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Abstract
Turing’s theory of morphogenesis is a generic mechanism to produce spatial pattern-
ing from near homogeneity. Although widely studied, we are still able to generate
new results by returning to common dogmas. One such widely reported belief is that
the Turing bifurcation occurs through a pitchfork bifurcation, which is true under
zero-flux boundary conditions. However, under fixed boundary conditions, the Tur-
ing bifurcation becomes generically transcritical. We derive these algebraic results
through weakly nonlinear analysis and apply them to the Schnakenberg kinetics. We
observe that the combination of kinetics and boundary conditions produce their own
uncommon boundary complexities that we explore numerically. Overall, this work
demonstrates that it is not enough to only consider parameter perturbations in a sensi-
tivity analysis of a specific application. Variations in boundary conditions should also
be considered.

Keywords Turing instability · Transcritical bifurcation

1 Introduction

Since Turing’s seminal work in 1952 (Turing 1952) on the chemical basis of mor-
phogenesis, the underlying theory of pattern formation, in which a coupled system of
partial differential equations (PDEs) is used to describe a reaction–diffusion model,
has been applied widely in biology and chemistry (Economou et al. 2012; Kondo and
Asai 1996; Sheth et al. 2012; De Kepper et al. 1991; Ouyang and Swinney 1991;
Fuseya et al. 2021; Tan et al. 2018; Rudovics et al. 1996) and extended theoretically
to include many diverse forms of complexity, such as stochastic interactions, domain
growth and spatio-temporal heterogeneity (Cho et al. 2011; Maini et al. 2012; Wool-
ley et al. 2017a, b; Aragón et al. 2012; Krause et al. 2020a). Incredibly, even after 70
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years, there is plenty of new research focusing on the theory of diffusion-driven pattern
formation and these developments show no signs of slowing (Krause et al. 2021a, b).

With any theory that contends with consistent growth, we must often return to the
basics of the theory to ensure that the scaffold of knowledge that we are building
rests upon a firm basis and no potential generalisations have been missed (Woolley
et al. 2021; Sharpe 2019). In this paper, we return to the most basic components of
the Turing bifurcation and demonstrate that it is more complex than the past literature
suggests (Maini et al. 2016; Maini and Woolley 2019; Woolley 2014).

Specifically, standard spatially extended linear stability analysis is taught widely to
undergraduates and results in an understanding that a specific parameter range (defined
as the Turing parameter space) can be generated to satisfy a number of necessary and
sufficient conditions that will cause diffusion to drive a stable homogeneous solution
to instability, which results in the evolution of the solution away from homogeneity
to a stable heterogeneous solution (Murray 2003). Thus, it is common to believe that
patterns form if parameters are within a Turing parameter space and that patterns are
not seen outside of the Turing parameter space, leading to the criticism that Turing
parameter spaces are too small to be biologically relevant (Murray 1982; Bard and
Lauder 1974). However, apart from plenty of recent work showing that Turing param-
eter regions can be made larger than expected (Woolley et al. 2011a, b; Woolley 2011;
Woolley et al. 2011c, 2021; Diego et al. 2018; Landge et al. 2020; Vittadello et al.
2021; Scholes et al. 2019), such studies lack nuance as to the higher-order bifurcation
structure around the bifurcation point, where subcritical bifurcations can lead to the
possibility of patterns appearing outside of the expected range.

It is well known that the Turing instability can appear through a pitchfork bifur-
cation and that these bifurcations can be subcritical (Leppänen 2004; Benson et al.
1998; Crampin 2000; Dutt 2010, 2012; Grindrod 1996; Nicolis 1995; Auchmuty and
Nicolis 1975; Bozzini et al. 2015; Breña-Medina and Champneys 2014; Dalwadi and
Pearce 2022). However, what appears to be less well known is that Turing patterns
can also stem from a transcritical bifurcation. Critically, any literature that mentions
the transcritical bifurcation frequently only mentions it as a passing remark, or as an
observation gleaned fromnumerically derived bifurcation plots (Baurmann et al. 2007;
Benson et al. 1998; Jensen et al. 1993; Kouvaris et al. 2015). There appears to have
been no rigorously derived form of the transcritical bifurcation and its dependencies
on the reaction–diffusion components of the Turing system.

Critically, due to much of the literature using zero-flux boundary conditions, as
they are seen as fairly unconstrained boundary conditions (Woolley 2017; Ho et al.
2019; Adamer et al. 2020; Woolley et al. 2012; Winter et al. 2004; Schumacher et al.
2013), it is understandable why these features have been overlooked. Namely, as it
will be shown, under zero-flux boundary conditions the bifurcation is of a pitchfork
type. However, this does not mean Dirichlet boundary conditions are not important.
They are frequently used in combination with French-flag prepatterning systems, or
as boundary sources, or sinks (Maini and Myerscough 1997; Jiang et al. 2019). For
example, much of the animal digit formation modelling literature requires a source
of a signalling protein “Sonic Hedgehog” from a boundary region of the limb bud
(Woolley et al. 2014a; Sheth et al. 2012).
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As a note on terminology, we are going to be making repetitive use of the terms
Dirichlet andNeumannboundary conditions.Generally,Dirichlet boundary conditions
define fixed concentration values, whilst Neumann boundary conditions define fixed
concentration gradient values. The values that these quantities are fixed at are generally
arbitrary. However, we are going to abuse these names slightly to give them a specific
meaning. Thus, going forward, Neumann boundary conditions will mean that the
concentration has zero-flux at the boundaries. Further, Dirichlet boundary conditions
will mean that the concentration is fixed to a spatially homogeneous steady state at the
boundaries. Note that we will be assuming that such a state exists as it is a fundamental
component of the Turing instability theory, which will be presented in the next section.
Moreover, many homogeneous steady states may exist, but we will be focusing on just
one that is driven unstable by the inclusion of diffusion.

Critically, the changes in bifurcation structure that are produced by altering the
boundary conditions from Neumann to Dirichlet are not observed in the linear analy-
sis, which is where most application papers stop (Woolley et al. 2010; Ho et al. 2019;
Cho et al. 2011; Hans et al. 2021). In this paper, we rectify this situation by demon-
strating that although the Turing bifurcation is canonically a pitchfork bifurcation
under Neumann boundary conditions (van Hecke et al. 1994), the Turing bifurcation
is canonically a transcritical bifurcation under Dirichlet boundary conditions. Due
to these results being independent of the kinetics chosen, we call these bifurcation
structures generic. Specifically, our results hold for any standard two-species cou-
pled system of reaction–diffusion equations, on a finite, non-curved, one-dimensional
domain, with constant coefficients that undergo a Turing bifurcation.

In Sect. 2, we first derive the standard necessary conditions for Turing patterning
to occur using linear stability theory. We then employ weakly nonlinear perturbation
theory (Dutt 2010, 2012; Grindrod 1996) to expand around the Turing bifurcation
point and note that the Fourier frequencies that the solution can be expanded into are
more restricted in the Dirichlet boundary condition case than when compared to the
Neumann boundary condition case. From defining two different inner products for the
different cases, we derive the transcritical and pitchfork bifurcation structures under
the Dirichlet and Neumann boundary conditions, respectively. In Sect. 3, the theory
is put to the test as we compare the analytical bifurcation structure with full nonlinear
simulations. Notably, although the simulations and theory match at the bifurcation
point, we find that the story is not so clear cut as the bifurcation branches are fol-
lowed. Penultimately, in Sect. 4, we briefly investigate the specific Turing kinetics
we use, known as the Schnakenberg kinetics, as they offer non-standard Turing pat-
terns, as their peak heights are not consistent across the domain. Finally, in Sect. 5 we
derive conclusions from this missing bifurcation theory and suggest a stronger role for
numerics that investigate boundary condition perturbations within sensitivity analysis.

2 Theory

We begin with a minimal system of equations which can present Turing patterns
(Maini and Woolley 2019; Murray 2003). Namely, a coupled system of two reaction–
diffusion partial differential equations (PDEs) representing the random movement
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and interactions of two morphogen populations, (u(x, t), v(x, t)), on a finite, one-
dimensional, non-curved domain, �. The two equations are thus,

∂

∂t

(
u
v

)
= 1

L2

(
Du 0
0 Dv

)
∂2

∂x2

(
u
v

)
︸ ︷︷ ︸

Diffusion

+
(
f (u, v)

g(u, v)

)
︸ ︷︷ ︸

Reaction

, (1)

where Du and Dv are positive constants representing the diffusion rate of each popula-
tion, i.e. how fast the populations spread randomly through their domain. The reaction
terms, f and g, are nonlinear kinetics defining how the species influence each other’s
growth and decay. To fully close the system’s definition, we need to specify initial and
boundary conditions. However, this will be done later.

For brevity, we will make use of vector terminology uT (x, t) = (u(x, t), v(x, t)),
where the superscript T represents that we are considering the transposed vector. The
form of Eq. (1) can, thus, be condensed to

∂u
∂t

= 1

L2 D
∂2u
∂x2

+ F(u), (2)

where the matrix D and vector F are defined appropriately.
The parameter L allows us to assume that the PDE system is acting on a non-

dimensionalised interval of size |�| = 1. Specifically, increasing, or decreasing, L
is equivalent to increasing, or decreasing, the domain size of a fully dimensionalised
system. Moreover, if L is considered to be slowly changing then it can approximate
uniform domain growth, a connection that is explored later in Sect. 3.1 (Crampin
and Maini 2001a, b; Crampin 2000; Crampin et al. 1999). Since the patterns formed
by Turing systems are well known to be highly dependent on domain size (Murray
2003), we will be using L as a bifurcation parameter to ensure that we consider only
the first bifurcation point, which is the smallest value of L at which a stable spatially
homogeneous steady state destabilises causing the solution to evolve to a spatially
heterogeneous steady state.

It is standard to think about u and v as being some general biochemical agents, e.g.
proteins (Woolley et al. 2017b; Woolley 2014). However, the Turing instability has
been applied much more generally, to situations where the populations are themselves
cells (Kondo 2005; Woolley et al. 2014b; Woolley 2017). Our approach is application
independent and, thus, we do not prescribe the identities of u and v beyond the fact
that they satisfy the two criteria of Turing’s instability: (i) system (1) has at least
one spatially homogeneous stable steady state (us, vs) in the absence of diffusion (i.e.
Du = Dv = 0) and (ii) the steady state is driven unstable by the inclusion of diffusion.
Further, since we are assuming u and v represent physical quantities, then this implies
that the steady state and the entirety of the solution trajectories lie in the positive (u, v)

quadrant. This assumption can be relaxed for mathematically inclined investigations
(Barrio et al. 1999) and is purely used for convenience in this current work.
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From this set-up, we can now specify initial conditions. Normally, it is usual to
consider small random perturbations about the homogeneous steady state,

u(x, 0) =
(
u(x, 0)
v(x, 0)

)
=

∣∣∣∣
(
us
vs

)
+

(
Uu(x)
Uv(x)

)∣∣∣∣ , (3)

whereUu andUv are sampled from a uniform random distribution U([−σ, σ ]) at each
point x ∈ � and σ � 1 (Grimmett and Stirzaker 2001). Note that the vertical lines
around the initial conditions, on the right of Eq. (3) show that we are taking the abso-
lute value of the perturbation, ensuring that initial condition is positive. As a sleight
modification to the general initial condition definition, we note how boundary condi-
tions are included. Under Dirichlet boundary conditions, we ensure that the boundary
values are initially fixed to the steady-state values. For Neumann boundary conditions
we ensure that each boundary value is fixed to the same value as their neighbour,
providing an approximate zero derivative on the boundary. Critically, these initial
conditions will not be smooth as we are using a discretised domain when we solve
the system numerically. However, during simulation, after a brief temporal boundary
layer, the solutions are seen to converge to smooth solutions that satisfy the equations
and boundary conditions.

Sometimes we will want to follow specific bifurcation branches, thus, we will need
to choose the initial conditions more carefully. Explicitly, we will see that near the
Turing bifurcation point the solutions on the subcritical and supercritical branches are
always above and below the steady state, respectively. Thus, if we add a non-negative
initial perturbation to the homogeneous steady state then we ensure that the solution
is never below the homogeneous steady state within the solution domain, causing
the simulation to tend to the subcritical branch solution. Equally, if we add a non-
positive perturbation to the homogeneous steady state then we ensure that the solution
is never above the homogeneous steady state within the solution domain, causing the
simulation to tend to the supercritical branch solution (when stable solutions exist). For
clarity, initial conditions will always be stated in the simulation figures when specific
forms (beyond randomness) are required.

Note that choosing the initial condition so specifically should not be seen as a
problem of “fine-tuning”. We are using the initial conditions to explore the bifurcation
space and, thus, understand the possible outcomes a simulation with random initial
condition could have.

A further subtlety regarding the initial conditions, boundary conditions and the
Turing instability stems from understanding what initial perturbations are possible.
Namely, under zero-flux conditions spatially homogeneous perturbations are possible
and, the PDE can be simplified to an equivalent ODE by removing spatial terms. The
resulting stability analysis on the ODE will then still hold for the full PDE system
since a perturbation to the ODE is equivalent to a spatially homogeneous perturbation
of the PDE. However, this same equivalence does not exist under fixed boundary con-
ditions, because the PDE requires a spatially heterogeneous perturbation due to the
boundaries being fixed at the steady state. There has been recent work to patch this
link between PDE systems that have different boundary conditions and their simpli-
fied ODE analogues (Klika et al. 2018). Presently, we pragmatically skip over these
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subtleties, because, at least in the present case, the standard ODE analysis provides
solutions that work for the full problem of PDE stability analysis.

It should be noted that Turing’s theory does have a robustness problem, in that vastly
different patterned states can be achieved from small changes to the initial condition
(Crampin et al. 1999; Maini et al. 2012; Woolley et al. 2011c; Bard and Lauder 1974).
Whether this sensitivity is problematic, or not, depends greatly on context (Goodwin
et al. 1993). For example, if we are considering animal coat pigmentation formation
(e.g. on dalmatians (Dougoud et al. 2019)) then this sensitivity to initial conditions is
beneficial because it provides a natural method of generating the observed uniqueness
of patterns. However, if we are dealing with a situation that requires more exact pattern
placement over large spatial scales (e.g. long bone growth (Tanaka and Iber 2013)) then
additional mechanisms must be included to ensure that an approximately repeatable
prototype pattern is maintained despite initial noise (Kondo et al. 2021).

Here, we are going to be primarily interested in the first bifurcation on a small
domain. Thus, we can at least guarantee the form of growth of the linearised system,
which is seen to be similar to that of the full nonlinear system, at least when close to
the bifurcation point (Woolley et al. 2021; Krause et al. 2018, 2020a). The restriction
to only one unstable wavelength is one of our primary assumptions that will allow
our weakly nonlinear analysis to proceed (Schneider and Uecker 2017; Uecker et al.
2014; Nicolis 1995; Olver 2014a).

Since we will be considering two different sets boundary conditions (Neumann and
Dirichlet), we will make the following exposition easier by using two different spatial
domains. The reason for this is system (1) is translationally invariant, thus, moving the
domain will not change the underlying results, but will allow us to only require cosine
Fourier expansions, thereby simplifying the constraints of the boundary conditions.
Specifically, we are going to consider the domain �D = [−1/2, 1/2] with Dirichlet
boundary conditions,

u(−1/2, t) = u(1/2, t) =
(
us
vs

)
= us (4)

and the domain �N = [0, 1] with zero-flux, or Neumann, boundary conditions,

∂u
∂x

(0, t) = ∂u
∂x

(1, t) =
(
0
0

)
. (5)

The lengths of both domains are |�| = 1 and, thus, as stated this shift will not influence
the underlying bifurcation structure that we are considering. The reason for the shift
is that under the Dirichlet boundary conditions and near the Turing bifurcation, we
expect that the solution will be an even function about the origin and, thus, the steady
states of system (1) can be written in the form

(
u(x)
v(x)

)
=

(
us
vs

)
+

∞∑
n=0

(
un
vn

)
cos((2n + 1)πx). (6)
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We note that these cosine terms are orthogonal, with respect to the following inner
product

〈cos((2n + 1)πx), cos((2m + 1)πx)〉
=

∫ 1/2

−1/2
cos((2n + 1)πx) cos((2m + 1)πx) dx =

{
0 n �= m,

1/2 m = n,
(7)

where n andm are integers. As such we can give the Fourier coefficients, (un, vn), the
definite form

un :=
(
un
vn

)
= 2

(〈u(x) − us, cos((2n + 1)πx)〉
〈v(x) − vs, cos((2n + 1)πx)〉

)

= 2〈u − us, cos((2n + 1)πx)〉. (8)

Under the insulated domain assumption of the Neumann boundary conditions we use
Fourier expansions of the form

h(x) = h0 +
∞∑
n=1

hn cos(nπx), (9)

where the inner product is analogously defined to be an integration over [0, 1] and the
Fourier coefficients are, thus,

hn =
{∫ 1

0 h(x) n = 0,
2〈h(x), cos(nπx)〉 n ≥ 1.

(10)

Finally, as we are going to make repeated use of multivariable Taylor expansion,
we define

ha = ∂h

∂a

∣∣∣∣
(u=us ,v=vs )

, (11)

to be the partial differential of a general function h (where h will be either f or g)
with respect to a variable, or series of variables, a, evaluated at the steady state. For
example, the matrix of first-order derivatives, known as the Jacobian, is

J =
(
fu fv
gu gv

)
. (12)

Although smooth reaction functions, F, can be expanded to any required order, the
following analysis only requires an expansion up to third order. Thus, we may expect
that the closer the reaction function is to a polynomial of less than third order, the
better the Taylor series approximation will work.
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2.1 Linear Analysis

As mentioned the Turing condition requires the transition from stability to instability
with the inclusion of diffusion. Such a bifurcation is easily encapsulated within the
standard approach of linear analysis and, although it has been presented many times
(Woolley et al. 2017b;Maini et al. 2016;Murray 2003), we include it for completeness.
Critically, the boundary conditions do not influence the results in this case. Elucidating
their effects requires higher-order expansions, which are explored in Sects. 2.2.1 and
2.2.2.

To understand the stability features of the steady state we investigate what happens
to a general Fourier mode that is a small perturbation away from the steady state (Jones
et al. 2009; Evans 2010; Olver 2014b; Bronstein and Lafaille 2002). We consider a
trajectory of the form

(
u(x, t)
v(x, t)

)
=

(
us
vs

)
+ ε

(
uk
vk

)
exp(λt) cos(kx), (13)

where 0 < ε � 1 and where k = nπ , or (2n + 1)π , with n ∈ Z, depending on
whether we are considering Neumann, or Dirichlet boundary conditions, respectively.
For now we continue in terms of k because the first bifurcation mode of n = 1, or
k = π , is applicable in both expansion forms and, thus, the bifurcation point in L is
not influenced by the boundary conditions.

We substitute perturbation (13) into system (1) and assume that, at least initially,
the trajectory remains close to the steady state such that quadratic and higher orders
of ε can be ignored. Hence, to leading order we obtain

λ

(
uk
vk

)
= − k2

L2

(
Du 0
0 Dv

) (
uk
vk

)
+ J

(
uk
vk

)
, (14)

which can be rearranged to produce the following matrix equation

(
λ + k2Du/L2 − fu − fv

−gu λ − k2Dv/L2 − gv

) (
uk
vk

)
=

(
λI + k2

L2 D − J
)
uk

=
(
0
0

)
, (15)

where I is the 2 × 2 identity matrix. For Eq. (15) to have a nontrivial answer (i.e. uk
and vk are not both zero), the multiplication matrix must be singular, which can be
ensured if and only if the determinant of the matrix is zero,

0 = det

(
λI + k2

L2 D − J
)

,

= λ2 − λ

(
fu + gv − k2

L2 (Du + Dv)

)
+

(
k2

L2 Du − fu

) (
k2

L2 Dv − gv

)
− gu fv.

(16)
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At this point, we consider two cases: (i) diffusion is absent, which is equivalent to
setting k = 0; and (ii) diffusion is present (i.e. k > 0).

In case (i), Eq. (16) simplifies to

0 = λ2 − λ ( fu + gv) + fugv − gu fv. (17)

The solutions of λ can easily be extracted from the quadratic equation (17). However,
we do not need to know λ exactly to identify the stability of the solution. Explicitly,
from the formof the expansion inEq. (13) if the real part ofλ is positive, i.e.Re(λ) > 0,
then the perturbations grow, hence the state is unstable, whilst if Re(λ) < 0 the solution
decays back to the steady state and the state is stable. Thus, to extract the sign of λ

it is easier to use the Routh–Hurwitz stability criterion (Anagnost and Desoer 1991;
Routh 1877), which states that the steady state is stable if and only if the coefficients
of λ and the constant term of Eq. (17) are both positive,

fu + gv <0, (18)

fugv − gu fv > 0. (19)

In case (ii), we see from Eq. (16) that the coefficient of λ must be positive because
k2, L2, Du, Dv > 0 and fu + gv < 0. Thus, the only way to generate an instability
(by the Routh–Hurwitz condition) is if the constant term is negative,

(
k2

L2 Du − fu

) (
k2

L2 Dv − gv

)
− gu fv < 0. (20)

For this to be possible, there must be solutions, k2, within the range k2− < k2 < k2+,
where

k2± = L2 (Dugv + fu Dv) ± √
(Dugv + fu Dv)2 − 4DuDv( fugv − gu fv)

2DuDv

, (21)

thus, requiring

Dugv + fu Dv > 2
√
DuDv( fugv − gu fv), (22)

to ensure that k2± are real and positive. The final requirement we can impose is that we
only want the first heterogeneous frequency to be unstable, i.e. k2+ = π2 providing
the critical value for L at which the bifurcation will occur,

L2
c = 2DuDvπ

2

(Dugv + fu Dv) + √
(Dugv + fu Dv)2 − 4DuDv( fugv − gu fv)

. (23)

From these derivations, we can now define the null vector, �, of Eq. (15) when λ = 0
(since we are at the bifurcation point) and k = π (since we are considering the first
bifurcation). Thus, up to a multiplicative constant,
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� =
(
fvL2

c/(Duπ
2 − fu L2

c)

1

)
=:

(
�

1

)
. (24)

2.2 Weakly Nonlinear Analysis

We now perform a weakly nonlinear stability analysis about the uniform steady state
(Grindrod 1996; Nicolis 1995; Auchmuty and Nicolis 1975; Bozzini et al. 2015;
Wollkind et al. 1994). It should be noted that the weakly nonlinear expansion is an
ansatz, one that depends on good evidence from numerical simulation and previous
work (Leppänen 2004; Benson et al. 1998; Crampin 2000; Dutt 2010, 2012; Barrass
et al. 2006). However, there is still the possibility that the ansatz does not work in a
specific case. In such a case it would be interesting to understand why the breakdown
occurs. However, such considerations are outside of the current work.We suppose that
the bifurcating solutions emerge at L = Lc in a continuous manner, which allows us
to expand u in terms of a power series of 0 < ε � 1. Note this ε is not the same as
the ε used previously, it is simply a small, but nonzero, parameter, which we use to
expand both the bifurcation parameter and the solution.

Our initial work is to set up the theory that is independent of the boundary conditions
and then include there effects separately. Specifically, in Sect. 2.2.1 we derive the form
of the transcritical bifurcation that is driven by the Dirichlet boundary conditions,
whilst in Sect. 2.2.2 we derive the form of the transcritical bifurcation that is driven
by the Neumann boundary conditions.

At the bifurcation point, after a transient period, during which the stable modes
have relaxed exponentially to zero, the solution does not vary with time. By conti-
nuity, one expects that for L close to Lc the solution, u, of the full system will be a
slowly varying function of time (Nicolis 1995). This critical slowing down suggests
the introduction of new, more relevant time scales (Stanley 1987). Thus, we introduce
multiscale perturbation expansions,

L = Lc + εL1 + ε2L2 + . . . , (25)

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
+ . . . , (26)

u(x, t1, t2) =
(
us
vs

)
+ εU1(x, t1, t2) + ε2U2(x, t1, t2) + . . . , (27)

where

Ui =
(
Ui

Vi

)
. (28)

Critically, although convergence of this scheme can be guaranteed under the smooth
functions and simple boundary conditions we will be considering, we cannot, in gen-
eral, determine the radius of convergence (Nicolis 1995; Kevorkian and Cole 2012).
Also, note that althoughUi and ui are related, they are not to be confused. Specifically,
ui is a Fourier coefficient, whilst Ui is a spatio-temporal function.
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Substituting Eqs. (25)–(27) into system (1) and expanding in terms of ε allows us
to collect the differing orders of ε into the following cascade of equations:

O(ε) LU1 = 0, (29)

O(ε2) LU2 = ∂U1

∂t1
+ 2L1

L3
c
D

∂2U1

∂x2
− U 2

1

2

(
fuu
gvv

)
−U1V1

(
fuv

guv

)
− V 2

1

2

(
fvv

gvv

)
,

(30)

O(ε3) LU3 = ∂U1

∂t2
+ ∂U2

∂t1
−

(
3L2

1 − 2L2Lc

Lc
4

)
D

∂2U1

∂x2
+ 2L1

L3
c
D

∂2U2

∂x2

−
(
fuuU1 + fuvV1 fuvU1 + fvvV1
guuU1 + guvV1 guvU1 + gvvV1

)
U2

− 1

6

(
fuuuU 3

1 + fvvvV 3
1

guuuU 3
1 + gvvvV 3

1

)
− U1V1

2

(
fuuv fuvv

guuv guvv

)
U1, (31)

where L is the linear operator

L = 1

L2
c
D

∂2

∂x2
+ J . (32)

Here, we consider only up to third order in ε but in principle any order can be derived.
The only limitation is the algebra becomes more cumbersome. Equally, as we will see
later, the approximation does not necessarily become more accurate with higher-order
approximations (Becherer et al. 2009).

We have already contended with Eq. (29) in Sect. 2.1. Namely, at the bifurcation
point of the first possible frequency, U1 is a null vector of Eq. (32). This was derived
in Eq. (24), hence, up to a multiplicative constant

U1 = a(t1, t2)

(
�

1

)
cos(πx), (33)

where the amplitude function, a, is to be determined by a higher-order solvability
criterion.

These solvability criteria come from applying the Fredholm alternative theorem
(Ramm 2001). Explicitly, since the kernel of L is nontrivial then so is the kernel of
the adjoint operator LT , which in this case is simply the transposition of L. Suppose
w ∈ Ker

(LT )
and consider any equation of the from L y = z then

〈w, z〉 = 〈w,L y〉,
= 〈LTw, y〉,
= 0,

where here the inner product is a dot product of the vectors followed by the integrations
as defined in Sect. 2. Thus, for L y = z to have a solution, z must be orthogonal to a
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basis that spans Ker
(LT )

. Any terms that are not necessarily orthogonal to the basis
(known as secular, or resonant terms) must be manipulated into a form that allows a
zero inner product with the basis of Ker

(LT )
, in turn, this manipulated form provides

the solvability criterion.
Since we have L in Eq. (32) then, explicitly,

LT = 1

L2
c
D

∂2

∂x2
+

(
fu gu
fv gv

)
. (34)

Hence, the kernel of LT can be seen to be spanned by

η :=
(
guL2

c/(Duπ
2 − L2

c fu)
1

)
cos(πx) =:

(
η

1

)
cos(πx). (35)

At this point, most other papers tend to focus only on periodic boundary conditions,
or zero-flux/Neumann boundary conditions (which are a subsymmetry of the periodic
boundary conditions) (Leppänen 2004; Benson et al. 1998; Crampin 2000; Dutt 2010,
2012; Grindrod 1996; Nicolis 1995; Auchmuty and Nicolis 1975; Bozzini et al. 2015).
This choice of boundary condition is important because the nonlinear terms of Eq.
(30), would all include a function of the form cos2(πx). However,

cos2(πx) = cos(2πx) + 1

2

and cos(πx) is orthogonal to cos(2πx) and 1 (under the Neumann boundary con-
ditions, see Eqs. (9) and (10)). Thus, if we simply assume that L1 = 0 and u1
is independent of t1 then the right-hand side of Eq. (30) is orthogonal to Eq. (35).
Whence, we must head to the third-order equation (31), if we are to have any hope of
generating a solvability criterion that will define the amplitude function, a(t1, t2), of
Eq. (33). This case is considered in Sect. 2.2.2.

However, in the case of Dirichlet boundary conditions (see Eqs. (6) and (7))
cos2(πx) is a secular term. Explicitly

cos2(πx) =
∞∑
n=0

8(−1)n+1

π(2n + 3)(2n + 1)(2n − 1)
cos((2n + 1)πx) (36)

and, so, the coefficient of cos(πx) is 8/(3π). We also note that, due to the cubic nature
of the denominator in Eq. (36), the first two terms of the expansion provide an excellent
approximation to the full solution, see Fig. 1. However, we should highlight that this
approximation only holds within the defined solution domain. Outside of [−0.5, 0.5]
the cos2(πx) is no longer well approximated by the Fourier expansion. Of course,
we would generally not expect good comparisons outside of this region because the
solution domain forms a fundamental part of the inner product definition, through
which we derive the Fourier coefficients.

Overall, we deduce that the Dirichlet boundary conditions create resonant terms
within the second-order expansion that are not present under Neumann boundary
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Fig. 1 (Colour figure online) Fourier approximation of cos2(πx). The left figure presents the value of the
Fourier coefficients required to approximate cos2(πx). The values are calculated using Eq. (7) and are the
explicit values of the coefficients of cos((2n + 1)πx) in Eq. (36). The coefficients are dominated by the
first two terms and, as predicted, these two terms provide an excellent approximation to cos2(πx) as shown
in the right figure

conditions. We explore the resulting solvability criterion stemming from these two
sets of boundary conditions in the next two sections.

2.2.1 Transcritical Bifurcation Under Dirichlet Boundary Conditions

We focus on Eq. (30) and rewrite it in the explicit form

LU2 =
(

∂a

∂t1
I − 2aπ2 L1

L3
c
D

)
� cos (πx)

− cos (πx)2 a2

2

((
fuu
guu

)
�2 + 2

(
fuv

guv

)
� +

(
fvv

gvv

))
,

= C1 cos(πx) − C2 cos
2(πx),

where we have substituted U1 from Eq. (33) and rearranged to highlight the cos(πx)
and cos2(πx) factors. From Eq. (36), we can rewrite

cos2(πx) = 8

3π
cos(πx) + N RT , (37)

where N RT stands for nonresonant terms. Whence, using Eq. (35), the Fredholm
alternative suggests that we must ensure

〈
η,

(
C1 − 8

3π
C2

)
cos(πx)

〉
= 0 (38)

for a solution to exist. Evaluating and rearranging Eq. (38) provides the solvability
criterion,
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∂a

∂t1
= 2

π2 (η�Du + Dv) aL1

Lc
3 (η� + 1)

+ 4

(
η�2 fuu + 2η� fuv + η fvv + guu�2 + 2guv� + gvv

)
a2

3π (η� + 1)
, (39)

which, in turn, can be solved to provide the functional form of the amplitude term,
a(t1). Note that we have suppressed the t2 dependence, which is seen only to influence
higher-order approximations and, thus, not defined at this level.

Although we can fully solve Eq. (39), we are usually interested in the stationary
solutions, which we can consider in generality. Equation (39) is a specific form of the
more canonical transcritical bifurcation equation,

da

dt1
= p1L1a + p2a

2, (40)

where the steady states and stability depend on the signs of L1, p1 and p2. Note
L1 = (L − Lc)/ε is the bifurcation asymmetry parameter, thus, L1 < 0 before the
bifurcation and L1 > 0 after the bifurcation. The steady states of Eq. (40) can be seen
to be a = 0 and−p1L1/p2. From linear stability analysis, we can see that the stability
of these two states switches at L1 = 0 and that both branches are not stable at the
same time. Critically, which branch is stable depends on the signs of p1 and p2. From
Sect. 2.1 we know that the homogeneous steady state is locally stable for L1 < 0
and unstable for L1 > 0. Thus, due to the transcritical nature of the bifurcation, it
must be that alongside the stable branch of inhomogeneous solutions that bifurcate
supercritically, there is a branch of unstable heterogeneous solutions that bifurcate
subcritically, see Fig. 2a.

Going forward, we assume p1 and p2 > 0, with the other cases equally easy
to contend with. Under these conditions we have that a = 0 is stable for L1 < 0
and unstable when L1 > 0, whereas a = −p1L1/p2 is unstable for L1 < 0 and
stable when L1 > 0. This canonical bifurcation structure is presented in Fig. 2a and

Fig. 2 (Colour figure online) Canonical structures of a a transcritical bifurcation, b a supercritical pitchfork
bifurcation and c a subcritical pitchfork bifurcation that can arise in a Turing patterning system. The thick
lines represent stable amplitude solutions, whilst the thin lines represent unstable amplitude solutions. The
additional blue lines in (c) illustrate a higher-order approximation of the subcritical pitchfork bifurcation.
Specifically, if the expansions are extended to order five in ε we see the curve bends back on itself predicting
the existence of stable Turing pattern for L > Lc
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compared with the standard supercritical (Fig. 2b) and subcritical (Fig. 2c) pitchfork
bifurcations, which are often presented as the only form of Turing bifurcation (Dutt
2010, 2012) and are considered further in Sect. 2.2.2.

The form of the transcritical bifurcation may feel unsatisfactory since the solution
cannot follow these straight line approximations for long. Namely, we are assuming
that u > 0 and v > 0, whereas Fig. 2a suggests that because the amplitude becomes
increasingly negative for L larger than Lc then the solution u = us + εU1 will
eventually go negative. Equally, at first sight our derivation may appear to be limited
in its usefulness because for L < Lc the heterogeneous solutions are unstable, leaving
only the trivial homogeneous steady state as the expected solution.

To investigate the bifurcation structure further, we extend the analysis to the third-
order approximation in ε. Specifically, having derived a solution for a, we have fully
defined U1 through Eq. (33) and, hence, we have fully defined the right-hand side of
Eq. (30). Thus, using an expansion of the form

U2 =
(
cu0
0

)
cos(πx) +

∞∑
n=1

(
cun
cvn

)
cos((2n + 1)πx) + αU1, (41)

we can fully solve Eq. (30), defining the coefficients in terms of the system parameters
and a.

Note that the α value in Eq. (41) is completely undetermined because U1 is a null
vector of L (see Eq. (33)). However, we can abuse this freedom to ensure that one
of the coefficients of the cos(πx) term is zero. The coefficient α would then need to
be specified by the initial conditions, however, since Eq. (41) is an equation for all
α, we fix it to zero going forward. A further point to note is that because we have to
expand cos2(πx) in terms of its infinite Fourier cosine series (see Eq. (36)) the form
of U2 must also include all of these terms. This is in comparison to the Neumann
boundary case of Sect. 2.2.2, where only the first two terms of a Fourier expansion
will be needed.

Upon substitution of Eqs. (41) into (30), we can collect and compare terms for every
cos((2n + 1)πx) term leading to an infinite set of uncoupled simultaneous equation
that can all be solved in closed form after simple, but tedious, manipulation. The
explicit forms of cu0, cun and cvn are relegated to Appendix A1.

At this point, we will have solutions for both U1 and U2 that can be substituted
into Eq. (31). Once again the Fredholm alternative has to be applied to enforce the
removal of resonant terms. Finally, this will supply an equation in terms of ∂a/∂t2
and a. Key algebraic steps are presented in Appendix A1 and we provide a Maple
workbook (Maplesoft, a division of Waterloo Maple Inc.. 2021) of the accompanying
algebraic manipulations, which can be found at https://github.com/ThomasEWoolley/
Turing_bifurcations.

Combining the two consistency Eqs. (39) and (A6) together, we can generate a
third-order amplitude equation of the form
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Fig. 3 (Colour figure online) Sketch solutions comparing the transcritical bifurcation as derived from Eqs.
(40) and (42). Note this is only one form that the branch can take, which is the form most appropriate to our
investigations in Sect. 3. Other forms are dictated by the signs of pi in Eq. (42). We observe that the black
lines representing the transcritical bifurcation are complicated by extending the analysis to a third-order
expansion. Specifically, the stable supercritical branch ismodified to become a quadratic branch that is stable
for a < 0 (blue thick line), linking to an unstable region when a > 0 (red thin line). The unstable subcritical
branch of the third-order expansion (blue thin line), practically matches the second-order expansion (black
thin line)

∂a

∂t1
+ ε

∂a

∂t2
= 1

ε

∂a

∂t
=

(
p1(L1 + εL2) − p3εL

2
1

)
a + (p2 − p4εL1)a

2 − ε p5a
3,

(42)

where we assume that all of the pi > 0 because of the case we are going to consider
in Sect. 3. Other sign cases can be investigated just as easily. Here, we comment on
the general shape and stability of the solution branches and what further information
is provided beyond Eq. (40). Specifically, the cubic nature of Eq. (42) suggests that
there is a third branch that has been lost in the lower-order approximation consistency
criterion.However, this branchdoes not bifurcate from Lc, rather it could be considered
as a bifurcation from infinity that links up with the stable supercritical branch at
L > Lc. A schematic diagram of the situation is provided in Fig. 3. This schematic
diagram can be compared with an actual simulated version in Fig. 4a. Due to this
branch not bifurcating close to the point we are expanding around we should be highly
sceptical about its existence and indeed it is not seen in the numerical computations
later.

The feature that is maybe, at least, qualitatively correct is that the supercritical
branch bends upwards to meet the a = 0 line and then disappears for larger L (blue
thick line in Fig. 3). Critically, we gain no more information about the structure of
the unstable subcritical branch (blue thin line in Fig. 3). Thus, we can conclude that if
this branch is to bifurcate further it must do away from the weakly nonlinear regime
we are considering and, thus, numerical approaches are more appropriate for such
investigations.

Although theoretically trivial to extend the analysis to higher orders, it has actually
been shown that even if we are able to generate qualitatively correct bifurcation results,
the results do not necessarily get quantitatively better. Indeed, higher-order expansions
may not generate any new insights, whilst, at worst, the results may be completely
inaccurate (Bozzini et al. 2015; Becherer et al. 2009).
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In Sect. 3 we will demonstrate that although the subcritical bifurcation branch starts
unstable in the fully nonlinear regime the branch can become stable and, thus, large-
amplitude Turing patterns are able to exist for much of L1 < 0, which is unexpected.
Further, the perturbations that are required to push us out of the stability basin of
the homogeneous solution are not large, thus, the patterning region can be thought
of being larger than derived. Equally, we will demonstrate that the small amplitude
supercritical stable branch does not extend far beyond Lc, as suggested by Fig. 3.

2.2.2 Pitchfork Bifurcation Under Neumann Boundary Conditions

As mentioned, the standard derivation of the Turing amplitude equations tends to pro-
duce a canonical pitchfork bifurcation (Grindrod 1996; Nicolis 1995; Auchmuty and
Nicolis 1975; Bozzini et al. 2015; Wollkind et al. 1994). We include this derivation for
completeness and to see how the situation of Neumann boundary conditions compares
with the derivation under Dirichlet boundary conditions.

We return to our comments at the end of Sect. 2.2, where we noted that if we set
L1 = 0 and assume that u1 does not depend on t1 (only t2) then the right-hand side
of Eq. (30) will be a function of cos2(πx), which is naturally orthogonal to cos(πx),
under the inner product for Neumann boundary conditions, as defined in Sect. 2. Thus,
Eq. (30) will have an infinite family of solutions of the form

U2 =
(
cu0
cv0

)
+

(
cu2
cv2

)
cos(2πx) + α1U1, (43)

where α1 is, once again, arbitrary due to U1 being in the kernel of L and, so, is set to
zero for simplicity. We substitute Eqs. (33) and (43) into Eq. (30) and collect coeffi-
cients of the cos(2πx) and constant terms together. This will lead to four equations
that are solved simultaneously to provide the four unknowns. The algebraic forms of
cu0, cv0, cu2 and cv2 are relegated to Appendix A2.

Upon substituting the appropriate components, we will find that the right-hand side
of Eq. (31) will contain multiples of cos(πx). Thus, for Eq. (31) to have a solution we
enforce the Fredholm solvability criterion and state that the right-hand side of Eq. (31)
must be orthogonal to η, from Eq. (35), i.e. 〈η,LU3〉 = 0. Once again, the algebra
is laborious but we can extract out a relatively simple canonical pitchfork bifurcation
for a(t2) (see Eq. (A12)),

∂a

∂t2
= p3L2a − p4a

3, (44)

where the form of p3 and p4 are presented in Appendix A2.
Whether the branches are supercritical, or supercritical, depends on the signs of p3

and p4. The steady states are a0 = 0 and a± = ±√
p3L2/p4 and, like the case of the

transcritical bifurcation, the stability of the branches switches at L2 = 0. Since we
know that a0 is stable for L2 < 0 then it must be that the branches a± are unstable if
they bifurcate subcritically (L2 < 0), or stable if the bifurcate supercritically (L2 > 0).
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Note that since there are two solutions, a±, this means that for every heterogeneous
solution that exists for 0 < L2 the solution’s reflection about the homogeneous steady
state is also a solution. Explicitly, for L � Lc the troughs and peaks of a Turing
pattern can be swapped and the solution will still be valid. This is in contrast to the
transcritical bifurcation, where there is one stable amplitude and its reflection is not
a solution. This lack of reflective symmetry in the Dirichlet boundary condition case
may be counter-intuitive because the kinetics are not changed and any solution under
our Dirichlet boundary conditions would also satisfy the boundary conditions under
reflection about the steady state. However, as seen in Sect. 2.2.1 the introduction of the
Dirichlet boundary conditions breaks the symmetry due to quadratic resonant terms
appearing in Eq. (30).

The generic pitchfork supercritical structure is illustrated in Fig. 2, where we can
compare and contrast its form with the transcritical bifurcation structure. We illustrate
both the sub and supercritical forms of the pitchfork bifurcation in Fig. 2b, c. Since
we know that the homogeneous solution becomes unstable at L = Lc, the subcritical
bifurcation form may be surprising at it suggests there are no stable amplitudes for
L > Lc, as illustrated by the thin black lines in Fig. 2c. However, as before, we can
extend the bifurcation analysis to generate a 5th-order polynomial in a (Bozzini et al.
2015), which predicts that the branches should bend back on themselves (thick blue
lines in Fig. 2c) generating the required stable solutions.

The stable subcritical patterns that exist in the interval L < Lc produce a patterning
hysteresis in the system.Thus, if L is increased passed Lc then patterning is guaranteed.
If L is then reduced whilst in this patterned state the patterns should remain stable
for at least some values of L < Lc (Bozzini et al. 2015). Thus, we again highlight
that although linear analysis is incredibly powerful, our insights are limited and it is
wrong to state that patterns are not possible outside of the linearly derived patterning
parameter space (Woolley et al. 2021).

3 Schnakenberg Kinetics Example

In the previous section, we saw that nonlinear analysis was able to shed light on the
bifurcation structure near the onset of Turing patterning. However, it was also quickly
highlighted that these approaches are severely limited, as the intervals of accurate
approximation tend to be very small (Becherer et al. 2009). Thus, to support the
theoretical insights we turn to numerical bifurcation tracking.

Specifically, we will be using pde2path, version 3.0, which is a computational
continuation package written for MATLAB (Uecker et al. 2014; Dohnal et al. 2014;
Uecker 2021a;Engelnkemper et al. 2019;MATLAB2018). The software is specifically
designed to provide bifurcation diagrams for PDEs by applying a modified (pseudo-
)arclength parametrisation of solution branches to a spatial discretisation of the PDEs.
Critically, the software has been optimised to deal with a large number of degrees of
freedom, which will arise due to the PDE being turned into a large ODE system, and
compounded further if higher spatial dimensions are considered (Uecker 2021b). It
should be noted that, since we have turned to numerical continuation techniques, we
can only follow bifurcation branches if we they are found to be connected to known
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branches. Such continuation techniques are seen to be sufficient in the current case,
however more recent methods are available, involving deflation techniques, which
would be suitable for finding disconnected bifurcation branches (Farrell et al. 2015).

Although, the specific quantitative shape of a bifurcation diagram will depend on
the kinetics being used and will, thus, vary on a case-by-case basis depending on
whether the kinetics are biologically or mathematically motivated, we have shown
that the qualitative structure of the Turing bifurcation point should only depend on the
boundary conditions. Specifically, Dirichlet boundary conditions should lead to a tran-
scritical bifurcation, whilst the Neumann boundary conditions should lead pitchfork
bifurcation.

Due to the theory being agnostic to the underlying kinetics, we will be applying
pde2path to a set of reaction–diffusion equations which, although originally derived
by Gierer andMeinhardt (1972), were popularised by Schnakenberg (1979). Note that
we are not saying that these kinetics are biologically accurate in any sense, or directly
applicable to a specific case. The Schnakenberg system is simply a well-behaved and
well-understood set of mathematically motivated, Turing unstable, reaction kinetics
that can be used to demonstrate the dependence of its bifurcation structure on the
boundary conditions (Winter et al. 2004; Woolley et al. 2010; Adamer et al. 2020).

Further, the system is a generic form of “cross” kinetics, whereby the two mor-
phogen population patterns are out of phase, such that the peaks of one morphogen
correspond to the troughs of the other. Explicitly, the equations are

∂u

∂t
= Du

L2 ∇2u + 1 − 2u + u2v, (45)

∂v

∂t
= Dv

L2 ∇2v + 3 − u2v. (46)

Normally, the kinetic coefficients and diffusion constants are kept as free parameters.
However, for simplicity of illustrating the influence of the boundary conditions, we
focus on specifying only L = Lc + L1ε + L2ε

2 as the bifurcation parameter and
unless otherwise stated Du = 1/1000 and Dv = 1/10.

Applying the analysis from Sects. 2.1 and 2.2, we find that the spatially homoge-
neous steady state is (u, v) = (2, 3/4) and that

Lc = π
√
60 − 5

√
2
√
47

100
≈ 0.1066,

U1 = −
(−4

√
2
√
47+48√

2
√
47−10
1

)
a cos(πx), η =

(
3
√
2
√
47−36√

2
√
47−10
1

)
cos(πx), (47)

which are the bifurcation value of L , and the null vectors of L and LT , respectively
(see Eqs. (23), (24), (33) and (35)). Note that we take the negative form of U1 (which
is fine because the vector � is only defined up to a multiplicative constant) to ensure
that a and its coefficients have the right sign in the following amplitude equations.
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Under Dirichlet boundary conditions, the quadratic amplitude equation is

∂a

∂t1
= 800

201π
(√

94 − 1331
134

) (√
94 − 12

) (√
94 − 10

)

×
⎛
⎝151a2

(
1462

151
− √

94

)
+ 122388

aL1

(√
2 − 2104

√
47

10199

)
√
120 − 10

√
94

⎞
⎠ , (48)

≈ 15.19a2 + 13.93L1a, (49)

whilst the higher-order derivation provides a cubic equation of the form

ε
∂a

∂t2
+ ∂a

∂t1
= 1

ε

da

dt
≈ −35.13εa3 + (15.19 − 268.02εL1) a

2

+
(
13.93(L1 + εL2) − 237.69L2

1ε
)
a. (50)

An accompanying Maple worksheet (which can be found at https://github.com/
ThomasEWoolley/Turing_bifurcations) provides all the derivation details for these
equations and the final approximation of the numerical coefficients to two decimal
places.

Under Neumann boundary conditions, the critical domain length and null vectors
are the same as stated in line (47). Further, as shown in Sect. 2.2.2, there is no quadratic
leading-order equation for a only the canonical pitchfork bifurcation equation

∂a

∂t2
= −292.52a3 + 13.93aL2. (51)

Having derived the specific amplitude equations of the Schnakenberg system and
given reaction coefficients in the next section, we explore the bifurcation structures
numerically and compare Eqs. (49)–(51) to their simulated analogues.

3.1 Simulation

Although the bifurcation tracking software pde2path comes with a Schnakenberg
example in its tutorial files, the scripts that accompany all of the following simulations
can be found at https://github.com/ThomasEWoolley/Turing_bifurcations. Critically,
each file starts with defining a large number of continuation parameter definitions,
e.g. step size length, Newton iteration tolerance, number of components in the spatial
discretisation, etc. We do not discuss these more here and invite the interested reader
to view the scripts. However, we do assert that all tolerances were reduced and all
discretisations increased to ensure that the following results were not dependent on the
simulation inputs. The final chosen parameters were then those that provided a balance
between simulation accuracy and speed. Later in this section, we will compare full
dynamic spatio-temporal simulations of the nonlinear equations with the bifurcation
plots. The spatio-temporal simulations were completed using COMSOLMultiphysics
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Fig. 4 (Colour figure online) Comparing the amplitude Eqs. (49)–(51) with their simulated analogues
under aDirichlet boundary conditions and bNeumann boundary conditions. In all cases, the diamond point
represents the location of Lc , the colour represents the method and branch being observed and the thickness
of the branch represents the stability of the solutions being observed, i.e. thick lines are stable solutions,
whilst thin lines are unstable solutions. Further, us +�a is plotted in terms of the theoretical derivations and
max(u) and min(u) are plotted in terms of the numerical bifurcation data. In (a) we note that the minimum
of u is the steady state for L < Lc , whilst the maximum of u is the steady state for L > Lc . In (a) the light
and dark green lines represent the amplitude equations as derived from Eqs. (49) and (50), respectively,
which are compared with the pde2path simulations of Eqs. (45) and (46) (blue and red lines). In (b),
the algebraically derived branch from Eq. (51) (green line) is compared against the blue line obtained from
pde2path simulations of Eqs. (45) and (46) (blue line). For the given parameters Lc ≈ 0.11, k+ = π

and k− ≈ 1.02

5.1 (Multiphysics 2021) and again the accompanying codes can be found at https://
github.com/ThomasEWoolley/Turing_bifurcations.

First, we focus on the initial Turing bifurcation point. Figure 4a, b demonstrates
inextricably the key influence of the boundary conditions on the bifurcation struc-
ture. Namely, under Dirichlet boundary conditions (Fig. 4a), the Turing bifurcation
is canonically transcritical, whilst under Neumann boundary conditions (Fig. 4b), the
bifurcation structure is canonically pitchfork.

In both cases of Fig. 4, we see that the homogeneous steady state (u = 2) is stable
for L < Lc and unstable for L > Lc. In Fig. 4a, we see that the subcritical branches
provide unstable solutions (thin lines), whilst the supercritical branches produce stable
solutions (thick lines). Further, although the nonlinear analysis has provided the cor-
rect bifurcation structure, we note that the region over which the amplitude equations
are valid is extremely small, with the cubic approximation Eq. (50) providing little
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more information than the quadratic approximation. Indeed, the supercritical branches
of the two approximations lie practically on top of one another, whilst the supercritical
approximations give the incorrect suggestions that the solution goes negative in the
quadratic approximation case (light green line) and is multivalued in the cubic approx-
imation case (dark green line). What is actually seen is that the subcritical bifurcation
undergoes a rapid growth as L decreases, whilst the supercritical branch asymptotes
to a finite but positive value.

In Fig. 4b, we similarly see that the amplitude equations provide the correct bifur-
cation structure only within a small interval of the bifurcation point. However, the
qualitative comparison between the pitchfork bifurcation structure and its weakly
nonlinear approximation is perhaps better than its transcritical partner because the
branches track each other well until the approximation inevitably provides a negative
solution around L ≈ 0.2.

Seeing that the weakly nonlinear analysis is limited in its abilities we extend our
consideration of the bifurcation system through a numerical investigation. In Fig.
5, we track the maximum and minimum values of the u population following the
subcritical and supercritical branches, separately, over the interval L ∈ [0.04, 1], and
demonstrate that even qualitative understanding of the bifurcation structure near the
bifurcation point offers limited understanding further away.

Figure 5a presents the bifurcation structure produced by following the subcritical
branch of the transcritical bifurcation in the top subfigure and selected solutions in
the bottom subfigure. We observe that although the subcritical branch is unstable,
this unstable branch folds back on itself producing a multivalued function, providing
stable heterogeneous solution for L < Lc. Critically, the subcritical branch generates
remarkably large-amplitude heterogeneous structures and does so for all L � 0.04.

These large-amplitude patterns are illustrated along the bottom of Fig. 5a. Here, we
have chosen five values of L to demonstrate the solutions we would expect to see. The
colour of each simulation corresponds to the colour of the line in the top figure, which
presents the location of each L value of each simulation. Note that the blue line in the
top subfigure, which represents the maximum and minimum values of u, matches the
maximum and minimum values of u in the bottom subfigure simulations.

For the left two simulations of the bottom of Fig. 5a, where L < Lc (i.e. L = 0.04
and 0.07) the subfigures show two simulations. The thick lines represent the large-
amplitude stable patterns, which would be observed, whilst the thin lines represent the
unstable solutions that are found on the subcritical branch.

We observe that as L increases from 0.04 the heterogeneous pattern takes on the
form of a single peak, whose amplitude grows to around a maximum of u ≈ 50. This
maximum decreases to around u ≈ 20, where it remains constant. However, observing
only the maximum and minimum values does not supply an understanding of what is
happening to the pattern across the domain. Specifically, going left to right along the
bottom row of Fig. 5a we observe that as the amplitude of the single peak decreases
the peak divides evenly into two producing two large-amplitude “bat ears” around
a central region that has a fairly low and homogeneous value of u (see simulations
L = 0.07–0.58). Note also, that it is during this splitting that the minimum value of u
first reduces past its steady-state value and stays relatively close to zero from then on.
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Fig. 5 (Colour figure online) Following the bifurcation structure of the a subcritical and the b supercritical
branches of the transcritical bifurcation using pde2path. In each case, the top subfigure is the bifurcation
structure of Eqs. (45) and (46) under Dirichlet boundary conditions, as viewed through the maximum and
minimum values of u, whilst the bottom subfigure presents representative examples of the spatial patterns
for different values of L . The vertical lines in the top subfigures match the colours of the accompanying
simulations and present the location of the L parameter being used in the bottom subfigures. In all figures,
thick lines represent stable solutions, whilst thin lines represent unstable solutions. Note that multiple
patterns plotted on the same axes demonstrate that multiple different patterns are available for the same
value of L

Finally, as L is increased further this central flat region starts to pattern, but with
a much smaller amplitude heterogeneity. These patterns are unlike standard Turing
structures, which generically show little variation in the maximum and minimum
values seen in the peaks and troughs, although such “generic” simulations usually use
Neumann boundary conditions. It should be noted that such patterns were investigated
in the Schnakenberg model by Ward and Wei (2002) and called “asymmetric spike
patterns”. However, these were only considered in a vanishingly small-diffusion-ratio-
large-kinetic parameter region and not observed to stem from Dirichlet boundary
conditions, but from Neumann boundary conditions.

The existence of stable large-amplitude spatial patterns that stem from the unstable
subcritical branch can then be compared with the solutions that stem from the stable
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Fig. 6 (Colour figure online) Following the bifurcation structure of the pitchfork bifurcation using
pde2path. The top subfigure is the bifurcation structure of Eqs. (45) and (46) under Neumann boundary
conditions, as viewed though the maximum and minimum values of u. The bottom subfigure presents rep-
resentative examples of the spatial patterns for different values of L . The vertical lines in the top subfigures
match the colours of the accompanying simulations and present the location of the L parameter being used
in the bottom subfigures. In the top figure, thick lines represent stable solutions, whilst thin lines represent
unstable solutions. For clarity, only the stable solutions have been plotted in the bottom figures. Note that
multiple patterns plotted on the same axes demonstrate that multiple different patterns are available for the
same value of L

supercritical branch. Specifically, as seen in Fig. 5b the supercritical branch only pro-
vides stable patterns between the approximate intervals of [Lc, 0.32] and [0.41, 0.88].
These two intervals are connected by a region of unstable heterogeneous solutions and
all small amplitude solutions are unstable for L > 0.9.

The Dirichlet bifurcation structure can be compared with Neumann bifurcation
structure, which is in some ways simpler because the symmetry of the initial pitchfork
bifurcation means that since we are tracking the maxima and minima of the solution
we are following both branches simultaneously. Specifically, the top subfigure of Fig. 6
shows a familiar cascade of higher frequency solutions Crampin et al. (1999); Barrass
et al. (2006) moving in and out of stability. For example, if we consider L = 0.25,
the bifurcation structure (black line in Fig. 6) shows that there are two stable and one
unstable heterogeneous solutions available. The stable solutions are illustrated in the
left simulation on the bottom of Fig. 6. The two stable solutions (represented by the
thick black lines) are the n = 1 and 2 frequency patterns (i.e. the pattern has a half
peak, or a full peak, respectively).

As L increases further more stable and unstable patterns are simultaneously pos-
sible. For example, there are four patterns possible when L = 0.5 (two stable and
two unstable) and six patterns possible when L = 0.75 (three stable and three unsta-
ble). Critically, due to solution symmetries there are actually more solutions available.
Namely, the spatial reflection of any solution is also possible. Further, any peak in
the interior must have a local maximum, i.e. a point where ux = 0. Thus, because
of the Neumann boundary conditions, if the value of the population is the same on
the boundaries (effectively generating periodic boundary conditions) then the pattern
can be split at any local maximum and rearranged to also provide another solution.
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For example, consider the stable simulations that have a single interior peak when
L = 0.25 and L = 0.5. The central peak could be split and the solution could be
rearranged to generate a half peak at each boundary and a trough in the centre of the
domain. Note this rearranging can only be done with solutions that map to even values
of n, since odd values of n do not satisfy periodic boundary conditions.

Finally, increasing L slowly is an approximation of slow domain growth (Maini
et al. 2003; Neville et al. 2006; Woolley et al. 2011a, b; Woolley 2011; Woolley et al.
2011c; Krause et al. 2019; VanGorder et al. 2021). There should also be a dilution term
included, but this is small if the domain growth is slow (Barrass et al. 2006; Crampin
et al. 2002a, b, 1999; Madzvamuse and Maini 2007). Thus, considering Figs. 5 and 6,
we should observe transitions from one stable pattern to another as the domain grows.

Using this correspondence of changing L and domain growth, we extend L to be
the temporally evolving function L(t) = L0(1 + t/100). Thus, the PDEs are now
effectively being simulated on a domain that is undergoing uniform linear growth
with initial size L0.

In Figs. 7 and 8, we simulate the Schnakenberg kinetics, Eqs. (45) and (46), under
the assumption of time dependent L , for values of L larger than seen previously. Not
only do we illustrate the evolving patterns that arise, but we extract the maxima and
minima of the solutions and compare these to the bifurcation diagrams.

Firstly, we consider the Dirichlet boundary set-up and start the simulation close to
the different solution branches. The simulations of Fig. 7a, b follow the subcritical
branch and supercritical branches from the bifurcation point, respectively, see Fig. 7d.
To achieve this we start the simulations just before the bifurcation, L0 = 0.1 < Lc

and choose different perturbations. Specifically, the solutions on the subcritical and
supercritical branches are always above and below the steady state, respectively. Thus,
a non-negative initial perturbation (i.e. u(x, 0) = 2+ (1/2− x)(x +1/2)) will always
cause the simulation to tend to the subcritical branch solution whilst a non-positive
perturbation (i.e. u(x, 0) = 2+ (x − 1/2)(1/2+ x)) will always cause the simulation
to tend to the supercritical branch solution (when the solutions exist). The simulation
in Fig. 7(c) was started near the second stable branch that stems from the supercritical
branch. This simulation was initiated with L0 = 0.4 and a non-positive perturbation,
(x − 1/2)(1/2 + x).

As expected, the maximum and minimum trajectories derived from the simulations
in Fig. 7a, c closely follow the bifurcation structure seen in Fig. 7d. The solution
following the subcritical branch (Fig. 7a and black dashed line in Fig. 7d) present a
rapidly rising maximum that stays throughout the whole simulation, which represents
the boundary peaks visualised in Fig. 5a. Further, as L increases, small internal peaks
appear between the two boundary maximal peaks.

The first supercritical branch simulation (Fig. 7b and red dashed line in Fig. 7d)
first presents a small amplitude pattern akin to that seen in the bottom left subfigure
of Fig. 5b before following the subcritical branch solutions as the first supercritical
branch destabilises. Critically, from comparing Fig. 7a, b it appears as though there is
a sizeable delay before the patterning appears, when in fact it is simply the solution
initially following a different stable path of solutions.

Finally, the second supercritical branch simulation (Fig. 7c and green dashed line
in Fig. 7d) presents a small amplitude pattern akin to that seen in the middle subfigure
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Fig. 7 (Colour figure online) Comparing bifurcation diagram and simulationswith dynamic L . a–c Illustrat-
ing u from simulations of Eqs. (45) and (46) with L = L0(1+ t/100) under Dirichlet boundary conditions.
Where L0 = 0.1 in (a) and (b) simulations and time is run for 1900 time units. In c, L0 = 0.4 and the
simulation is run for 400 time units. The initial condition in the left simulation is the steady state plus
non-negative perturbations, whilst the initial condition for the middle and right figures is steady state plus
non-positive perturbations. Note that because of the large-amplitude boundary peaks we have to saturate
the colour bar. Thus, the yellow colour represents all values greater than 5. d The maximum and min-
imum values of u are extracted from the simulations in (a)–(c) (dashed lines) and these are compared
with the bifurcation diagram extracted using pde2path (blue lines). The thickness of the bifurcation plot
determines the stability of the solution

of Fig. 5b before following the subcritical branch solutions as this branch destabilises.
Here, we note that in contrast to Fig. 7a, b where the maxima appear on the boundaries
first, here themaxima form in themiddle first and aremaintained as the boundary peaks
appear.

Since there are no further stable solutions stemming from the supercritical branch
for L > 1we see that all simulations follow the same bifurcation trajectories thereafter
and the only time the trajectories and the bifurcation branches diverge is when the
pattern frequency increases and there is rapid realignment of the pattern. For example
around L ≈ 1 and 1.7 the amplitudes of the trajectories record a dip that is not matched
in the bifurcation structure. These dips stem from the fact that L is being treated as a
dynamic parameter in the simulations rather than as an adiabatic stationary parameter
as in the bifurcation analysis. Thus, after these divergences the trajectories do tend to
realignwith the bifurcation structure as the patterns evolve to their new stable structure.

Considering the Neumann boundary condition situation we reproduce the well-
known peak splitting phenomenon seen in much of the domain growth literature
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Fig. 8 (Colour figure online)Comparing bifurcation diagram and simulationswith dynamic L . a Illustrating
u from simulations of Eqs. (45) and (46) with L = L0(1 + t/100) under Neumann boundary conditions,
where L0 = 0.1 and time is run for 1900 time units. bThemaximum andminimum values of u are extracted
from the simulation in (a) (dashed line) and are compared with the bifurcation diagram extracted using
pde2path (blue lines). The thickness of the bifurcation plot determines the stability of the solution

(Woolley et al. 2011a, b; Crampin 2000; Crampin et al. 1999), see Fig. 8. Namely,
as L increases the Turing instability occurs and the pitchfork bifurcation ensures that
there is only one potential solution (up to symmetries). As L increases further the
simulation’s maxima and minima trajectories then follow the bifurcation diagram
and particularly follows branches that double the pattern’s frequency because of the
underlying symmetries that are present in the reaction–diffusion system (Crampin
2000; Crampin et al. 1999).

Comparing Figs. 7 and 8, we can infer that Neumann boundary conditions make
Turing pattern formation more robust than the Dirichlet boundary conditions, at least
near the initial Turing bifurcation point. Specifically, regardless of the initial condition,
the initial pitchfork bifurcation forces the pattern into a n = 1 pattern and then growth
allows pattern doubling to robustly occur (depending on the form of growth). This
is in contrast to the Dirichlet boundary condition situation where two very different
solutions are viable because of the transcritical bifurcation. Thus, the initial solution
heavily depends on the initial condition. However, if the domain grows large enough
then, in at least this case of the Schnakenberg kinetics, the finite numerical evidence
we have suggests that all solutions should tend to the same pattern because all small
amplitude patterns become unstable. Further, after the patterns have converged to
the large-amplitude solutions, growth provides a consistent mechanism of robustly
generating higher-order patterns.
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4 A Brief Diversion into Understanding Boundary Peak Height

The following section presents observations that have arisen through comparing the
influence of the different boundary conditions on the patterns. Although we present
these features and offer insights as to their dependence we do not explicitly solve the
question of how they originate, thus, we offer this section as a starting point for the
interested reader. Otherwise, this section can be skipped as it does not add more detail
to how the bifurcation structures depend on the boundary conditions.

Presently, we have demonstrated that under Dirichlet boundary conditions it is
possible to generate non-standard Turing patterns that have large boundary peaks, but
we have yet to investigate their dependence on the equations. Specifically, because
the large-amplitude patterns are a boundary effect and, thus, must depend on the
spatial components, we consider how the spatial parameters influence the height of
the peaks. We focus our attention on the role of Dv and L on the height of the peaks,
whilst keeping Du = 10−3. Note, we only need to consider one of the diffusion rates
because non-dimensionalisation shows us that it is the ratio Du/Dv that is important,
rather than each value explicitly.

Firstly, we need to derive the (L, Dv) parameter region from which patterns can
emerge. If we consider the auxiliary Eq. (16) of the first mode (i.e. cos(πx)) then we
find that the stability of the homogeneous solution depends on the sign of the real part
of λ satisfying

0 = λ2 + ((1000Dv + 1)π2 + 3000L2)λ

1000L2

+ ((4 − 1000Dv)L2π2 + π4Dv + 8000L4)

1000L4 . (52)

The patterning parameter region, i.e. where the real part of λ is positive is shown in
Fig. 9a. The boundary of this region is given by Eq. (52) when λ = 0,

Dv = 4
L2

(
2000L2 + π2

)
π2

(
1000L2 − π2

) . (53)

From the explicit form of Eq. (53) we can see that L ≥ π/
√
1000 ≈ 0.0993 and

Dv ≥ (2 + √
6)(

√
6 + 3)

√
6/1500 = Dvc ≈ 0.0396, which occurs when L =√

5π
√
2 + √

6/100 ≈ 0.148, matching the results seen in Fig. 9.
Next, we will show that the boundary peak’s height is related to the steady-state

solution of the amplitude equation,

a = − 3π3(η�Du + Dv)L1

2L3
c

(
η�2 fuu + 2η� fuv + η fvv + guu�2 + 2guv� + gvv

) =: −mL1.

(54)

Unfortunately, the dependence of a on Dv is not as clear as it first seems from Eq. (54)
since η, � and Lc also depend on Dv . However, we are able to visualise the generic
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Fig. 9 (Colour figure online) Illustrating the Turing unstable parameter region. a The (L, Dv) parameter
region of Eqs. (45) and (46) where the colour axis illustrates the value of λ from Eq. (52). b The gradient
of the nonzero transcritical bifurcation branch from Eq. (54) with L = Lc

dependence of m on Dv in Fig. 9b. We observe a non-monotonic relationship where
a rapidly rises to a local maximum and then decays to zero as Dv increases.

Noting Fig. 9b, we may expect that maximising the coefficient m will increase the
height of the boundary peaks, as this will cause the transcritical branch gradient to
be steeper causing the growth of the transcritical branch to be quicker as L decreases
from Lc, see Fig. 4a. Counterintuitively, it is the opposite that is true, because although
increasing a is important for a large-amplitude solution, these solutions are only stable
once the subcritical branch has folded back on itself, see Fig. 10a. Thus, curves with
larger m values fold over earlier than curves with smaller values of m. Hence, we
observe from Fig. 10 that the amplitude of the boundary peaks grows rapidly as Dv

increases, whilst leaving the internal peaks relatively unchanged, in terms of height.
Moreover, Fig. 10a shows that the range of subcritical patterns grows with increasing
Dv to values well below the linear Turing bound of L ≈ 0.0993 derived above.

5 Conclusion

Modelling spatio-temporal phenomena, biological or otherwise, is an incredibly com-
plicated task. Yet despite this complexity, or perhaps because of this, the models and
boundary conditions we impose arise from a very small set of recurring structures. For
example, if the solution domain is thought to have a constant flux of active population
through a boundary then fixed flux boundary conditions can be applied, with zero-flux
boundary conditions being the most common, modelling the idea that the populations
are not thought to leave their domain of influence. Alternatively, if there is a constant
source of population then fixed value boundary conditions can be applied. Of course,
boundary condition can be mixed and matched should multiple boundaries exist and,
more unusually, we can mix fixed source and flux conditions together to give Robin
boundary conditions (Murray 2003). Critically, all of these boundary conditions have
analogues in the physical world and, perhaps more importantly, they can now be con-
structed using techniques from synthetic biology (Krause et al. 2020b; Sheth et al.
2012; Vahey and Fletcher 2014; Dai et al. 2015).
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Fig. 10 (Colour figure online) Bifurcation diagram and accompanying simulations of Eqs. (45) and (46)
over varying values of Dv . a For all noted values of Dv , the subcritical branch of the transcritical Turing
bifurcation was followed using pde2path for L ∈ [0, 0.15]. The thick lines represent stable solutions,
whilst the thin lines represent unstable solutions. b Selected simulations of Eqs. (45) and (46) for Dv =
0.05, 0.1 and 0.2. The simulations were run for 1000 time steps to ensure that they converged to a steady
state and the initial condition was a non-negative perturbation of the steady state. In all simulations L = 0.2

We have demonstrated that boundary conditions can fundamentally alter the bifur-
cation structure near the Turing bifurcation point of a patterning reaction–diffusion
system.Moreover, although the technique of weakly nonlinear analysis is able to high-
light this difference the technique may not able to fully characterise the system beyond
bifurcation type.

Specifically, although the amplitude equations are able to provide a good under-
standing of the pitchfork bifurcation in the Neumann boundary condition case the
same cannot be said for the Dirichlet boundary condition case. The analysis states that
the subcritical branch of the transcritical bifurcation form unstable patterns, whilst the
supercritical branch is the one that the simulations will follow. However, numerically,
we are able to explore the bifurcation diagram much more freely and discover that
although these results hold near the bifurcation point they are not the whole story, with
the subcritical branch being much more important to follow, at least in terms of the
Schnakenberg kinetics.

Independent of the wider bifurcation structure, we have shown an often missed fact
that Turing patterns do not always have to appear through a pitchfork bifurcation. Even
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among authors who do note the existence of a transcritical bifurcation we have not
found anyone who has derived and investigated its structure, even though its structure
is simpler than the pitchfork bifurcation, as the system only needs to be expanded to
quadratic order, rather than the standard cubic order.

With the freedom to explore the system numerically, we could consider a more
general Robin boundary condition and use a parameter to sweep between a scenario
that is dominated by the Neumann features, to a scenario that is dominated by the
Dirichlet features. Thus, allowing us to investigate how pitchfork bifurcation evolves
to a transcritical bifurcation (Dillon et al. 1994). However, preliminary investigations
suggest that this is not a trivial matter because it is not a simple transition from one
bifurcation type to another, but rather transitioning from Neumann to Robin boundary
conditions appears to remove the pitchfork bifurcation leading to the homogeneous
steady state becoming stable again. In turn, transitioning from Robin to Dirichlet then
allows the transcritical bifurcation to appear. Although potentially tractable delving
into such considerations is outside the scope of the current paper and will be left for
future work to investigate.

Application of the theory to the Schnakenberg kinetics also led to some unusual
results. It is well known that “standard” Turing patterns with consistent peak and
trough sizes are common when Neumann boundary conditions are used. However,
such standard patterns are the exception, rather than the rule when Dirichlet boundary
conditions are used, as small amplitude patterns only occur for a finite parameter
region along the supercritical branch. Whereas, the large-amplitude “bat ear” patterns
that stem from the unstable subcritical branch provide heterogeneous solutions for
an infinitely large L > Lc interval. Further, because of the subcritical nature of the
bifurcation the patterning interval extends beyond the region that linear Turing analysis
would suggest.

Thus, if Dirichlet boundary conditions are required in an application which presents
standard Turing patterns then the system becomes heavily constrained. The parameters
and initial conditionswould have to be fine-tuned to ensure that the supercritical branch
solutions are consistently found. Justifying such constraints and boundary conditions
would not be a simple task and would depend heavily on experimental knowledge.
Whereas the system is much less constrained under Neumann boundary conditions,
which is perhaps why they are so often employed in applications.

Moreover, if the systemwere applied to a growing domain then it would be virtually
impossible to sustain the small amplitude patterns underDirichlet boundary conditions
because the solution trajectory travels through regions of instability and these solutions
eventually disappear altogether.

Thus, we realise that just because a system behaves “well” under Neumann bound-
ary conditions, in that the same patterns will always exist under small perturbations
of the set-up, allowing many biological applications, this does not mean that Neu-
mann boundary conditions are the correct model of the biological system. Further,
since many of the features we have highlighted in this paper are not seen through the
standard linear analysis they are not always considered, or appreciated.

Critically, due to the complexity of biological systems it is common for mathemat-
ical models to not have their boundary conditions justified strongly, or for justification
to be ignored due to reasons of phenomenology (Krause et al. 2021c). However, it
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should be unsurprising that small changes in boundary conditions can influence the
resulting pattern (Arcuri andMurray 1986; Dillon et al. 1994).Moreover, since analyt-
ical results can only probe the system close to the bifurcation, which is of limited use
(Becherer et al. 2009) wemust suggest that if a Turing system is being applied to a bio-
logical (or any) application where boundary conditions are unresolved experimentally
then the theoretical researchers should include numerical explorations of boundary
condition perturbations into their sensitivity analysis, alongside any parameter pertur-
bations. This boundary condition sensitivity analysis will then either: provide further
theoretical arguments strengthening the chosenmodel’s justification; provide interpre-
tation of unexplained biological data; or provide new future avenues of experimental
investigation testing model predictions.
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Appendix A: Expansion Coefficients

1. Dirichlet Boundary Conditions

The weakly nonlinear analysis involves expanding a solution u about the steady in
terms of a small parameter, 0 < |ε| � 1, i.e.

u(x, t1, t2) =
(
us
vs

)
+ εU1(x, t1, t2) + ε2U2(x, t1, t2) + . . . .

The first function, U1, is seen to be a null vector of the linear operator L, see Eqs.
(32) and (33). The second function U2 follows from deriving a consistency condition
to define the amplitude function, a (Eq. (39)), and substituting U1 into

LU2 = ∂U1

∂t1
+ 2L1

L3
c
D

∂2U1

∂x2
− U 2

1

2

(
fuu
gvv

)
−U1V1

(
fuv

guv

)
− V 2

1

2

(
fvv

gvv

)
. (A1)
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Finally, assuming U2 has the form

U2 =
(
cu0
0

)
cos(πx) +

∞∑
n=1

(
cun
cvn

)
cos((2n + 1)πx),

and noting that

cos2(πx) =
∞∑
n=0

8(−1)n+1

π(2n + 3)(2n + 1)(2n − 1)
cos((2n + 1)πx)

=
∞∑
n=0

c(n) cos((2n + 1)πx),

we can expand Eq. (A1) completely and derive simultaneous equations for the cun and
cvn values. Once expanded and rearranged, Eq. (A1) is equivalent to

0 =
((

− cu0Duπ
2

L2
c

0

)
+ cu0

(
fu
gu

)
+ 2aπ2L1

L3
c

(
Du

Dv

)

+4a2

3π

(
fuu�2 + 2 fuv� + fvv

guu�2 + 2guv� + gvv

)) (
− ∂a

∂t1

(
�

1

))
cos (πx)

+
∞∑
n=1

(
−cvnπ

2

L2
c

(2n + 1)2
(
Du

Dv

)
+ J

(
cun
cvn

)

+a2c(n)

2

(
fuu�2 + 2 fuv� + fvv

guu�2 + 2guv� + gvv

))
cos ((2n + 1) πx) . (A2)

The solution to which is

cu0 = 4L2
c

(
fuu�2 + 2 fuv� + fvv − �3guu − 2�2guv − �gvv

)
a2

3π (η� + 1)
(
π2Du − fu L2

c

)

+ 2�π2L1 (Du − Dv) a

Lc (η� + 1)
(
π2Du − fu L2

c

) , (A3)

cun =
((−gvL2

c + π2Dv (2n + 1)2
) (

�2 fuu + 2� fuv + fvv

) + fvL2
c

(
guu�2 + 2guv� + gvv

))
a2c (n) L2

c

2
(
fu L2

c − π2Du (2n + 1)2
)
L2
c gv − 2 fvL4

c gu − 2π2Dv (2n + 1)2 L2
c fu + 2π4DuDv (2n + 1)4

,

(A4)

cvn =
((− fu L2

c + Duπ
2 (2n + 1)2

) (
�2guu + 2�guv + gvv

) + gu L2
c

(
fuu�2 + 2 fuv� + fvv

))
a2c (n) L2

c

2
(
gvL2

c − π2Dv (2n + 1)2
)
L2
c fu − 2 fvL4

c gu − 2gvL2
c Duπ2 (2n + 1)2 + 2π4DuDv (2n + 1)4

.

(A5)

We can then substitute the solutions for U1 and U2 into the third-order equation for
LU3 and, once again, use the Fredholm alternative to create a solvability criterion that
ensures 〈LU3, η〉 = 0, namely

∂a

∂t2
=

(
η fuuu�3 + 3η fuuv�

2 + 3η fuvv� + η fvvv + guuu�3 + 3guuv�
2 + 3guvv� + gvvv

)
a3

8 (η� + 1)
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+
(
8 (η� fuu + η fuv + �guu + guv) cu0

3π (η� + 1)
−

(
3L1

2 − 2L2Lc
)
π2 (η�Du + Dv)

Lc
4 (η� + 1)

+
∞∑
n=1

8 (−1)n+1 ((η� fuu + η fuv + �guu + guv) cun + (η� fuv + η fvv + guv� + gvv) cvn)

(2n + 3) π (η� + 1)
(
4n2 − 1

)
)
a

+ 2
ηπ2DuL1cu0
Lc

3 (η� + 1)
− η

η� + 1

∂cu0
∂t1

. (A6)

Equations (A6) and (39) can then be combined to produce the cubic transcritical
bifurcation equation shown in Eq. (42).

2. Neumann Boundary Conditions

Section 2.2.2 shows that under Neumann boundary conditions the right-hand side of
Eq. (A1) will have no resonant terms to be removed. Thus, the system of equations
can be solved directly using a solution of the form

U2 =
(
cu0
cv0

)
+

(
cu2
cv2

)
cos(2πx). (A7)

Substituting this into Eq. (A1) leads to linear simultaneous equations, which can be solved to provide

cu0 =
((

�2guu + 2�guv + gvv

)
fv − gv

(
�2 fuu + 2� fuv + fvv

))
a2

4 fu gv − 4 fvgu
, (A8)

cv0 = −
((

�2guu + 2�guv + gvv

)
fu − gu

(
�2 fuu + 2� fuv + fvv

))
a2

4 fu gv − 4 fvgu
, (A9)

cu2 = a2L2
c

((
�2guu + 2guv� + gvv

)
L2
c fv + (

�2 fuu + 2� fuv + fvv

) (
4π2Dv − gvL2

c

))
−4 fvL4

c gu + 4
(
4π2Dv − gvL2

c

) (
4π2Du − fu L2

c

) , (A10)

cv2 = a2L2
c

((
�2 fuu + 2� fuv + fvv

)
L2
c gu + (

�2guu + 2�guv + gvv

) (
4π2Du − fu L2

c

))
−4 fvL4

c gu + 4
(
4π2Dv − gvL2

c

) (
4π2Du − fu L2

c

) . (A11)

Substituting U2 into Eq. (31) will then cause resonant terms to be created that need to
be removed through the use of the Fredholm alternative theorem. Thus, applying the
requirement that 〈η,LU3〉 = 0 we are able to derive the following form for the time
derivative of a,

∂a

∂t2
= 2

π2
(
�Dugu Lc

2 + Dv

(
π2Du − fu Lc

2
))
aL2

Lc
3
(
�gu Lc

2 + π2Du − fu Lc
2
)

+
(
gu

(
�3 fuuu + 3�2 fuuv + 3� fuvv + fvvv

)
Lc

2 + (
�3guuu + 3�2guuv + 3�guvv + gvvv

) (
π2Du − fu Lc

2
))
a3

8�gu Lc
2 + π2Du − fu Lc

2

+ Lc
2 ((� fuu + fuv) (cu1 + 2cu0) + (� fuv + fvv) (cv1 + 2cv0)) gua

2
(
�gulc2 + π2Du − fu Lc

2
)

+
(
π2Du − fu Lc

2
)
((�guu + guv) (cu1 + 2cu0) + (�guv + gvv) (cv1 + 2cv0)) a

2
(
�gulc2 + π2Du − fu Lc

2
) . (A12)
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