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A B S T R A C T   

Several sources of revenue are available for battery storage systems that can be stacked to further increase 
revenue. Typically, price arbitrage is used to gain revenue from battery storage. However, additional revenue can 
be gained from participation in ancillary services such as frequency response. This study presents a linear 
optimisation approach to account for local energy system participation in the wholesale day-ahead electricity 
market and multiple frequency response services. The methodology was applied to a school case study. A 
breakdown of market revenue and value of investment is presented for five operating strategies. The value of 
availability revenue and response energy revenue are distinguished for frequency response services. Finally, the 
impact of revenue stacking on battery degradation is assessed. The results show that local energy systems can 
decrease their operating costs and improve battery storage investment viability by stacking multiple revenues, 
whilst reducing degradation and increasing lifetime.   

1. Introduction 

High penetrations of intermittent renewable generation will require 
flexibility from energy storage to reduce energy curtailment and reduce 
whole system electricity costs [1]. Energy storage systems are a key 
enabler of the transition to low-carbon energy systems. Energy storage 
supports the grid by decoupling the link between supply and demand, 
allowing the efficient consumption of renewable power generation and 
providing services to improve the security of power supply. National 
Grid ESO expects battery storage to increase on a domestic scale and be 
the leading large-scale energy storage technology, in the UK [2]. By 
2050, UK grid and domestic scale battery storage must be over 110 GW 
to reach net zero greenhouse gas emissions [3]. 

Local energy systems (LESs) are collections of (flexible) energy de-
mand, supply and/or storage that are operated to benefit local stake-
holders. LESs with battery storage systems (BSSs) have several markets 
available to participate in to gain revenue. Participating in multiple 
markets to increase revenue is called ‘revenue stacking’. The most 
common source of revenue for BSSs is purchasing electricity when the 
price is low and selling it (or consume it) when the price is high, called 
‘price arbitrage’ [4]. Alternative sources of revenue are available for 
providing flexibility services to transmission system operators, called 
‘Ancillary Service’. These include frequency response, reserve and peak 

demand management [5,6]. Revenue stacking raises challenges such as 
maximising battery revenue across multiple markets, increasing battery 
investment viability, and understanding the impact of market partici-
pation on the lifetime of a BSS. 

Despite the significant fall in battery prices since 2010 [7], the high 
investment cost is still the main barrier to large scale integration of BSSs 
[8]. For many cases, the investment in BSSs cannot be justified for a 
single application. In [9], the feasibility of a BSS alongside a renewable 
energy park is assessed, based on price arbitrage alone. The results show 
the BSS is not economically feasible with current battery capital costs. In 
[10], the optimal configuration of the case study local energy system 
does not include a battery storage system. The battery was not viable for 
price arbitrage due to the high investment cost. This result is similar to 
other studies in the literature [11]. These studies show it is not profitable 
to invest in battery storage for price arbitrage only. 

In [12], battery storage technologies are reviewed, covering their 
performance, system design and operation in specific applications. The 
study suggested that stacking of multiple revenue streams will be a vital 
part of integrating BSSs into future power grids. In [13], several single 
applications were assessed for their investment attractiveness, including 
arbitrage, self-consumption, investment deferral, frequency regulation 
and reserve. The study found that no single application was likely to be 
an attractive investment. Likewise, [14] studied several virtual power 
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plant configurations participating in frequency response services. None 
of the virtual power plant configurations were profitable while partici-
pating in frequency response. Analysis in [13] combined arbitrage, 
self-consumption and investment deferral with grid support services. 
Stacking two revenue streams improved investment attractiveness for all 
combinations of applications. In some cases, making the investment 
profitable. These studies have shown the need for multiple revenue 
streams to make battery storage financially viable. However, they do not 
provide adaptable methodologies to allow battery owners to maximise 
revenue in real markets. 

In [8], multiple revenue streams were stacked and the net present 
value (NPV) determined. The results show higher NPVs for stacked 
revenues, where three revenue streams resulted in the highest NPV. As 
well as improving the investment prospect of BSSs, their participation in 
services can lead to improved safety, reliability and quality of the grid 
[15]. 

These studies provide valuable insights into the operating behaviour 
of BSSs and their participation in price arbitrage and ancillary services. 
However, a concise methodology is required for LESs with a BSS to 
determine their optimal operating strategy. Additionally, the contrast 
between availability revenue and response energy revenue from deliv-
ering the service has not been suitably explored. Finally, an under-
standing of the effect of revenue stacking on battery charge/discharge 
behaviour and its impact on battery degradation and lifetime is 
necessary. 

This study aims to deliver a methodology suitable for LESs to 
determine their optimal operating strategy within GB electricity and 
ancillary services markets. Additionally, to demonstrate the benefit of 
revenue stacking for BSS operators while considering the impact on 
battery degradation. Therefore, this paper presents: 

• A linear optimisation model to minimise LES operating cost incor-
porating stacking of revenues from participating in the wholesale 
day-ahead electricity market and frequency response services.  

• A detailed breakdown of revenue from frequency response services, 
including both availability and dispatch revenue.  

• The impact of wholesale energy market price arbitrage and stacking 
frequency response services on battery degradation and lifetime. 

The remainder of this paper is structured as follows: Section II de-
scribes the methodology for the operational optimisation, the revenue 
gained from delivering a service and the evaluation of battery degra-
dation. Section III set outs the parameters of the case study and Section 
IV presents the results from the modelling, providing insights into the 
significance of the outcomes. Finally, Section V presents the conclusion 
of the study. 

2. Methodology 

The LES configuration in this paper considers local demand, 
renewable generation, a BSS and a connection to the grid that allows 
bidirectional flow of electricity. This structure is presented in Fig. 1. The 
wholesale day-ahead electricity market and frequency response services 

were considered in this study. In GB, National Grid ESO organise fre-
quency response services to ensure security of electricity supply by 
keeping the power system frequency at 50 Hz. Frequency response 
services inject/absorb energy to/from the grid when the power system 
frequency is low (‘under-frequency’ event) or high (‘over-frequency’ 
event). Although several frequency response services are available, 
Dynamic Containment (DC) and Firm Frequency Response (FFR) were 
considered in this study. These were chosen due to their technical re-
quirements being suitable for battery storage, real tenders being won by 
battery storage and their freedom to be stacked with price arbitrage. FFR 
was split into FFR low (FFRL) and FFR high (FFRH) The details of these 
services are summarised in Table 1. DC, FFRL and FFRH are procured 
24/7, 365 days a year. The dispatch requirements provide details of 
when the services are dispatched into the power system. There are other 
ancillary services that support the power system in different ways, for 
more information on these and frequency response services, refer to [5, 
6,16]. 

At the time of writing, National Grid ESO only procure DC for low 
frequency. Therefore, for DC and FFRL, power capacity is made avail-
able for dispatch in response to low power system frequency. DC is 
procured for 24 h blocks, therefore when participants bids are accepted 
their power capacity must be available for 24 h. Whereas Firm Fre-
quency Response services are procured for 4 h blocks, see [17]. FFRH is 
identical to FFRL, except it is dispatched in response to high power 
system frequency. Current regulation prevents DC from being stacked 
with other frequency response services. Whereas FFRH and FFRL can be 
stacked to increase revenue. Regulation also impacts the market entry 
assessment process and testing requirements. DC has stringent perfor-
mance testing to gain entry to the market, whereas FFRH and FFRL are 
more relaxed. 

As shown in Table 1, the duration of delivery at full power is 15 min 

Fig. 1. Power flow diagram of local energy system configuration. The com-
ponents are: (a) local demand, (b) PV generation, (c) battery storage system and 
(d) bidirectional connection to the grid. 

Table 1 
Frequency response characteristics [17].  

Characteristic DC FFRL FFRH 

Minimum power capacity (MW) 1 1 1 
Availability window (block) duration (h) 24 4 4 
Delivery duration, TFR (hours) 0.25 0.5 0.5 
Response time (s) 1 2 2  

Fig. 2. Flow chart visualising the modelling process. Each block represents an 
independent action. The start block is first and each arrow moves to a subse-
quent action. Each model is highlighted with a thick outline. 
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for DC and 30 min for FFRH and FFRL. This determines the stored energy 
required for a specific committed power capacity. Furthermore, the 
dispatch requirements of DC, FFRH and FFRL are distinct from one 
another, discussed in Section II.B. 

Frequency response providers are paid per hour for power capacity, 
called the ‘availability fee’ with unit £/kW per hour. Providers can also 
be paid for the energy they deliver to the grid. This is determined by the 
energy delivered and the balancing price and is called the ‘response 
energy payment’. To account for the availability fee, response energy 
payment, battery investment and battery degradation, the modelling 
was split into the following sections: day-ahead operational optimisa-
tion, NPV, service dispatch and degradation. 

Each section of the methodology was modelled separately and run 
independently. The operational optimisation was created in GAMS. The 
outputs of this were imported into MATLAB, where the frequency 
response energy dispatch model was carried out. The operation and 
energy dispatch results were imported to Excel, where the battery 
degradation model was executed. Finally, for each iteration of y, the 
results of the operational optimisation were imported to Excel, where 
the NPV was performed. An overview of the modelling framework is 
shown in Fig. 2. 

2.1. Operational optimisation 

In the operational optimisation model the LES schedules the 
charging/discharging of the battery to minimise operating cost. The LES 
reduces operating cost by performing price arbitrage in the wholesale 
day-ahead electricity market and by offering frequency response ser-
vices. Both the day-ahead electricity market and frequency response 
market prices are exogenous. Therefore, the LES is a price taker with no 
influence over market prices. The operational optimisation considers 
availability revenue but does not account for response energy revenue 
from frequency response. To understand the impact of this assumption, a 
methodology for analysing response energy revenue is presented in 
Section II.B. The LES gains availability revenue by making power ca-
pacity available and committing it to frequency response. Throughout 
the operational optimisation DC and FFRL are referred to as frequency 
response low (superscript FR,l) and FFRH is referred to as frequency 
response high (superscript FR,h).The objective function is defined as 
follows. 

Min Π =
∑B

b=1

∑T

t=1
τ
(

Kw
b,t

(
Pim

b,t − Pex
b,t

)
− KFR,l

b PFR,l
b − KFR,h

b PFR,h
b +KDUoS

b,t Pim
b,t

)

(1) 

The objective function (1) minimises the LES operating cost. The 
operating cost is made up of the cost of importing electricity (Kw

b,tPim
b,t), 

the income from exporting electricity (Kw
b,tPex

b,t), the availability income of 
frequency response low and high (PFR,l

b KFR,l
b , PFR,h

b KFR,h
b ) and the cost of 

distribution use of system (DUoS) charges (KDUoS
b,t Pim

b,t). 
Table 2 shows the size of sets t and b for FFR and DC. Set b represents 

the blocks that frequency response services can be procured for (b = 1,2,
…,B). As shown in Table 2, the block duration for DC is 24 h and the 
block duration for FFRH and FFRL is 4 h. Set t represents each time step 
within a block (t = 1,2,…,T). 

As DC and FFR services cannot be stacked, their operational opti-
misations were formulated in separate models with different blocks and 
time steps. The wholesale day-ahead electricity price and DUoS charges 
change for each time step, therefore must include sets b and t. Frequency 

response prices are fixed for each block, therefore only require set b. 
Multiplying power values by the time interval (τ) converts them to en-
ergy. The optimisation was subject to the following power balance 
constraint. 

Pim
b,t + PRen

b,t + Pdis
b,t − Pch

b,t − PLD
b,t − Pex

b,t = 0 (2) 

Eq. (2) ensures that the local demand (PLD
b,t ) is met by the renewable 

generation (PRen
b,t ), the import power (Pim

b,t) and the battery discharge (Pdis
b,t ) 

and that any excess power charges (Pch
b,t) the battery or is exported (Pex

b,t) 
to the grid. The battery operating constraints are defined in (3) – (6). 

Eb,t = Eini|b=1,t=1 + Eb,t− 1|t>1 + Eb− 1,T |b>1,t=1 + τ
(

ηchPch
b,t −

Pdis
b,t

ηdis

)

(3)  

0 + PFFRL
b TFR ≤ Eb,t ≤ Emax

y − PFFRH
b TFR (4a)  

0 + PDC
b TFR ≤ Eb,t ≤ Emax

y (4b)  

0 ≤ Pch
b,t + PFR,h

b ≤ Pmax (5)  

0 ≤ Pdis
b,t + PFR,l

b ≤ Pmax (6) 

Eq. (3) determines the energy in the battery (Eb,t), which depends on 
the energy in the previous time step and the charging/discharging 
power (Pch

b,t, Pdis
b,t ). Battery energy in the previous time step was defined 

using three terms: the initial energy (Eini|b=1,t=1), the previous energy 
within a block (Eb,t− 1|t>1) and the energy in the last time step from the 
previous block (Eb− 1,T|b>1,t=1). Eq. (4a) is the energy stored in the battery 
for the FFR services, where Eb,t is limited to the battery capacity (Emax) 
minus the energy deficit required to deliver the FFR high service 
(PFFRH

b TFR). Additionally, the minimum energy stored is limited to the 
energy required to deliver the FFR low service (PFFRL

b TFR). TFR is the 
duration of frequency response delivery and is defined in Table 1. Eq. 
(4b) is the equivalent of (4a) but for DC. FFR and DC were formulated in 
separate optimisations due to different block durations. With equal 
block durations, a single optimisation can be formulated. The committed 
power (PFFRH

b , PFFRL
b , PDC

b ) can be limited to zero to analyse various 
combinations of services. Eqs. (5) and (6) ensure enough power capacity 
is available to deliver the frequency response service. The charging/ 
discharging power plus the power committed to frequency response 
(PFR,h

b , PFR,l
b ) must be within the battery power rating (Pmax). The opti-

misation is a linear programming problem, which was formulated in 
GAMS and solved with GUROBI. 

Table 2 
Size of t and b sets.  

Service T B 

FFRH & FFRL 4 2190 
DC 24 365  

Fig. 3. Fraction of power capacity dispatched in response to change in fre-
quency. Response requirements are shown for DC, FFRL and FFRH. 
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2.2. Frequency response energy dispatch 

As well as payments for availability, some frequency response ser-
vices also provide payments for energy delivered to the grid, called the 
‘response energy payment’ (£/MWh) [17]. Participants of DC are only paid 
an availability fee [18], whereas FFR received an availability fee and 
response energy payment. The frequency response energy dispatch 
model utilised power system frequency data to determine the energy 
dispatched in each time step. National Grid ESO publish GB power 
system frequency measurements in time intervals of 1 s [19]. Addi-
tionally, National Grid ESO publish the dynamic dispatch requirements 
for DC and FFR [17], which are shown in Fig. 3. 

Fig. 3 shows the fraction of committed power capacity that must be 
dispatched for specific changes in frequency. For both DC and FFRL, 
when the change in frequency is negative (frequency falls below 50 Hz) 
there is a positive power capacity response. For FFRH, when a positive 
change in frequency occurs (frequency goes above 50 Hz) there is a 
negative power capacity response. The dispatch requirements shown in 
Fig. 3 are written as: 

PDC,%
b,t,s = {

100, Δfs ≤ − 0.5
− 316.7Δfs − 58.3, − 0.5 < Δfs ≤ − 0.2
− 27.0Δfs − 0.4, − 0.2 < Δfs ≤ − 0.015

0, Δfs > − 0.015

(7)  

PFFRL,%
b,t,s = {

100, Δfs ≤ − 0.5
− 200Δfs, − 0.5 < Δfs < 0 (8)  

PFFRH,%
b,t,s = {

− 200Δfs, 0 < Δfs < 0.5
− 100, Δfs ≥ 0.5 (9) 

The resulting percentage power capacity values for each second of 
the year were transformed into energy dispatched in each time step 
using (10). 

EFR,disp
b,t = PFR

b

∑S

s=1

(
TsecPFR,%

b,t,s

)
(10) 

Where, the superscript ‘FR’ represents DC, FFRL and FFRH. In (10), 
the fraction of power dispatched (PFR,%

b,t,s ) in each time step is multiplied 
by Tsec = 1/602 to convert to kWh per kW of power committed. This is 
summed to give the fraction of power in each time step. Then multiplied 
by the committed power capacity determined by the operational opti-
misation, which gives the power dispatched in each time step. The DC 
response energy payment received is 0, whereas the FFR high and low 
response energy payments are related to the balancing price [20]. 

KFFR,disp
b,t = {

− 0.75Kbal
b,t , EFFR,disp

b,t < 0

1.25Kbal
b,t , EFFR,disp

b,t > 0
(11) 

In (11) when energy is exported in response to low frequency, the 
price received is 125% of the balancing price in that time step. When 
energy is imported in response to high frequency, the price paid for the 
energy is 75% of the balancing price. Assuming the LES must purchase 
energy earlier or sell it later at the balancing price, the benefit of 
responding is a 25% difference in price (for exporting this is 125% minus 
100%, for importing this is 100% minus 75%). Therefore, the following 
equation was defined to give the financial benefit of dispatching for FFR 
high and low. 

ϕFR,disp =
∑B

b=1

∑T

t=1

(
0.25Kbal

b,t EFFR,disp
b,t

)
(12) 

The final income for dispatching FFRL and FFRH was the sum of 
dispatched energy in each time step multiplied by the balancing price 
and 0.25. The dispatching income was calculated outside of the opera-
tional optimisation, therefore does not influence the power committed 
to each service. The service dispatch model was formulated and run in 

MATLAB. 

2.3. Battery degradation 

Modelling battery degradation is complex and depends on many 
factors including cell chemistry, energy throughput and operating con-
ditions such as depth of discharge, temperature and voltage. Commonly, 
battery degradation is divided into calendar and cyclic aging [21]. 
Calendar aging is the loss of usable energy capacity over time, with no 
charge/discharge cycles. Cyclic aging is capacity fade due to charging 
and discharging cycles, which is significantly affected by the depth of 
discharge. Typically, a stationary lithium-ion BSS reaches end-of-life at 
70–80% of its starting energy capacity [22,23]. 

Calendar aging: The calendar aging model was inspired by [24]. The 
model is a linear depreciation over a 20-year shelf life, where the battery 
reaches end-of-life at 80% energy capacity, resulting in a daily energy 
capacity depreciation of: 

Dcal
day =

capacity loss
days ∗ years

=
20%

365 ∗ 20
= 0.00274%. (13) 

Cyclic aging: In the cycle aging model, the number of cycles and the 
depth of discharge were considered. Fig. 4 shows the relationship be-
tween depth of discharge and the number of cycles for a lithium-ion 
battery [25]. This shows a non-linear characteristic, where high 
depths of discharge significantly reduce maximum number of cycles. 
The degradation characteristic in Fig. 4 was applied to the methodology 
from [24], to determine the cyclic battery aging for each day, accounting 
for depth of charge/discharge cycles. The degradation in each time step 
was calculated as follows. 

Dcyc
t = 0.5

⃒
⃒
⃒
⃒

1
Ncyc

t
−

1
Ncyc

t− 1

⃒
⃒
⃒
⃒ (14) 

Where, Ncyc
t is the number of cycles corresponding to the depth of 

discharge, defined using the characteristic in Fig. 4, with the following 
equation: 

Ncyc
t = 12, 198DOD3

t + 34, 954DOD2
t − 97, 517DODt + 52, 895 (15) 

Where, DODt = (Emax − Et)/Emax. This formulation estimates battery 
degradation between the current time step and the previous time step. 
The 0.5 multiplier indicates each charge/discharge process is half of a 
full cycle. The degradation for each day was determined by summing 
degradation between each time step for the whole day, as shown below. 

Dcyc
day =

∑24

i=1
Dcyc

t (16) 

Cyclic aging: For each day of the year, battery degradation was set as 
the larger of calendar and cyclic degradation, as shown in (17). 

Fig. 4. Maximum number of charge/discharge cycles at specific depths of 
discharge. Showing a non-linear relationship [25]. 

W. Seward et al.                                                                                                                                                                                                                                



Electric Power Systems Research 211 (2022) 108292

5

Dtotal
day = max

{
Dcal

day,D
cyc
day

}
(17) 

The total battery degradation for the year was found by summing the 
degradation for each day, for the whole year, as shown below. 

DPA =
∑365

day=1
Dtotal

day (18) 

Where, DPA is the battery degradation due to price arbitrage opera-
tion and does not include frequency response delivery. The methodology 
so far does not consider degradation due to energy delivered for fre-
quency response. To account for this, the proportion of energy 
throughput due to frequency response delivery was assumed to be the 
same as the proportion of degradation due to frequency response de-
livery. Therefore, 

DTotal = DPA
(

1+
Dispatch energy throughput

PA energy throughput

)

(19) 

Where, Dispatch energy throughput is an output of the energy dispatch 
model and PA energy throughput is an output of the operational optimi-
sation. DTotal is total degradation and includes both degradation from 
price arbitrage operation and from dispatching energy in response to 
changes in frequency. The battery degradation modelling was carried 
out using Excel. 

2.4. Net present value 

The cumulative NPV was calculated using the outputs of the opera-
tional optimisation and the battery degradation calculation. The cu-
mulative NPV was calculated using (20). 

NPV = − I +
∑Y

y=1

(
OCSy

(1 + i)y

)

. (20) 

Where, I is the investment cost, y is the year (y = 1,…,Y), OCSy is the 
operational cost savings and i is the discount rate. OCSy is the operating 
cost without a BSS, minus the operating cost with a BSS. The operating 
cost with a BSS includes savings from price arbitrage, frequency 
response availability revenue and frequency response delivery revenue. 
OCSy was calculated for each year of the battery’s lifetime. To account 
for battery degradation, the battery capacity (Emax) in the operational 
optimisation was updated each year using the battery degradation 
calculated for the previous year. As shown in Fig. 2, this process was 
repeated for every iteration of y until the battery reached its end-of-life 

at 80% of its original energy capacity. Each iteration of the NPV 
calculation included all OCSy terms from previous years, with Y 
increasing by 1 for each iteration. Excel was used to calculate NPV. 

3. Case study definition 

The LES case study was based on a school in Cardiff with 50 kW of PV 
panels and a BSS with 10 kW power rating and 20 kWh energy capacity. 

Fig. 5. LES (a) PV generation and (b) local school demand inputs for 2019.  

Fig. 6. Rolling weekly average wholesale electricity price in 2019 [26].  

Fig. 7. Daily DUoS charges for weekdays and weekends.  
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The battery was assumed to have a round trip efficiency of 90%, which 
was applied as a charging/discharging efficiency of 94.87%. Hourly 
time intervals (τ = 1) were used, for the year 2019. The initial battery 
state of charge (Eini) was defined for the first time step, on the first day of 
the year and was set to 50% of the battery energy capacity. No limit was 
set for depth of discharge, meaning state of charge could vary between 
0% and 100%. The final battery state of charge, in the last time step, on 
the last day of the year was set as equal to or larger than the initial state 
of charge. PV generation and local demand were inputs and are shown in 
Fig. 5. The LES import and export prices were defined as the wholesale 
day-ahead electricity price, where the rolling weekly average is shown 
in Fig. 6. The import power was also subject to DUoS charges, shown in 
Fig. 7. In reality, the LES is too small to directly participate in the 
wholesale electricity market and frequency response services. However, 
small LESs can be aggregated to meet technical requirements for these 
markets, such as minimum capacity limits [18]. 

The availability price paid for DC was 1.7 p/kW/h, which was the 
most consistently accepted bid price for DC [27]. The availability price 
for FFR varies from block to block and throughout the year. Prices for a 
week in each month of 2019 were acquired from market outcome data 
[28]. These prices were repeated for the duration of each month to give 
the availability price. The monthly average is shown in Fig. 8. The price 
for FFRH and FFRL were assumed to be the same. Five scenarios were 
defined with a different combination of services.  

1 PA only  
2 PA & FFRL  
3 PA & FFRH  
4 PA, FFRL & FFRH  
5 PA & DC 

PA only is the typical operation with no participation in frequency 
response services. FFR services can be stacked together, therefore a 
combination of FFRL and FFRH was evaluated in Scenario 4. DC cannot 
be stacked with other frequency response services so was stacked with 
PA only. To evaluate operation with PA only, a constraint was set to limit 
the maximum frequency response power to 0. This process was repeated 
to give results for every year of the BSSs lifetime, as shown in Fig. 2. 

4. Results and discussion 

4.1. Economic evaluation of battery storage 

The economic viability of LES revenue stacking was evaluated in 
three ways: change in operating cost, NPV and the income from dis-
patching energy in response to changing frequency. 

4.1.1. Local energy system operating cost 
The operation of the LES was evaluated using the operational opti-

misation described in Section II.A. The operating cost results are for the 
first year of operating with the BSS. For Scenarios 1 – 5, the total 
operating cost and break down of operating cost savings from each 
market are shown in Fig. 9. Also shown is the total operating cost for the 
LES with no BSS, which was £1279.94. All operating strategies reduced 
the LES operating cost. The conventional operating strategy PA only 
resulted in the lowest operating cost savings, reducing operating cost by 
33.7%. Participating in FFR low, high or both further reduced the LES 
operating cost. Stacking FFR high and low resulted in an operational cost 
saving of 65.2%. The scenario with the largest impact on operating cost 
was Scenario 5, stacking PA with DC. The contribution to operating cost 
savings made by PA was the lowest out of all scenarios. However, DC 
produced enough revenue to reduce the operating cost by 118.2%, 
converting the operating cost into an operating income. 

4.1.2. Investment viability 
The evaluation of investment presents the yearly NPV for each 

operating scenario, accounting for battery degradation. These results are 
for a capital cost of $177/kWh or approximately £128/kWh, which was 
the average price of stationary BSSs in 2020 [6]. Fig. 10 presents the 
yearly NPV for each operating scenario, until the battery end-of-life at 
80% of its original energy capacity. PA only resulted in the lowest NPV 
with Scenarios 1, 2 and 3 resulted in a negative NPV at battery 
end-of-life, indicating an unattractive investment. Scenarios 4 and 5 
produced positive NPVs over the battery lifetime, indicating worthwhile 
investments. The scenario with the largest NPV and longest battery 

Fig. 8. Monthly average availability price for FFRH and FFRL.  Fig. 9. Operating cost for each scenario in the first year of BSS operation. Cost 
savings from each service are shown for each scenario. 

Fig. 10. Cumulative NPV for each operating scenario, until battery end-of-life 
was reached at 80% capacity. 
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lifetime was Scenario 5 (PA and DC), with a NPV of £7255.42 and a 
lifetime of 11 years. The result in Fig. 10 is in line with [8,12] and 
demonstrates that participating in frequency response services can not 
only improve investment viability but also extend the lifetime of the 
BSS. 

Stationary BSSs on power grids are large whereas the LES in this 
study is much smaller. Domestic stationary BSS prices are higher, 
ranging from £445/kWh to £1315/kWh [29]. At these prices, only 
Scenario 5, with PA and DC, achieved a positive NPV over the battery 
lifetime. Although, the NPV was only positive up to a capital cost of 
approximately £490/kWh. Analysis of BSS prices shows that despite 
revenue stacking improving investment viability of BSSs, the cost of 
small-scale BSSs will limit their mass adoption. 

4.1.3. Frequency response energy dispatch income 
The model presented in Section II.B was used to determine the total 

energy dispatched for each service, as well as the total revenue for dis-
patching energy into the power grid. Fig. 11 shows the total income split 
into revenue from making power capacity availability and dispatching 
energy, for the first year of BSS operation. As there is no response energy 
payment for DC, all the revenue for DC was from the availability pay-
ment. Most of the income for FFR high and low was also from the 
availability payments, with revenue from response energy payments 
making up approximately 9% of total income for these services. This 
result shows the importance of availability revenue over dispatch rev-
enue when considering participation in these frequency response 
services. 

4.2. Battery degradation 

Battery degradation is a vital consideration when investigating 
operation of BSSs. The model described in Section II.C was used to 
determine the battery degradation. Fig. 12 shows the percentage battery 
degradation for each scenario, in the first year of BSS operation. The 
results are split into the degradation related to PA operation and fre-
quency response energy dispatched during service delivery. In all sce-
narios, most of the degradation resulted from charging/discharging for 
PA, with the highest overall degradation being the Scenario 1, with PA 
only. This result shows that participating in these frequency response 
markets not only improves battery operating cost and NPV but also re-
duces battery degradation, extending the lifetime of the battery. This 
result reflects the extended lifetime of the battery storage system in [8], 
for scenarios with no price arbitrage. 

The benefits realised by frequency response services are due to the 
type of revenue. For PA, revenue is gained based on the volume of en-
ergy traded, therefore the battery must be charged/discharged to gain 
revenue. In contrast, frequency response services gain revenue based on 
the time that power capacity is available. Therefore, these services gain 
most of their revenue regardless of their charging/discharging cycles. 

Assessing the operating cost, NPV and degradation has shown that 
the combination of PA and DC was the most beneficial for the LES. Due 
to the high price and low discharge rate, PA with DC resulted in the 
highest financial reward and the longest lifetime of the battery. The 
amount of degradation is subject to various environmental and oper-
ating conditions. In particular, charge and discharge cycling, battery 
chemistry and battery manufacturer. In this case study, the battery was 
able to fully discharge. Allowing 100% depth of discharge can result in 
higher degradation rates. The depth of discharge can be limited to 
reduce battery degradation. Battery degradation is highly sensitive to 
the number of cycles and depth of discharge. Therefore, accurate esti-
mation of battery degradation must account for these characteristics. 

4.3. Battery operation 

The reduction in battery degradation when participating in fre-
quency response services is reflected in the operating characteristics of 
the BSS. Fig. 13 presents the hourly average battery state of charge 
throughout the year, for the first year of BSS operation. Out of all sce-
narios shown in Fig. 13, PA only had the widest variation in average 
energy stored in the battery. Being amongst the lowest during midday 
and night, while being amongst the highest during morning and early 
evening and going through two large charge/discharge cycles. In 
contrast, Scenario 5 (DC stacked with PA) has the highest energy stored 
in the battery during midday and evening, while having the lowest 
during morning and early evening and having the least variation 

Fig. 11. Total income attributed to availability of power capacity and delivery 
of energy, for the first year of BSS operation. 

Fig. 12. Battery degradation from PA operation and frequency response energy 
delivered, in the first year of BSS operation. 

Fig. 13. Hourly average battery state of charge throughout the first year of 
BSS operation. 
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throughout the 24 h. The results in this figure add to the discussion in 
Section IV.B and showcase the reduction in charge/discharge cycles and 
the average depth of discharge when participating in frequency response 
services. 

The state of charge of the battery was also dictated by the amount of 
power committed to each service. When more power is committed to a 
service, more energy must be stored in the battery, so the service can be 
delivered. To demonstrate this, Table 3 presents the average power ca-
pacity committed to each service over the full time horizon. 

5. Conclusion 

This paper presents a linear optimisation approach to model local 
energy systems participating in the wholesale day-ahead electricity 
market and stacking multiple frequency response ancillary services. The 
approach was applied to a school case study to demonstrate its practi-
cality. In addition, net present value was used to assess the investment 
case for a battery storage system participating in energy and frequency 
response markets, considering battery degradation. The revenue from 
energy dispatched in response to change in frequency was found using 
power system frequency. Battery degradation was also assessed, ac-
counting for the number of cycles and their depth of discharge. 

The operational optimisation showed that stacking frequency 
response services with price arbitrage resulted in lower operating costs 
for the local energy system. Similarly, the net present value of the bat-
tery investment was increased when stacking frequency response ser-
vices. In both cases, price arbitrage with Dynamic Containment was the 
most profitable combination. The majority of frequency response reve-
nue came from availability payments, making up over 90% of Firm 
Frequency Response revenue and all the Dynamic Containment revenue. 
Finally, the degradation model showed that participating in frequency 
response services reduces battery degradation, increasing the lifetime of 
the battery and improving the investment prospect and lifetime of the 
battery. 

The methodology presented in this study can be applied to a wide 
variety of ancillary services and local energy system configurations. 
Future work could incorporate battery degradation in the operational 
optimisation and add constraints to limit degradation. Additionally, 
model developments could account for the impact of local energy system 
revenue stacking on other actors in the power system, such as flexibility 
aggregators, retailers and power system operators. 
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