine learning technique able to 

automatically extract building footprints from openly accessible satellite imagery. The 

application of the UMM method to building footprints extracted for a sample area in 

Nairobi confirms the potential of combining EO and UMM in an integrated and 

replicable workflow able to identify distinctive morphological patterns.

This new avenue solves a significant challenge that has hindered global morphometric 

analysis, allowing the generation of a geography of urban form that is unprecedented 

in terms of scale of extent and richness of information. From the point of view of 

fundamental research, this new geography paves the way for the initiation of a proper, 

systematic science of urban form evolution, which departs from traditional analogies 

between cities and living organisms to approach this relation at an ontological level, 

recognizing biological and urban form systems as both complex and adaptive. From 

the point of view of the potential of this new geography in terms of its immediate 

application, four areas are considered, which currently are under exploration. (1) 

Urban policy support: this is the extent to which urban form contributes to the 

socioeconomic and environmental performance of cities and communities has always 

been built on qualitative information often generated from limited scale case studies or 

personal observations. By providing a comprehensive numerical description of urban 

form, UMM allows the integration of morphological analysis into the wider area of 

urban analytics. This, in turn, opens up a systematic and replicable large-scale 

observation of the relationship between urban form and virtually any available data on 

urban life, such as deprivation, health, prosperity, mobility, or carbon footprint. (2) 

Urban design regulation and codes: UMM paves the way for evidence-based coding 

policies, in which specifications proposed for new interventions (new developments as 

well as regeneration) are based on numerical urban form identities detected from 

existing urban places. (3) Effecting urban engagement strategies: large-scale/rich 

numerical information on urban form supports innovative tools for generative design 
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approaches aimed at the engagement of industry, stakeholders, and local communities 

in co-creating solutions for cities. Morphometric dashboards may enact gaming 

routines based on actual urban data, including urban form, in the framework of 

multiactorial modeling interactions. (4) Morphological indicators on the diversity of 

urban form link to urban sustainability: for example, the urban SDG indicator 11.1.1 

mainly uses a binary classification of slum/non-slum areas, while the results of the 

integrated approach shown here suggest the physical diversity of such areas, which 

can be related to other sustainability indicators (e.g., health, hazards, climate change). 

Furthermore, such an analysis is also relevant for low-income housing areas that might 

not be reported under SDG 11.1.1 and can guide the identification of local actions and 

interventions.

In this paper, we illustrated how the UTs observed in the case studies show 

resemblances to existing city patterns and stages of urban development. However, 

further systematic validations are needed. These may include, for example, 

correlational studies with various socioeconomic, environmental, land use, and well-

being data. These will not only ensure more robust grounding to UMM but also provide 

further insights on cities and overall urbanization patterns. Further investigations 

should also focus on comparing UMM outputs obtained with optimal (buildings with 

heights and street network) and suboptimal (buildings-only) data. While the latter 

scenario is, to a certain extent, disadvantageous for the generation of DCs, as street 

features cannot be included, it could, nevertheless, be relevant for generating 

taxonomies in a faster manner and with less input data. Finally, we note that UMM is 

not designed to output a fixed/optimal number of UTs. Since one of the main aims of 

the methodology is scalability, having a fixed number of UTs over extra-large spatial 

extents would make the description at the local scale too coarse for planning and 

urban design purposes. In this paper, the silhouette diagram is used to identify the 

number of UTs at the city scale, but future work will investigate methods to 

interactively “scroll up and down” the complete dendrogram at users’ discretion, to 

obtain visualizations of different numbers of UTs according to scale, while keeping the 

dendrogram’s structure and the quality of the resulting taxonomies unaltered.
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Appendix

character element scale context category

area building S building dimension

height building S building dimension

volume building S building dimension

perimeter building S building dimension

courtyard area building S building dimension

form factor building S building shape

volume to façade 

ratio

building S building shape

circular 

compactness

building S building shape

corners building S building shape

squareness building S building shape

equivalent 

rectangular index

building S building shape

elongation building S building shape
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Centroid—corner 

distance deviation

building S building shape

Centroid—corner 

mean distance

building S building shape

solar orientation building S building distribution

street alignment building S building distribution

cell alignment building S building distribution

longest axis 

length

tessellation cell S tessellation cell dimension

area tessellation cell S tessellation cell dimension

circular 

compactness

tessellation cell S tessellation cell shape

equivalent 

rectangular index

tessellation cell S tessellation cell shape

solar orientation tessellation cell S tessellation cell distribution

street alignment tessellation cell S tessellation cell distribution

coverage area 

ratio

tessellation cell S tessellation cell intensity

floor area ratio tessellation cell S tessellation cell intensity

length street segment S street segment dimension

width street profile S street segment dimension

height street profile S street segment dimension

Height-to-width 

ratio

street profile S street segment shape

openness street profile S street segment distribution
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width deviation street profile S street segment diversity

height deviation street profile S street segment diversity

linearity street segment S street segment shape

area covered street segment S street segment dimension

buildings per 

meter

street segment S street segment intensity

area covered street node S street node dimension

shared walls ratio adjacent buildings M adjacent buildings distribution

alignment neighboring 

buildings

M neighboring cells 

(queen)

distribution

mean distance neighboring 

buildings

M neighboring cells 

(queen)

distribution

weighted 

neighbors

tessellation cell M neighboring cells 

(queen)

distribution

area covered neighboring cells M neighboring cells 

(queen)

dimension

reached cells neighboring 

segments

M neighboring 

segments

intensity

reached area neighboring 

segments

M neighboring 

segments

dimension

degree street node M neighboring nodes distribution

mean distance to 

neighboring 

nodes

street node M neighboring nodes dimension

reached cells neighboring 

nodes

M neighboring nodes intensity
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reached area neighboring 

nodes

M neighboring nodes dimension

number of 

courtyards

adjacent buildings L joined buildings intensity

perimeter wall 

length

adjacent buildings L joined buildings dimension

mean 

interbuilding 

distance

neighboring 

buildings

L cell queen 

neighbors 3

distribution

building 

adjacency

neighboring 

buildings

L cell queen 

neighbors 3

distribution

gross floor area 

ratio

neighboring 

tessellation cells

L cell queen 

neighbors 3

intensity

weighted reached 

blocks

neighboring 

tessellation cells

L cell queen 

neighbors 3

intensity

area block L block dimension

perimeter block L block dimension

circular 

compactness

block L block shape

equivalent 

rectangular index

block L block shape

compactness-

weighted axis

block L block shape

solar orientation block L block distribution

weighted 

neighbors

block L block distribution

weighted cells block L block intensity

local meshedness street network L nodes 5 steps connectivity
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mean segment 

length

street network L segment 3 steps dimension

cul-de-sac length street network L nodes 3 steps dimension

reached cells street network L segment 3 steps dimension

node density street network L nodes 5 steps intensity

reached cells street network L nodes 3 steps dimension

reached area street network L nodes 3 steps dimension

proportion of cul-

de-sacs

street network L nodes 5 steps connectivity

proportion of 

three-way 

intersections

street network L nodes 5 steps connectivity

proportion of four-

way intersections

street network L nodes 5 steps connectivity

weighted node 

density

street network L node intensity

local closeness 

centrality

street network L nodes 5 steps connectivity

square clustering street network L nodes within 

network

connectivity

Table 1. List of the 74 primary characters, alongside spatial element, scale, spatial context and conceptual category. 

Formulas can be found in (Fleischmann et al. 2021b)
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Figure 12

(a.) Amsterdam; 



Projections • 16. Measuring the City: The Power of Urban Metrics
Urban MorphoMetrics + Earth Observation: An integrated approach to

rich/extra-large-scale taxonomies of urban form

36

Figure 13
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Figure 14
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Figure 15
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Figure 16
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Figure 17
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Figure 12: Silhouette diagrams for the case studies under examination: (a) 

Amsterdam; (b.) Bologna; (c.) Kochi;  (d.) sample area in Nairobi.

Footnotes

Figure 18

1.  https://geoportale.regione.emilia-romagna.it/ ↩

2.  https://doha2020.isocarp.org/paper-platform/abstract/public/209/building-unique-

cities-a-paradigm-shift-in-the-global-south ↩

3.  https://sites.research.google/open-buildings/ ↩

4.  Maxar Building Footprints: https://blog.maxar.com/earth-intelligence/2018/gis-

ready-building-footprint-shapefiles-for-accelerated-analysis ↩

5.  Microsoft Building Footprints: https://www.microsoft.com/en-us/maps/building-

footprints ↩

6.  https://www.google.com/earth/versions/ ↩
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