Interpolation Error of FGM Tabulation in an
Unnormalised Progress Variable Subspace
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1. INTRODUCTION

« When considering preferential diffusion eftects in tabulation of thermochemical states employed in the 0.02 -
flamelet-generated manifold (FGM) method, tables are stored by lookup of various control variables. These —
control variables typically include mixture fraction, Z and normalised progress variable, PV.

o If preferential diftusion effects are considered, mixture fraction is not constant for each flamelet, and insuffi-
cient data to define the progress variable boundaries leads to many studies undertaking interpolation in the
unnormalised progress variable space, [1-3].

o This causes flamelet lengths to vary in the unnormalised progress variable subspace (relative to other nearby

mixture fraction, Z

flamelets), causing interpolation and extrapolation to be undertaken across incorrect values (Fig 1.) 0.016 -
o Various types of FGM errors have been previously quantified, including error due to steep thermochemical 0014 -
value gradients and non-monotonic progress variable defintions. However, to best knowledge, no work high- . . . . . . . .
. . . .. . . . . ] 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
lights the very significant errors arising from interpolation in an unnormalised progress variable subspace. unnormiised progress variable, Y_H20

Figure 1 - Schematic of FGM interpolation

2. BASELINE PERFORMANCE 3. COMPARISON OF METHODS

e Performance of error reduction methods is analysed by compar- | | Additional Parameter for Normalisation
ing the result interpolated from two flamelets against the original | | e During interpolation, an additional lookup step is undertaken to find the nearest
flamelet data. flamelet and its boundaries for normalisation. Interpolation is then conducted on a
o The original flamelet data is modelled using 1D FreeFlame model | | normalised progress variable.
in Cantera software with the following conditions:

Fuel Blend: 0.4/0.45/0.15 (mol) NH, /H /N, Mixture Fraction Spacing
Oxidiser: 0.21/0.79 O,/N, (mol) e Smaller mixture fraction interval during tabulation leads to interpolation between
Equivalence ratio : 0.13 - 0.6; Inlet Temperature : 750K two flamelets that have less variation in length in the PV subspace.

= Multi-Objective Normalisation of Progress Variable Definition

K " veeeeee * L oL - o A genetic algorithm was utilised to find the progress variable defintion that is a com-

promise between uniform progress variable boundaries and a monotonic definition.
No valid solution that meets both monotonic and equal boundaries criteria was found.
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Perspective Transformation Mapping

o In cases where the distribution of data in the Z-PV space can be captured by a quadri-
lateral shape, a perspective mapping matrix can be applied to remap the Z-PV space,
allowing normalised progress variable to be used as a control variable.
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Figure 2 - Z-PV space for two progress variable definitions
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Figure 4 - Impact of mixture fraction Figure 5 - Impact of other solutions on

4 CONCLUSION spacing on interpolation error interpolation error (Z spacing = 0.052)
e Significant interpolation errors can arise from FGM tabulation 5 ACKNOWLEDGEMENTS
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