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Key Points: 

 The rate of ice sheet mass loss and ocean expansion has a near linear relationship to 

global mean surface warming in both models and data.  

 The modeled transient sensitivity of the sea level budget to warming is compatible with 

historical behavior except for Antarctic mass loss. 

 Models of Antarctic mass loss may be biased as data shows increasing losses with 

warming in contrast to models. 
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Abstract 

Earth is warming and sea levels are rising as land-based ice is lost to melt, and oceans expand 

due to accumulation of heat. The pace of ice loss and steric expansion is linked to the intensity of 

warming. How much faster sea level will rise as climate warms is, however, highly uncertain and 

difficult to model. Here, we quantify the transient sea level sensitivity (TSLS) of the sea level 

budget in both models and observations. Models show little change in sensitivity to warming 

between the first and second half of the 21st century for most contributors. The exception is 

glaciers and ice caps (GIC) that have a greater sensitivity pre-2050 (2.8±0.4 mm/yr/K) compared 

to later (0.7±0.1 mm/yr/K). We attribute this change to the short response time of glaciers and 

their changing area over time. Model sensitivities of steric expansion (1.5±0.2 mm/yr/K), and 

Greenland Ice Sheet mass loss (0.8±0.2 mm/yr/K) are greater than, but still compatible with, 

corresponding estimates from historical data (1.4±0.5 mm/yr/K and 0.4±0.2 mm/yr/K). Antarctic 

Ice Sheet (AIS) models tends to show lower rates of sea level rise with warming 

(-0.0±0.3 mm/yr/K) in contrast to historical estimates (0.4±0.2 mm/yr/K). This apparent low bias 

in AIS sensitivity is only partly able to account for a similar low bias identified in the sensitivity 

of GMSL excluding GIC (3.1±0.4 mm/yr/K vs 2.3±0.4 mm/yr/K). The balance temperature, 

where sea level rise is zero, lies close to the pre-industrial value, implying that sea level rise can 

only be mitigated by substantial global cooling. 

Plain Language Summary 

The planet is warming, and sea levels are rising as oceans expand and ice on land melts. The 

warmer the Earth gets, the faster the seas will rise. Projecting future sea level rise using 

numerical models has proved extremely challenging and, as a consequence, estimates carry a 

large uncertainty. How good are the models of ocean expansion and mass loss from glaciers and 

ice sheets? We tackle this question by comparing how the models react to future warming with 

how sea level reacted in the past. The models for glaciers, Greenland, and the oceans are 

compatible with observations. For the largest ice mass on the planet, the Antarctic Ice Sheet, the 

models do not agree with the observations. As a result, projections of global sea level rise may 

be an underestimate.  

1 Introduction 

Despite recent advances in both observations and numerical modeling, sea level rise (SLR) 

projections remain highly uncertain due, in large part, to inadequate understanding of how the ice 

sheets covering Antarctica and Greenland will respond to climate forcing. Various approaches 

have been developed to attempt to address this uncertainty including community-based model 

intercomparison projects (Goelzer et al., 2020; Nowicki et al., 2016; Seroussi et al., 2020), 

emulator studies (Edwards et al., 2021), structured expert judgement (Bamber and Aspinall, 

2013; Bamber et al., 2019) and, what have been termed, semi-empirical models (SEMs). This 

latter approach correlates changes in global surface temperature with global mean sea level 

(GMSL) based on how these two variables have evolved in the past (Moore et al., 2013). Various 

approaches have been used to account for the different time constants for the response of the 

components of the climate system that contribute to SLR, such as thermal expansion of the 

oceans, and mass loss from glaciers and ice caps and the Greenland and Antarctic ice sheets. The 

different approaches mentioned above have produced markedly different estimates for future 

SLR, especially for the upper tail of the distributions and depending on the climate forcing 

scenario used (Fox-Kemper et al, 2021). The ice sheets have the longest response time of any 
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component of the climate system and their behavior for a given year does not, therefore, reflect 

the climate forcing for that year, or preceding decade but the cumulative forcing over a longer 

time period. To account for this delayed response and to provide a scenario-independent metric 

for SLR, Grinsted and Christensen developed the concept of the transient sea level sensitivity 

(TSLS) (Grinsted and Christensen, 2021). This is analogous to the notion of a transient climate 

sensitivity, which defines the mean temperature response of a GCM to a doubling in CO2 

concentrations. In the case of sea level rise, however, the initial transient response to warming is 

a change in the sea level rate due to the slow response of ice sheets and oceans. The TSLS is 

therefore defined as the instantaneous change in rate of SLR associated with a change in 

temperature (Grinsted and Christensen, 2021). The ice sheets and oceans respond slowly to 

warming and the response over a century can be considered transient. In practice, the TSLS has 

therefore been estimated using a century-average temperature to determine the transient sea level 

response at the end of the 100-year period (Grinsted & Christensen, 2021). This is a useful 

metric because it is i) scenario independent and ii) it is not the equilibrium SLR that is critical for 

adaptation planning but the rate over some time period (Oppenheimer, 2019).    

 

An important conclusion of the study that introduced the concept of the TSLS was that 

projections for SLR presented in the Fifth Assessment Report (AR5) of the IPCC and their 

Special Report on Oceans Cryosphere and Climate (SROCC) had weaker sensitivities than 

indicated by the observational and proxy sea level record (Grinsted and Christensen, 2021). This 

suggests that the model-based projections in the AR5 and SROCC likely underestimate future 

SLR when compared to observations. This conclusion is supported by studies using structured 

expert judgement (Bamber et al., 2019) and from simple extrapolation of the present-day, forced 

SLR trends from satellite altimeter observations (Fasullo et al, 2018; Nerem et al. 2018). The 

difference was significant and, assuming a linear relationship between TSLS and the centennial-

average temperature change, the observations lie closer to expert judgement median projections 

than to the numerical model estimates. This is likely due to smaller ice sheet contributions from 

the numerical models although an investigation of the sensitivity of each component of the sea 

level budget was not undertaken (Grinsted and Christensen, 2021). This raises two interesting 

and important questions. First, there is evidence suggesting that CMIP6 models have a higher 

climate sensitivity compared to their predecessors (Forster et al., 2020) and, indeed, this has lead 

to the conclusion that the Greenland Ice Sheet (GrIS) produces a larger contribution to SLR 

compared to their predecessors when forced by these models (Hofer et al., 2020) and that the 

steric contribution is about 10% greater than in CMIP5 (Jevrejeva et al., 2020).  It is possible, 

therefore, that the TSLS for CMIP6 simulations lies closer to the observational trend relative to 

CMIP5 and the AR5 values. Second, data are available for each component of the sea level 

budget for CMIP6 simulations making it possible to examine the transient sensitivity of each of 

these and to compare them with whatever suitable observational data are available. This permits 

identification of which modeled components are less sensitive with respect to observations and 

to quantitatively assess the origin for the discrepancy between the observations and modeled 

TSLS identified in Grinsted and Christensen 2021. Those two questions are addressed in this 

study: namely an examination of the TSLS of the GrIS, West and East Antarctic Ice Sheets 

(WAIS, EAIS), glaciers and ice caps (GIC) and ocean thermal expansion separately based on the 

CMIP6 model runs used in the Sixth Assessment Report (AR6) of the IPCC (Fox-Kemper et al., 

2021) and an evaluation of the CMIP6 TSLS against observations and previous modeled SLR 

trends.  
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2 Data 

2.1 Ice and ocean observations and paleo sea level proxies 

The observations and their errors are based on the assessment of the historical sea level budget in 

AR6 (Fox-Kemper et al., 2021). From this we extract the rates in four distinct periods (1901-

1970, 1971-1992, 1993-2005, 2006-2018) for the steric, AIS, GrIS, and GIC contributors and for 

GMSL. The AR6 represents a synthesis of all relevant knowledge, but the data sources are 

similar to a recent study that demonstrated closure of the sea level budget components when 

compared to the integral as inferred from sea surface height data (Frederikse et al., 2020). This 

study includes satellite and in-situ assessments starting in 1960 for GIC, 1970s for the GrIS and 

1992 for the AIS. Modeled and/or observational estimates for both the GrIS and GIC extend 

back to 1900 but not for the AIS. Several lines of evidence suggest some mass loss from the 

Antarctic Peninsula (PEN) and West Antarctic Ice Sheet (WAIS) but a relatively stable East 

Antarctic Ice Sheet (EAIS) (Adhikari et al., 2018). These older (pre satellite) observations, 

however, have a significantly larger uncertainty associated with them.  The thermosteric 

component of the sea level budget was obtained from three different compilations of in-situ 

observations from 1957-2018 combined with a reconstruction based on more limited historical 

data extending back to 1871 (Zanna et al., 2019). Thus we use reconstructed observational 

estimates from 1901-2018 for all components except the AIS. These are supplemented with 

estimates for the 1850-1900 pre-industrial period for GMSL and GIC. GMSL rose by 0.5±0.2 

mm/yr between 1850 and 1900, according to a global synthesis of regional sea-level 

reconstructions spanning the last 3 millenia (Kemp et al. 2018; Kopp et al., 2016; Gulev et al. 

2021). The GIC contribution for 1850-1900 was estimated by Marzeion et al. (2015) based on an 

upscaling of observed glacier change to a global inventory of glaciers. This does not include 

mass lost from glaciers missing from the inventory. Parkes and Marzeion (2018) estimate that 

these missing glaciers account for 25-50% of the mass change in the early part of the 20th 

century. We therefore multiply the Marzeion et al. (2015) estimate with 1.6 (the geometric mean 

of the upper and lower bound). We interpret the Parkes and Marzeion 2018 upper/lower bound as 

a ±2σ range. This results in a GIC estimate for 1850-1900 of 0.7±0.2 mm/yr. The AR6 only 

reports the historical contribution for the entire Antarctic ice sheet, and we therefore supplement 

with estimates for the WAIS, EAIS and PEN from IMBIE2 (Shepherd et al., 2018) for the period 

from 1992-2017. The observations of sea level rates are paired with corresponding estimates of 

Global Mean Surface Temperature (GSMT) based on HadCRUT5 (Morice et al., 2021). 

Throughout, we report temperatures as anomalies relative to a 1995–2014 baseline for both 

observations and models. 

2.2 CMIP6 Data 

The sixth phase of the Coupled Model Intercomparison Project (CMIP6) brings together an 

advanced set of participating climate models compared to CMIP5. CMIP6 models were forced 

by an updated set of emissions scenarios, utilizing the Shared Socioeconomic Pathways (SSPs), 

creating a broader selection of possible futures. For the first time, CMIP6 included an ice sheet 

modeling intercomparison (Goelzer et al., 2020; Nowicki et al., 2016; Seroussi et al., 2020) and 

experiments investigated the effects of higher ocean resolution (e.g. HighResMIP). Since 

CMIP5, greater understanding of physical processes (e.g. glacier and ice-shelf calving and 

grounding line evolution) have driven developments in glacier and ice sheet models, and the 

representation of ocean processes has improved with increased resolution (e.g. ocean eddies in a 
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number of models). The closure of the global energy and ocean mass budget after removing drift 

has also improved in CMIP6 (Irving et al., 2021). 

 

Studies have found that some CMIP6 GCMs have higher equilibrium climate sensitivity 

compared to CMIP5 (Forster et al., 2020), attributed to improved representation of clouds. This 

translates into higher projections of global mean surface temperature change (Hermans et al., 

2021) and impacts on projections of regional sea-level change, such as dynamic sea-level change 

in the North Atlantic and Arctic (Lyu et al., 2020). The AR6, however, did not rely solely on 

CMIP6 simulations for projections of sea level change and used emulators, calibrated to an 

assessed range of climate sensitivity from paleoclimate, observations, and physical process 

models. This reduced the higher warming found in some CMIP6 models. 

2.3 Steric model output 

The thermosteric sea-level change is obtained from either the CMIP6 direct output of global 

average thermosteric sea level change (the standard output variable conventionally labeled 

'zostoga’) or calculated based on potential temperature and salinity in CMIP6 output. For 

historical outputs, the thermosteric sea-level change time series are divided into four periods 

which are: 1850-1900, 1900-1950, 1950-2000, and 1992-2014. For the future climate scenario, 

we have investigated SSP1-2.6, SSP2-4.5, and SSP5-8.5, for two time periods: 2016-2050, and 

2051-2100. Table S1 shows the CMIP6 models and variants used in this study. It should be noted 

that individual model runs could produce negative rates of thermosteric sea-level change due to 

model drift. We therefore correct for model drift by applying a constant rate bias adjustment that 

sets the 1958-2015 steric rate to exactly match an observational estimate of 0.54 mm/yr 

(Frederikse et al., 2020). This constant rate adjustment does not affect the sensitivity to a change 

in temperature. 

2.4 Land ice model output 

The ice sheet and GIC contributions to sea level rise have been the focus of two model 

intercomparison projects — ISMIP6 and GlacierMIP. Edwards et al. (2021) emulated glacier 

simulations from GlacierMIP Phase 2 (Marzeion et al., 2020), ensuring any peripheral glacier 

overlap with ice sheets was minimal. The models in these intercomparison projects were driven 

by a relatively small subset of CMIP5 (Goelzer et al., 2020; Seroussi et al., 2020) and CMIP6 

models (Payne et al., 2021). Edwards et al. (2021) constructed an emulator tuned to reproduce 

these MIPs, and used this to project ice mass loss for a modern set of scenarios. Temperatures 

are projected by a reduced complexity climate model (Smith et al., 2018), allowing for 

uncertainty in climate sensitivity in a manner that approximates the AR6. In this paper we use a 

published sample of 500 simulations from the emulator. Each sample from the emulator models 

the contributions from GrIS, GIC, EAIS, WAIS, and the Antarctic Peninsula, and each sample 

has been run for six different SSP scenarios. The emulator model projections were pre-processed 

with a first order Savitzky-Golay filter with a window length of 15 years to reduce interannual 

variability. Neither ISMIP6, nor the emulator, has hindcasts that can be used to assess model 

drift. A constant drift can be considered an unforced contribution to sea level rise and does 

therefore not affect estimates of the transient sensitivity to a temperature change. 

 

Mass loss from the ice sheets can be partitioned into ice dynamic and surface mass balance 

(SMB) components. To make an assessment as to which of these components is driving the ice 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

sheet’s TSLS, we used the output from the ISMIP6 ice sheet models that were forced by CMIP6 

models, reported in Payne et al. (2021). The CMIP6 models used to drive the ice sheet models 

were limited to those available to the ISMIP6 project at the time – these consist of four models 

for SSP5-8.5 and one for SSP1-2.6. The models are all at the upper end of the CMIP6 ensemble 

in terms of their transient climate sensitivity (Payne et al., 2021). The ice dynamic sea level 

contribution is calculated by subtracting the SMB, integrated over the grounded ice sheet area, 

from the total sea level contribution. 

3 Methods 

The major contributors to sea level rise can be viewed as large reservoirs. The ice sheets and GIC 

are reservoirs of freshwater, and the ocean is a reservoir of heat. Any change in the stock of these 

reservoirs will result in a change in sea level. A steady state is characterized by a balance in the 

fluxes to and from these reservoirs, for example, gains from snow fall must be balanced by losses 

from melt and discharge. The initial impact of a change in climate will be a shift in the flux 

balance of every reservoir, and thus a change in the corresponding sea level rates. However, the 

fluxes to and from reservoirs are not only influenced by external forcing but will also depend on 

the stock in the reservoir. The long wave radiation losses from the ocean surface depend on sea 

surface temperature and is thus connected to ocean heat, and total melt losses from GIC depend 

on the remaining glaciated area. This leads to a feedback between the stock in the reservoir and 

the net fluxes. The reservoir leaks or gainsuntil it finds a new equilibrium with the imposed 

climate, and the equilibration process can be characterized by an e-folding timescale. The ocean 

and ice sheets are giant reservoirs that change size slowly and have multi-centennial equilibrium 

response times. GIC, however, come in many sizes — every glacier or ice cap with its own 

response time. Often glacier response times are measured in decades.  

 

In this paper, we focus on the century scale response of the primary contributors to the sea level 

budget. The chosen time frames are relatively short compared to the response times we expect 

from most contributors. Thus we will be focusing on the initial ‘transient’ response. We use 

Global Mean Surface Temperature (GMST) as an indicator for the intensity of the climate 

forcing, and investigate how sensitive the transient response is to a change in forcing intensity, 

i.e. mean temperature. As we are primarily concerned with changes in the response rather than 

absolute values, we disregard small quasi-constant components of the sea level budget such as 

the effect of ocean bottom deformation (order 0.1 mm/yr) (Vishwakarma et al., 2020), the deep 

ocean steric term (order 0.1 mm/yr) or land hydrology (order -0.15 mm/yr) (Fox-Kemper et al., 

2021). 

 

The Transient Sea Level Sensitivity (TSLS) is defined as the initial increase in the rate of sea 

level rise to an increase in global mean surface air temperature (Grinsted and Christensen, 2021). 

We write 

𝑇𝑆𝐿𝑆 ≡
𝑑�̇�

𝑑𝑇
,        Equation 1 

where T is the GMST anomaly, and �̇� is the rate of sea level rise. We aim to estimate the TSLS 

for each of the major contributors to the sea level budget from both models and observations. 

The TSLS concept inherently represents a linearization of the response to warming of the form 

�̇� = 𝑇𝑆𝐿𝑆 ⋅ 𝑇 + �̇�0,       Equation 2 
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where �̇�0 is the rate of sea level rise for a zero GSMT anomaly. We can therefore estimate the 

TSLS from the slope in a linear regression from a data set of T and �̇�. This is an approximation 

with a limited range of applicability, as discussed in more detail later. GMST is not a perfect 

representation of the forcing intensity. E.g. the Arctic oscillation is associated with substantial 

year to year variability in Greenland mass loss which is not captured by a global metric such as 

GMST. This variability can be reduced, and correlation improved, by temporal averaging of both 

T and �̇�. For TSLS to be considered ‘transient’ sensitivity we must consider time intervals that 

are relatively short compared to the equibribration time. Grinsted and Christensen (2021) argued 

that TSLS is  close to stationary on a century time scales due to the large inertia of the oceans 

and ice sheets. In this paper we test this assumption by determining and comparing the TSLS in 

three different periods (historical, early 21st century, and late 21st century). Future projections 

span a range of scenarios with different warming pathways. This allows us to estimate the TSLS 

by regressing the temporal average GMST against the corresponding average rate of the modeled 

contribution to sea level rise. The regression intercept is the sea level rate associated with a 

temperature anomaly of zero. The intercept can be reformulated in terms of a balance 

temperature — the temperature change necessary to stop that sea level component from 

contributing to sea level rise (Grinsted and Christensen, 2021). For the historical period we only 

have a single warming pathway, and thus cannot estimate the sensitivity to warming at a 

particular point in time. We can, however, examine how the sea level contribution has 

accelerated over time as warming has progressed.  

  

For every model we calculate the temporal average rate of sea level contribution, and the 

corresponding average GMST in a set of target periods. We have chosen four historical periods 

(1850–1900, 1900–1950, 1950–2000, and 1992–2014) and two projection periods (2016–2050, 

and 2051–2100). The steric contribution is based on CMIP6, and thus covers the entire set of 

target periods. However, the ice emulator only provides estimates for the future contribution. 

This is a limitation inherited from the ISMIP6 protocol. We require at least three points in every 

regression, and reject all poorly constrained TSLS estimates with a standard error greater than 3 

mm/yr/K. This quality filter is particularly useful for the 2016–2050 period where the GMST for 

the different scenarios has not yet deviated by much. We use a different set of periods when we 

estimate the historical TSLS from observations as we are limited by data availability.  

 

In order to estimate the TSLS we regress GMST against the rate in the sea level contribution. We 

simply use linear least squares regression for model data. However, for observational estimates 

we use weighted least squares regression as not all data are equally certain. We weight every 

data point by the inverse of the estimated standard error in the sea level rate. Confidence 

intervals in the historical TSLS estimates are determined using a Monte Carlo approach where 

we perturb the estimated rate and temperature according to the reported standard errors. These 

perturbations are assumed to be independent, and thus we are assuming no error covariance 

between the estimated rates in different periods. Fully covariant errors in the sea level rates 

would only affect the estimated intercept but not the slope. We therefore argue that this 

assumption has minimal impact on the estimated TSLS confidence intervals. 

 

The spread between CMIP6 runs should not be interpreted as representative of the uncertainty 

distribution. Some earth system models have been run multiple times, and this can lead to a bias 

if all CMIP6 runs are treated as equally probable samples from an uncertainty distribution. We 
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therefore average all the model runs from an individual Earth System Model (ESM), with the 

only exception being to models with perturbed physics which are treated as if it was a different 

ESM. In this study, CanESM5 is the only model with two different perturbed physics members. 

Given that there exists substantial difference between different perturbed physics members of 

CanESM5 in volume-averaged ocean temperature (Swart et al., 2019), it is sensible to treat it as 

two different ESMs. The approach we use here is inline with the standard practice of combining 

multi-model climate ensembles (Knutti et al., 2010).  

 

There is not a simple one-to-one relationship between the ESMs used for the steric model, and 

the model samples from the ice emulator. It is therefore not trivial to produce a fully consistent 

model estimate of GMSL. However, it is clear that at the very least we must ensure that only 

models with similar climate sensitivity are paired. We therefore pair each ice emulator sample (i) 

with the steric estimate from a random sample from the CMIP6 ensemble where each run (j) has 

been assigned a probability weight. The weight is designed to account for how well temperatures 

match. We write 

𝑤𝑖𝑗 = 𝑒
−

1

2
 (

𝑇𝑖−𝑇𝑗

0.2 𝐾
)

2

,       Equation 3 

where the 0.2K is a standard deviation to allow for a small misfit between the two temperatures. 

This is necessary as we are dealing with finite samples and is similar to the bin width in a 

histogram. A randomly selected model run (m) based on these weights therefore has a small 

temperature misfit. We make a first order adjustment to the steric rate (�̇�𝑚) to account for this 

misfit as follows 

�̇�𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑,𝑚 = �̇�𝑚 + (𝑇𝑚 − 𝑇𝑖) ⋅ 𝑇𝑆𝐿𝑆𝑚     Equation 4  

where TSLSm is the sensitivity estimated for m-th CMIP6 model. This is a small adjustment as 

the model weights ensure that the temperature misfit is small. This combination strategy ensures 

that the CMIP6 ensemble is weighed such that it is consistent with future temperatures used by 

the ice emulator and consequently AR6 as the emulator was designed to be consistent with the 

AR6.  

 

The TSLS estimates are, by design, near independent of GMST and thus climate sensitivity 

(Grinsted and Christensen, 2021). We therefore directly combine TSLS estimates from the 

different contributors, where we simply combine each set of TSLS from an ice emulator sample 

with the steric TSLS from a random CMIP6 model.  

4 Results and discussion 

The results and discussion are divided into subsections for each component followed by a 

subsection examining the integral, i.e. GMSL. This is followed by a summary subsection with 

TSLS estimates for all components as a function of temperature. The results of each component 

are discussed in the relevant subsection. When TSLS ranges are included, they are quoted as the 

two sigma, 90 percentile range. 
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4.1 Steric 

Although there is significant model spread, it is evident that the assumption of a linear 

relationship between the averaged temperature and sea level rate for the thermosteric component 

is valid and that the gradient of the linear fit for CMIP6 models and the observations are broadly 

consistent (Figure 1). This is not surprising as thermal expansion of the oceans is a linear 

function of ocean heat content to first order. It is, nonetheless, reassuring that the models and 

observational data are broadly consistent, despite the relatively limited steric data available for 

the first half of the Twentieth century.  

The linear regression is best constrained for the period 2051-2100 which spans the largest 

temperature range between scenarios. For this period, we find that models have a steric 

sensitivity of 1.5±0.2 mm/yr/K. The median estimates for the earlier periods (1850-2015 and 

2015-2050) are consistent (1.7±0.5 mm/yr/K and 2.1±0.8 mm/yr/K) but show substantially more 

scatter as the data span a smaller temperature range and, consequently, is less well constrained. 

The observations indicate a sensitivity of 1.4±0.5 mm/yr/K.  

 

The observational data imply a balance temperature of -0.9±0.2 K which is close to the pre-

industrial value. This suggests that to mitigate sea level rise in the future would require a 

substantial reduction in present-day GMST, noting that internal variability has been responsible 

for about 5 cm of sea level change over the pre-industrial Common Era (Kopp et al, 2016). We 

cannot extract a meaningful estimate of balance temperature from the models as it is necessary to 

apply a drift correction to CMIP6 models, as mentioned earlier. This drift correction is a vertical 

offset in figure 1 which will affect the balance temperature.  

 

 

4.2 Greenland Ice Sheet (GrIS) 

Figure 2 indicates a near-linear sea level trend for the GrIS versus average temperature (2051-

2100: 0.8±0.2 mm/yr/K), which, as discussed below, is likely a result of mass loss being 

dominated by surface mass balance (SMB) over ice dynamics in the models. In a subset of 

ISMIP6 model simulations it is possible to separate the role of these two components of mass 

loss. We do this using the results presented in (Payne et al., 2021), and find that the dynamic 

component of mass loss is both limited and insensitive to average temperature, whereas the SMB 

component has a positive linear relationship with GMST (Fig. 3). As a result, SMB becomes an 

increasingly dominant component of mass loss under SSP5-8.5, from being approximately equal 

to the dynamic component in the earlier part of the century, to being a factor of 2-3 greater in the 

second half. The ISMIP6 simulations apply a SMB-elevation feedback, such that melt increases 

as elevation decreases (Nowicki et al., 2020). This acts to enhance SMB losses with surface 

lowering, contributing to the increasing dominance of this component over the century. 

 

The way the future ocean forcing was applied to the ISMs means that the projections are unlikely 

to exhibit a non-linear dynamic response over the next century. The majority of the ISMIP6 

Greenland ice sheet model projections use a parameterization based on a simple linear function 

that determines a change in terminus position given subglacial discharge (estimated from 

modeled surface runoff) and ocean thermal forcing (Slater et al., 2019). The sector-averaged 
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strength of the empirical relationship is used to determine terminus positions of each marine 

terminating glacier in the future, given projected subglacial discharge and ocean thermal forcing, 

which are then applied as a mask to the modeled ice sheet extent. As a result of this simple 

approach, non-linearities in future dynamic behavior, for example due to local glacier and 

bedrock geometry, are not directly accounted for in the standard Greenland projections. In 

contrast, (Choi et al., 2021) use a calibrated calving law in their Greenland simulations and find 

that the regions dominated by marine terminating glaciers in Northern Greenland exhibit a 

stronger dynamic response over the 21st Century, compared to the ISMIP6 projections that use 

the empirical retreat parameterization. We infer from this, and our results that the dynamic 

response obtained in the ISMIP6 simulations is too weak.  

 

The TSLS derived from the GrIS projections are consistent with the historic data since 1971. The 

1901-1970 estimate appears anomalous compared to later periods. We see several possible 

explanations for this anomaly. The early estimate was derived from trimline elevations 

associated with the Little Ice Age maximum extent of the ice sheet (Kjeldsen et al., 2015). 

However, trimlines only provide observational constraints on changes in marginal geometry. In 

reality it is possible that interior mass gains could have partially offset marginal losses, which 

seems conceivable considering this pattern is seen in present-day satellite observations (e.g. 

Helm et al., 2014). Further, the Little Ice Age maximum does not have a well defined end date, 

and period length influence the estimated rate. One explanation could therefore be that the 1901-

1970 rate is biased high because there are no observations that constrain interior mass change, or 

due to uncertainty in timing. Additionally, the ice sheet responds to local climate change, which 

in turn is linked to global climate. The ice sheet response at the end of the Little Ice Age is linked 

to a change in regional air temperature (Box, 2013; Box and Colgan, 2013), which is not 

captured by changes in GMST unless it is a global effect.  

 

 

4.3 West Antarctic Ice Sheet (WAIS) 

The WAIS shows no clear sensitivity to average temperature, which suggests that the marine ice 

sheet instability is not initiated, or is not of sufficient amplitude, during the 21st century for any 

of the climate forcing scenarios including SSP5-8.5 (Fig. 4). It is worth noting that this scenario 

has an averaged global temperature anomaly of +2.6 K over the latter half of the 21st century, but 

which is amplified at high latitudes. The lack of scenario dependence in mass loss through ice 

dynamics is demonstrated by the subset of ISMIP6 simulations shown in Figure 5. These results 

also suggest that the timescale for the emergence of dependence on scenario in dynamic 

processes extends beyond the current century (Lowry et al., 2021).  

 

 

WAIS mass loss is dominated by ice dynamic processes with no dependence on scenario. 

Conversely, for most models, SMB shows increasingly positive trends (negative sea level 

contribution) with increasing global average temperature throughout Antarctica, which agrees 

with previous independent modeling studies even going back as far as the fourth IPCC 

assessment report in 2007 (Gregory and Huybrechts, 2006; Lenaerts et al., 2016). However, there 

is an indication that at higher temperatures this relationship could switch, where instead of 

increasing, the SMB starts to decrease (and contribute positively to sea level) as global 
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temperatures rise further. This is similar to what is observed over the Antarctic Peninsula, where 

increased runoff over the ice shelves will contribute to a decrease in SMB (Kittel et al., 2021), in 

addition to the formation of surface lakes contributing to increased melting (Buzzard et al., 

2018). This could have a knock-on impact on the ice dynamic contribution, through the reduction 

in buttressing of upstream grounded ice (Fox-Kemper et al., 2021). 

 

 

4.4 East Antarctic Ice Sheet (EAIS) 

The rate of sea level contribution from the EAIS has a weak negative relationship with global 

mean surface temperature (2051-2100: -0.1±0.2 mm/yr/K), indicating that increases in 

accumulation under warmer conditions outweigh any losses from other processes. In fact, as was 

the case for the WAIS, ice dynamics shows no obvious trend with temperature (Fig. 7) 

suggesting that the only process relevant during the 21st century, irrespective of SSP, is changes 

in snowfall. This conclusion is consistent throughout the IPCC assessment reports (Church et al., 

2013; Gregory and Huybrechts, 2006) despite numerous advances and developments in process 

understanding, model resolution and numerics. However, the lack of sensitivity is likely more to 

do with how the forcing is prescribed and defined than with the fidelity of the ice sheet models. 

Taking a different approach by assessing the response to sub-shelf melting, a separate modeling 

study found a significant sea level contribution was obtained for the EAIS with a discernible 

sensitivity to the forcing scenario (Levermann et al., 2020). 

 

The spread in dynamic response to global mean temperature in the EAIS is greater than in the 

WAIS from 2051-2100, especially for the highest global mean temperatures (Figure 7). 

However, the ice sheet model simulations at the high end of the temperature range have all been 

forced with a single CMIP6 model, and the spatial pattern of warming can vary substantially 

between models. As with WAIS, the EAIS SMB remains positive (negative sea level 

contribution) across all simulations driven by the available CMIP6 models and future scenarios. 

 

For both EAIS and WAIS, the early 21st century time period tends to produce lower rates of sea 

level contribution, with a smaller spread, than the late 21st century time period for a comparable 

temperature change. This is indicative of the diverging responses of the ice sheet model 

ensemble members over time, as some continue with a linear trend in the sea level contribution 

for the duration of the century, whereas others, particularly at the high tail end of the distribution 

have a super-linear response (Seroussi et al., 2020). 

4.5 Glaciers and Ice Caps (GIC) 

GIC display a bimodal behavior dependent on the time period (Fig. 8). The TSLS is higher for 

the first half of the 21st century because, as they melt, the GIC area declines and hence has less 

potential to contribute mass to sea-level change. This reduces their sensitivity to further 

temperature increases in the second half of the century. Nonetheless, over a 50 year period a 

linear sensitivity to average temperature change is a reasonable approximation, but over longer 

time periods the sensitivity changes. This may also explain why the observational records do not 

fall on a straight line, although another reason for that is likely due to the disappearance of small 

glaciers during the 20th century and missing glaciers from the global inventory that are below a 

minimum size threshold (Parkes and Marzeion, 2018). The anomalous early 20th century records 
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could also be partly due to the post Little Ice Age response of GIC. The Little Ice Age was 

predominantly a Northern Hemisphere signal, which is also where the GIC are mostly situated, 

rather than a global mean temperature anomaly. This regional versus global difference could 

result in the 1901-1970 sea level contribution biasing high (see discussion for the GrIS). Post-

2100, we would expect the TSLS to continue to decrease in line with diminishing glacier area. 

We note, however, that a recent study using a deep learning approach and comparing a model 

with a linear response to climate forcing (as used in, for example, most GlacierMIP and hence 

AR6 simulations) with a nonlinear version found that linear models tend to overestimate the 

response for the high end scenarios in particular but also for glaciers with a longer response time 

(Bolibar et al, 2022). This finding implies that the TSLS is likely too high when assuming a 

linear response. If correct, this would result in the 21st century TSLS lying closer to the historic 

value. 

 

4.6 Global Mean Sea Level (GMSL) 

We construct an ensemble of GMSL projections by combining the ice emulator projections with 

the steric contribution from a corresponding CMIP6 model using the selection probability 

weights described in eqn. 1. The resulting ensemble of 500 GMSL projections is plotted in 

Figure 9. Both observations and projections show a near linear relationship between temperature 

and the rate of sea level rise. The TSLS slope for 2016-2050 is 5.3±1.0 mm/yr/K, which is 

greater than the 3.0±0.4 mm/yr/K estimated for 2051-2100. Observations indicate a sensitivity of 

3.3±0.4 mm/yr/K. The central estimate of the sensitivity derived from the AR6 projections 

during the latter half of the 21st century is also 3.4 mm/yr/K. This is significantly larger than that 

obtained in the AR5 (2.7 mm/yr/K) (Grinsted and Christensen, 2021), which is likely due to the 

increased climate sensitivity of CMIP6 models (Forster et al, 2020). The observational estimates 

of TSLS determined here and in (Grinsted and Christensen, 2021) are not identical because 

different data were used. In particular, the AR6 assessed sea level rate for 1901-1990 (1.35±0.35 

mm/yr) is greater than the rate in Grinsted and Christensen (2021) (1.1±0.3 mm/yr; Dangendorf 

et al., 2017). This greater rate has the effect that the acceleration into the satellite altimetry era 

appears smaller.  

 

The model projections appear vertically offset from the relationship indicated by the 

observational data with AR6 being about 1 mm/yr below the empirical relationship and the 

ensemble falling ~2 mm/yr lower (Fig. 9). This suggests that model rates are biased low by a 

constant amount. This is not surprising as the emulated land ice contributions have not been 

adjusted for drift. The emulated ice sheet contributions are based on the ISMIP6 which by design 

results in zero trend for present-day temperatures. In addition, here we are not including small 

quasi-constant components of the sea level budget such as the effect of ocean bottom 

deformation, the deep steric term or land water storage. These terms, while important for closing 

the sea level budget, have a negligible effect on the TSLS (Vishwakarma et al, 2020). 

 

The intercept of the GMSL TSLS relationship on the x-axis we term the balance temperature and 

represents the value at which SLR is zero. This value is important for considering attribution of 

SLR. A reconstruction of sea level over the last 2500 years shows variations around a mean close 

to zero up until the start of the 20th century (Kopp et al, 2016) and appears closely tied to global 

temperature anomalies. Internal variability in the climate system accounts for around 7 cm of sea 
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level variation over the pre-industrial period. Our results are consistent with this, indicating that 

the balance temperature of -1.0±0.1˚C is equivalent to pre-industrial temperature. In other words, 

SLR since the start of the 20th century can be attributed to anthropogenic global warming plus a 

much smaller component (circa ±7 cm) due to internal variability. This interpretation is 

supported by a recent reassessment of the contribution of anthropogenic warming versus the post 

Little Ice Age response of GIC during the 20th century (Roe et al, 2021), where they conclude 

that the response is entirely driven by anthropogenic warming. This conclusion has implications 

for attribution studies that assumed that early 20th century SLR was largely due to a GIC 

response to the Little Ice Age (Slangen et al, 2016). In that study, they infer that natural forcing 

and internal variability contribute about 10% and 35% to SLR for 1970-2005 and 1900-2005, 

respectively. The revised attribution of GIC means that 20th century SLR is dominated by 

anthropogenic global warming with about 10% due to internal variability and natural forcing for 

the whole century (Slangen et al, 2016, Roe et al, 2021). Our results are consistent with this. 

 

4.7 Summary of sensitivities 

We summarize the range of estimated TSLS for every model of the major contributors in Fig. 10. 

Most contributors to sea level rise appear to have a near time-invariant TSLS with GIC being a 

notable exception. This is in accordance with expectations, as the ice sheets and ocean heat 

content have multi-centennial response times, and the response on the time scales considered in 

this paper can therefore be considered transient. Glaciers, however, have a much shorter response 

time, and thus GIC has started to equilibrate to the new warmer climate by the end of a century, 

and we see that as a reduced TSLS in the late 21st century. This reduces the universality of the 

TSLS metric for the GIC contribution over a century time scale.  

 

The fast GIC response directly affects the GMSL behavior, which results in TSLS changing 

between periods. Historical observations indicate a GMSL sensitivity of 3.3±0.4 mm/yr/K. 

Model projections indicate a greater sensitivity prior to 2050 (5.3±1.0 mm/yr/K), but smaller 

sensitivity post 2050 (3.0±0.4 mm/yr/K). This is in line with the central TSLS estimate derived 

from expert assessments for the entire 21st century (+4.2 mm/yr/K [90%: 2.6-11 mm/y/K]) 

(Bamber et al, 2019). The deviations between these estimates has clearly largely been mirrored 

from the GIC response (Fig 10), which masks the more stationary TSLS of the remainder of the 

sea level budget. We therefore also report the sensitivity of GMSL minus GIC (labelled ‘All but 

GIC’ in fig 10). This reveals a discrepancy between the sensitivity of models and estimates from 

historical data. Historical observations indicate a sensitivity of 3.1±0.4 mm/yr/K, which is ~30% 

greater than model projections. This discrepancy is hard to justify physically as models display a 

stationary sensitivity over the 21st century (+2.5 mm/yr/K pre-2050 vs +2.3 mm/yr/K post-2050). 

This suggests that models of at least one of the remaining components (steric, GrIS, or AIS) 

underestimates the sensitivity to warming.  

 

We find that the steric sea level contribution from CMIP6 models have a transient sensitivity 

(2051-2100: 1.5±0.2 mm/yr/K) to warming which is marginally greater but compatible with the 

historical estimate (1.4±0.5 mm/yr/K; see fig 10). The steric contribution therefore cannot 

explain the ‘All but GIC’ model-data discrepancy.  
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Greenland ice sheet models are more sensitive to temperature change than our estimate from 

historical data (0.8±0.2 mm/yr/K vs 0.4±0.2 mm/yr/K). This could indicate a bias in either the 

model or the observational estimates, or that the transient sensitivity is increasing over time. 

Results from a structured expert judgement (Bamber et al., 2019) imply that experts judge that 

the GrIS may be more sensitive (+1.0 mm/yr/K) than models and observations imply. That 

increase in sensitivity would require a non-linear response to temperature that is not evident in 

the models (Fig 2). This suggests that experts are aware of structural uncertainties in the modeled 

GrIS contribution that could lead to a substantial non-linearity in the response as implied by 

some recent modeling and observational studies (Aschwanden et al, 2019; King et al, 2020; 

Sasgen et al, 2020). We conclude, therefore, that GrIS is also unlikely to be the source for the 

‘All but GIC’ model-data discrepancy.  

 

Models of the AIS display negligible sensitivity to warming (Fig. 10) in contrast to historical 

data which indicate that AIS has a sensitivity of +0.4±0.2 mm/yr/K. Restricting the observational 

estimate to the satellite era, where the AIS contribution is better constrained, increases the 

estimate to +0.5 mm/yr/K. This is far short of a mean centennial value as the observational 

record is only about 30 years. There is some evidence, however, that part of the observed 

behavior of the WAIS during that period is due to a forced climate signal (Holland et al, 2019). 

Further, experts expect a large difference in the AIS contribution between a 2℃ and a 5℃ 

scenario (Bamber et al, 2019) which implies a transient sensitivity of +1.2 mm/yr/K. Such an 

increase over the historical sensitivity indicates that experts consider a non-linearity in the AIS 

sensitivity to be possible. Considerable uncertainty remains regarding the role of certain 

processes during the 21st century for the AIS (DeConto et al., 2021; Edwards et al., 2019) and 

this is likely reflected in the wider range of values obtained in the expert elicitation. This 

behavior is not reflected in the model projections, and this partly explains the ‘All but GIC’ 

model-data discrepancy. The difference between the observational and model derived sensitivity 

of the AIS is however insufficient to fully account for the ‘All but GIC’ discrepancy.  

 

The AIS contribution can be partitioned into dynamics and SMB, and regionally into EAIS, 

WAIS, and Peninsula. The EAIS and WAIS have been discussed in preceding sections. The 

dynamic contributions of both EAIS and WAIS show little scenario dependence in the ISMIP6 

models and are thus relatively insensitive to warming (Fig. 5, Fig. 7). The model sensitivities of 

both ice sheets are therefore predominantly a result of the SMB response to warming. Warming 

tends to result in increased melt and runoff, but also increased accumulation due to the greater 

moisture holding capacity of the atmosphere. The SMB sensitivity to warming can therefore be 

both positive and negative. The accumulation response dominates over the EAIS which results in 

a net negative TSLS for the ice sheet (Fig. 6 and 7). Accumulation and melt is closer to balance 

over the WAIS, and for the most intense warming scenarios the melt response can start to 

dominate the SMB sensitivity in some models (Fig. 5). The net result for the WAIS is a slightly 

positive central estimate of the TSLS (Fig. 4). We find that models of the Antarctic Peninsula 

have a near zero sensitivity to warming (0.00±0.05 mm/yr/K). This is surprising considering that 

satellite observations show rapid and accelerating glacier mass loss in the region (Wouters et al., 

2015). Further, a glacier modeling study found SMB in the region to be particularly sensitive to 

warming (Hock et al, 2009). Further, it has been suggested that the lack of scenario dependency 

in the modeled dynamic response of AIS over the 21st century is due to inadequate understanding 

of ice flow and sliding, which results in high uncertainty in sea level projections and thus overlap 
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between scenarios (Lowry et al., 2021). However, over longer time scales they find that large 

differences between high and low emission scenarios do emerge. This conclusion is also 

supported by the most recent study of the AIS response when accounting for the marine ice cliff 

instability (Deconto et al, 2021). This could in part explain the mismatch between our observed 

and modeled TSLS results. 

5 Conclusions 

We have examined how the contributions to the sea level budget relate to global mean surface 

temperature from both models and data. We approximate AR6 model projections (Fox-Kemper 

et al. 2021) by using weighted CMIP6 models and the output of an ice emulator (Edwards et al., 

2021) using ISMIP6 (Goelzer et al., 2020; Seroussi et al., 2020) and GlacierMIP (Marzeion et 

al., 2020). We find the rate of the individual contributions to be near linear in average 

temperature, and quantify the slope as the transient sea level sensitivity. We thus focus our 

attention on the response sensitivity to a change in warming, rather than the total sea level 

contribution which is also affected by drift.  

 

Models of all contributors, apart from GIC, show little change in TSLS over the 21st century. A 

comparison between the historical sensitivity estimated from observations, and the sensitivity 

implied by model projections can therefore serve as a sanity check on the model response for 

most contributors. GIC shows a marked change in TSLS over the 21st century (Fig. 8), which is 

expected as many glaciers have decadal scale response times. The TSLS concept is therefore of 

limited utility for the GIC contribution. While GIC only contributes a fraction to GMSL, this 

limits how closely we should expect 21st century TSLS to match the historical GMSL sensitivity 

(3.3±0.4 mm/yr/K). We therefore also examine the residual response after removing the GIC 

contribution, and identify a substantial discrepancy between the sensitivity inferred from models 

vs historical data. The historical estimate of the ‘All but GIC’ sensitivity (3.1±0.4 mm/yr/K) is 

30% greater than the model sensitivity (Fig. 10). This strongly suggests that at least one of the 

ice sheets, or the steric contribution has an overly muted response to warming. The sensitivity of 

GrIS and steric show a closer correspondence with historical estimates. We find that the AIS is 

the most likely candidate as most models have low to negative sensitivity to warming in contrast 

to our historical estimate of 0.4±0.2 mm/yr/K (Fig.10). We speculate the WAIS and Antarctic 

Peninsula to be the source of the discrepancy based on recent mass loss trends in the region 

(Shepherd et al., 2018; Wouters et al., 2015).  

 

A recent study found that the ice sheet models were unable to reproduce recent observed trends 

in mass loss (specifically from GrIS) and argued that this raises concerns regarding model skill 

(Aschwanden et al., 2021). This is a separate issue from the TSLS discrepancy we identify in this 

paper which suggests that AIS model sensitivity is biased low. The TSLS quantifies how mass 

loss accelerates under warming and is unaffected by how well it captures present day trends. 

Modeling protocols such as removing a control run, or how the model is spun-up influence long 

term trends. An imperfect initial state in a model with a long response time can result in an 

unforced long term model drift. Model drift is a challenging issue in all models with a very long 

response time, and so affects both ice sheets (Goelzer et al., 2018) and steric models (Slangen et 

al., 2016). A reasonable match to the present-day rate is therefore not a sufficient validation of 

models of components with long response times, and vice versa. This is perhaps best illustrated 

by the ensemble of GrIS models (Fig. 2) which is unable to match present-day trends 
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(Aschwanden et al., 2021; vertical offset in fig. 2), while having a TSLS that is in good 

agreement with historical records (Fig 2. and Fig 10). Model intercomparison projects such as 

ISMIP6 and CMIP6 are crucial to assessing model skill. A limitation of the TSLS comparison in 

this paper is that we compare past to future response and some models were not run for the 

historical period. We therefore recommend that the protocol for future ice sheet model 

intercomparisons is inspired by CMIP6 to include historical runs starting in 1850, to enable 

stronger validation against data. However, this is not feasible for model initialization methods 

that rely on the assimilation of high-quality ice-sheet wide observations from satellites, for 

example inverting for model parameters by matching observed velocities. It is a challenge to 

critically assess the sensitivity in models without a past, but TSLS comparisons to historical 

estimates remain a viable option.  

 

The near-stationary sensitivity of most contributors has practical implications for coastal 

planners and decision-makers. Regional sea level rise projections are usually constructed by 

modeling the impact of the mass loss from individual contributors on the static equilibrium of the 

sea surface (due to e.g. gravitational redistribution of mass), and change due to dynamical sea 

level is then accounted for. Often it is assumed that the dynamical sea level scales with global 

mean steric expansion. In practice, this means that the local sea level is a weighted sum of all the 

individual contributors. If we explicitly account for GIC, local vertical land motion, weather and 

tidal variability (e.g. following Frederikse et al., 2016) then we are left with a residual that 

responds near linearly to warming according to models. This can potentially be leveraged to 

make local relative sea level projections by extrapolation. Further study is needed to assess the 

feasibility of this approach. 

 

Beyond the year 2100, we expect feedbacks to play an increasing role in the ocean heat uptake 

and ice sheet mass loss. We therefore expect the TSLS of these contributors to start deviating 

from historical values and from a linear trend. Eventually the response can no longer 

meaningfully be considered transient, and it will be more useful to consider the equilibrium 

sensitivity to warming and sea level commitment (Clark et al., 2016, Fox-Kemper et al, 2021); 

i.e. how many metres can we ultimately expect for a given forcing? Here paleo records, rather 

than historical records, can serve as an important constraint for models. We note that a credible 

equilibrium response does not guarantee a credible transient sensitivity as the equilibrium can be 

approached at different speeds (Gilford et al., 2020). Finally, we associate about 90% of SLR 

since the start of the 20th century with anthropogenic global warming. 
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Figure 1. The steric contribution to sea level rise plotted against the temporal average of GMST 

for different periods. Black dots show observational estimates from AR6 with 1𝜎 ranges. 

Colored dots show the response of the individual models in the CMIP6 archive in different 

periods and for different scenarios. Covariance ellipses show the 1𝜎 range of the 2016-2050 

(solid) and 2051-2100 (dashed), when models are weighted according to equation 1. 

 

Figure 2. The Greenland contribution to sea level rise plotted against the temporal average of 

GMST for different periods. Black dots show observational estimates from AR6. Colored dots 

show the response of 500 individual models (Edwards et al. 2021) in two different periods for 

five scenarios. Covariance ellipses show the 1𝜎 range of the 2016-2050 (solid) and 2051-2100 

(dashed). 

 

Figure 3. The Greenland contribution to sea level rise from SMB and dynamics plotted against 

the temporal average of GMST of CMIP6 models used in ISMIP6 (Payne et al., 2021). 

Covariance ellipses show the 1𝜎 range of the 2016-2050 (solid) and 2051-2100 (dashed) periods. 

For SSP1-2.6 only one CMIP6 model was used, so the 1𝜎 range is shown by vertical error bars. 

 

Figure 4. The WAIS contribution to sea level rise plotted against the temporal average of GMST 

for different periods. Black dot shows observational estimates from IMBIE2 (Shepherd et al., 

2018). Colored dots show the response of 500 individual models (Edwards et al. 2021) in two 

different periods for five scenarios. Covariance ellipses show the 1𝜎 range of the 2016-2050 

(solid) and 2051-2100 (dashed). 

 

Figure 5. The WAIS contribution to sea level rise from SMB and dynamics plotted against the 

temporal average of GMST of CMIP6 models used in ISMIP6 (Payne et al., 2021). Covariance 

ellipses show the 1𝜎 range of the 2016-2050 (solid) and 2051-2100 (dashed) periods. For SSP1-

2.6 only one CMIP6 model was used, so the 1𝜎 range is shown by vertical error bars. 

 

Figure 6. The EAIS contribution to sea level rise plotted against the temporal average of GMST 

for different periods. Black dot shows observational estimates from IMBIE2 (Shepherd et al., 

2018). Colored dots show the response of 500 individual models (Edwards et al. 2021) in two 

different periods for five scenarios. Covariance ellipses show the 1𝜎 range of the 2016-2050 

(solid) and 2051-2100 (dashed). 
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Figure 7. The EAIS contribution to sea level rise from SMB and dynamics plotted against the 

temporal average of GMST of CMIP6 models used in ISMIP6 (Payne et al., 2021). Covariance 

ellipses show the 1𝜎 range of the 2016-2050 (solid) and 2051-2100 (dashed) periods. For SSP1-

2.6 only one CMIP6 model was used, so the 1𝜎 range is shown by vertical error bars. 

 

Figure 8. The GIC contribution to sea level rise plotted against the temporal average of GMST 

for different periods. Black dot shows observational estimates from AR6. Colored dots show the 

response of 500 individual models (Edwards et al. 2021) in two different periods for five 

scenarios. Covariance ellipses show the 1𝜎 range of the 2016-2050 (solid) and 2051-2100 

(dashed). 

 

Figure 9. The rate of Global Mean Sea Level rise plotted against the temporal average of GMST 

for different periods. Black dots show observational estimates (Fox Kemper et al., 2021, Kemp et 

al., 2018) , with a linear fit shown as a thin line. Colored dots show the response of 500 

individual models of the contribution from land ice (Edwards et al., 2021) combined steric 

projections from the CMIP6 using the weighing strategy in equation 1. Covariance ellipses show 

the 1𝜎 range of the 2016-2050 (solid) and 2051-2100 (dashed). Light gray line shows the central 

projections from AR6. 

 

Figure 10. Estimated TSLS for different contributors and different periods. Uncertainty ranges 

are shown as 5-17-50-83-95%. 
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