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Abstract—Saliency prediction has been extensively studied for
natural images. In the area of video coding and video quality
assessment, researchers attempt to integrate a saliency model
to individual frames of a video sequence. In selecting best-
performing saliency models for these applications, the evaluation
only considers the average model performance over all frames
of a video. This may mask the defects of a saliency model and
consequently hinder further improvement of the model. In this
paper, we present the identification of pitfalls in the evaluation
of saliency models for videos. We demonstrate the importance of
considering the video content classification and temporal effect.
Building on the findings, we make recommendations for saliency
model evaluation and selection for videos.
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I. INTRODUCTION

The past few decades have witnessed a significant growth
in the use of digital videos in our daily lives. Videos are
inevitably subject to distortions generated by compression and
transmission. The distortions in video signals result in the
reduction in video quality, which affects observers’ visual
experience and task performance [1]. To be able to control,
monitor and improve quality of digital videos, a great deal of
attention has been paid to the development of advanced algo-
rithms for video compression and video quality assessment.

A current research trend in video compression and video
quality assessment is to consider visual attention, which rep-
resents a powerful feature of the human visual system (HVS)
[2], [3]. Visual attention mechanism enables the HVS to
select the most relevant information from the visual scene.
Simulating selective attention is highly beneficial for computa-
tional algorithms to distinguish between relevant and irrelevant
visual signals and adaptively determine their parameters and
processes. Many saliency models are available in the literature
[4]. These models predict visual attention by generating a
so-called saliency map, which represents conspicuousness of
scene locations reflecting the relative importance of different
image regions [5]. Saliency models are incorporated in video
algorithms to produce saliency maps for individual frames
(with or without temporal feature adaptation) [3], [6]. The
frame-level saliency map can be used to weight the local
algorithm output, for example, a distortion map calculated by a
visual quality metric is weighted by a saliency map to generate
a quality score for each frame, which is then averaged over
all frames to generate a sequence-level quality score [7]. The
effectiveness of these saliency-based video algorithms largely
depends on the accuracy of the saliency model used [3].

Saliency model evaluation has been extensively studied for
still images, where a saliency similarity score is computed
between the predicted saliency and the ground truth [8].
However, the evaluation of saliency models for videos is
less studied. The current practice is to sum up the frame-
based evaluations and calculate a single score to represent the
model accuracy for the entire video sequence. This evaluation
regime neglects the temporal variations of saliency prediction
accuracy and the impact of content classification on the overall
performance of a saliency model. In this paper, based on the
ground truth of eye-tracking data for videos [3], we perform
statistical analyses to reveal the performance of state-of-the-
art saliency models and identify pitfalls in the evaluation of
saliency models for videos. Findings can help build reliable
benchmark of saliency models for videos.

II. PROBLEM DEFINITION AND METHODOLOGY
A. Eye-tracking data

The SVQ160 database [3] represents a reliable eye-tracking
study, in which the data collection implemented rigorous
control mechanisms to eliminate experimental biases. Note,
the stimuli of the SVQ160 database contain both pristine and
distorted videos. In this study, we only use the ten pristine
videos with the aim to make the analyses more generally
applicable, as the saliency of distorted videos are exclusively
relevant for video compression and quality assessment. The
reference videos include a diverse range of video content as
shown in Fig.1. The videos are about ten seconds long and
have a resolutions of 768 x 432 pixels. Eye movements of 20
observers were collected for each video. A frame-level saliency
map (FSM) is generated from fixations over all subjects; and
by each fixation giving rise to a Gaussian kernel that simulates
the foveal vision (2° visual angle) of the HVS [3]. Fig.1
illustrates examples of the frame-level saliency maps.

B. Saliency models and performance measures

We selected a total of 14 state-of-the-art saliency models
including seven traditional models and seven deep learning-
based models. Table I lists these models and gives a brief
description of each model.

A saliency model can be applied to each frame of a video
sequence to generate a predicted frame-level saliency map
(FSM). The prediction accuracy can be quantified by a similar-
ity measure between the predicted FSM (pred_FSM) and the
ground truth FSM (gt_F'SM). Amongst the popular saliency
similarity measures [8], SIM (Similarity) and CC (Pearson
linear correlation coefficient) have been proven to be the most



Fig. 1.
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SVQI160 database [3]: first row illustrates content (representative frames) of the original pristine videos, second row shows frame-level saliency maps.
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Fig. 2. Performance of state-of-the-art deep learning-based (in light green colour) and traditional (in dark green colour) saliency models (see details in Table I)
measured by CC and SIM. Error bars indicate a 95% confidence interval. Baseline model is defined by “stretching a symmetric Gaussian to fit the aspect ratio
of a given image, under the assumption that the center of the image is most salient [4]”.

TABLE 1. STATE-OF-THE-ART SALIENCY PREDICTION MODELS

Model name Description (key words)

Traditional Saliency Models

Rare2012 [9] Multi-scale, rarity-based

AIM [10] Information maximization
FES [11] Sparse sampling, kernel density estimation
GBVS [12] Graph-based

IttiKoch [13]
CovSal [14]
Torralba [15]

Colour, intensity, orientation

Region covariances

Local and global features

Deep Learning-based Saliency Models
SAM-VGG & SAM-ResNet [16] | Long short-term memory (LSTM)
UNISAL [17] Lightweight encoder-RNN-decoder
EML-Net [18] Multilayer
FastSal [19] MobielNet V2 backbone
MSI-Net [20] Contextual encoder—decoder
GazeGan [21]

Generative adversarial network

appropriate perception-based measures for applications such as
visual quality and compression [8], [22].

Similarity (SIM): SIM measures the similarity between
the predicted and ground truth saliency maps when viewed
as distributions pred_FSM; and gt_FSM,; (equivalent to
histogram intersection):

SIM(pred_FSM, gt_FSM) = » " min (pred_FSM,, gt_FSM,)
ey

where 7 represents the bin index of the histogram of a saliency
map. The SIM’s value range is between 0 and 1. The higher
the SIM value is, the more accurate the saliency prediction is.

Pearson Linear Correlation Coefficient (CC): CC mea-
sures the linear correlation between the predicted saliency map

pred_F'SM and the ground truth saliency map gt_F.SM:
cov(pred_FSM, gt_FSM)

Opred_FSM X Ogt_FSM

CC(pred_FSM, gt_FSM) = 2)
where  opred FSM,  Ogt_FSM denote  the  standard
deviation of pred_FSM and gt_FSM, respectively, and
cov(pred_FSM, gt_FSM) denotes the covariance of the two
saliency maps. The range of CC is between -1 and 1. When
CC is close to -1 or 1, the two maps are highly correlated
meaning the saliency prediction is accurate. The closer the
CC is to O, the less correlated are the two saliency maps
meaning the saliency prediction is less accurate.

C. Proposed saliency analysis methods

The goal of this paper is to show how saliency models be-
have for video applications. This can help identify appropriate
metrics for saliency model evaluation and guide the selection
of saliency models for videos. Existing saliency evaluation
method is based on aggregating frame-level saliency over
time and producing a single score to represent the prediction
accuracy of the saliency model. This method ignores important
properties of video saliency, including biases caused by visual
content and temporal effect. To capture these properties for
saliency evaluation, we consider the following methods:

Content-driven saliency dispersion (CSD): CSD [6] pro-
vides a quantitative measure for the degree of spatial saliency
dispersion driven by visual content. Gaze is concentrated in
fewer places in visual content with highly salient features than
in content lacking salient features. Given a frame-level saliency
map (FSM), CSD can be quantified by applying Shannon
entropy to p X p non-overlapping blocks of the saliency map:

Pmax Nmax
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where H represents the entropy of a block B, P .y refers
to the level of segmentation (i.e., Pnax = 4 was determined
empirically in [6]). Nyax 1S the Ppax squared. The lower the
CSD, the more concentrated the saliency is; otherwise, the
higher the CSD, the more dispersed the saliency is in the
spatial domain.

Temporal saliency prediction outliers (TSO): Temporal
fluctuation of saliency prediction can significantly affect its
application in video processing algorithms. A good saliency
model should not only provide high time-aggregated accuracy,
but also maintain its performance over time for a video
sequence. To measure the temporal consistency of saliency
prediction, TSO measures the ratio of outlier frames (Ny¢)
to the total number of frames (INV,f) of a video sequence.
The outlier frames are the frames with a saliency prediction
score (i.e., CC) below the threshold of CCean — t X CCye ,
where CCean and CCg. denote the mean and standard error
of CC over all frames of the video (i.e, t = 6 was determined
empirically in our experiment). TSO is defined as:

Nof

af

TSO = “)
the lower the TSO value, the better the saliency prediction
consistency is over time for the video.

III. STATISTICAL ANALYSIS ON SALIENCY MODEL
BEHAVIOURS

A. Time-aggregated model performance

First, we use the conventional method to evaluate saliency
models for videos. For each video, the saliency performance
measure (i.e., SIM or CC) is calculated for each frame,
which is averaged over all frames to produce a performance
value. Fig.2 shows the time-aggregated performance for the
14 saliency models as described in Section II. It can be seen
that deep learning-based models outperform traditional models,
except for the FES model. All deep learning-based models are
better than the baseline model, which is defined by “stretching
a symmetric Gaussian to fit the aspect ratio of a given image,
under the assumption that the center of the image is most
salient [4]”. Now, we challenge this conventional saliency
evaluation by identifying saliency model behaviours masked
by this method. To reduce biases in our further investigation,
we only select the models that are above the baseline in
either of the rankings in Fig.2, including UNISAL, VGG,
FES, EML, FastSal, MSI, GazeGAN, ResNet, GBVS. Note,
for consistency CC is used as the saliency evaluation measure
in the following analysis.

B. Impact of video content on saliency model performance

Hypothesis: We hypothesize that the impact of video content
(VC) on the performance of saliency prediction models is
statistically significant.

We first define the video content (VC) variable as a
classification of the content-driven saliency dispersion (CSD)
measure of equation (3). We calculate the sequence-level CSD
by taking the average of frame-level CSD values. Fig.3(a)
shows the saliency dispersion degree for all videos. Based
on observed CSD values, we could classify the videos into
two groups, i.e., VC_dispersed (including ‘rh’ to ‘pa’) and
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Fig. 3. Content-driven saliency dispersion (CSD) measure. (a) CSD values for
individual videos. (b) CSD values for two distinctive video content categories,
i.e., VC_dispersed versus VC_compact. Error bars indicate a 95% confidence
interval.

rh

VC_compact (including ‘pr’, ‘st’ and ‘sf’). In order to verify
the content grouping is statistical meaningful, we perform
hypothesis testing selecting CSD as the dependent variable
and the categorical VC group as the independent variable. The
Mann-Whitney U test is performed (due to evidence of non-
normality as per the Shapiro-Wilk test) [23], and the results
(P < 0.05) show that the CSD of group VC_dispersed is sta-
tistically significantly higher than that of group VC_compact
as shown in Fig.3(b).

Now, for the two distinctive video content classes (i.e.,
VC_dispersed and VC_compact), we analyse the impact of
video content on the performance of saliency perdiction mod-
els. For each video, based on the frame-level CC of equa-
tion (2), we compute a sequence-level CC by averaging CC
values over all frames. Therefore, 14 saliency models yield
14 sequence-level CC for each video. A hypothesis testing
is conducted selecting sequence-level CC as the dependent
variable, and the categorical VC group as the independent
variable. The Mann-Whitney U test is performed (due to
evidence of non-normality as per the Shapiro-Wilk test), and
the results (P < 0.05) show that the model performance on
group VC_dispersed is statistically significantly lower than that
of group VC_compact, as shown in Fig.4(a). It can be seen that
the top-performing saliency models tend to capture saliency of
VC_compact videos but there is still room for improvement
as the sequence-level CC = 0.48 remains inadequate as
shown in Fig.4(a). However, these models fails in predict-
ing the saliency of VC_dispersed videos (i.e., sequence-level
CC = 0.26 indicates poor accuracy as shown in Fig.4(a)). The
evidence implies that predicting saliency of complex scenes (as
indicated by the VC_dispersed class, e.g., multiple objects)
is more challenging than simple scenes (as indicated by the
VC_compact class, e.g., a single object with dominant motion)
for videos.

In addition, we analyse the individual saliency models in
responding to VC_dispersed and VC_compact videos. The
Mann-Whitney U test is performed (due to evidence of non-
normality as per the Shapiro-Wilk test) on the sequence-
level CC values produced by each model, and the results
(P < 0.05) show that the model performance on VC_compact
is statistically significantly higher than that of VC_dispersed
for each model, as shown in Fig.4(b). It can be seen that
for the VC_compact videos the model performance varies,
e.g., UNISAL, VGG, FES and EML give a good prediction



TABLE II. TEMPORAL CONSISTENCY OF TOP-PERFORMING SALIENCY PREDICTION MODELS MEASURED BY TSO (TEMPORAL SALIENCY PREDICTION
OUTLIERS). TEMPORAL-CONSISTENCY RANKINGS ARE COMPARED TO COMPARISON TO TIME-AGGREGATED RANKINGS.
Models GAZEGAN | FASTSAL ResNet MSI UNISAL EML FES GBVS VGG
TSO (temporal consistency) 0.365(1st) 0.371(2nd) | 0.390(3rd) | 0.380(4th) | 0.387(5th) | 0.388(6th) | 0.393(7th) 0.398(8th) | 0.410(9th)
CC (time-aggregated accuracy ) | 0.311(7th) 0.319(5th) 0.303(8th) | 0.316(6th) | 0.368(Ist) | 0.325(4th) | 0.336(3rd) | 0.229(9th) | 0.339(2nd)
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Fig. 4. Performance of top-performing saliency models measured by
sequence-level CC. (a) Model performance for two distinctive video content
categories, i.e., VC_dispersed versus VC_compact. (b) Individual model
performance for two distinctive video content categories. Error bars indicate
a 95% confidence interval.

with CC larger than 0.5, and that all models consistently fail
in predicting the saliency of the VC_dispersed videos. This
suggests that without considering the impact of video content,
bad model performance could be masked depending on the
test database. In summary, the significant difference in model
behaviours for different video content classes (i.e., simple or
complex scenes) deserves more attention in both the evaluation
of saliency models for videos and the construction of video
eye-tracking databases, so that the biases could be account for
in further research.

C. Impact of temporal context on saliency model performance

Hypothesis: We hypothesize that the impact of temporal
context on the performance of saliency prediction models is
statistically significant.

Little attention has been paid to the temporal variation of
saliency model performance for videos. First, we measure the
temporal consistency using TSO (temporal saliency prediction
outliers) in equation (4). The TSO values of the nine top-
performing saliency models are illustrated in Table II. In
contrast to the time-aggregated performance values of Fig.
2(a), models rank high in the time-aggregated performance
rankings do not necessarily give high performance consis-
tency over time for videos, e.g., UNISAL ranks 1st in the
time-aggregated rankings but 5th in the temporal-consistency
rankings. The temporal consistency of saliency prediction is
critical for applications such as video quality assessment and
compression, where frame-based saliency weighting is often
used [3].

Moreover, to analyse the model behaviours in the temporal
context, we divide a video into ten consecutive blocks of time
(i.e., each time block (TB) represents one second). For each
time block, the mean of frame-level CC values (see equation
(2)) over all videos (i..e, ten) and resulted from all (i.e., nine)
saliency prediction models is computed. Fig.5(a) shows the
model performance in time order (TO), indicating that the
model prediction accuracy fluctuates over time for videos (e.g.,
a dip occurs around 3rd to 5th time blocks).
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Fig. 5. Performance of saliency models over time. (a) Model performance
in ten consecutive time blocks (i.e., tb_01 to tb_10). (b) Model performance
in three semantic categories (beginning, middle and end) of time order (i.e.,
TO_1, TO_2, and TO_3). Error bars indicate a 95% confidence interval.

Based on the observation of Fig.5(a), we classify the time
order (TO) into three semantic categories, including TO_1
(time blocks 1-2), TO_2 (time blocks 3-5), and TO_3 (time
blocks 6-10). Hypothesis testing is conducted with frame-level
CC as the dependent variable and the categorical TO as the
independent variable. Pair-wise comparison is performed using
the Mann-Whitney U test (due to evidence of non-normality
according to the Shapiro-Wilk test). The results (P < 0.05)
show that the difference in model performance between any
two TO groups is statistically significant, as shown in Fig.5(b).
The evidence indicates that the prediction accuracy of saliency
models significantly deteriorates towards the middle section
of a video sequence. A plausible reason could be that there
is much uncertainty around the middle of viewing. In the
beginning of the scene (i.e., TO_1), observers predominantly
focus on salient regions; as time evolves (i.e., TO_2) observers’
viewing behavior might change and gaze might be shifted
from salient regions due to the tendency of exploring non-
salient regions in the scene; after exploration observers would
move gaze back to the salient regions during this space of time
(i.e., TO_3). This speculation of observers’ viewing behaviour
could explain the extremely poor saliency model performance
(i.e., CC = 0.27) for the middle section of a video sequence;
meaning existing models cannot handle complex saliency shift.
This temporal gaze behaviour poses challenges for accurately
predicting saliency for videos. One way to address this problem
is to include scene understanding components to saliency
models, which is worth further investigation.

IV. CONCLUSION

In this paper, we formulate a new problem of saliency
prediction — how to rigorously evaluate computational saliency
models for videos. We found that video content has a sig-
nificant impact on the performance of saliency models; and
existing models fail in predicting saliency of videos of complex
scenes. Also, the impact of temporal context on saliency
model performance is significant; and existing models fail in
capturing saliency in the middle section of a video. Findings
can be used to facilitate the benchmark and selection of
saliency models for video applications.
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