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ARTICLE INFO ABSTRACT

Keywords: To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simpli-
Diffusion MRI fying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains
NODDI

an open research question. This study was inspired by the disparity between the estimated intra-axonal axial
diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging
(NODDI) model (afH = 1.7 um?/ms). We first demonstrate how changing the assumed axial diffusivity results in
considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity
as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simu-
lated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian
and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this
high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial dif-
fusivities of ~ 2 —2.5um?/ms, in line with current literature. Crucially, our results demonstrate the importance
of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when
dealing with low SNR data.

Axial diffusivity
Orientation dispersion
High b-value

White matter

(Grussu et al., 2017; Guerreroid et al., 2019). Though these assumptions
make the estimation of otherwise degenerate parameters tractable, if

1. Introduction

In diffusion MRI, biophysical models aim to relate macroscopic dif-
fusion signals to microscopic, biologically meaningful tissue parame-
ters such as fibre orientation, dispersion or diameter. The primary chal-
lenge for biophysical models is being able to describe the complex tis-
sue microstructure in only a handful of parameters that can be esti-
mated reliably from the diffusion signal. Consequently, the model must
make strong, simplifying assumptions about the underlying architecture
and/or diffusion properties of the tissue. Some parameters are often con-
strained or set to a single value which is either taken from the literature
or decided by some other means (e.g. by fitting the model multiple times
with different values for some assumed parameter, and taking the re-
sult which maximises the quality of the fit across voxels or specimens
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the modelling constraints are inaccurate, the estimation of the remain-
ing model parameters will be biased (Jelescu et al., 2016; Howard et al.,
2019).

Neurite Orientation Dispersion and Density Imaging (NODDI)
(Zhang et al., 2012) is a commonly used biophysical model in diffu-
sion MRI which, due to its clinically feasible scan times requirements,
has been reported in numerous studies of patient populations (Adluru
et al., 2014; Timmers et al., 2016; Schneider et al., 2017; Hagiwara
et al., 2019; Taoka et al., 2020). NODDI is a variant of the white matter
‘standard model’ (Novikov et al., 2018b) in which specific assumptions
about the tissue diffusivity allow for voxelwise estimation of fibre dis-
persion and neurite ‘density’ or signal fraction. One assumption is that
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the intra-axonal axial diffusivity, i.e. the diffusion of water molecules
inside the axon as they travel along the primary axis or orientation, is
a fixed, global value known a priori and typically set to 1.7 um?/ms.
An axial diffusivity of 1.7 um?/ms has been previously justified in adult
white matter by minimising the model residuals when fitting to in vivo
data from multiple subjects (Guerreroid et al., 2019). However, optimis-
ing over the residuals may be sub-optimal for a degenerate model like
NODDI, where multiple parameter sets can produce the same diffusion
signal. This degeneracy likely explains the broad range of reported ax-
ial diffusivities (~ 1 — 2.5 um?/ms) with similar residual error. Though
these axial diffusivities may produce a similar residual error, the esti-
mated NODDI parameters from each fit will be different. Furthermore,
there now exists a body of work in which the intra-axonal axial dif-
fusivity is generally estimated to be higher, typically in the range of
~ 2 — 2.5 um?/ms (Dhital et al., 2019; Jelescu and Budde, 2017; Jelescu
et al., 2020; 2016; Kaden et al., 2016; Kunz et al., 2018; Lampinen
et al., 2020; McKinnon et al., 2018; Nilsson et al., 2021; Ramanna et al.,
2020; Zheng et al., 2017). Notably, these studies use different meth-
ods to achieve compartment specific selectivity (including high b-value
data (McKinnon et al., 2018; Veraart et al., 2019), gadolinium injec-
tion (Kunz et al., 2018) and planar filtering (Dhital et al., 2019)), as
well as different microstructure models and/or parameter constraints to
estimate axial diffusivity.

Inspired by the difference between the reported and assumed intra-
axonal axial diffusivity, this study first aims to explore how changing
the predefined axial diffusivity in the NODDI model affected the remain-
ing estimated parameters. A second aim of this study was to investigate
whether, by utilising high b-value data, we could simultaneously esti-
mate axial diffusivity within the NODDI framework. Here it is useful
to estimate axial diffusivity within the NODDI framework (rather than
e.g, from the voxels with highest fractional anisotropy (Basser et al.,
1994)) as it facilitates estimation of both axial diffusivity and fibre
dispersion on a voxelwise basis. Were the fibres instead assumed to
be coherently aligned, the axial diffusivity estimates would be biased
(Dhital et al., 2019; Howard et al., 2019). Crucial to our second aim
was the use of ultra-high b-value data, where it can be assumed that
the higher-diffusivity extra-axonal water is eliminated such that only
the intra-axonal compartment contributes signal (Jensen et al., 2016;
Kleban et al., 2020; Lundell et al., 2021; McKinnon et al., 2018; McK-
innon and Jensen, 2019; McKinnon et al., 2017; Novikov et al., 2018a;
Veraart et al., 2019), thus overcoming known degeneracies between dif-
fusion characteristics of the intra- and extra-axonal space (Howard et al.,
2019). However, high b-value data also posed several challenges. In par-
ticular, we found that in this low SNR regime, the model had to account
for both the rectified noise floor and/or a signal offset to avoid parame-
ter degeneracy and bias. We demonstrate how, with appropriate modi-
fications, the NODDI framework can be applied to both magnitude and
real-valued data to estimate axial diffusivities in line with previous lit-
erature.

2. Methods

This paper is organised as follows. First we demonstrate how chang-
ing the assumed intra-axonal axial diffusivity affects the output of the
‘standard NODDI model’ (described below), highlighting the importance
of the discrepancy between the assumed axial diffusivity of NODDI and
many estimates of axial diffusivity found in literature. We then investi-
gate how a ‘modified NODDI model’ can be used to estimate both the
axial diffusivity and ODI concurrently from high b-value data. Specif-
ically, this modified NODDI model (i) considers the intra-axonal com-
partment only and (ii) explicitly accounts for Rician noise floor and a
signal offset. Finally, the modified model was applied to in vivo, human
data, where we explore how noise can bias model estimates in this high
b-value and thus low SNR regime.
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2.1. NODDI output sensitivity to the assumed axial diffusivity

To evaluate how the NODDI output changed with respect to the as-
sumed axial diffusivity, the standard NODDI model (Zhang et al., 2012)
was applied to the diffusion data with | = 1.7, 2.3 or 3 um?/ms. Briefly,
the NODDI model consists of a Watson-like fibre orientation distribu-
tion which is convolved with three compartments that are typically as-
sociated with the CSF, extra-axonal and intra-axonal space. The first
compartment has isotropic, free diffusion, the second compartment de-
scribes tensor-like diffusion, and the third compartment describes stick-
like diffusion. The model fitting involves 5 parameters being estimated
(the intra-axonal signal fraction, the isotropic signal fraction, the fi-
bre orientation and orientation dispersion index, [f;,, fis 0, ¢,ODI])
whilst assuming some fixed, global axial diffusivity which may dif-
fer from d = 1.7 um?/ms, that the radial diffusivity of the tensor-like
compartment is given by the tortuosity model d, = d;(1 - f;,) and that
the diffusivity of the isotropic compartment is that of free diffusion
d;,, =3 um?/ms.

Here we utilised preprocessed T1-weighted and diffusion-weighted
data for the first 10 subjects of the WU-Minn Human Connectom Project
(HCP); for details of the acquisition protocol and preprocessing pipeline,
please see (Glasser et al., 2013; Sotiropoulos et al., 2013; Van Essen
et al., 2013). Briefly, the diffusion-weighted data included 90 gradient
directions each at b-values of b = 1,2 and 3 ms/um? and 18 interspersed
volumes with negligible diffusion weighting. The distortion corrected
(“pre-processed”) b ~ Oms/um? data were linearly registered to each
subject’s T1-weighted structural scan (FLIRT (Jenkinson et al., 2002;
Jenkinson and Smith, 2001)), and the T1 non-linearly registered to the
MNI standard space (FNIRT (Andersson et al., 2007; Woolrich et al.,
2009)). The NODDI fitting (Zhang et al., 2012) was performed in sub-
ject space using the cuDIMOT framework (Hernandez-Fernandez et al.,
2019) for GPU acceleration with Rician noise modelling.

iso

2.2. Modified NODDI for high b-value data

The NODDI model was modified for high b-value data where we
assume the entirety of the diffusion signal can be attributed to the intra-
axonal compartment (Jensen et al., 2016; Kleban et al., 2020; Lundell
et al., 2021; McKinnon et al., 2018; McKinnon and Jensen, 2019; McK-
innon et al., 2017; Novikov et al., 2018a; Veraart et al., 2019). Here, the
diffusion signal along gradient direction g is given by the convolution
of the fibre orientation distribution, which was assumed to be a Watson
distribution (Mardia and Jupp, 2000; Zhang et al., 2012), and a fibre
response function for stick-like fibres with Gaussian axial diffusion and
no radial diffusion:

Spe & finSo é /52 expl x(u" x)* | exp| —bd;(g" x)* 1 dx. 1)

The integrand is over x € S?; f,, being the signal fraction of the intra-
axonal compartment; u(0, ¢), the direction of the fibre; djs the intra-
axonal axial diffusivity; x, a unit vector on the sphere S2; b, the b-value
and S, the non-diffusion weighted signal. Cy;, is the normalising con-
stant, where,

Cyy :/ explk(u' x)? 1dx =4z F(1/2;3/2;cup’), 2)
S2

and | Fi(a; #; X) is the confluent hypergeometric function of the first
kind with a matrix argument X. The dispersion parameter « is typ-
ically rewritten in terms of the orientation dispersion index, ODI =
2/zarctan(l/x) (Zhang et al., 2012) which ranges from 0 to 1, repre-
senting perfectly aligned and isotropic fibre distributions respectively.

The integral in Eq. 1 can also be written in terms of the conflu-
ent hypergeometric function of the first kind with matrix argument
X =xpu’ — bd, gg". Consequently, Eq. 1 becomes (Sotiropoulos et al.,
2012):

1 Fi(1/2;3/2;xpup™ — bd gg")

S . . T
1 Fi(1/2:3/250pp)

,gz in20 (3)
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By taking the ratio of S, /S, (rather than S.¢/Sp) we can derive an
analytic solution where the model is independent of both f;, and .S,
and described by only four parameters S(ODI,d, 0, ¢). S, represents
the powder averaged signal, i.e. the average signal across all diffu-
sion gradients for a given b-value, where at high b-value, for stick-
like diffusion convolved with an arbitrary fibre orientation distribution
Kaden et al. (2016),
V/zerf(\/bd))

Sy & [y Sy— . “)
b in20 5 de

Dividing S, , (Eq. 3) by S, (Eq. 4), the diffusion signal has an analytic

form given by:

VFi(1/2;3/2:cup™ — bd gg")
1 Fi(1/2:3/2;6uu™)

—  2y/bd,
S,

# T rerf(y/bdy)

Here the model depends on only two free parameters, d; and ODI (or

s, ®)

«). During fitting, .S, was calculated for each shell in turn.

In our initial investigations we aimed to simultaneously estimate the
three parameters d, k and F,, = f;,,S, on a voxelwise basis according to
Eq. 3. However, upon closer examination, the parameters were found to
be degenerate, leading to an overestimation of d|. Here we used simu-
lated data (shown later) to investigate the model parameter degeneracy
and bias in relation to the noise characteristics of the data. Crucially,
we found that the parameter degeneracies and bias could be overcome
if we fitted to high SNR data, and explicitly model both a signal offset
and the Rician noise floor. The presence of a signal offset in the in vivo
data was supported by the presence of non-zero signal in the ventricles
at high b-value. Consequently, we accounted for a signal offset i.e. some
background signal that was independent of diffusion weighting, where

Y=S+c, (6)

Y being the data, S the diffusion signal and ¢ the offset, which is some-
times referred to as a dot compartment. Then in magnitude data, we
also accounted for the rectified Rician noise floor using Koay’s inver-
sion technique Koay and Basser (2006):

Y = V(S +c¢)?+e2. @

e being the Rician scaling parameter, which is equivalent to the standard
deviation of Gaussian noise for complex data. Typically, ¢ is estimated
a priori from noise estimation methods (Veraart et al., 2016). However,
as shown below, a priori estimation might not be ideal as even a small
misestimation of ¢ could lead to large parameter biases. An alternative
way of circumventing Rician noise floor effects is to consider real-valued
data with Gaussian noise characteristics (Fan et al., 2020). Using com-
plex data, the signal phase is first removed from each voxel after which
the real component of the signal is extracted (Fan et al., 2020). In this
study, the model was fitted to both real valued data (where ¢ was esti-
mated) and magnitude data (where both ¢ and ¢ were estimated) from
the same subjects. As even a small misestimation of ¢ or ¢ can lead to a
large parameter bias, both were estimated as parameters of the model
that were fitted voxelwise during model optimisation.

2.2.1. The final model & optimisation

Combining Eq. 5 with either Eq. 6 (real-valued data) or 7 (magnitude
data) and assuming a known fibre orientation y = V; (the primary eigen-
vector of the diffusion tensor (Basser et al., 1994)), the final model was
dependent on only three or four parameters: the orientation dispersion
index ODI, the axial diffusivity dys the signal offset ¢, and, in magni-
tude data only, the noise floor parameter e. Fig. 1 shows a graphical
depiction of the model.

During optimisation, the parameters were bounded such that ODI €
[0,1] and dy €10,4] um?/ms where the diffusivity in free water at 37°C
is ~ 3 — 3.1 um?/ms. Due to the observed possible degeneracy between
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the two noise parameters ¢ and ¢, when both were estimated in mag-
nitude data, they were constrained to be 50 — 150% of ¢ and ¢ as es-
timated from high b-value data in the ventricles (a Rician distribution
was fitted to b = 17.8 ms/um? data, where ¢ = the non-centrality param-
eter and ¢ = the scale parameter). When only one noise parameter was
estimated (in real-valued data or simulations with ¢ = 0), the noise pa-
rameter was constrained such that ¢ € [0,0.5 - Sy] or € € [0,0.5 - Sy]. The
powder averaged signal S, was calculated for each shell in turn, where
the data Y were for first corrected for any signal offset ¢ or noise floor
€ according to Eq. 6 or 7 (i.e. Y was converted to .S prior to signal av-
eraging). The model was optimised using the Metropolis Hastings (MH)
algorithm which afforded estimation of each parameter’s posterior dis-
tribution. The initial parameters for MH were found by grid search.

Our investigations using simulated data demonstrated how higher
SNR leads to more precise estimates of ODI and d. Consequently, for
in vivo data, the model was fitted to the concatenated signal across
many (N) voxels to boost SNR. Here, the signal from each voxel was
first rotated such that the primary eigenvector of the diffusion tensor
was aligned and the secondary eigenvector was randomly orientated,
since the Watson distribution describes symmetric dispersion about the
primary fibre orientation. As NODDI assumes a single-fibre population
per voxel, we fitted to high FA voxels from the corpus callosum which,
to enforce some data consistency, were selected to have similar S,
(Sy + 10%). Instead of concatenating the signal, we could have aver-
aged the signal across voxels (as we did using simulated data below).
However, this would require 1) the diffusion signal from each voxel to
first be rotated so that the primary fibre orientations align, and 2) the
rotated signal to be resampled along consistent gradient orientations
g. Consequently, signal concatenation was deemed preferable to signal
averaging across voxels, as our results would not be biased by interpola-
tion effects which can introduce smoothing and effect noise properties
in non-trivial ways.

2.3. Simulated data

Data were simulated with a known ground truth to investigate the
precision and accuracy of the parameter estimates. The S, b-values and
gradient directions were chosen to mimic the in vivo data below. The
ground truth parameter values were d; = 2.2, ODI = 0.03, f;, = 0.6 and
¢ = 10 unless otherwise stated. The SNR of a single voxel was defined as
SNR,,, = Sp/c = 16.5, which is similar to the lower bound of the SNR in
the in vivo data used later in this study, where ¢ represents the standard
deviation of Gaussian noise in the complex data. As in in vivo data, the
model was fitted to data from N simulated voxels. The SNR across many
voxels was then approximated as SNR ~ SNR,,,, X VN.

Note, for in vivo data we fitted the model to the concatenated sig-
nal across voxels, whilst for simulated data we fitted to the averaged
signal. In simulated data, we fixed the fibre orientation and could thus
compute the average signal across voxels without interpolation. Further-
more, by averaging the signal, we fitted to fewer gradient directions and
minimised computation time.

2.4. In vivo human data

The modified NODDI model was applied to pre-existing data from
6 healthy participants where both magnitude and real-valued diffusion
images were reconstructed from the complex MR data.

Diffusion MRI data were previously acquired, reconstructed and pre-
processed according to Tian et al. (2022) and Fan et al. (2020). Briefly,
complex diffusion data were acquired on the 3T MGH Connectom scan-
ner (Siemens Healthcare, Erlangen, Germany) using gradients up to
300mT/m (Jones et al., 2018; McNab et al., 2013) and a pulsed gradi-
ent, spin echo EPI sequence (Setsompop et al., 2012): TR/T E = 4000/77
ms, 2mm isotropic resolution, 17 b-values from 0 to 17.8 ms/um?, two
different diffusion times §/A = 8/19 ms and §/A = 8/49 ms. The com-
plex images were first corrected for background phase contamination
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The generative model

u(6,¢),x
F FRF FOD
exp[—bd, (g7x)?] exp[ic(1'x)?] /Gy

N

multiply convolve
A
Diffusion signel Estimated parameters:
S=F-[FRF®FOD] dy,0DI,c,e
where,
} 0DI(x) = 2/matan(1/k)

Data ’

Magnitude data: Fixed parameters:

Y= (S +c)2+e? D0 9.0

Real-valued data:

signal for a given b-value.
Y=S+¢c¢ 9 9

after which the real component of the diffusion images was extracted
and the imaginary part discarded (Fan et al., 2020). The magnitude
images were also extracted. The data were pre-processed using tools
from FSL and bespoke code. The real-valued and magnitude data were
separately corrected for gradient nonlinearities as well as susceptibility
and eddy current distortions (Andersson et al., 2016; 2003; Andersson
and Sotiropoulos, 2016; Smith et al., 2004). Here we fitted the modified
NODDI model to data from 6 subjects with A = 49 ms, b = 6.75, 9.85 and
13.5ms/um? and 64 gradient directions per shell. The b = 0 ms/um? (30
repeats) and b = 0.95 ms/um? images with 32 gradient directions were
used for fitting the diffusion tensor model only (Basser et al., 1994). The
modified NODDI model was then fitted to selected voxels from the cor-
pus callosum where the assumptions of the NODDI model (e.g. white
matter voxels with a single fibre population) are most valid.

T1-weighted structural images were also acquired and here used for
white matter segmentation (Zhang et al., 2001) and to register a corpus
callosum mask from MNI standard space to subject space (Andersson
et al., 2007; Woolrich et al., 2009).

Fig. 2 shows example preprocessed diffusion images. In Fig. 2 right
we see how the images retain good signal at very high b-values.
Figs. 2 left shows the distribution of high b-value (b = 17.8 ms/ um?) sig-
nal from voxels in the ventricles for a single subject. The noise from
the magnitude images follows a Rician distribution, whilst that from
real-valued data is Gaussian distributed as expected. The Rician non-
centrality parameter and Gaussian mean are both non-zero and indica-
tive of a positive signal offset. The data SNR, here taken to be S,/o,
where ¢ was taken to be the Guassian standard deviation or Rician scal-
ing parameter, was found to be SN R € [17,30] with a median SN R of
21.

3. Results
3.1. Changes in the NODDI output for different axial diffusivity

Figs. 3 and 4 show how the parameters of NODDI (Zhang et al., 2012)
change when the assumed axial diffusivity is set to dj = 1.7 pm?/ms -
as is typically assumed - or 2.3 um?/ms, or 3 um?/ms, the latter being
the approximate diffusivity of free water. For completeness we show re-
sults for the full brain, whilst acknowledging that NODDI parameter es-
timates from the grey matter are highly challenging to interpret as here
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Fig. 1. The modified NODDI model for co-estimation axial diffusivity and
orientation dispersion in high b-value data. The fibre response function
(FRF) and fibre orientation distribution (FOD) can be first convolved
and then multiplied by the non-attenuated diffusion signal associated with
the intra-axonal compartment (F = f;, - S) to produce the diffusion signal
S. A signal offset ¢, and (in magnitude data only) rectified noise floor ¢,
were then added to the signal to produce the real or magnitude data, Y as
required. Here we use the powder averaged signal S, to avoid estimating
F as a parameter of the model. See the main text for full definition of
parameters.

where S, is the powder averaged

the NODDI assumptions of non-exchanging compartments and negligi-
ble soma contribution are violated (Jelescu et al., 2022; Olesen et al.,
2022; Palombo et al., 2020).

Fig. 3 shows an increase in the gross signal fraction associated with
the intra-axonal compartment (f;, X f,is,) @and a decrease of the extra-
axonal compartment (f,, X f,.s,) When the assumed axial diffusivity
is increased from 1.7 to 3 um?/ms. Interestingly, when d; =3 um?/ms,
both the extra-axonal signal fraction and radial diffusivity (d,) show
two distinct distributions associated with the white and grey matter. As
d) is increased, the ODI is seen to increase in both the grey and white
matter, and the signal fraction associated with isotropic diffusion, f;,,
is reduced close to zero across most of the brain and particularly in the
white matter where we would not typically expect to find isotropic, free
diffusion.

In Fig. 4 we see the NODDI parameter maps with axial diffusivity
d =3 um?/ms as a percentage of equivalent maps for =17 pum?/ms.
Since d =3 um?/ms represents the upper bound of water diffusion in
vivo, this comparison represents the maximum difference we may obtain
when increasing the assumed axial diffusivity from d; = 1.7 um?/ms.
When d; =3 um?/ms, the isotropic signal fraction and extra-axonal sig-
nal fraction decrease on average to 30 — 50% and 50 — 60% respectively
of their value when d = 1.7 um?/ms. Concurrently, the signal fraction
associated with the intra-axonal compartment and the ODI increase on
average to ~ 150% and ~ 120%. Here we do not see a global, step change,
but rather one which varies across the tissue. In particular, the ODI is
substantially increased in the corticospinal tract as well as by 200 — 250%
in areas of the optic radiation and corpus callosum. We see a large ODI
change across much of the corpus callosum, though not at the midline
along the left-right axis, a known region of increased fibre dispersion.

3.2. Modified NODDI model for high b-value data: simulated data

A second aim of this study was to investigate whether, by apply-
ing NODDI to high b-value data, it was possible to also estimate axial
diffusivity. Crucially, at high b-value, signal contributions from extra-
axonal water are assumed negligible and thus the observed signal can
be attributed to the intra-axonal compartment, here described by diffu-
sion along dispersed sticks. To examine the accuracy and precision with
which this high b-value ‘modified’ model could simultaneously estimate
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Fig. 2. Left: Example magnitude and real-valued diffusion images from a single subject. Here we show the mean signal across all gradient directions. We observe
a considerable rectified noise floor in the magnitude images, which appears greatly reduced in the real valued data. Right: The distribution of signal from voxels in
the ventricles at b = 17.8 ms/um?, where we assume the signal to be purely noise. In both cases, the signal is not zero-mean: the magnitude data follows a Rician
distribution with the non-centrality parameter v = 13.7, and ¢ = 8.4; the real-valued data has Gaussian noise with a positive offset, u = 10.4, ¢ = 9.2. Consequently a
signal offset and, in the case of magnitude data, rectified noise floor were estimated as parameters of the model.
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Fig. 3. The dependence of NODDI parameters on the assumed axial diffusivity. The NODDI model (Zhang et al., 2012) was fitted to 10 subjects from the HCP dataset
with various assumed axial diffusivities d; = 1.7, 2.3, 3 um?/ms. The parameter maps were co-registered after which the average map across subjects was calculated.
The distribution of these parameters is shown for all voxels in the brain (top) and for the white matter (middle, dashed) and grey matter (bottom, dotted) separately.
fansio describes the signal fraction of the anisotropic compartment, where f,,;, = | — fi,- d, is in units of pm?/ms.
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Fig. 4. Estimated NODDI parameter maps with axial diffusivity d; = 3 pum?/ms as a percentage of equivalent maps for dy=17 pum?/ms, as is typically assumed. The
blue shows where parameters decrease, and the red where they increase, as we change d; from 1.7 to 3 um?. The signal fraction associated with isotropic diffusivity
and the extra-axonal compartment is substantially reduced, as is the radial diffusivity. The intra-axonal signal fraction is largely increased as is the ODI, though to a
broadly lesser extent. a) The extra-axonal signal fraction is reduced substantially in the cerebellum. b,c) The ODI increased to < 250% in areas of the optic radiation
and corpus callosum. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

axial diffusivity and ODI, we began by examining simulated data, with
known ground truth parameters.

3.2.1. Parameter distributions and model fits

To investigate degeneracy, Fig. 5 shows the estimated parameter dis-
tributions (left) and model fit (right) for high SNR data (N = 100, SNR
~ 165). The model was fitted to data simulated with both a Gaussian
and Rician noise model, to mimic real-valued and magnitude diffusion
data. In both datasets, the model appeared to fit the data well, where
the residuals between the data and the predicted signal were small.

Upon inspection (Fig. 2), the in vivo data used in this study appeared
to contain a signal offset (i.e the complex noise was not zero-mean), that
was subsequently included as a parameter of the model (¢). Fig. 5 shows
how, in real-valued simulated data, the signal offset can be estimated
with ease: it is not correlated to the other model parameters and does
not appear to affect their estimation. In magnitude data, the signal offset
is highly correlated with the noise floor parameter ¢, causing difficul-
ties in parameter fitting where multiple minima may exist. In compar-
ison, for data with Gaussian noise (meaning that ¢ = 0) the parameter
distributions are approximately Gaussian and close to the ground truth
values, demonstrating that axial diffusivity and ODI can be estimated
reliably and without degeneracy from real-valued data. Supplementary
Fig. 1 shows similar plots for magnitude data without a signal offset
(¢ = 0) where parameter estimation is again improved.

3.2.2. Parameter estimation as a function of SNR

Fig. 5 examines parameter estimation in relatively high SNR data.
As most in vivo data have an SN R < 165, Fig. 6 shows how the preci-
sion and accuracy of the model parameters vary as a function of SNR.
To produce data of varying SNR, here the model was fitted to the signal
averaged over 1-1000 voxels, producing an SNR range of ~ 16.5 — 520.
The fitting was repeated 20 times per SNR. At low SNR, the parameter
estimation is highly sensitive to noise and the parameters are degener-
ate, as indicated by a large spread (standard deviation) in the parameter
distributions (see also green box). The precision of the model param-
eters increases with SNR and the parameter degeneracies are largely
overcome when SNR > 100. Although an SNR of > 100 is often not re-
alised in vivo (where the in vivo data in this study have an SNR of ~ 20),
Fig. 6 motivates parameter estimation through signal averaging or, as is
done for the in vivo data in this study, the concatenation of signal across
voxels.

In magnitude data, the axial diffusivities appear biased and overesti-
mated with respect to the ground truth. This may be related to the calcu-
lation of the spherical mean whilst correcting for the rectified noise floor

S, = Re(‘ / sz - €2> — ¢, where the positivity constraint can lead to an

overestimation of S_b In comparison, parameter accuracy is increased
in real-valued data, where the mean axial diffusivity is generally more
aligned with the ground truth value.
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Fig. 5. Left: Parameter distributions output from MCMC. Each data point in the density plots represents a combination of parameters that fits the signal equally
well. Grey dashed lines represent ground truth values. Right: Model fit (line) to simulated data (dots) and the associated error (prediction-data). g is the gradient
direction, u the fibre orientation and b the b-value in ms/um?. The diffusivities are given in units of pm?/ms. The signal is averaged over 100 voxels, each with
SNR=16.5. Note, as the noise floor parameter is an approximation, we do not plot its ’ground truth’ value.

Together, Figs. 5 and 6 motivate the use of real-valued data for more
reliable and accurate estimation of axial diffusivity and orientation dis-
persion via the modified NODDI model.

3.2.3. Assuming incorrect noise characteristics biases parameter estimates
In low SNR regimes, assuming the wrong noise distribution (Ri-
cian/Gaussian), or neglecting the presence of a signal offset, could have
a considerable effect on the estimated model parameters. Consequently,
Fig. 7 uses simulated data to examine the effect of getting either of the
noise parameters ¢ and ¢ wrong. We examine both what happens when
we neglect the Rician noise floor and signal offset completely (c, e = 0),

but also what happens when we get them only slightly incorrect. The
latter could illustrate a situation where the noise parameters are set to
global, predefined values, rather than estimating them on a voxelwise
basis to account for local parameter fluctuations. In Figure 7a,b, data
were simulated with a signal offset ¢ = 10 and the model was fitted as-
suming some fixed offset. In Figure 7c,d, magnitude data were simulated
with ¢ = 0 and fitted for a fixed noise floor. Note, when the assumed
noise floor = 0, this is equivalent to assuming Gaussian noise (Fig. 7d).
In Fig. 7 a,c, even a small error in the noise parameter leads to biased es-
timates of axial diffusivity (overestimation) and ODI. This is concurrent
with increased parameter degeneracy, as indicated by the high stan-
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dard deviation in the parameter distributions (bottom). In Fig. 7c, the
ground truth noise floor indicates the standard deviation of the com-
plex Gaussian noise. This value is equivalent to what would be typically
measured using de-noising methods and input to Koay inversion method
to account for Rician bias. In contrast, the noise floor value which pro-
duces an axial diffusivity and ODI closest to the ground truth values
is higher. This difference is likely related to Koay’s inversion method
being only well suited to data with SNR> 2, where the diffusion signal
along many gradients at high b-value will likely not meet this require-
ment. Again, these results point to potential pitfalls when using Koay’s
inversion method to correct for Rician bias using a priori estimates of
the noise. In Fig. 7b, where c is fixed but e estimated in magnitude data,
a small error in the signal offset ¢ does not have a large effect on the

other parameters. This is likely due to the correlation between ¢ and e
(Fig. 5), where ¢ can be adjusted to account for the error in c.

Under the wrong noise model (Fig. 7d), the ODI and axial diffusivity
estimates are both highly biased (overestimated) and correlated (de-
generate), even though the SNR of the data is high (SN R ~ 165). When
considering the opposite situation i.e. assuming a Rician noise model
when fitting to real-valued data, the Rician noise floor ¢ tended to zero
as expected, and parameter estimation was otherwise largely unaffected.

3.3. Modified NODDI model for high b-value data: in vivo data
The modified NODDI model was then fitted to high b-value in vivo

data from 6 healthy subjects. Here we fitted to both magnitude and real-
valued images reconstructed from the same complex data. To increase
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b) Magnitude data: assume offset

S 4 ‘ 0.1 ‘
= | |
| | — |
£ \ QO 0.05 \
T, " -1 O \
© | R . IS
< | |
é 1 ‘ 0 ‘
o 5 10 15 o0 5 10 15
6 : 0.015 :
:9 | |
(4] | |
34 | % 0.01 |
= | |
> —
A | () |
a2 ‘ o 0.005 ‘
= T |
o 0 | 0 |
0 5 10 15 0 5 10 15

Fixed offset Fixed offset

d) Magnitude data: assume Gaussian

4

w
3

w

N

-
[6,]

Axial diffusivity
N
(6)]

—_

o

0.05 0.1
oDl

Fig. 7. Assuming inaccurate noise parameters biases the estimated axial diffusivity and ODI. Top: data were simulated with ¢ = 10 and fitted assuming some fixed
offset. Bottom: Simulated data with offset ¢ = 0 was fitted assuming a fixed noise floor e. The plots show the mean (top) and standard deviation (std, bottom) of the
parameter distribution output from MCMC. The model was fitted to high SNR data with N = 100 and the diffusivities are given in units of pm?/ms.

the SNR, data was concatenated across N voxels from the corpus callo-
sum, chosen to have similar .S, and high FA. The results are shown in
Fig. 8, where the colours indicate data from different subjects.

As in simulated data (Fig. 6), the spread of the ODI/diffusivity stan-
dard deviation decreases as a function of N where in single voxel data
the parameters appear degenerate, but can be estimated with increased
precision for larger N. Note, whereas in simulated data, each voxel was
simulated with identical ODI and axial diffusivity, in in vivo data, each
voxel is likely to exhibit slightly different diffusivity and fibre orien-
tation distribution. Thus, concatenating signal across many voxels has
both the advantage of increasing SNR, and some disadvantage, where
the estimated axial diffusivity and ODI are likely some average across
the voxel population. The latter was minimised by selecting voxels from
within the corpus callosum with similar .S, and FA. Nonetheless, we gen-
erally obtain fairly similar axial diffusivity values when fitting to either
N=50 or 100 voxels, giving some confidence to these results.

Both magnitude and real-valued data estimate somewhat similar ax-
ial diffusivities and ODI, though the spread of axial diffusivities across
subjects is higher for the magnitude data. The mean intra-axonal ax-

ial diffusivity across subjects for N =100 was d| =2.26 um?/ms and
dy =242 um? /ms for real-valued and magnitude data respectively. Cru-
cially, these values are much higher than the d| = 1.7 um? /ms typically
assumed when fitting NODDI, suggesting that many current studies may
be producing biased NODDI parameter estimates.

4. Discussion

To describe the complex tissue microstructure in only a handful of
modelling parameters, biophysical diffusion models make strong, sim-
plifying assumptions about the underlying tissue architecture. The ex-
tent to which many of these assumptions are valid in both healthy and
diseased tissue remains an open research question. This study was in-
spired by the disparity between the estimated intra-axonal axial diffu-
sivity from literature (~ 2 — 2.5 um?/ms (Dhital et al., 2019; Jelescu and
Budde, 2017; Jelescu et al., 2020; Kaden et al., 2016; Kunz et al., 2018;
Lampinen et al., 2020; McKinnon et al., 2018; Nilsson et al., 2021; Zheng
et al., 2017)) and that typically assumed by the NODDI model and of-
ten utilised in simulations (dy =17 um?/ms). We first demonstrate the
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Fig. 8. Fitting the modified NODDI model to both magnitude and real-valued in vivo data. The model was fitted to the concatenated signal across N=1, 25, 50 or
100 voxels. This corresponds to an approximate SNR given on the x-axis (lower bound, assuming SNR,,,=16.5). Plotted are the mean and standard deviation (std)
of the parameter distributions output from MCMC. Each colour represents data from a single subject. The diffusivities are given in units of pm?/ms.

extent to which the NODDI output is dependent on the assumed ax-
ial diffusivity. Second, we illustrate how the NODDI framework can be
adapted for high b-value data and overcome known parameter degen-
eracies (Jelescu et al., 2016) to estimate axial diffusivity as a free pa-
rameter of the model. Crucially, by utilising the NODDI framework and
high b-value data, we can forgo modelling of the extra-axonal space and
attribute the diffusion attenuation to only two parameters, the intra-
axonal axial diffusivity and fibre dispersion, which are simultaneously
estimated on a voxelwise basis. Were we to estimate axial diffusivity
without accounting for dispersion, our axial diffusivity estimates would
be biased (Howard et al., 2019).

Our results cannot ascertain the “correct” axial diffusivity for the
NODDI model, nor do the changes in the NODDI outputs reported here
necessarily negate group differences in NODDI parameters. Instead they
challenge the interpretation of the NODDI outputs as accurate, biophys-
ical parameters, rather than biased indices which are dependent on
many modelling assumptions, including the input axial diffusivity. In
Fig. 4 - when d) =3 um?/ms (the most extreme case) is compared to
d =17 um?/ms - we frequently see the parameter estimates rise or fall
by ~ 50%, where in some cases the parameter may be as little as 20%

or as much as 250% of its former value. Notably, both the ODI and the
signal fractions associated with each of the three compartments change.
With higher axial diffusivities, a substantially larger fraction of the white
matter signal is associated with the intra-axonal compartment and the
associated isotropic compartment is reduced, which may be more in line
with our microstructural expectations. This is coupled with an overall
~ 20% increase in the orientation dispersion index, with regions of the
corpus callosum and optic tract sometimes doubling. Here, more signal
attenuation perpendicular to the fibre is explained by the interplay of
intra-axonal diffusion and fibre orientation dispersion, rather than the
radial diffusivity associated with the extra-axonal compartment via the
tortuosity model.

The change in estimated ODI invites future ODI validation against
microscopy gold standards. However, validation is complicated by hav-
ing to select an appropriate axial diffusivity, a choice that is espe-
cially challenging in postmortem tissue where the diffusivities are con-
siderably reduced when compared to their in vivo values. In previ-
ous work, Schilling et al. (2017) found the NODDI ODI to correlate
well with dispersion values derived from histology (r=0.66), though the
ODI was consistently higher than that from histology. In comparison,
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Grussu et al. (2017) compared the NODDI outputs to histological data
from the human spinal cord to find an approximate one-to-one map-
ping (r=0.84 in controls, r=0.64 in MS cases). The discrepancy between
the results from the two studies may indeed be related to the choice
of assumed axial diffusivity. In postmortem spinal cord, Grussu et al
assume an axial diffusivity of 1.5 um?/ms which was found to optimise
the fitting across all samples. Schilling et al. imaged postmortem squirrel
monkey brain, though the assumed axial diffusivity wasn’t reported.

Though Figs. 3 and 4 assume a single, global diffusivity across the
brain and subjects, there is likely great value in being able to account
for both between-subject and across-brain variations in intra-axonal ax-
ial diffusivity. Recent, promising work by Ramanna et al. (2020) and
Nilsson et al. (2021) utilise triple diffusion encoding and data with
multiple b-tensor encodings respectively to estimate intra-axonal ax-
ial diffusivity on a voxelwise basis. Ramanna et al. estimate axial dif-
fusivities across the white matter of three subjects to be 2.24 +0.18,
whilst Nilsson et al. demonstrate particularly high axial diffusivities of
dy~2.7 um?/ms in the corticospinal tract. Studies of intra-axonal axial
diffusivity are typically limited to analysing data from relatively few,
healthy subjects, making characterisation of normative values or be-
tween brain variations challenging. This challenge is likely further ex-
acerbated when considering either development, ageing or pathology
which likely either directly or indirectly alter the observed axial diffu-
sivity. Indeed, although the values of axial diffusivity presented here
should not be over-interpreted, our results do potentially indicate some
across subject variation in intra-axonal axial diffusivity across a series
of six healthy participants. Together, these arguments challenge the as-
sumption of a fixed, predefined axial diffusivity and instead advocate
for the co-estimation of both architectural features and diffusion char-
acteristics on a voxel-wise or subject-wise basis.

A second aim of the study was to demonstrate how by modifying
the NODDI model for high b-value data, the framework could be used
to simultaneously estimate axial diffusivity and orientation dispersion.
Though the NODDI model here explicitly considers only macroscopic
fibre orientation, it is likely that microscopic fibre dispersion, includ-
ing but not limited to axon undulations, also affects intra-axonal axial
diffusivity. Indeed Andersson et al. (2020) and Lee et al. (2020) com-
bine Mote Carlo simulations of diffusion with realistic axon morpholo-
gies from 3D X-ray nano-holotomography and electron microscopy data
respectively, to demonstrate how complex axon morphology, including
axon micro-dispersion, caliber variations, and the presence of mitochon-
dria, all likely influence the observed diffusivities of the tissue. Anders-
son et al. explicitly show a reduction in the apparent axial diffusivity as
a function of the complexity in morphological complexity, with micro-
dispersion a key contributing factor.

One of the primary limitations of the NODDI framework is the de-
scription of the fibre orientation distribution as that of a single fibre
population with symmetric dispersion. Consequently, we would not rec-
ommend applying the model to voxels that contain multiple fibre pop-
ulations, grey matter or otherwise complex microstructure that violate
these (or any other) model assumptions. Furthermore, in the current
study, we assume the fibre orientation can be described by the primary
eigenvector of the diffusion tensor. This allows us to concatenate the
signal across multiple voxels to boost SNR. However, were the model
applied to very high SNR data, therefore facilitating voxelwise model
fitting, the model could be relaxed to also estimate the primary fibre
orientation in single fibre voxels. Future work should consider replac-
ing the Watson with a Bingham distribution to account for dispersion
asymmetry, modelling multiple fibre populations per voxel and apply-
ing the model to high SNR data to achieve voxelwise estimates of ax-
ial diffusivity. An alternative to estimating orientation dispersion as a
model parameter is to either assume isotropic dispersion (e.g. when fit-
ting to grey matter voxels (Kroenke et al., 2004)) or integrating over all
possible orientations and fitting to the powder averaged signal which
is independent of the fibre orientation distribution (Kaden et al., 2016;
Lundell et al., 2021; Nilsson et al., 2021; Ramanna et al., 2020). The

11

Neurolmage 262 (2022) 119535

powder averaged signal of a diffusion tensor was recently combined with
data from double diffusion encoding magnetic resonance spectroscopy
to confirm the assumption of negligible extra-axonal signal at high b-
value (b ~ 7.2 ms/pum?) and estimate d} ,, 4., = 1.95um?/ms in the white
matter for A = 45ms, with lower axial diffusivities reported in the grey
matter Lundell et al. (2021).

In addition, the NODDI framework assumes each axon can be de-
scribed as having identical, stick-like, time-independent diffusion char-
acteristics, where any observed signal kurtosis is attributed to the in-
terplay of Gaussian axial diffusivity and fibre dispersion. Any deviation
from this assumption, e.g. diffusion time dependence or sensitivity to
axon diameter at high b-value, the presence of non-identical diffusion
properties leading to a range of diffusion tensors, or other forms of intra-
compartmental kurtosis (e.g. structural disorder), will likely bias our re-
sults (Henriques et al., 2021; Jespersen et al., 2019; Veraart et al., 2020).
Here we performed basic simulations of the diffusion signal from a single
cylinder and the acquisition scheme used in this study (data not shown),
where we only began to see substantial deviation from the § « 57 be-
haviour expected for stick-like diffusion (Veraart et al., 2020) for ax-
ons with radii r > 5pum. In this study, the modified NODDI model was
applied to voxels from the corpus callosum where microscopy data sug-
gests that the majority of axon radii are < 1um, with very few axons with
r 2 3um (Veraart et al., 2020). Consequently, we expect there to be min-
imal influence of axon diameter on our results, though caution should
be taken if applying the model to data with shorter diffusion times or
higher b-values, or areas of the brain with larger diameter axons, such
as the spinal cord or corticospinal tract.

Nonetheless, it is reassuring how, even within this restrictive frame-
work, we estimated axial diffusivities from real-valued data in the range
dy~2- 2.5um?/ms, with an across subject mean of 2.26pm?/ms, in line
with current literature (Dhital et al., 2019; Jelescu and Budde, 2017; Je-
lescu et al., 2020; 2016; Kaden et al., 2016; Kunz et al., 2018; Lampinen
et al., 2020; McKinnon et al., 2018; Nilsson et al., 2021; Ramanna et al.,
2020; Zheng et al., 2017). In real-valued data, the axial diffusivity across
subjects varied by ~ 0.5um?/ms. Though this variation is larger than
that reported in other studies (Dhital et al., 2019; Ramanna et al., 2020),
it is similar to the range of estimated axial diffusivities observed in simu-
lated data due to sensitivity to different noise realisations (Fig. 6). Con-
sequently, we would be cautious of interpreting this as true, subject
specific variation, rather than expected parameter uncertainty given the
model and the data. The variation in estimated axial diffusivities in mag-
nitude data was larger, where simulations demonstrated the fit to be less
reliable due to estimation of both the noise offset and noise floor.

A final limitation of the general NODDI model (Zhang et al., 2012) is
that it assumes the axial diffusivity of the intra- and extra-axonal com-
partment to be equal, and that the extra-axonal radial diffusion is linked
to the axial diffusivity via the tortuosity model. Various studies now
provide evidence for different intra- and extra-axonal axial diffusivities
(Dhital et al., 2018; 2019; Jespersen et al., 2018; Kunz et al., 2018;
Skinner et al., 2017; Szczepankiewicz et al., 2015; Veraart et al., 2018).
Notably, when the assumptions of the NODDI model were relaxed to
also estimate intra-axonal d, ;,,, extra-axonal d ,, and extra-axonal d, ,,
(NODDIDA), Jelescu et al. (2016) found two possible sets of solutions:
onewithd, ;, > d ., the other with d, ;,, < d, .. Consequently, it is chal-
lenging to ascertain a “correct” axial diffusivity to represent both com-
partments when fitting NODDI to low b-value data.

A third aim of this study was to examine the effect of getting the
noise characteristics of the data wrong in low SNR data. This is of par-
ticular importance as many studies aim to acquire data at high b-value,
high spatial resolution, or short scan times - all of which are typically
low SNR regimes. When working with our high b-value data, both the
presence of a rectified noise floor or signal offset had to be carefully
considered to avoid parameter degeneracy and bias. Fig. 7 demonstrates
the effect of assuming Gaussian noise in magnitude data, as may be of-
ten naively done. When the rectified Rician noise floor is not accounted
for, the parameter estimates are both biased and correlated (degener-
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ate). This challenges the idea that it is valid to naively apply biophysi-
cal models that assume Gaussian noise to low SNR magnitude images.
Careful consideration should be taken when transferring models to data
with different noise characteristics to what they have been designed and
tested on.

Finally, Fig. 7 further advocates for estimating noise parameters
within the model, rather than as fixed, predefined properties that are
e.g. first measured from background voxels and assumed constant across
the brain. There are various methods to remove the Rician noise bias
that include but are not limited to a) utilising real-valued rather than
magnitude images (Fan et al., 2020; Tian et al., 2022), b) approximat-
ing the Rician signal as Gaussian via e.g. the Koay inversion technique
(Koay and Basser, 2006) and, as was not explicitly done in this study,
¢) applying a Rician noise model during optimisation. Note, the latter
requires knowledge of the fibre orientation distribution and so cannot
be applied in models fitted to the spherical mean, or powder averaged
signal, which explicitly aim to circumvent modelling of the fibre orienta-
tion distribution (Fan et al., 2020). Further, as the Koay inversion tech-
nique is an approximation that breaks down for low SNR data (which
likely causes the discrepancy between the ground truth ¢ and that es-
timated from simulated data in Figures 6,7), this study suggests that
it may be preferable to use Rician noise modelling rather than Koay’s
inversion where possible in low SNR data.

The data wused in this study is openly available via
http://www.humanconnectomeproject.org/ and (Tian et al,
2022). At  https://git.fmrib.ox.ac.uk/amyh/noddi-axialdiffusivity
we provide a cuDIMOT implementation of NODDI (Hernandez-
Fernandez et al., 2019) where the assumed diffusivities d and d,,,
are user-defined at runtime, and MATLAB scripts to implement the
modified NODDI model. Interesting avenues for future work include:
applying the model to data with both high b-value and high SNR (e.g.
from animal models) to explore spatial variations in axial diffusivity;
the relationship between axial diffusivity and features of the tissue ar-
chitecture such as axon diameter; whether intra-axonal axial diffusivity
is affected by tissue degradation or disease; the relationship between
axial diffusivity and brain development; as well as the estimation of
axial diffusivity in postmortem tissue, both in situ and after perfusion
or immersion fixation. Furthermore, the model could be extended to
estimate multiple fibre populations per voxel and applied brain-wide to
provide maps of axial diffusivity across the brain. Finally, co-registered
MRI and microscopy data should be used to validate the orientation dis-
persion estimates reported here. This will likely require the acquisition
of a bespoke postmortem dataset which combines data from multiple
shells at ultra-high b-values (accounting for the reduced diffusivity of
fixed postmortem tissue) with corresponding microscopy imaging of
the white matter fibres.

5. Conclusion

This study focuses on the assumption of a fixed axial diffusivity in
the NODDI model in diffusion MRI. We first demonstrate a considerable
dependency of the NODDI parameters on the assumed axial diffusivity,
which challenges the interpretation of the NODDI parameters as bio-
physical metrics, rather than biased indices which are dependent on the
modelling assumptions. Second, we demonstrate how the axial diffusiv-
ity could be estimated within the NODDI framework by utilising high
b-value data. In this challenging, low SNR regime, we demonstrate the
importance of locally estimating a rectified noise floor and signal off-
set i.e. background signal independent of diffusion weighting, both of
which could otherwise result in parameter degeneracy or bias. Our re-
sults show an axial diffusivity of ) ~2-2.5 um?/ms in real-valued in
vivo human data, which is both in line with current literature and sub-
stantially above that typically assumed by NODDI (d; = 1.7um?/ms).
This motivates the use of more advanced diffusion acquisitions and/or
modelling that can resolve parameter degeneracies whilst making min-
imal assumptions about the tissue microstructure.
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