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a b s t r a c t 

To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simpli- 

fying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains 

an open research question. This study was inspired by the disparity between the estimated intra-axonal axial 

diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging 

(NODDI) model ( 𝑑 ∥ = 1 . 7 μm 

2 /ms ). We first demonstrate how changing the assumed axial diffusivity results in 

considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity 

as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simu- 

lated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian 

and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this 

high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial dif- 

fusivities of ∼ 2 − 2 . 5 μm 

2 /ms , in line with current literature. Crucially, our results demonstrate the importance 

of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when 

dealing with low SNR data. 
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. Introduction 

In diffusion MRI, biophysical models aim to relate macroscopic dif-

usion signals to microscopic, biologically meaningful tissue parame-

ers such as fibre orientation, dispersion or diameter. The primary chal-

enge for biophysical models is being able to describe the complex tis-

ue microstructure in only a handful of parameters that can be esti-

ated reliably from the diffusion signal. Consequently, the model must

ake strong, simplifying assumptions about the underlying architecture

nd/or diffusion properties of the tissue. Some parameters are often con-

trained or set to a single value which is either taken from the literature

r decided by some other means (e.g. by fitting the model multiple times

ith different values for some assumed parameter, and taking the re-

ult which maximises the quality of the fit across voxels or specimens
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 Grussu et al., 2017 ; Guerreroid et al., 2019). Though these assumptions

ake the estimation of otherwise degenerate parameters tractable, if

he modelling constraints are inaccurate, the estimation of the remain-

ng model parameters will be biased ( Jelescu et al., 2016; Howard et al.,

019 ). 

Neurite Orientation Dispersion and Density Imaging (NODDI)

 Zhang et al., 2012 ) is a commonly used biophysical model in diffu-

ion MRI which, due to its clinically feasible scan times requirements,

as been reported in numerous studies of patient populations ( Adluru

t al., 2014; Timmers et al., 2016; Schneider et al., 2017; Hagiwara

t al., 2019; Taoka et al., 2020 ). NODDI is a variant of the white matter

standard model’ ( Novikov et al., 2018b ) in which specific assumptions

bout the tissue diffusivity allow for voxelwise estimation of fibre dis-

ersion and neurite ‘density’ or signal fraction. One assumption is that
022 
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𝑆  
he intra-axonal axial diffusivity, i.e. the diffusion of water molecules

nside the axon as they travel along the primary axis or orientation, is

 fixed, global value known a priori and typically set to 1 . 7 μm 

2 /ms .

n axial diffusivity of 1 . 7 μm 

2 /ms has been previously justified in adult

hite matter by minimising the model residuals when fitting to in vivo

ata from multiple subjects ( Guerreroid et al., 2019 ). However, optimis-

ng over the residuals may be sub-optimal for a degenerate model like

ODDI, where multiple parameter sets can produce the same diffusion

ignal. This degeneracy likely explains the broad range of reported ax-

al diffusivities ( ∼ 1 − 2 . 5 μm 

2 /ms ) with similar residual error. Though

hese axial diffusivities may produce a similar residual error, the esti-

ated NODDI parameters from each fit will be different. Furthermore,

here now exists a body of work in which the intra-axonal axial dif-

usivity is generally estimated to be higher, typically in the range of

2 − 2 . 5 μm 

2 /ms ( Dhital et al., 2019; Jelescu and Budde, 2017; Jelescu

t al., 2020; 2016; Kaden et al., 2016; Kunz et al., 2018; Lampinen

t al., 2020; McKinnon et al., 2018; Nilsson et al., 2021; Ramanna et al.,

020; Zheng et al., 2017 ). Notably, these studies use different meth-

ds to achieve compartment specific selectivity (including high b-value

ata ( McKinnon et al., 2018; Veraart et al., 2019 ), gadolinium injec-

ion ( Kunz et al., 2018 ) and planar filtering ( Dhital et al., 2019 )), as

ell as different microstructure models and/or parameter constraints to

stimate axial diffusivity. 

Inspired by the difference between the reported and assumed intra-

xonal axial diffusivity, this study first aims to explore how changing

he predefined axial diffusivity in the NODDI model affected the remain-

ng estimated parameters. A second aim of this study was to investigate

hether, by utilising high b-value data, we could simultaneously esti-

ate axial diffusivity within the NODDI framework. Here it is useful

o estimate axial diffusivity within the NODDI framework (rather than

.g, from the voxels with highest fractional anisotropy ( Basser et al.,

994 )) as it facilitates estimation of both axial diffusivity and fibre

ispersion on a voxelwise basis. Were the fibres instead assumed to

e coherently aligned, the axial diffusivity estimates would be biased

 Dhital et al., 2019; Howard et al., 2019 ). Crucial to our second aim

as the use of ultra-high b-value data, where it can be assumed that

he higher-diffusivity extra-axonal water is eliminated such that only

he intra-axonal compartment contributes signal ( Jensen et al., 2016;

leban et al., 2020; Lundell et al., 2021; McKinnon et al., 2018; McK-

nnon and Jensen, 2019; McKinnon et al., 2017; Novikov et al., 2018a;

eraart et al., 2019 ), thus overcoming known degeneracies between dif-

usion characteristics of the intra- and extra-axonal space ( Howard et al.,

019 ). However, high b-value data also posed several challenges. In par-

icular, we found that in this low SNR regime, the model had to account

or both the rectified noise floor and/or a signal offset to avoid parame-

er degeneracy and bias. We demonstrate how, with appropriate modi-

cations, the NODDI framework can be applied to both magnitude and

eal-valued data to estimate axial diffusivities in line with previous lit-

rature. 

. Methods 

This paper is organised as follows. First we demonstrate how chang-

ng the assumed intra-axonal axial diffusivity affects the output of the

standard NODDI model’ (described below), highlighting the importance

f the discrepancy between the assumed axial diffusivity of NODDI and

any estimates of axial diffusivity found in literature. We then investi-

ate how a ‘modified NODDI model’ can be used to estimate both the

xial diffusivity and ODI concurrently from high b-value data. Specif-

cally, this modified NODDI model (i) considers the intra-axonal com-

artment only and (ii) explicitly accounts for Rician noise floor and a

ignal offset. Finally, the modified model was applied to in vivo, human

ata, where we explore how noise can bias model estimates in this high

-value and thus low SNR regime. 
2 
.1. NODDI output sensitivity to the assumed axial diffusivity 

To evaluate how the NODDI output changed with respect to the as-

umed axial diffusivity, the standard NODDI model ( Zhang et al., 2012 )

as applied to the diffusion data with 𝑑 ∥ = 1 . 7 , 2 . 3 or 3 μm 

2 /ms . Briefly,

he NODDI model consists of a Watson-like fibre orientation distribu-

ion which is convolved with three compartments that are typically as-

ociated with the CSF, extra-axonal and intra-axonal space. The first

ompartment has isotropic, free diffusion, the second compartment de-

cribes tensor-like diffusion, and the third compartment describes stick-

ike diffusion. The model fitting involves 5 parameters being estimated

the intra-axonal signal fraction, the isotropic signal fraction, the fi-

re orientation and orientation dispersion index, [ 𝑓 𝑖𝑛 , 𝑓 𝑖𝑠𝑜 , 𝜃, 𝜙, 𝑂𝐷𝐼] )
hilst assuming some fixed, global axial diffusivity which may dif-

er from 𝑑 ∥ = 1 . 7 μm 

2 /ms , that the radial diffusivity of the tensor-like

ompartment is given by the tortuosity model 𝑑 ⟂ = 𝑑 ∥(1 − 𝑓 𝑖𝑛 ) and that

he diffusivity of the isotropic compartment is that of free diffusion

 𝑖𝑠𝑜 = 3 μm 

2 /ms . 

Here we utilised preprocessed T1-weighted and diffusion-weighted

ata for the first 10 subjects of the WU-Minn Human Connectom Project

HCP); for details of the acquisition protocol and preprocessing pipeline,

lease see ( Glasser et al., 2013; Sotiropoulos et al., 2013; Van Essen

t al., 2013 ). Briefly, the diffusion-weighted data included 90 gradient

irections each at b-values of 𝑏 = 1 , 2 and 3 ms/ μm 

2 and 18 interspersed

olumes with negligible diffusion weighting. The distortion corrected

“pre-processed ”) 𝑏 ∼ 0 ms/ 𝜇m 

2 data were linearly registered to each

ubject’s T1-weighted structural scan (FLIRT ( Jenkinson et al., 2002;

enkinson and Smith, 2001 )), and the T1 non-linearly registered to the

NI standard space (FNIRT ( Andersson et al., 2007; Woolrich et al.,

009 )). The NODDI fitting ( Zhang et al., 2012 ) was performed in sub-

ect space using the cuDIMOT framework ( Hernandez-Fernandez et al.,

019 ) for GPU acceleration with Rician noise modelling. 

.2. Modified NODDI for high b-value data 

The NODDI model was modified for high b-value data where we

ssume the entirety of the diffusion signal can be attributed to the intra-

xonal compartment ( Jensen et al., 2016; Kleban et al., 2020; Lundell

t al., 2021; McKinnon et al., 2018; McKinnon and Jensen, 2019; McK-

nnon et al., 2017; Novikov et al., 2018a; Veraart et al., 2019 ). Here, the

iffusion signal along gradient direction 𝒈 is given by the convolution

f the fibre orientation distribution, which was assumed to be a Watson

istribution ( Mardia and Jupp, 2000; Zhang et al., 2012 ), and a fibre

esponse function for stick-like fibres with Gaussian axial diffusion and

o radial diffusion: 

 𝑏,𝑔 ≈ 𝑓 𝑖𝑛 𝑆 0 
1 

𝐶 𝑊 

∫𝑆 2 exp [ 𝜅( 𝝁
⊤𝒙 ) 2 ] exp [ − 𝑏𝑑 ∥( 𝒈 ⊤𝒙 ) 2 ] d 𝑥 . (1)

he integrand is over 𝒙 ∈ 𝑆 2 ; 𝑓 𝑖𝑛 being the signal fraction of the intra-

xonal compartment; 𝝁( 𝜃, 𝜙) , the direction of the fibre; 𝑑 ∥, the intra-

xonal axial diffusivity; 𝒙 , a unit vector on the sphere 𝑆 2 ; 𝑏 , the b-value

nd 𝑆 0 , the non-diffusion weighted signal. 𝐶 𝑊 

is the normalising con-

tant, where, 

 𝑊 

= ∫𝑆 2 exp [ 𝜅( 𝝁
⊤𝒙 ) 2 ] d 𝑥 = 4 𝜋1 𝐹 1 (1∕2; 3∕2; 𝜅𝝁𝝁⊤) , (2)

nd 1 𝐹 1 ( 𝛼; 𝛽; 𝑿 ) is the confluent hypergeometric function of the first

ind with a matrix argument 𝑿 . The dispersion parameter 𝜅 is typ-

cally rewritten in terms of the orientation dispersion index, 𝑂𝐷𝐼 =
∕ 𝜋 arctan (1∕ 𝜅) ( Zhang et al., 2012 ) which ranges from 0 to 1, repre-

enting perfectly aligned and isotropic fibre distributions respectively. 

The integral in Eq. 1 can also be written in terms of the conflu-

nt hypergeometric function of the first kind with matrix argument

 = 𝜅𝝁𝝁⊤ − 𝑏𝑑 ∥𝒈𝒈 
⊤. Consequently, Eq. 1 becomes ( Sotiropoulos et al.,

012 ): 

 𝑏,𝑔 ≈ 𝑓 𝑖𝑛 𝑆 0 
1 𝐹 1 (1∕2; 3∕2; 𝜅𝝁𝝁⊤ − 𝑏𝑑 ∥𝒈𝒈 

⊤) 

𝐹 (1∕2; 3∕2; 𝜅𝝁𝝁⊤) 
. (3)
1 1 
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y taking the ratio of 𝑆 𝑏,𝑔 ∕ 𝑆 𝑏 (rather than 𝑆 𝑏,𝑔 ∕ 𝑆 0 ) we can derive an

nalytic solution where the model is independent of both 𝑓 𝑖𝑛 and 𝑆 0 ,

nd described by only four parameters 𝑆( 𝑂𝐷𝐼, 𝑑 ∥, 𝜃, 𝜙) . 𝑆 𝑏 represents

he powder averaged signal, i.e. the average signal across all diffu-

ion gradients for a given b-value, where at high b-value, for stick-

ike diffusion convolved with an arbitrary fibre orientation distribution

aden et al. (2016) , 

 𝑏 ≈ 𝑓 𝑖𝑛 𝑆 0 

√
𝜋 erf ( 

√
𝑏𝑑 ∥) 

2 
√
𝑏𝑑 ∥

. (4)

ividing 𝑆 𝑏,𝑔 ( Eq. 3 ) by 𝑆 𝑏 ( Eq. 4 ), the diffusion signal has an analytic

orm given by: 

 𝑏,𝑔 ≈ 𝑆 𝑏 

2 
√
𝑏𝑑 ∥√

𝜋 erf ( 
√
𝑏𝑑 ∥) 

1 𝐹 1 (1∕2; 3∕2; 𝜅𝝁𝝁⊤ − 𝑏𝑑 ∥𝒈𝒈 
⊤) 

1 𝐹 1 (1∕2; 3∕2; 𝜅𝝁𝝁⊤) 
. (5)

ere the model depends on only two free parameters, 𝑑 ∥ and 𝑂𝐷𝐼 (or

). During fitting, 𝑆 𝑏 was calculated for each shell in turn. 

In our initial investigations we aimed to simultaneously estimate the

hree parameters 𝑑 ∥, 𝜅 and 𝐹 𝑖𝑛 = 𝑓 𝑖𝑛 𝑆 0 on a voxelwise basis according to

q. 3 . However, upon closer examination, the parameters were found to

e degenerate, leading to an overestimation of 𝑑 ∥. Here we used simu-

ated data (shown later) to investigate the model parameter degeneracy

nd bias in relation to the noise characteristics of the data. Crucially,

e found that the parameter degeneracies and bias could be overcome

f we fitted to high SNR data, and explicitly model both a signal offset

nd the Rician noise floor. The presence of a signal offset in the in vivo

ata was supported by the presence of non-zero signal in the ventricles

t high b-value. Consequently, we accounted for a signal offset i.e. some

ackground signal that was independent of diffusion weighting, where

 = 𝑆 + 𝑐, (6)

 being the data, 𝑆 the diffusion signal and 𝑐 the offset, which is some-

imes referred to as a dot compartment. Then in magnitude data, we

lso accounted for the rectified Rician noise floor using Koay’s inver-

ion technique Koay and Basser (2006) : 

 = 

√
( 𝑆 + 𝑐) 2 + 𝜖2 . (7)

being the Rician scaling parameter, which is equivalent to the standard

eviation of Gaussian noise for complex data. Typically, 𝜖 is estimated

 priori from noise estimation methods ( Veraart et al., 2016 ). However,

s shown below, a priori estimation might not be ideal as even a small

isestimation of 𝜖 could lead to large parameter biases. An alternative

ay of circumventing Rician noise floor effects is to consider real-valued

ata with Gaussian noise characteristics ( Fan et al., 2020 ). Using com-

lex data, the signal phase is first removed from each voxel after which

he real component of the signal is extracted ( Fan et al., 2020 ). In this

tudy, the model was fitted to both real valued data (where 𝑐 was esti-

ated) and magnitude data (where both 𝑐 and 𝜖 were estimated) from

he same subjects. As even a small misestimation of 𝑐 or 𝜖 can lead to a

arge parameter bias, both were estimated as parameters of the model

hat were fitted voxelwise during model optimisation. 

.2.1. The final model & optimisation 

Combining Eq. 5 with either Eq. 6 (real-valued data) or 7 (magnitude

ata) and assuming a known fibre orientation 𝜇 = 𝑉 1 (the primary eigen-

ector of the diffusion tensor ( Basser et al., 1994 )), the final model was

ependent on only three or four parameters: the orientation dispersion

ndex 𝑂𝐷𝐼 , the axial diffusivity 𝑑 ∥, the signal offset 𝑐, and, in magni-

ude data only, the noise floor parameter 𝜖. Fig. 1 shows a graphical

epiction of the model. 

During optimisation, the parameters were bounded such that 𝑂𝐷𝐼 ∈
0 , 1] and 𝑑 ∥ ∈ [0 , 4] μm 

2 /ms where the diffusivity in free water at 37 ◦𝐶
s ∼ 3 − 3 . 1 μm 

2 /ms . Due to the observed possible degeneracy between
3 
he two noise parameters 𝑐 and 𝜖, when both were estimated in mag-

itude data, they were constrained to be 50 − 150% of 𝑐 and 𝜖 as es-

imated from high b-value data in the ventricles (a Rician distribution

as fitted to 𝑏 = 17 . 8 ms/ μm 

2 data, where 𝑐 = the non-centrality param-

ter and 𝜖 = the scale parameter). When only one noise parameter was

stimated (in real-valued data or simulations with 𝑐 = 0 ), the noise pa-

ameter was constrained such that 𝑐 ∈ [0 , 0 . 5 ⋅ 𝑆 0 ] or 𝜖 ∈ [0 , 0 . 5 ⋅ 𝑆 0 ] . The

owder averaged signal 𝑆 𝑏 was calculated for each shell in turn, where

he data 𝑌 were for first corrected for any signal offset 𝑐 or noise floor

according to Eq. 6 or 7 (i.e. 𝑌 was converted to 𝑆 prior to signal av-

raging). The model was optimised using the Metropolis Hastings (MH)

lgorithm which afforded estimation of each parameter’s posterior dis-

ribution. The initial parameters for MH were found by grid search. 

Our investigations using simulated data demonstrated how higher

NR leads to more precise estimates of 𝑂𝐷𝐼 and 𝑑 ∥. Consequently, for

n vivo data, the model was fitted to the concatenated signal across

any ( 𝑁) voxels to boost SNR. Here, the signal from each voxel was

rst rotated such that the primary eigenvector of the diffusion tensor

as aligned and the secondary eigenvector was randomly orientated,

ince the Watson distribution describes symmetric dispersion about the

rimary fibre orientation. As NODDI assumes a single-fibre population

er voxel, we fitted to high FA voxels from the corpus callosum which,

o enforce some data consistency, were selected to have similar 𝑆 0 
 𝑆 0 ± 10% ). Instead of concatenating the signal, we could have aver-

ged the signal across voxels (as we did using simulated data below).

owever, this would require 1) the diffusion signal from each voxel to

rst be rotated so that the primary fibre orientations align, and 2) the

otated signal to be resampled along consistent gradient orientations

. Consequently, signal concatenation was deemed preferable to signal

veraging across voxels, as our results would not be biased by interpola-

ion effects which can introduce smoothing and effect noise properties

n non-trivial ways. 

.3. Simulated data 

Data were simulated with a known ground truth to investigate the

recision and accuracy of the parameter estimates. The 𝑆 0 , b-values and

radient directions were chosen to mimic the in vivo data below. The

round truth parameter values were 𝑑 ∥ = 2 . 2 , 𝑂𝐷𝐼 = 0 . 03 , 𝑓 𝑖𝑛 = 0 . 6 and

 = 10 unless otherwise stated. The SNR of a single voxel was defined as

NR 𝑣𝑜𝑥 = 𝑆 0 ∕ 𝜎 = 16 . 5 , which is similar to the lower bound of the SNR in

he in vivo data used later in this study, where 𝜎 represents the standard

eviation of Gaussian noise in the complex data. As in in vivo data, the

odel was fitted to data from 𝑁 simulated voxels. The SNR across many

oxels was then approximated as SNR ∼ SNR 𝑣𝑜𝑥 ×
√
𝑁 . 

Note, for in vivo data we fitted the model to the concatenated sig-

al across voxels, whilst for simulated data we fitted to the averaged

ignal. In simulated data, we fixed the fibre orientation and could thus

ompute the average signal across voxels without interpolation. Further-

ore, by averaging the signal, we fitted to fewer gradient directions and

inimised computation time. 

.4. In vivo human data 

The modified NODDI model was applied to pre-existing data from

 healthy participants where both magnitude and real-valued diffusion

mages were reconstructed from the complex MR data. 

Diffusion MRI data were previously acquired, reconstructed and pre-

rocessed according to Tian et al. (2022) and Fan et al. (2020) . Briefly,

omplex diffusion data were acquired on the 3T MGH Connectom scan-

er (Siemens Healthcare, Erlangen, Germany) using gradients up to

00mT/m ( Jones et al., 2018; McNab et al., 2013 ) and a pulsed gradi-

nt, spin echo EPI sequence ( Setsompop et al., 2012 ): 𝑇 𝑅 ∕ 𝑇 𝐸 = 4000∕77
s, 2mm isotropic resolution, 17 b-values from 0 to 17 . 8 ms/ μm 

2 , two

ifferent diffusion times 𝛿∕Δ = 8∕19 ms and 𝛿∕Δ = 8∕49 ms. The com-

lex images were first corrected for background phase contamination
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Fig. 1. The modified NODDI model for co-estimation axial diffusivity and 

orientation dispersion in high b-value data. The fibre response function 

( 𝐹 𝑅𝐹 ) and fibre orientation distribution ( 𝐹 𝑂𝐷) can be first convolved 

and then multiplied by the non-attenuated diffusion signal associated with 

the intra-axonal compartment ( 𝐹 = 𝑓 𝑖𝑛 ⋅ 𝑆 0 ) to produce the diffusion signal 

𝑆. A signal offset 𝑐, and (in magnitude data only) rectified noise floor 𝜖, 

were then added to the signal to produce the real or magnitude data, 𝑌 as 

required. Here we use the powder averaged signal 𝑆 𝑏 to avoid estimating 

𝐹 as a parameter of the model. See the main text for full definition of 

parameters. 
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fter which the real component of the diffusion images was extracted

nd the imaginary part discarded ( Fan et al., 2020 ). The magnitude

mages were also extracted. The data were pre-processed using tools

rom FSL and bespoke code. The real-valued and magnitude data were

eparately corrected for gradient nonlinearities as well as susceptibility

nd eddy current distortions ( Andersson et al., 2016; 2003; Andersson

nd Sotiropoulos, 2016; Smith et al., 2004 ). Here we fitted the modified

ODDI model to data from 6 subjects with Δ = 49 ms, 𝑏 = 6 . 75 , 9 . 85 and

3 . 5 ms/ μm 

2 and 64 gradient directions per shell. The 𝑏 = 0 ms/ μm 

2 (30

epeats) and 𝑏 = 0 . 95 ms/ μm 

2 images with 32 gradient directions were

sed for fitting the diffusion tensor model only ( Basser et al., 1994 ). The

odified NODDI model was then fitted to selected voxels from the cor-

us callosum where the assumptions of the NODDI model (e.g. white

atter voxels with a single fibre population) are most valid. 

T1-weighted structural images were also acquired and here used for

hite matter segmentation ( Zhang et al., 2001 ) and to register a corpus

allosum mask from MNI standard space to subject space ( Andersson

t al., 2007; Woolrich et al., 2009 ). 

Fig. 2 shows example preprocessed diffusion images. In Fig. 2 right

e see how the images retain good signal at very high b-values.

igs. 2 left shows the distribution of high b-value ( 𝑏 = 17 . 8 ms/ μm 

2 ) sig-

al from voxels in the ventricles for a single subject. The noise from

he magnitude images follows a Rician distribution, whilst that from

eal-valued data is Gaussian distributed as expected. The Rician non-

entrality parameter and Gaussian mean are both non-zero and indica-

ive of a positive signal offset. The data SNR, here taken to be 𝑆 0 ∕ 𝜎,

here 𝜎 was taken to be the Guassian standard deviation or Rician scal-

ng parameter, was found to be 𝑆𝑁𝑅 ∈ [17 , 30] with a median 𝑆𝑁𝑅 of

1. 

. Results 

.1. Changes in the NODDI output for different axial diffusivity 

Figs. 3 and 4 show how the parameters of NODDI ( Zhang et al., 2012 )

hange when the assumed axial diffusivity is set to 𝑑 ∥ = 1 . 7 μm 

2 /ms -

s is typically assumed - or 2 . 3 μm 

2 /ms , or 3 μm 

2 /ms , the latter being

he approximate diffusivity of free water. For completeness we show re-

ults for the full brain, whilst acknowledging that NODDI parameter es-

imates from the grey matter are highly challenging to interpret as here
4 
he NODDI assumptions of non-exchanging compartments and negligi-

le soma contribution are violated ( Jelescu et al., 2022; Olesen et al.,

022; Palombo et al., 2020 ). 

Fig. 3 shows an increase in the gross signal fraction associated with

he intra-axonal compartment ( 𝑓 𝑖𝑛 × 𝑓 𝑎𝑛𝑖𝑠𝑜 ) and a decrease of the extra-

xonal compartment ( 𝑓 𝑒𝑥 × 𝑓 𝑎𝑛𝑖𝑠𝑜 ) when the assumed axial diffusivity

s increased from 1 . 7 to 3 μm 

2 /ms . Interestingly, when 𝑑 ∥ = 3 μm 

2 /ms ,

oth the extra-axonal signal fraction and radial diffusivity ( 𝑑 ⟂) show

wo distinct distributions associated with the white and grey matter. As

 ∥ is increased, the ODI is seen to increase in both the grey and white

atter, and the signal fraction associated with isotropic diffusion, 𝑓 𝑖𝑠𝑜 
s reduced close to zero across most of the brain and particularly in the

hite matter where we would not typically expect to find isotropic, free

iffusion. 

In Fig. 4 we see the NODDI parameter maps with axial diffusivity

 ∥ = 3 μm 

2 /ms as a percentage of equivalent maps for 𝑑 ∥ = 1 . 7 μm 

2 /ms .

ince 𝑑 ∥ = 3 μm 

2 /ms represents the upper bound of water diffusion in

ivo, this comparison represents the maximum difference we may obtain

hen increasing the assumed axial diffusivity from 𝑑 ∥ = 1 . 7 μm 

2 /ms .

hen 𝑑 ∥ = 3 μm 

2 /ms , the isotropic signal fraction and extra-axonal sig-

al fraction decrease on average to 30 − 50% and 50 − 60% respectively

f their value when 𝑑 ∥ = 1 . 7 μm 

2 /ms . Concurrently, the signal fraction

ssociated with the intra-axonal compartment and the ODI increase on

verage to ∼ 150% and ∼ 120% . Here we do not see a global, step change,

ut rather one which varies across the tissue. In particular, the ODI is

ubstantially increased in the corticospinal tract as well as by 200 − 250%
n areas of the optic radiation and corpus callosum. We see a large ODI

hange across much of the corpus callosum, though not at the midline

long the left-right axis, a known region of increased fibre dispersion. 

.2. Modified NODDI model for high b-value data: simulated data 

A second aim of this study was to investigate whether, by apply-

ng NODDI to high b-value data, it was possible to also estimate axial

iffusivity. Crucially, at high b-value, signal contributions from extra-

xonal water are assumed negligible and thus the observed signal can

e attributed to the intra-axonal compartment, here described by diffu-

ion along dispersed sticks. To examine the accuracy and precision with

hich this high b-value ‘modified’ model could simultaneously estimate
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Fig. 2. Left: Example magnitude and real-valued diffusion images from a single subject. Here we show the mean signal across all gradient directions. We observe 

a considerable rectified noise floor in the magnitude images, which appears greatly reduced in the real valued data. Right: The distribution of signal from voxels in 

the ventricles at 𝑏 = 17 . 8 ms/ μm 

2 , where we assume the signal to be purely noise. In both cases, the signal is not zero-mean: the magnitude data follows a Rician 

distribution with the non-centrality parameter 𝜈 = 13 . 7 , and 𝜎 = 8 . 4 ; the real-valued data has Gaussian noise with a positive offset, 𝜇 = 10 . 4 , 𝜎 = 9 . 2 . Consequently a 

signal offset and, in the case of magnitude data, rectified noise floor were estimated as parameters of the model. 

Fig. 3. The dependence of NODDI parameters on the assumed axial diffusivity. The NODDI model ( Zhang et al., 2012 ) was fitted to 10 subjects from the HCP dataset 

with various assumed axial diffusivities 𝑑 ∥ = 1 . 7 , 2 . 3 , 3 μm 

2 /ms . The parameter maps were co-registered after which the average map across subjects was calculated. 

The distribution of these parameters is shown for all voxels in the brain (top) and for the white matter (middle, dashed) and grey matter (bottom, dotted) separately. 

𝑓 𝑎𝑛𝑠𝑖𝑜 describes the signal fraction of the anisotropic compartment, where 𝑓 𝑎𝑛𝑠𝑖𝑜 = 1 − 𝑓 𝑖𝑠𝑜 . 𝑑 ⟂ is in units of μm 

2 /ms . 

5 
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Fig. 4. Estimated NODDI parameter maps with axial diffusivity 𝑑 ∥ = 3 μm 

2 /ms as a percentage of equivalent maps for 𝑑 ∥ = 1 . 7 μm 

2 /ms , as is typically assumed. The 

blue shows where parameters decrease, and the red where they increase, as we change 𝑑 ∥ from 1.7 to 3 μm 

2 . The signal fraction associated with isotropic diffusivity 

and the extra-axonal compartment is substantially reduced, as is the radial diffusivity. The intra-axonal signal fraction is largely increased as is the ODI, though to a 

broadly lesser extent. a) The extra-axonal signal fraction is reduced substantially in the cerebellum. b,c) The ODI increased to < 250% in areas of the optic radiation 

and corpus callosum. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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xial diffusivity and ODI, we began by examining simulated data, with

nown ground truth parameters. 

.2.1. Parameter distributions and model fits 

To investigate degeneracy, Fig. 5 shows the estimated parameter dis-

ributions (left) and model fit (right) for high SNR data ( 𝑁 = 100 , SNR

165 ). The model was fitted to data simulated with both a Gaussian

nd Rician noise model, to mimic real-valued and magnitude diffusion

ata. In both datasets, the model appeared to fit the data well, where

he residuals between the data and the predicted signal were small. 

Upon inspection ( Fig. 2 ), the in vivo data used in this study appeared

o contain a signal offset (i.e the complex noise was not zero-mean), that

as subsequently included as a parameter of the model ( 𝑐). Fig. 5 shows

ow, in real-valued simulated data, the signal offset can be estimated

ith ease: it is not correlated to the other model parameters and does

ot appear to affect their estimation. In magnitude data, the signal offset

s highly correlated with the noise floor parameter 𝜖, causing difficul-

ies in parameter fitting where multiple minima may exist. In compar-

son, for data with Gaussian noise (meaning that 𝜖 = 0 ) the parameter

istributions are approximately Gaussian and close to the ground truth

alues, demonstrating that axial diffusivity and ODI can be estimated

eliably and without degeneracy from real-valued data. Supplementary

ig. 1 shows similar plots for magnitude data without a signal offset

 𝑐 = 0 ) where parameter estimation is again improved. 
6 
.2.2. Parameter estimation as a function of SNR 

Fig. 5 examines parameter estimation in relatively high SNR data.

s most in vivo data have an 𝑆𝑁𝑅 < 165 , Fig. 6 shows how the preci-

ion and accuracy of the model parameters vary as a function of SNR.

o produce data of varying SNR, here the model was fitted to the signal

veraged over 1–1000 voxels, producing an SNR range of ∼ 16 . 5 − 520 .
he fitting was repeated 20 times per SNR. At low SNR, the parameter

stimation is highly sensitive to noise and the parameters are degener-

te, as indicated by a large spread (standard deviation) in the parameter

istributions (see also green box). The precision of the model param-

ters increases with SNR and the parameter degeneracies are largely

vercome when SNR ≳ 100 . Although an SNR of ≳ 100 is often not re-

lised in vivo (where the in vivo data in this study have an SNR of ∼ 20 ),
ig. 6 motivates parameter estimation through signal averaging or, as is

one for the in vivo data in this study, the concatenation of signal across

oxels. 

In magnitude data, the axial diffusivities appear biased and overesti-

ated with respect to the ground truth. This may be related to the calcu-

ation of the spherical mean whilst correcting for the rectified noise floor

 𝑏 = Re 

( √ 

𝑌 2 
𝑏 
− 𝜖2 

) 

− 𝑐, where the positivity constraint can lead to an

verestimation of 𝑆 𝑏 . In comparison, parameter accuracy is increased

n real-valued data, where the mean axial diffusivity is generally more

ligned with the ground truth value. 
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Fig. 5. Left: Parameter distributions output from MCMC. Each data point in the density plots represents a combination of parameters that fits the signal equally 

well. Grey dashed lines represent ground truth values. Right: Model fit (line) to simulated data (dots) and the associated error (prediction-data). 𝑔 is the gradient 

direction, 𝜇 the fibre orientation and 𝑏 the b-value in ms/ μm 

2 . The diffusivities are given in units of μm 

2 ∕ ms . The signal is averaged over 100 voxels, each with 

SNR = 16.5. Note, as the noise floor parameter is an approximation, we do not plot its ’ground truth’ value. 
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Together, Figs. 5 and 6 motivate the use of real-valued data for more

eliable and accurate estimation of axial diffusivity and orientation dis-

ersion via the modified NODDI model. 

.2.3. Assuming incorrect noise characteristics biases parameter estimates 

In low SNR regimes, assuming the wrong noise distribution (Ri-

ian/Gaussian), or neglecting the presence of a signal offset, could have

 considerable effect on the estimated model parameters. Consequently,

ig. 7 uses simulated data to examine the effect of getting either of the

oise parameters 𝑐 and 𝜖 wrong. We examine both what happens when

e neglect the Rician noise floor and signal offset completely ( 𝑐, 𝜖 = 0 ),
7 
ut also what happens when we get them only slightly incorrect. The

atter could illustrate a situation where the noise parameters are set to

lobal, predefined values, rather than estimating them on a voxelwise

asis to account for local parameter fluctuations. In Figure 7a,b, data

ere simulated with a signal offset 𝑐 = 10 and the model was fitted as-

uming some fixed offset. In Figure 7c,d, magnitude data were simulated

ith 𝑐 = 0 and fitted for a fixed noise floor. Note, when the assumed

oise floor = 0, this is equivalent to assuming Gaussian noise ( Fig. 7 d).

n Fig. 7 a,c, even a small error in the noise parameter leads to biased es-

imates of axial diffusivity (overestimation) and ODI. This is concurrent

ith increased parameter degeneracy, as indicated by the high stan-
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Fig. 6. The precision and accuracy of parameter estimates as a function of SNR. The modified NODDI model was fitted to simulated data with a known ground truth 

(grey dashed line). In high SNR real-valued data, the estimated parameters are estimated more precisely (smaller standard deviation) and tend towards the ground 

truth values. In magnitude data, the axial diffusivity tends to be overestimated, even at high SNR. The green boxes show the output from MCMC at the SNR of a 

single voxel and 100 voxels. We see how low SNR leads to parameter degeneracy and biased parameter estimates, both of which are overcome with increased SNR. 

The diffusivities are given in units of μm 

2 ∕ ms . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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d  
ard deviation in the parameter distributions (bottom). In Fig. 7 c, the

round truth noise floor indicates the standard deviation of the com-

lex Gaussian noise. This value is equivalent to what would be typically

easured using de-noising methods and input to Koay inversion method

o account for Rician bias. In contrast, the noise floor value which pro-

uces an axial diffusivity and ODI closest to the ground truth values

s higher. This difference is likely related to Koay’s inversion method

eing only well suited to data with SNR > 2 , where the diffusion signal

long many gradients at high b-value will likely not meet this require-

ent. Again, these results point to potential pitfalls when using Koay’s

nversion method to correct for Rician bias using a priori estimates of

he noise. In Fig. 7 b, where 𝑐 is fixed but 𝜖 estimated in magnitude data,

 small error in the signal offset 𝑐 does not have a large effect on the

v  

8 
ther parameters. This is likely due to the correlation between 𝑐 and 𝜖

 Fig. 5 ), where 𝜖 can be adjusted to account for the error in 𝑐. 

Under the wrong noise model ( Fig. 7 d), the ODI and axial diffusivity

stimates are both highly biased (overestimated) and correlated (de-

enerate), even though the SNR of the data is high ( 𝑆𝑁𝑅 ∼ 165 ). When

onsidering the opposite situation i.e. assuming a Rician noise model

hen fitting to real-valued data, the Rician noise floor 𝜖 tended to zero

s expected, and parameter estimation was otherwise largely unaffected.

.3. Modified NODDI model for high b-value data: in vivo data 

The modified NODDI model was then fitted to high b-value in vivo

ata from 6 healthy subjects. Here we fitted to both magnitude and real-

alued images reconstructed from the same complex data. To increase
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Fig. 7. Assuming inaccurate noise parameters biases the estimated axial diffusivity and ODI. Top: data were simulated with 𝑐 = 10 and fitted assuming some fixed 

offset. Bottom: Simulated data with offset 𝑐 = 0 was fitted assuming a fixed noise floor 𝜖. The plots show the mean (top) and standard deviation (std, bottom) of the 

parameter distribution output from MCMC. The model was fitted to high SNR data with 𝑁 = 100 and the diffusivities are given in units of μm 

2 ∕ ms . 
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e  
he SNR, data was concatenated across 𝑁 voxels from the corpus callo-

um, chosen to have similar 𝑆 0 and high FA. The results are shown in

ig. 8 , where the colours indicate data from different subjects. 

As in simulated data ( Fig. 6 ), the spread of the ODI/diffusivity stan-

ard deviation decreases as a function of 𝑁 where in single voxel data

he parameters appear degenerate, but can be estimated with increased

recision for larger 𝑁 . Note, whereas in simulated data, each voxel was

imulated with identical ODI and axial diffusivity, in in vivo data, each

oxel is likely to exhibit slightly different diffusivity and fibre orien-

ation distribution. Thus, concatenating signal across many voxels has

oth the advantage of increasing SNR, and some disadvantage, where

he estimated axial diffusivity and ODI are likely some average across

he voxel population. The latter was minimised by selecting voxels from

ithin the corpus callosum with similar 𝑆 0 and FA. Nonetheless, we gen-

rally obtain fairly similar axial diffusivity values when fitting to either

 = 50 or 100 voxels, giving some confidence to these results. 

Both magnitude and real-valued data estimate somewhat similar ax-

al diffusivities and ODI, though the spread of axial diffusivities across

ubjects is higher for the magnitude data. The mean intra-axonal ax-
 t  

9 
al diffusivity across subjects for 𝑁 = 100 was 𝑑 ∥ = 2 . 26 μm 

2 ∕ ms and

 ∥ = 2 . 42 μm 

2 ∕ ms for real-valued and magnitude data respectively. Cru-

ially, these values are much higher than the 𝑑 ∥ = 1 . 7 μm 

2 ∕ ms typically

ssumed when fitting NODDI, suggesting that many current studies may

e producing biased NODDI parameter estimates. 

. Discussion 

To describe the complex tissue microstructure in only a handful of

odelling parameters, biophysical diffusion models make strong, sim-

lifying assumptions about the underlying tissue architecture. The ex-

ent to which many of these assumptions are valid in both healthy and

iseased tissue remains an open research question. This study was in-

pired by the disparity between the estimated intra-axonal axial diffu-

ivity from literature ( ∼ 2 − 2 . 5 μm 

2 /ms ( Dhital et al., 2019; Jelescu and

udde, 2017; Jelescu et al., 2020; Kaden et al., 2016; Kunz et al., 2018;

ampinen et al., 2020; McKinnon et al., 2018; Nilsson et al., 2021; Zheng

t al., 2017 )) and that typically assumed by the NODDI model and of-

en utilised in simulations ( 𝑑 ∥ = 1 . 7 μm 

2 /ms ). We first demonstrate the
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Fig. 8. Fitting the modified NODDI model to both magnitude and real-valued in vivo data. The model was fitted to the concatenated signal across N = 1, 25, 50 or 

100 voxels. This corresponds to an approximate SNR given on the x-axis (lower bound, assuming SNR 𝑣𝑜𝑥 = 16.5). Plotted are the mean and standard deviation (std) 

of the parameter distributions output from MCMC. Each colour represents data from a single subject. The diffusivities are given in units of μm 

2 ∕ ms . 
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O  
xtent to which the NODDI output is dependent on the assumed ax-

al diffusivity. Second, we illustrate how the NODDI framework can be

dapted for high b-value data and overcome known parameter degen-

racies ( Jelescu et al., 2016 ) to estimate axial diffusivity as a free pa-

ameter of the model. Crucially, by utilising the NODDI framework and

igh b-value data, we can forgo modelling of the extra-axonal space and

ttribute the diffusion attenuation to only two parameters, the intra-

xonal axial diffusivity and fibre dispersion, which are simultaneously

stimated on a voxelwise basis. Were we to estimate axial diffusivity

ithout accounting for dispersion, our axial diffusivity estimates would

e biased ( Howard et al., 2019 ). 

Our results cannot ascertain the “correct ” axial diffusivity for the

ODDI model, nor do the changes in the NODDI outputs reported here

ecessarily negate group differences in NODDI parameters. Instead they

hallenge the interpretation of the NODDI outputs as accurate, biophys-

cal parameters, rather than biased indices which are dependent on

any modelling assumptions, including the input axial diffusivity. In

ig. 4 - when 𝑑 ∥ = 3 μm 

2 /ms (the most extreme case) is compared to

 ∥ = 1 . 7 μm 

2 /ms - we frequently see the parameter estimates rise or fall

y ∼ 50% , where in some cases the parameter may be as little as 20%
10 
r as much as 250% of its former value. Notably, both the ODI and the

ignal fractions associated with each of the three compartments change.

ith higher axial diffusivities, a substantially larger fraction of the white

atter signal is associated with the intra-axonal compartment and the

ssociated isotropic compartment is reduced, which may be more in line

ith our microstructural expectations. This is coupled with an overall

20% increase in the orientation dispersion index, with regions of the

orpus callosum and optic tract sometimes doubling. Here, more signal

ttenuation perpendicular to the fibre is explained by the interplay of

ntra-axonal diffusion and fibre orientation dispersion, rather than the

adial diffusivity associated with the extra-axonal compartment via the

ortuosity model. 

The change in estimated ODI invites future ODI validation against

icroscopy gold standards. However, validation is complicated by hav-

ng to select an appropriate axial diffusivity, a choice that is espe-

ially challenging in postmortem tissue where the diffusivities are con-

iderably reduced when compared to their in vivo values. In previ-

us work, Schilling et al. (2017) found the NODDI ODI to correlate

ell with dispersion values derived from histology (r = 0.66), though the

DI was consistently higher than that from histology. In comparison,
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russu et al. (2017) compared the NODDI outputs to histological data

rom the human spinal cord to find an approximate one-to-one map-

ing (r = 0.84 in controls, r = 0.64 in MS cases). The discrepancy between

he results from the two studies may indeed be related to the choice

f assumed axial diffusivity. In postmortem spinal cord, Grussu et al.

ssume an axial diffusivity of 1 . 5 μm 

2 /ms which was found to optimise

he fitting across all samples. Schilling et al. imaged postmortem squirrel

onkey brain, though the assumed axial diffusivity wasn’t reported. 

Though Figs. 3 and 4 assume a single, global diffusivity across the

rain and subjects, there is likely great value in being able to account

or both between-subject and across-brain variations in intra-axonal ax-

al diffusivity. Recent, promising work by Ramanna et al. (2020) and

ilsson et al. (2021) utilise triple diffusion encoding and data with

ultiple b-tensor encodings respectively to estimate intra-axonal ax-

al diffusivity on a voxelwise basis. Ramanna et al. estimate axial dif-

usivities across the white matter of three subjects to be 2 . 24 ± 0 . 18 ,
hilst Nilsson et al. demonstrate particularly high axial diffusivities of

 ∥ ∼ 2 . 7 μm 

2 /ms in the corticospinal tract. Studies of intra-axonal axial

iffusivity are typically limited to analysing data from relatively few,

ealthy subjects, making characterisation of normative values or be-

ween brain variations challenging. This challenge is likely further ex-

cerbated when considering either development, ageing or pathology

hich likely either directly or indirectly alter the observed axial diffu-

ivity. Indeed, although the values of axial diffusivity presented here

hould not be over-interpreted, our results do potentially indicate some

cross subject variation in intra-axonal axial diffusivity across a series

f six healthy participants. Together, these arguments challenge the as-

umption of a fixed, predefined axial diffusivity and instead advocate

or the co-estimation of both architectural features and diffusion char-

cteristics on a voxel-wise or subject-wise basis. 

A second aim of the study was to demonstrate how by modifying

he NODDI model for high b-value data, the framework could be used

o simultaneously estimate axial diffusivity and orientation dispersion.

hough the NODDI model here explicitly considers only macroscopic

bre orientation, it is likely that microscopic fibre dispersion, includ-

ng but not limited to axon undulations, also affects intra-axonal axial

iffusivity. Indeed Andersson et al. (2020) and Lee et al. (2020) com-

ine Mote Carlo simulations of diffusion with realistic axon morpholo-

ies from 3D X-ray nano-holotomography and electron microscopy data

espectively, to demonstrate how complex axon morphology, including

xon micro-dispersion, caliber variations, and the presence of mitochon-

ria, all likely influence the observed diffusivities of the tissue. Anders-

on et al. explicitly show a reduction in the apparent axial diffusivity as

 function of the complexity in morphological complexity, with micro-

ispersion a key contributing factor. 

One of the primary limitations of the NODDI framework is the de-

cription of the fibre orientation distribution as that of a single fibre

opulation with symmetric dispersion. Consequently, we would not rec-

mmend applying the model to voxels that contain multiple fibre pop-

lations, grey matter or otherwise complex microstructure that violate

hese (or any other) model assumptions. Furthermore, in the current

tudy, we assume the fibre orientation can be described by the primary

igenvector of the diffusion tensor. This allows us to concatenate the

ignal across multiple voxels to boost SNR. However, were the model

pplied to very high SNR data, therefore facilitating voxelwise model

tting, the model could be relaxed to also estimate the primary fibre

rientation in single fibre voxels. Future work should consider replac-

ng the Watson with a Bingham distribution to account for dispersion

symmetry, modelling multiple fibre populations per voxel and apply-

ng the model to high SNR data to achieve voxelwise estimates of ax-

al diffusivity. An alternative to estimating orientation dispersion as a

odel parameter is to either assume isotropic dispersion (e.g. when fit-

ing to grey matter voxels ( Kroenke et al., 2004 )) or integrating over all

ossible orientations and fitting to the powder averaged signal which

s independent of the fibre orientation distribution ( Kaden et al., 2016;

undell et al., 2021; Nilsson et al., 2021; Ramanna et al., 2020 ). The
11 
owder averaged signal of a diffusion tensor was recently combined with

ata from double diffusion encoding magnetic resonance spectroscopy

o confirm the assumption of negligible extra-axonal signal at high b-

alue ( 𝑏 ∼ 7 . 2 ms ∕ μm 

2 ) and estimate 𝑑 ∥,𝑤𝑎𝑡𝑒𝑟 = 1 . 95 μm 

2 /ms in the white

atter for Δ = 45 ms , with lower axial diffusivities reported in the grey

atter Lundell et al. (2021) . 

In addition, the NODDI framework assumes each axon can be de-

cribed as having identical, stick-like, time-independent diffusion char-

cteristics, where any observed signal kurtosis is attributed to the in-

erplay of Gaussian axial diffusivity and fibre dispersion. Any deviation

rom this assumption, e.g. diffusion time dependence or sensitivity to

xon diameter at high b-value, the presence of non-identical diffusion

roperties leading to a range of diffusion tensors, or other forms of intra-

ompartmental kurtosis (e.g. structural disorder), will likely bias our re-

ults ( Henriques et al., 2021; Jespersen et al., 2019; Veraart et al., 2020 ).

ere we performed basic simulations of the diffusion signal from a single

ylinder and the acquisition scheme used in this study (data not shown),

here we only began to see substantial deviation from the �̄� ∝ 𝑏 −0 . 5 be-

aviour expected for stick-like diffusion ( Veraart et al., 2020 ) for ax-

ns with radii 𝑟 ≳ 5 μm . In this study, the modified NODDI model was

pplied to voxels from the corpus callosum where microscopy data sug-

ests that the majority of axon radii are ≲ 1 μm , with very few axons with

 ≳ 3 μm (Veraart et al., 2020). Consequently, we expect there to be min-

mal influence of axon diameter on our results, though caution should

e taken if applying the model to data with shorter diffusion times or

igher b-values, or areas of the brain with larger diameter axons, such

s the spinal cord or corticospinal tract. 

Nonetheless, it is reassuring how, even within this restrictive frame-

ork, we estimated axial diffusivities from real-valued data in the range

 ∥ ∼ 2 − 2 . 5 μm 

2 /ms , with an across subject mean of 2 . 26 μm 

2 /ms , in line

ith current literature ( Dhital et al., 2019; Jelescu and Budde, 2017; Je-

escu et al., 2020; 2016; Kaden et al., 2016; Kunz et al., 2018; Lampinen

t al., 2020; McKinnon et al., 2018; Nilsson et al., 2021; Ramanna et al.,

020; Zheng et al., 2017 ). In real-valued data, the axial diffusivity across

ubjects varied by ∼ 0 . 5 μm 

2 /ms . Though this variation is larger than

hat reported in other studies ( Dhital et al., 2019; Ramanna et al., 2020 ),

t is similar to the range of estimated axial diffusivities observed in simu-

ated data due to sensitivity to different noise realisations ( Fig. 6 ). Con-

equently, we would be cautious of interpreting this as true, subject

pecific variation, rather than expected parameter uncertainty given the

odel and the data. The variation in estimated axial diffusivities in mag-

itude data was larger, where simulations demonstrated the fit to be less

eliable due to estimation of both the noise offset and noise floor. 

A final limitation of the general NODDI model ( Zhang et al., 2012 ) is

hat it assumes the axial diffusivity of the intra- and extra-axonal com-

artment to be equal, and that the extra-axonal radial diffusion is linked

o the axial diffusivity via the tortuosity model. Various studies now

rovide evidence for different intra- and extra-axonal axial diffusivities

 Dhital et al., 2018; 2019; Jespersen et al., 2018; Kunz et al., 2018;

kinner et al., 2017; Szczepankiewicz et al., 2015; Veraart et al., 2018 ).

otably, when the assumptions of the NODDI model were relaxed to

lso estimate intra-axonal 𝑑 ∥,𝑖𝑛 , extra-axonal 𝑑 ∥,𝑒𝑥 and extra-axonal 𝑑 ⟂,𝑒𝑥 
NODDIDA), Jelescu et al. (2016) found two possible sets of solutions:

ne with 𝑑 ∥,𝑖𝑛 > 𝑑 ∥,𝑒𝑥 , the other with 𝑑 ∥,𝑖𝑛 < 𝑑 ∥,𝑒𝑥 . Consequently, it is chal-

enging to ascertain a “correct ” axial diffusivity to represent both com-

artments when fitting NODDI to low b-value data. 

A third aim of this study was to examine the effect of getting the

oise characteristics of the data wrong in low SNR data. This is of par-

icular importance as many studies aim to acquire data at high b-value,

igh spatial resolution, or short scan times - all of which are typically

ow SNR regimes. When working with our high b-value data, both the

resence of a rectified noise floor or signal offset had to be carefully

onsidered to avoid parameter degeneracy and bias. Fig. 7 demonstrates

he effect of assuming Gaussian noise in magnitude data, as may be of-

en naively done. When the rectified Rician noise floor is not accounted

or, the parameter estimates are both biased and correlated (degener-
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te). This challenges the idea that it is valid to naively apply biophysi-

al models that assume Gaussian noise to low SNR magnitude images.

areful consideration should be taken when transferring models to data

ith different noise characteristics to what they have been designed and

ested on. 

Finally, Fig. 7 further advocates for estimating noise parameters

ithin the model, rather than as fixed, predefined properties that are

.g. first measured from background voxels and assumed constant across

he brain. There are various methods to remove the Rician noise bias

hat include but are not limited to a) utilising real-valued rather than

agnitude images ( Fan et al., 2020; Tian et al., 2022 ), b) approximat-

ng the Rician signal as Gaussian via e.g. the Koay inversion technique

 Koay and Basser, 2006 ) and, as was not explicitly done in this study,

) applying a Rician noise model during optimisation. Note, the latter

equires knowledge of the fibre orientation distribution and so cannot

e applied in models fitted to the spherical mean, or powder averaged

ignal, which explicitly aim to circumvent modelling of the fibre orienta-

ion distribution ( Fan et al., 2020 ). Further, as the Koay inversion tech-

ique is an approximation that breaks down for low SNR data (which

ikely causes the discrepancy between the ground truth 𝜖 and that es-

imated from simulated data in Figures 6,7), this study suggests that

t may be preferable to use Rician noise modelling rather than Koay’s

nversion where possible in low SNR data. 

The data used in this study is openly available via

ttp://www.humanconnectomeproject.org/ and ( Tian et al.,

022 ). At https://git.fmrib.ox.ac.uk/amyh/noddi-axialdiffusivity

e provide a cuDIMOT implementation of NODDI ( Hernandez-

ernandez et al., 2019 ) where the assumed diffusivities 𝑑 ∥ and 𝑑 𝑖𝑠𝑜 
re user-defined at runtime, and MATLAB scripts to implement the

odified NODDI model. Interesting avenues for future work include:

pplying the model to data with both high b-value and high SNR (e.g.

rom animal models) to explore spatial variations in axial diffusivity;

he relationship between axial diffusivity and features of the tissue ar-

hitecture such as axon diameter; whether intra-axonal axial diffusivity

s affected by tissue degradation or disease; the relationship between

xial diffusivity and brain development; as well as the estimation of

xial diffusivity in postmortem tissue, both in situ and after perfusion

r immersion fixation. Furthermore, the model could be extended to

stimate multiple fibre populations per voxel and applied brain-wide to

rovide maps of axial diffusivity across the brain. Finally, co-registered

RI and microscopy data should be used to validate the orientation dis-

ersion estimates reported here. This will likely require the acquisition

f a bespoke postmortem dataset which combines data from multiple

hells at ultra-high b-values (accounting for the reduced diffusivity of

xed postmortem tissue) with corresponding microscopy imaging of

he white matter fibres. 

. Conclusion 

This study focuses on the assumption of a fixed axial diffusivity in

he NODDI model in diffusion MRI. We first demonstrate a considerable

ependency of the NODDI parameters on the assumed axial diffusivity,

hich challenges the interpretation of the NODDI parameters as bio-

hysical metrics, rather than biased indices which are dependent on the

odelling assumptions. Second, we demonstrate how the axial diffusiv-

ty could be estimated within the NODDI framework by utilising high

-value data. In this challenging, low SNR regime, we demonstrate the

mportance of locally estimating a rectified noise floor and signal off-

et i.e. background signal independent of diffusion weighting, both of

hich could otherwise result in parameter degeneracy or bias. Our re-

ults show an axial diffusivity of 𝑑 ∥ ∼ 2 − 2 . 5 μm 

2 /ms in real-valued in

ivo human data, which is both in line with current literature and sub-

tantially above that typically assumed by NODDI ( 𝑑 ∥ = 1 . 7 μm 

2 /ms ).

his motivates the use of more advanced diffusion acquisitions and/or

odelling that can resolve parameter degeneracies whilst making min-

mal assumptions about the tissue microstructure. 
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