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Abstract
Over the past three decades, synthetic data methods for
statistical disclosure control have continually evolved,
but mainly within the domain of survey data sets. There
are certain characteristics of administrative databases,
such as their size, which present challenges from a syn-
thesis perspective and require special attention. This
paper, through the fitting of saturated count models,
presents a synthesis method that is suitable for adminis-
trative databases. It is tuned by two parameters, 𝜎 and 𝛼.
The method allows large categorical data sets to be syn-
thesized quickly and allows risk and utility metrics to
be satisfied a priori, that is, prior to synthetic data gen-
eration. The paper explores how the flexibility afforded
by two-parameter count models (the negative binomial
and Poisson-inverse Gaussian) can be utilised to pro-
tect respondents’—especially uniques’—privacy in syn-
thetic data. Finally, an empirical example is carried out
through the synthesis of a database which can be viewed
as a good substitute to the English School Census.
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1 INTRODUCTION

There is an increasing demand for data to be made available to researchers. This is cou-
pled, however, with greater demands, both legal and ethical, on the protection of per-
sonal data. Consequently, new data sources, and innovative ways of protecting data, are
required.

Administrative databases originate because organisations need to hold individuals’ informa-
tion for their day-to-day running. They have been largely under-explored as a potential data
source, but can contain vast amounts of information, sometimes for an entire population. For
this reason, administrative data are being used to enhance the UK census; and the UK’s National
Statistician, Professor Sir Ian Diamond, has gone further and recommended that administra-
tive data can help to replace future censuses (HM Government, 2018); censuses are, after all,
notoriously expensive.

Often administrative databases are hidden away with access limited to, for example, staff at
government departments. When data are made available to researchers, it is usually via con-
trolled environments, such as the Secure Research Service (SRS), a facility within the Office
for National Statistics (ONS). To access data within the SRS, researchers have to undertake
formal training, submit project applications and then, depending on the data’s confidential-
ity, process the data in safe rooms. While this procedure is, of course, necessary, it can
be time-consuming and may deter researchers. Alternatively, in some cases it is possible to
release open data, which is when data are released into the public domain for anyone to
access.

Protecting data confidentiality is the main priority when disseminating any individual-level
data set. In the United Kingdom, the General Data Protection Regulation (GDPR) means that
businesses and organisations are legally obliged to adhere to certain standards with regards
to anonymisation when processing personal data (Information Commissioner’s Office, 2020).
Anonymisation is achieved through applying statistical disclosure control (SDC) methods; see
Duncan et al. (2011), Hundepool et al. (2012) and Templ (2017) for a thorough review of such
methods. The late Chris Skinner (1953–2020) to whom with Fred Smith (1934–2019) this special
issue of Series A is dedicated, made several key contributions to the field of SDC: most notably his
work on measuring disclosure risk in microdata (Skinner, 1992; Skinner & Elliot, 2002; Skinner
& Shlomo, 2008; Skinner et al., 1994).

Particularly stringent anonymisation techniques are required for administrative data—even
if the data are made available in a secure environment. Administrative data are particularly sensi-
tive, as individuals do not explicitly supply their own information as they would when responding
to a survey. The disclosure of sensitive information would adversely affect the reputations of those
involved in processing the data, which may ultimately affect their ability to collect and process
data.

The use of synthetic data (Little, 1993; Rubin, 1993) to protect privacy continues to attract
attention. Whereas traditional methods typically either perturb or suppress the original data until
a satisfactory level of protection is attained, synthetic data methods involve constructing new data
sets by simulating from models fitted to the original data.

In 1993 the Journal of Official Statistics published a special issue on data confidentiality. Two
contributions therein planted the seed for the growth of synthetic data sets. Rubin (1993) proposed
to multiply impute values for those individuals in the population who were not sampled in the
original data, and release simple random samples; these are now widely known as fully synthetic
data sets (Raghunathan et al., 2003). Little (1993) proposed a similar idea whereby only certain
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values in the data are replaced; these are now widely known as partially synthetic data sets (Reiter,
2003). The idea is that the synthetic data can replace the original data and provide analysts with
similar inferences to those that would have been obtained had the analysis been performed on
the original data.

As synthetic data are inherently artificial, disclosure risks are minimal. In statistical databases,
two types of disclosure can be considered: re-identification and attribute disclosure (there is also
inferential disclosure, although this is closely related to attribute disclosure). Re-identification is
when an attacker de-anonymises an anonymised record, and so identifies an individual in the
data. Attribute disclosure is when an attacker can precisely estimate an individual’s sensitive val-
ues, without necessarily being able to identify them in the data set. Re-identification becomes
meaningless in fully synthetic data because individuals in the synthetic data do not directly per-
tain to individuals in the original data. This is especially beneficial for administrative databases,
which may hold information for an entire population, so there is no natural protection through
sampling uncertainty, that is, uncertainty as to whether an individual was actually included in the
original data. However, a synthesizer needs to guard against attribute disclosure because, through
the synthetic data’s release, an attacker can potentially deduce certain sensitive information. The
correct attribution probability (CAP) metric, see Taub et al. (2018), seeks to measure the risk of
attribute disclosure in synthetic data. For more about disclosure risk in microdata more generally
see Duncan and Lambert (1989), or Hu (2019) for risk in synthetic data specifically.

The risk-utility trade-off, proposed by Duncan et al. (2001), is inherent in all data dissemi-
nation: high utility typically comes at the expense of high risk of disclosure. The ONS devised a
spectrum (Bates et al., 2019) as a way of classifying the position of synthetic data with respect to
this trade-off. At one end of the spectrum are ‘structural’ synthetic data sets where only the orig-
inal data set’s general structure is preserved, such as variable names; these could be employed as
test data, that is, data on which researchers can first run their analyses to identify, for example,
any issues with code, before repeating their analyses on the original data. At the other end of the
spectrum are ‘replica’ synthetic data sets, which are designed to be analysed in place of the orig-
inal data. The method introduced in this paper can be used to produce synthetic data anywhere
on this spectrum.

The synthetic data literature stems from the literature for the multiple imputation of miss-
ing data. An appealing feature of multiple imputation is that the burden of imputing missing
values falls on the imputer—a trained statistical modeller—rather than the analyst, who may
be less well-versed in statistics. This philosophy carried over into the development of synthe-
sis methods, which increasingly utilise complex computational techniques, necessitating spe-
cific non-trivial modelling decisions that require specialist training and often large amounts of
recorded central processing unit (CPU) time to implement effectively. However, this is coupled
with data-holders (many of whom would not be trained in these advanced statistical methods)
taking greater interest in producing their own synthetic data and thus retaining greater control
over the synthesis process. There is, therefore, growing appeal in developing synthesis methods
that ease the burden on the synthesizer while still generating appropriate synthetic data that sat-
isfy data-holders’ requirements. This is a key motivating principle that underpins our proposed
methodology.

The synthesis method presented in this paper provides a quick way to synthesize large cate-
gorical data sets. Overdispersed, saturated synthesis models are used to: (i) overcome constraints
in model fitting, (ii) preserve relationships and (iii) allow risk and utility metrics to be satisfied in
an a priori fashion. The method takes a drain-and-inject approach to synthesis: uncertainty from
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modelling is drained away and, instead, uncertainty is injected where it is most needed, which is
to protect the records at greatest risk of disclosure.

Through tuning two parameters (introduced later as𝜎 and 𝛼), the synthesizer can immediately
generate synthetic data with different levels of risk and utility. In this way, the method shares
a trait with differentially private mechanisms (Dwork et al., 2006), which also preserve privacy
through tuning a parameter (usually denoted by 𝜖). Methods tuned by a parameter allow noise
to be applied as appropriate: for example, when the privacy budget is high, the mechanism can
easily be adjusted to reduce noise and hence risk (and vice versa). This has the potential to allow
risk to be considered in a more formal way.

This paper shows that synthetic data sets are a viable option for safely making information
held in administrative databases available to researchers, which will hopefully stimulate further
interest and development. The paper is structured as follows: Section 2 reviews existing synthesis
methods, with the focus on categorical variables, and considers particular challenges faced when
synthesizing large administrative databases. Section 3 introduces this paper’s contribution to the
field: the (𝜎,𝛼)-synthesis method, which uses saturated models. Section 4 presents an empirical
illustration: the synthesis of a database which can be viewed as a substitute to the English Schools
Census. Section 5 gives some concluding remarks.

2 METHODS OF SYNTHETIC DATA GENERATION FOR
CATEGORICAL DATA

Typically, data sets, including administrative databases, naturally take a microdata format, where
the individuals form the rows and the variables the columns. Suppose a synthesizer wishes to syn-
thesize a microdata set Y = (Y1,Y2, … ,Yp) comprising n individuals completely observed over p
variables, so that the data form a n× p matrix. The first step in synthetic data generation involves
modelling the joint multivariate distribution of this data Y . For categorical data, this can be carried
out at either the microdata level or at the aggregated (tabular) level.

2.1 Synthesizing microdata

Drechsler (2011) describes two broad methods for generating synthetic microdata: conditional
and joint approaches. The conditional approaches model the original data through a product of
conditional univariate models, that is,

p(Y1,Y2, … ,Yp) = p(Y1)
p∏

j=2
p(Yj |Yj−1 … ,Y2,Y1). (1)

Separate models can then be specified for each variable. This approach is flexible in the sense
that it can deal with data sets that are comprised of different variable types. For example, normal
linear regression can be used to model continuous variables and multinomial logistic regression
models can be used to model categorical variables.

Joint modelling approaches, on the other hand, specify a multivariate model for the entire
data set. For example, if all variables are continuous it may be possible to fit a multivariate normal
distribution. However, this can be difficult to implement in practice, especially using parametric
models.
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2.1.1 Conditional approaches

As described above, conditional approaches begin by modelling the first variable; then by mod-
elling the second variable conditional on the first; the third conditional on the first and second;
and so on, up to the pth variable, which is conditional on all other p−1 variables. Multinomial
logistic regression models are an obvious choice for modelling categorical variables. Although not
strictly a generalized linear model (GLM) owing to the multivariate response, the multinomial
logistic regression model can be viewed as an extension to the (binary) logistic regression model
to the case where the response has three or more categories.

When there are many regression coefficients, however, fitting these models is beyond the capa-
bilities of the algorithms used in standard statistical software. Nevertheless, when the model’s
covariates are categorical, the time taken to obtain the regression coefficients’ maximum likeli-
hood estimates can be substantially reduced by utilising the Poisson-multinomial equivalence.
Every multinomial model has a corresponding Poisson log-linear model; see, for instance, Lang
(1996). Fitting the corresponding Poisson log-linear model allows the iterative proportional fitting
(IPF) algorithm (Deming & Stephan, 1940) to be used, which provides a quick-and-easy route to
obtain the model’s fitted values (the expected counts). Skinner and Shlomo (2008) used IPF to fit
log-linear models when estimating disclosure risk in microdata. However, a downside of IPF is
that, while expected counts are obtained, regression coefficients’ estimates and standard errors
are not. This has implications for generating fully synthetic data as described by Rubin (1993),
where parameters’ estimates and standard errors are intrinsic to deriving parameters’ posterior
distributions.

Classification and regression trees (CART), which were developed by Breiman et al. (1984) and
can be viewed as a non-parametric analogue to the GLM, were considered as a method to generate
partially synthetic data by Reiter (2005). CART generates synthetic data sequentially, by growing
a tree for each variable, conditional on all other variables in the data. Its appeal has increased
with the R package synthpop (Nowok et al., 2016), for which CART is the default synthesis
method.

Over time, CART logically led to the use of random forests for synthesis (Caiola & Reiter, 2010).
Also developed by Breiman (2001), random forests grow multiple trees per variable. Drechsler
and Reiter (2011) demonstrated the effectiveness of these non-parametric tree-based methods for
synthesis, relative to parametric approaches.

2.1.2 Joint modelling approaches

The non-parametric latent class model (NPLCM) (Dunson & Xing, 2009), which is a Dirichlet
process mixture of products of multinomial (DPMPM) distributions, can be used to generate syn-
thetic categorical data (Hu et al., 2014; Manrique-Vallier & Hu, 2018; Manrique-Vallier & Reiter,
2014). As with the latent class model given by Goodman (1974), the model assumes the exis-
tence of F≥1 latent classes and introduces a set of latent class probabilities 𝜋1, … , 𝜋F(

∑F
i=1𝜋i =

1), where 𝜋i is the probability that an individual belongs to latent class i. Then, within each
latent class, a specific multinomial distribution can be fit, resulting in a flexible mixture model
that can correspond to many different distributions. The model has a fully Bayesian specifi-
cation, so Markov chain Monte Carlo (MCMC) methods are required to obtain samples from
the posterior distribution. This can be carried out via the R package NPBayesImputeCat
(Hu et al., 2021).
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In addition, machine learning techniques are becoming an increasingly popular area of
research in relation to synthetic data, such as the use of generative adversarial networks (GANs)
(Kaloskampis, 2019).

2.2 Synthesizing aggregated counts

When all variables are categorical, there are a finite number of possible observations that any indi-
vidual can observe, which is determined by the number of category combinations across variables.
This means that, without loss of information, the data can be expressed as a multi-dimensional
contingency table, where counts give the number of times the combinations of categories are
observed. In general, if there are p categorical variables with l1, … , lp categories, respectively,
then the data can be cross-tabulated and expressed as a table with K = l1 × … × lp cell counts,
where each count gives the number of individuals who belong to a particular cell.

The data can then be synthesized at the aggregated level, rather than the individual level, by
modelling these counts.

2.2.1 The Poisson log-linear model

The counts in the multi-way table can be modelled by a Poisson log-linear model, which assumes
that the counts are independent and Poisson distributed. The model has a representation as a
generalized linear model, in which it is parameterized by an intercept term, main effects and
interaction effects. The interactions pertain to associations between variables; whenever an inter-
action is set to zero, independence is assumed between those variables. The ith synthetic cell
count (i = 1, … , K) of the multi-way table f syn

i , is modelled as follows:

f syn
i | 𝛽 ∼ Poisson(𝜇i)

with log(𝜇i) = Xi𝛽. (2)

Thus the mean of f syn
i , denoted by𝜇i, is determined by 𝛽, the vector of log-linear model parameters

(X is the design matrix).
The synthesizer must decide which interactions to include. This affects which relation-

ships are preserved in the synthetic data. For example, if an all two-way interaction model
is fitted, then relationships between all pairs of variables would be preserved, but higher
order interactions—more complex relationships—would be lost. At the extreme, the saturated
log-linear model includes all interactions and, as a result, each cell count in the multi-way table
has its own parameter; see Agresti (2013). While the saturated model has little value when used for
inference or prediction, including all interactions does ensure that all associations are preserved
in the synthetic data.

The model’s minimal sufficient statistics are the observed marginal tables for the highest order
terms included in the model, for example, in the all two-way interaction model, all the observed
two-way marginal tables. Practically, this means that the synthesizer does not require access to
the full original table when synthesizing the data in this way.

As mentioned earlier, expected counts from the fitted model can be obtained relatively quickly
via the IPF algorithm. The syn.ipf function in the R package synthpop (Nowok et al., 2016)
implements IPF, allowing the user this choice of synthesis method.
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2.2.2 Hierarchical Poisson log-linear model

A hierarchical Poisson log-linear model can also be used to synthesize the counts in the multi-way
table, as proposed by Graham and Penny (2007). The ith synthetic cell count (i = 1, … , K) of the
multi-way table f syn

i , is modelled as follows:

f syn
i |𝜆i ∼ Poisson(𝜆i)
𝜆i | 𝛽, 𝜉 ∼ Gamma(𝜉, 𝜉∕𝜇i),with log(𝜇i) = Xi𝛽. (3)

The mean of f syn
i , denoted by 𝜆i, is now assumed to be Gamma distributed; the mean of which, in

turn, is determined by 𝛽, the vector of log-linear model parameters. The parameter 𝜉 affects the
variance. The marginal distribution of f syn

i , found by integrating over 𝜆i, is the negative binomial
distribution.

There are several sources of uncertainty in this model, including model uncertainty, as deci-
sions are made as to which interactions to include in 𝛽. Moreover, Graham and Penny (2007)
generate fully synthetic data using the Bayesian posterior predictive distribution, so the 𝛽 are also
assumed to be stochastic.

2.3 Challenges faced when synthesizing administrative data

The statistical challenges of dealing with administrative data are well documented; see Hand
(2018). And there are further challenges when synthesizing administrative data, in addition to
the usual challenges faced when synthesizing any data set, such as finding the optimal balance
between risk and utility.

Henceforth it is assumed that all variables in an administrative database are categorical. This
assumption is not as strong as it might first appear. Continuous variables are often subject to
rounding, for example, ages given as integers; or they can be categorized by the synthesizer, for
example, ages can be converted to integers. Besides, in any data set (n individuals), the continuous
variables take a finite number of values (maximum of n values). This assumption allows the data
to be expressed as a multi-way table.

2.3.1 Large data sets

In microdata format, administrative databases are typically much larger than traditional survey
data sets, especially in terms of the number of records n (the number of rows in the microdata).

For categorical data sets expressed as a multi-way table, the data’s size is not governed by rows
and columns—but by cells. Neither the number of individuals n, nor the number of variables p,
affects the table’s dimensions. Instead, the dimensions are determined by the number of cate-
gories across the variables. As such, when synthesizing the data at the aggregated level, large n
can be beneficial, because it likely reduces the number of cells with zero counts (zero cells), and
therefore relieves some of the problems caused by zero cells, discussed in Section 3.2.

Administrative databases can include categorical variables with many categories. When fitting
models such as the Poisson log-linear model, this increases the number of parameters to estimate,
thus causing the computational time to increase. It may be infeasible to fit models in such cases.
The issue with computational time also extends to post-synthesis evaluations that are essential in
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examining the synthetic data’s risk and utility. For example, the Bayesian estimation of disclosure
risk given in Reiter et al. (2014) is computationally intensive even for relatively small survey data
sets, as it involves continually re-fitting the synthesis model for every individual in the data, and
ways such as importance sampling have already been incorporated to save time.

2.3.2 Random and structural zeros

The presence of large categorical variables inevitably means that multi-way tables are sparse, that
is, they have a high proportion of cells with zero counts. The zero cells can be said to consist
of two sorts, random zeros and structural zeros. Random zeros are zero cells that arise through
random chance: an individual with a given set of characteristics could have occurred but did not
in the observed data. Structural zeros (as discussed in Bishop et al., 1975) are zeros that arise
because a given set of characteristics is not possible, for example, a child aged three attending a
secondary school. When modelling contingency tables, structural zeros are usually dealt with by
either removing the offending rows from the data set (there is no need for a balanced design when
analysing contingency tables), or by weighting them out by incorporating a weight variable with
weights of zero.

It is desirable that post-synthesis, all structural zeros remain zero, and some random zeros are
transformed into non-zero counts. Whenever random zeros are never synthesized to non-zeros,
but some non-zeros are synthesized to zeros, it results in an inflated number of zeros in the
synthetic data. This issue is discussed in greater detail in Section 3.2.

In many models, such as in a Poisson log-linear model that is not saturated, it is difficult to
account for structural zeros because cell means are smoothed to become non-zero. There are some
exceptions, including the synthesis mechanism described by Manrique-Vallier and Hu (2018),
which extends the non-parametric latent class model to account for structural zeros.

2.3.3 No defined sampling frame

Typically, administrative data are more akin to a census than a survey, and thus more akin to
population data than sample data. However, the population from which the data are drawn is
unlikely to be well-defined, nor are the data likely to constitute a simple random sample from this
unclear population. For example, the English School Census, an administrative database held by
the Department for Education, includes pupils who attend state schools, but those who attend
privately funded schools are excluded.

In general, obtaining inferences from administrative data requires careful consideration, and
there are further considerations for synthesis. It can restrict the type of synthetic data which can
be produced, as it may not be possible to generate fully synthetic data in the sense of Raghunathan
et al. (2003), which requires the generation of a synthetic population. This is difficult when the
population in question is not obvious.

Moreover, risk evaluations in SDC often revolve around estimating the probability that an
individual who is unique in the sample is also unique in the population (Skinner et al., 1994).
These well-established notions of sample uniqueness and population uniqueness become hazy
when dealing with administrative data.
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3 THE (𝝈, 𝜶)-SYNTHESIS MECHANISM

Modelling for the purpose of generating synthetic data holds a unique position within sta-
tistical modelling: the objective is neither inferential nor predictive. Instead, the objective is
solely to obtain synthetic data that resemble the original, but where disclosure risks are suffi-
ciently low. That is, the model itself is not of interest. The use of saturated models, as proposed
here, exploits this notion, alongside the notion that synthetic data can be obtained by suffi-
ciently diverging away from the original data. The original data itself can be viewed as having
maximum utility—but also maximum risk. A synthetic data set can be generated by trad-
ing utility for disclosure protection, so that an acceptable balance between risk and utility is
achieved.

Using saturated models helps to avoid the loss of relationships between variables. In multiple
imputation, when the imputation model is less complex than the analyst’s model subsequently
fitted to the data, the analyst’s model is said to be ‘uncongenial’ to the imputation model (Meng,
1994). The same applies to synthesis models. Therefore, over-fitting is preferable to under-fitting,
and fitting saturated models is over-fitting in its most extreme.

Moreover, saturated synthesis models eliminate bias and model uncertainty. First, this means
that the synthetic counts have an unbiasedness property: the expected counts in the synthetic
data are equal to those in the original data. Second, it means that there are fewer sources
of uncertainty: there is only one source—that from simulation. These two points mean that
the synthesizer has greater control of the synthesis mechanism, because certain properties of
the synthetic data can be derived analytically, rather than needing to be found empirically. As
synthetic data generation is an iterative process—data sets are generated, evaluated, improved
upon and then regenerated—these analytical properties can improve the efficiency of the
synthesis.

Thesyn.catall function in the R package synthpop (Nowok et al., 2016) facilitates the use
of a saturated multinomial model to produce synthetic data. Here, count models are considered
instead.

3.1 Synthesis through saturated count models (introducing 𝝈)

3.1.1 The Poisson model

Suppose a saturated Poisson log-linear model is fitted to the original data’s entire multi-way table.
Then each count in the multi-way table is assumed to be independent and Poisson distributed,
with mean equal to the observed count. Synthetic counts can be generated by simulating from
these Poisson random variables, which adds stochastic error to the original counts and masks
their true values.

The ith synthetic cell count f syn
i (i = 1, … ,K) of the multi-way table, is modelled as follows:

f syn
i |𝜇i ∼ Poisson(𝜇i)

with 𝜇i = fi. (4)

where fi is the corresponding count in the original data (i = 1, … , K). The difference with this
model, compared to the model in (2), is that the ith synthetic count’s mean 𝜇i is just equal to the
original count fi.
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Properties of the synthesis mechanism relate directly to properties of the Poisson distribution.
For example, the Poisson distribution’s probability mass function gives the probability that an
arbitrary synthetic count f syn equals N2, given that the original count f equals N1:

p(f syn = N2 | f = N1) =
exp(−N1)N

N2
1

N2!
,

where N1 and N2 are non-negative integers.
While the Poisson distribution is degenerate when the mean is zero, practically, this does

not affect the method: whenever an original count is zero, the synthetic count is also zero.
Conveniently, this feature naturally accounts for structural zeros, which rightly remain zero.
Random zeros, on the other hand, do need to be accounted for; a proposed solution is given in
Section 3.2.

This synthesis mechanism produces completely synthesized data using the terminology of
Raab et al. (2016). However, somewhat confusingly as a synthetic population is not created, the
data are partially synthetic in the sense of Reiter (2003), rather than fully synthetic in the sense
of Raghunathan et al. (2003); incidentally, Drechsler (2018) seeks to clear up some of the con-
fusion surrounding the term ‘fully synthetic’ data sets. Finally, the synthesis is via the ‘plug-in
approach’ (Reiter & Kinney, 2012), that is, the Bayesian posterior predictive distribution is not
used: synthetic counts are simulated directly from the fitted model.

It follows, naturally, that the expected ‘sample’ size of the synthetic data nsyn is equal to n, the
sample size of the original data. The value nsyn, which is stochastic, is the sum of the cell counts in
the multi-way table—the table’s grand total; and, as these counts are independent Poisson random
variables whose means sum to n, nsyn is also a Poisson random variable with mean n. Yet it need
not be the case that E[nsyn] = n. As Raab et al. (2016) demonstrate, in completely synthesized
data, nsyn can be made higher or lower than n. Rather than the Poisson, the multinomial can be
fit here using the same framework, which would guarantee that nsyn = n. Although it is worth
considering whether fixing nsyn is necessary—or even appropriate—with synthetic administrative
data. Unlike a census, which has a known population total, an administrative database is unlikely
to derive from a well-defined population, as discussed earlier in Section 2.3.3.

3.1.2 Two-parameter count distributions for synthesis

The Poisson variability (variance equal to the mean), may not provide sufficient protection
to at-risk records in the original data. The variability can be increased—without introducing
bias—by using overdispersed count distributions in place of the Poisson. In a modelling con-
text, these distributions, such as the negative binomial (NBI), are suitable whenever the sampling
variance exceeds that which is expected from the Poisson.

The hierarchical Poisson log-linear model given in Section 2.2.2 essentially assumes the cell
counts follow a NBI distribution. A saturated model can be fit here, too, by again including all
interaction effects. The shape parameter (denoted by 𝜎 below) is set by the synthesizer, not least
because there is insufficient degrees of freedom to estimate this parameter through maximum
likelihood estimation. The notion is that the synthesizer determines, a priori—that is, prior to
synthesis—the variability required to achieve a pre-specified desired level of privacy and then
adjusts the variance accordingly.
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When the NBI model is used, the ith synthetic cell count f syn
i (i = 1, … ,K) of the multi-way

table, is modelled as follows:

f syn
i |𝜇i, 𝜎 ∼ NBI(𝜇i, 𝜎)

with 𝜇i = fi.

As with the Poisson, the NBI’s probability mass function gives the probability that an arbitrary
synthetic count f syn equals N2, given the original count f equals N1,

p( f syn = N2 | f = N1, 𝜎) =
Γ(N2 + 1∕𝜎)

Γ(N2 + 1) Γ(1∕𝜎)

(
𝜎N1

1 + 𝜎N1

)N2
(

1
1 + 𝜎N1

)1∕𝜎

. (5)

The mean and variance of f syn are given as:

E[ f syn | f = N1, 𝜎] = N1 and Var [ f syn | f = N1, 𝜎] = N1 + 𝜎N2
1 , (6)

which shows how the parameter 𝜎 controls the variance of the model. There is an array of
two-parameter count distributions that can be used here. The other that is considered in this paper
is the Poisson-inverse Gaussian (PIG) distribution (see Rigby et al., 2019):

f syn
i |𝜇i, 𝜎 ∼ PIG(𝜇i, 𝜎)

with 𝜇i = fi,

and, again, the probability that an arbitrary synthetic count f syn equals N2, given that the original
count f equals N1 is:

p(f syn = N2|f = N1, 𝜎) =
(2c
𝜋

)1∕2 NN2
1 exp(1∕𝜎)KN2−1∕2(c)

(c𝜎)N2 N2!
,

where c2 = 1
𝜎

2 +
2N1

𝜎

and K𝜆(t) =
1
2

∞

∫
0

x𝜆−1 exp
{
−1

2
t(x + x−1)

}
dx (7)

is the modified Bessel function of the third kind.
The parameterisations are as presented in the R package gamlss.dist (Stasinopoulos & Rigby,

2007). The NBI and PIG distributions are both continuous mixtures of Poisson distributions. In
the NBI the mixing distribution is the Gamma; in the PIG the mixing distribution is the inverse
Gaussian distribution. They have identical mean and variance functions (given in 6), however,
higher moments differ. The key point from these two-parameter distributions is that there is a
parameter, 𝜎, that is set by the synthesizer.

3.2 Dealing with zero counts through additive smoothing
(introducing 𝜶)

There is a downside with using saturated models that needs addressing: as there is no smoothing,
zero cells in the original data are always synthesized to zero, resulting in too many zeros in the
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synthetic data. That is, there are the zeros from the original data, plus some non-zero cells that
become zero through simulation. An excess of zero cells can affect the risk and utility of the
synthetic data.

With regards to risk, the issue is not so much with the zero cells themselves, which are rela-
tively low risk, but with what can be deduced from the non-zero cells. It follows that any non-zero
cell in the synthetic data must have originated from a non-zero cell. So, from a non-zero cell in
the synthetic data, an attacker can ascertain that at least one individual belonged to that same cell
in the original data.

The addition of a pseudocount 𝛼 > 0 (which despite its name is not typically an integer) to all
random zeros in the original data (structural zeros should remain zero) opens the possibility that
zero counts are synthesized to non-zeros. For example, when the Poisson model is used and 𝛼 >

0 is added, the probability that a random zero f = 0 is synthesized to f syn = N2 is:

p( f syn = N2 | f = 0, 𝛼) =
exp(−𝛼) 𝛼N2

N2!
.

The syn.catall function in synthpop (Nowok et al., 2016), which, as mentioned earlier, uses
a saturated multinomial to produce synthetic data, allows the synthesizer to specify a Dirichlet
prior; this is analogous to the addition of a pseudocount proposed here.

3.3 Tuning 𝝈 and 𝜶 to satisfy metrics a priori

The upshot of this synthesis mechanism is that there are two parameters, 𝜎 and 𝛼, that are
controlled by the synthesizer. These can be tuned to satisfy certain risk or utility metrics. The fol-
lowing 𝜏 metrics, are an example of a simple set of metrics that can not only be tuned by 𝜎, but
can also be represented analytically.

𝜏1(k) ∶= The proportion of cells of size k in the synthetic data.
𝜏2(k) ∶= The proportion of cells of size k in the original data.
𝜏3(k) ∶= The proportion of cells of size k in the original data, which remain of size k in the
synthetic data.
𝜏4(k) ∶= The proportion of cells of size k in the synthetic data, which were also of size k in the
original data.

Metrics 𝜏1, 𝜏2 and 𝜏4 are conditional on the distribution of cell sizes in the original data’s
multi-way table, whereas 𝜏3 is not. To illustrate, suppose a data set is comprised entirely of cell
counts of one and that the Poisson distribution is used to generate synthetic counts. Then 𝜏3(1) =
exp(−1), which is given by the Poisson’s probability mass function; and 𝜏4(1) = 1, because the
original data contains only ones. Now, when an original data set comprises a range of non-zero
counts, then 𝜏3(1) = exp(−1) remains unchanged, but 𝜏4(1) ≤ 1 because a synthetic cell count of
one could have originated from any non-zero cell.

As structural zeros are not involved in the synthesis and just remain zero, when k = 0 these 𝜏

metrics refer to random zeros, for example, 𝜏1(0) is the proportion of random zeros in the synthetic
data.

The expected values of these 𝜏 metrics can be derived analytically, as demonstrated below for
when the Poisson model is used for synthesis.
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3.3.1 The metrics 𝜏1 and 𝜏2

The metric 𝜏1(k) is the proportion of cells of size k in the synthetic data, that is,

𝜏1(k) = p( f syn = k) k = 0, 1, 2, … (8)

which, by the law of total probability,

=
∞∑

j=0
p( f syn = k | f = j) ⋅ p( f = j) =

exp(−𝛼)𝛼k

k!
⋅ 𝜏2(0) +

∞∑

j=1

exp(−j)jk

k!
⋅ 𝜏2(j),

where 𝜏2(k) is simply the proportion of cells with a count of k in the original data denoted by,

𝜏2(k) = p( f = k) k = 0, 1, 2, … . (9)

3.3.2 The metric 𝜏3

The metric 𝜏3(k) gives the proportion of cells of size k in the original data, which remain of size k
in the synthetic data, that is,

𝜏3(k) = p( f syn = k | f = k) k = 0, 1, 2, …

=

{
exp(−𝛼)𝛼k∕k! if k = 0
exp(−k)kk∕k! if k ≥ 1

(10)

3.3.3 The metric 𝜏4

The metric 𝜏4(k) is the proportion of cells of size k in the synthetic data, which were also of size k
in the original data, that is,

𝜏4(k) = p( f = k | f syn = k) k = 0, 1, 2, … (11)

The metric 𝜏4(k) can be expressed in terms of the other 𝜏 metrics:

𝜏4(k) = p( f = k | f syn = k) =
p( f syn = k | f = k) ⋅ p( f = k)

p(f syn = k)
= 𝜏3(k) ⋅ 𝜏2(k)

𝜏1(k)

=

⎧
⎪
⎪
⎨
⎪
⎪⎩

exp(−𝛼)𝛼k ⋅ 𝜏2(0)
/(

exp(−𝛼)𝛼k ⋅ 𝜏2(0) +
∞∑

j=1
exp(−j)jk ⋅ 𝜏2(j)

)
if k = 0

exp(−k)kk ⋅ 𝜏2(k)
/(

exp(−𝛼)𝛼k ⋅ 𝜏2(0) +
∞∑

j=1
exp(−j)jk ⋅ 𝜏2(j)

)
if k ≥ 1

3.3.4 The 𝜏 metrics’ link to disclosure risk

The notion of disclosure risk is different for synthetic data in tabular format, than for micro-
data. When microdata are aggregated and synthesized, the direct links between individuals in the
original and synthetic data are lost.
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Uniques are individuals who belong to a cell with a count of one, and are often considered
to be most at risk of disclosure. An important value with respect to risk is 𝜏4(1): the proportion
of uniques in the synthetic data which were also unique in the original data. This is arguably
more important than 𝜏3(1): the proportion of uniques in the original data which are also unique
in the synthetic data. This is because the former assumes knowledge of the synthetic data, which
an attacker has access to; whereas the latter assumes knowledge of the original data, which an
attacker cannot access.

There are two ways in which the synthesizer can reduce 𝜏4(1). The first way is to increase 𝜎,
which increases the variance of the synthetic counts. The second way is to increase 𝛼. Zero cells
with small 𝛼 > 0 added are much more likely to be synthesized to one than to any other non-zero
value. For example, when 𝛼 = 0.1 and the Poisson model is used, a zero count is exactly 20 times
more likely to be synthesized to one than two, which increases the number of uniques in the
synthetic data and thereby decreases 𝜏4(1).

3.3.5 Tuning 𝜎 and 𝛼 to adjust the expected values of the 𝜏 metrics

The notion is that the synthesizer tunes 𝜎 and 𝛼 to yield synthetic data with certain properties. As
an example, the synthesizer can decide, a priori, that they would like 𝜏1(0) = 𝜏2(0) and 𝜏4(1) = p
(for some p)—and they can then tune (𝜎, 𝛼) accordingly.

When 𝛼 = 0, the inequality 𝜏1(0) ≥ 𝜏2(0) holds, since zero cells in the synthetic data comprise
all zero cells in the original data, plus those that randomly become zero through synthesis. As
𝛼 increases, the expected difference between 𝜏1(0) and 𝜏2(0) narrows and the inequality would
eventually reverse.

An attractive property might be for the synthetic data to have the same proportion of zero cells
as the original data, that is, for 𝜏1(0) = 𝜏2(0). Under the Poisson model this is achieved by setting:

𝛼
∗ = − log

{
1 − 1

𝜏2(0)

∞∑

j=1
exp(−j) ⋅ 𝜏2(j)

}
.

The short derivation is given in the supplementary material. An alternative is to choose 𝛼 such
that 𝜏4(1) = p, where the synthesizer decides what p ∈ [0, 1] is acceptable (a pre-specified level of
disclosure risk). Here the value of 𝛼∗ must be obtained numerically; under the Poisson model it
satisfies,

p = exp(−1) ⋅ 𝜏2(1)
/(

𝛼
∗ exp(−𝛼∗) ⋅ 𝜏2(0) +

∞∑

j=1
j ⋅ exp(−j) ⋅ 𝜏2(j)

)
.

Similar expressions can be derived for the two-parameter synthesis models, where the required
value of 𝛼∗ also depends on 𝜎. These are also included in the supplementary material.

4 EMPIRICAL STUDY

4.1 The data

The English School Census (ESC) is an administrative database that holds information about
pupils in state-funded schools. Every school term the Department for Education (DfE) requests
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T A B L E 1 The ESCsub’s variables and their numbers of categories

Variable Type # Categories

Area Code∕ Geography (V) Categorical 326

Ethnicity (W) Categorical 20

Sex (X) Categorical 4

Age (Y) Categorical 19

Language (Z) Categorical 7

that all nursery, primary and secondary schools, which are fully or partly funded by the state, sub-
mit details about the school and its pupils. This is just one example of an administrative database
held by a government department; other examples include, but are not limited to, the Patient
Register (held by the Department of Health) and the Customer Information System (held by the
Department for Work and Pensions).

For obvious reasons, access to the ESC data, as well as to other administrative databases, is
highly restricted. However, in previous work conducted by the ONS, a carefully constructed data
set using publicly available sources was created to be used as a substitute to the ESC, in order
to develop synthesis methods for administrative data. These data were used here as the basis for
generating a synthetic database.

The data were constructed using public 2011 census output tables involving various combi-
nations of local authority, sex, age and ethnicity.1 Language attributes from the census were also
included and artificially expanded to match with categories in the ESC. In addition, school phase
attributes were incorporated, some adjustments for migration were applied, and non-response
and invalid categories were added to various variables, again taking publicly available information
from the census.

The two variables measured at the school level were ignored for this illustration, which
focused instead on the remaining five variables measured at the pupil level. Henceforth, this data
set is referred to as the ESCsub where ‘sub’ denotes substitute. Table 1 summarises the variables
present in the ESCsub illustration. The data comprise n = 8,190,870 pupils over p = 5 categorical
variables, giving rise to a multi-way contingency table with K = 326 × 20 × 4 × 19 × 7 = 3.5 × 106

cells. The data set—along with a more detailed description of its origin—is available at Blan-
chard et al. (2022). The breakdown of the cell counts are given in Table 2; only 333,660 (9.6%) are
non-zero—so the data are sparse. There are no structural zeros.

So, while the data are in a sense simulated, this was done using real data sources and care
was taken to ensure that the resulting data reflect, at the very least, the typical structure present
in the ESC. As such, this was a good example to use to demonstrate our synthesis method and a
similar performance is expected when the method is applied to the actual ESC, as well as other
similar large categorical administrative databases. Importantly, the data were not generated from
a statistical model and thus do not favour a particular synthesis method.

1Specifically, information from the following public sources were used to create the data: http://www.nomisweb.co.uk/
census/2011; http://www.ons.gov.uk/ons/guide-method/census/2011/census-data/2011-census-user-guide/quality-
and-methods/quality/quality-measures/response-and-imputation-rates/index.html; https://www.gov.uk/government/
statistics/schools-pupils-and-their-characteristics-january-2014.

http://www.nomisweb.co.uk/census/2011
http://www.nomisweb.co.uk/census/2011
http://www.ons.gov.uk/ons/guide-method/census/2011/census-data/2011-census-user-guide/quality-and-methods/quality/quality-measures/response-and-imputation-rates/index.html
http://www.ons.gov.uk/ons/guide-method/census/2011/census-data/2011-census-user-guide/quality-and-methods/quality/quality-measures/response-and-imputation-rates/index.html
https://www.gov.uk/government/statistics/schools-pupils-and-their-characteristics-january-2014
https://www.gov.uk/government/statistics/schools-pupils-and-their-characteristics-january-2014
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T A B L E 2 Distribution of cell sizes in the ESCsub data

Cell count Frequency % of cells

0 3, 134, 980 90.38

1 119, 917 3.46

2 51, 412 1.48

3 25, 952 0.75

4 19, 450 0.56

5 13, 076 0.38

6 10, 345 0.30

7 7947 0.23

8 7077 0.20

9 5809 0.17

10 5163 0.15

≥11 67, 512 1.95

Total 3, 468, 640 100

4.2 The synthesis

The synthesis was carried out in R (version 3.6.3) using the methods described in this paper. The
Poisson, NBI and PIG models were compared by examining how the counts in the synthetic data’s
multi-way table deviate from those in the original data, and by computing summaries of risk
and utility. This evaluation also includes a comparison of parameter estimates obtained from a
log-linear analysis, which was performed on both the original and the synthetic data.

Just m = 1 data set was generated for each synthesis model. The CPU times to carry this
out were 0.2, 0.3 and 162 s for the Poisson, NBI and PIG models respectively. The PIG model
took notably longer, although is still fast compared to other methods, such as the conditional
approaches (Section 2.1.1) that synthesize the data at the microdata level.

Let V , W , X , Y and Z denote the five variables in the data, and let fvwxyx denote the cell count
of a particular cell in the cross-classified table corresponding to category v ∈ V , w ∈ W , x ∈ X ,
y ∈ Y and z ∈ Z. A synthetic count was then drawn for this cell by,

f syn
vwxyz ∼ Poisson( fvwxyz),

when the Poisson synthesis model was used; or, when either of the two-parameter distributions
were used,

f syn
vwxyz ∼ NBI( fvwxyz, 𝜎) or f syn

vwxyz ∼ PIG( fvwxyz, 𝜎).

For the Poisson, the only parameter to be set was 𝛼, the pseudocount added to random zeros in
the original data. For the two-parameter count models, there was the additional parameter 𝜎 to
consider.

As mentioned previously, one of the appealing features of using these saturated synthesis
models is that it allows the synthesizer to determine properties of the synthesis model a priori,
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F I G U R E 1 The left plot gives the risk metric 𝜏4(1) - the proportion of uniques in the synthetic data that
were also unique in the original data - as a function of 𝜎 for when the NBI (solid line) and PIG (dashed line)
models were used (𝛼 = 0). The right plot shows how 𝛼 and 𝜎 together affect 𝜏4(1) when the NBI is used.

thus reducing the amount of empirical evaluation necessary during the synthesis. For illustration,
Figure 1 (left) compares the effect of 𝜎 on the risk metric 𝜏4(1) for the NBI and PIG models. For
large 𝜎, the risk levels off for the NBI but continues to fall away for the PIG. Figure 1 (right) also
looks at 𝜏4(1), but at the combined effect of 𝜎 and 𝛼 when the NBI is used. For all 𝜎, 𝜏4(1) falls as
𝛼 increases and 𝜏4(1) is always lower for the NBI than for the Poisson.

4.3 Descriptive summaries of risk and utility

Table 3 gives the proportion of cell counts in the synthesized tables that are within p% of their
original size, for different 𝜎 and 𝛼. The first block of results considers all cells, while the sec-
ond block only considers non-zero cells (in the observed data). Smaller values of p can be viewed
as summaries of risk while larger values of p measures of utility. To elaborate, if a large propor-
tion of original and synthetic cell counts are very close, say, within 0.5% (p = 0.5) of each other,
then the synthetic data could be considered to be high risk. If, on the other hand, few origi-
nal and synthetic cell counts are within, for example, 50% (p = 50) of each other, then this is
likely to indicate low utility. As an example, the 0.927 value in the top-left corner of the table
means that when 𝛼 = 0 and 𝜎 = 0, 92.7% of all cell counts in the synthetic data were within
0.5% of the corresponding count in the original data. The Poisson model had the greatest util-
ity but the greatest risk. There was little to choose between the NBI and PIG models based on
these summaries. As expected, greater 𝜎 or 𝛼 lead to greater divergences in original and synthetic
cell sizes.

The similarities between the NBI and PIG models are also highlighted in Figures 2 and 3,
which plot the synthetic (vs.) original counts and also percentage differences (between syn-
thetic and original counts) (vs.) original counts. While the Poisson model’s points (𝜎 = 0 cases)
were close to the 45◦ line—which indicates strong correlation between synthetic and original
counts—this correlation reduces as 𝜎 increases in both the NBI and PIG models. Even a relatively
small value of 𝜎 = 0.01 introduced noticeable dispersion around the 45◦ line. The right panels dis-
play a funnel shape, that is, percentage differences were greater for smaller counts than for larger
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T A B L E 3 Empirical results showing the proportion of synthetic cell counts within p% of the corresponding
original counts. The table includes results for both the NBI and the PIG, for different 𝜎 and 𝛼. The upper block of
results considers all original cell counts, while the lower block considers only non-zero original cells. For 𝛼=0.02,
whenever a zero count was synthesized to a non-zero count, although the percentage difference was not
estimable (zero denominator), it was deemed to be greater than 50% for the purpose of this table

Proportion of synthetic cell counts within p% of the original

NBI PIG

p 0.5 1 5 10 50 0.5 1 5 10 50

All original cell counts

𝜎

𝛼 = 0

0 (Pois.) 0.927 0.927 0.931 0.935 0.967 0.927 0.927 0.931 0.935 0.967

0.1 0.924 0.924 0.926 0.928 0.961 0.925 0.925 0.926 0.928 0.961

0.5 0.920 0.920 0.920 0.922 0.946 0.921 0.921 0.921 0.923 0.949

1 0.917 0.917 0.917 0.918 0.937 0.918 0.918 0.919 0.920 0.942

2 0.914 0.914 0.914 0.914 0.928 0.916 0.916 0.916 0.917 0.935

5 0.910 0.910 0.910 0.910 0.918 0.913 0.913 0.913 0.914 0.927

10 0.907 0.907 0.907 0.908 0.912 0.911 0.911 0.911 0.912 0.921

𝛼 = 0.02

0 (Pois.) 0.909 0.910 0.913 0.917 0.949 0.909 0.910 0.913 0.917 0.949

0.1 0.907 0.907 0.908 0.910 0.943 0.907 0.907 0.908 0.910 0.943

0.5 0.902 0.902 0.903 0.904 0.928 0.903 0.903 0.903 0.905 0.931

1 0.899 0.899 0.900 0.901 0.920 0.901 0.901 0.901 0.902 0.924

2 0.896 0.896 0.896 0.897 0.911 0.899 0.899 0.899 0.900 0.918

5 0.893 0.893 0.893 0.893 0.901 0.896 0.896 0.896 0.897 0.909

10 0.891 0.891 0.891 0.891 0.896 0.895 0.895 0.895 0.895 0.905

Non-zero original cell counts

𝜎

𝛼 = 0

0 (Pois.) 0.242 0.245 0.280 0.327 0.658 0.242 0.245 0.280 0.327 0.658

0.1 0.214 0.215 0.226 0.252 0.592 0.217 0.218 0.229 0.256 0.598

0.5 0.167 0.167 0.173 0.187 0.437 0.177 0.177 0.182 0.197 0.468

1 0.136 0.136 0.140 0.150 0.347 0.153 0.153 0.157 0.167 0.395

2 0.102 0.102 0.105 0.111 0.253 0.128 0.128 0.131 0.138 0.324

5 0.059 0.059 0.061 0.064 0.145 0.097 0.097 0.099 0.104 0.238

10 0.037 0.037 0.038 0.040 0.089 0.076 0.076 0.077 0.081 0.183

(Continues)
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T A B L E 3 (Continued)

Proportion of synthetic cell counts within p% of the original

NBI PIG

p 0.5 1 5 10 50 0.5 1 5 10 50

𝛼 = 0.02

0 (Pois.) 0.242 0.245 0.279 0.326 0.657 0.242 0.245 0.279 0.326 0.657

0.1 0.215 0.215 0.226 0.253 0.593 0.215 0.216 0.227 0.254 0.598

0.5 0.167 0.167 0.172 0.186 0.437 0.175 0.176 0.181 0.196 0.468

1 0.137 0.137 0.141 0.151 0.348 0.153 0.153 0.157 0.167 0.396

2 0.102 0.102 0.105 0.111 0.253 0.128 0.128 0.130 0.138 0.324

5 0.061 0.061 0.062 0.065 0.147 0.096 0.096 0.098 0.103 0.237

10 0.037 0.037 0.037 0.039 0.088 0.076 0.076 0.077 0.081 0.182

counts. This is an ideal profile for balancing risk and utility, as the riskiest individuals are the
ones corresponding to small cell counts, and these cell counts require the most movement dur-
ing synthesis. On the other hand, large counts are relatively low risk, and proportional changes
to large counts will have a more significant impact on utility, thus relatively less perturbation
is desired.

Table 4 presents empirical values for the 𝜏 metrics, again for varying 𝜎 and 𝛼. The expected
values are known prior to synthesis, although a small difference occurs, owing to simulation
noise. But, for cell sizes that are prevalent in the original data—such as zeros and ones—this
error is negligible. For example, the empirical value obtained for 𝜏3(1) when the Poisson
model was used (𝜎 = 0, 𝛼 = 0) is 0.3674, which is almost identical to the expected value,
exp(−1) = 0.3679.

Table 4 also illustrates the suitability of 𝛼 in reducing risk. The values for 𝜏4(1) are substantially
lower when 𝛼 = 0.02 than when 𝛼 = 0; for example, when the Poisson model is used, 𝜏4(1) is
0.352 compared to 0.689. For a given 𝛼, the NBI and PIG models almost always have a lower risk
than the Poisson model when considering the 𝜏3(1) and 𝜏4(1)metrics. It is particularly interesting
to note varying profiles between synthesis models and these metrics. For example, if one model
has a lower 𝜏3(1) value than another, then this is not necessarily the case when comparing the
corresponding 𝜏4(1) value. To illustrate, consider the case when 𝛼 = 0 and 𝜎 = 10. For the NBI, the
value of 𝜏3(1) is 0.0711 < 0.1532 the value for the PIG. But for 𝜏4(1), with these same parameter
values, the value under the NBI is 0.3910 > 0.3387 the value under the PIG. The specific choice
of synthesis model to use would depend on the synthesizer’s range of permitted values for 𝜏3, and
𝜏4, and choosing the model that best satisfies these requirements.

4.4 Testing specific utility through log-linear model analysis

In the synthetic data literature, specific utility (Snoke et al., 2018) is often assessed by comparing
inferences, such as regression coefficients, obtained from the original and synthetic data.

The synthesizer does not know, of course, what analyses users of the synthetic data would per-
form. Among the variables included in the data, which are best described as demographic, there
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F I G U R E 2 The left hand plots give the synthetic counts (vs.) the original counts for different 𝜎 when the
NBI model was used for synthesis and 𝛼 = 0. The original counts of zero—which were always synthesized to zero
because 𝛼 = 0—were omitted. The right hand plots give original and synthetic counts’ percentage differences
(vs.) the original counts. The percentage differences were calculated by: 100*(synthetic count - original count) /
original count.
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F I G U R E 3 As Figure 2 but for when the PIG was used rather than the NBI.
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T A B L E 4 Empirical values obtained for the 𝜏 metrics for different 𝜎 and 𝛼 and for the NBI and PIG

NBI PIG

k 0 1 2 3 0 1 2 3

𝜎 𝜏1(k)
𝛼 = 0

0 (Pois.) 0.9190 0.0184 0.0135 0.0086 0.9190 0.0184 0.0135 0.0086

0.01 0.9191 0.0184 0.0134 0.0086 0.9192 0.0184 0.0134 0.0086

0.1 0.9204 0.0183 0.0130 0.0085 0.9203 0.0184 0.0130 0.0084

0.5 0.9256 0.0177 0.0117 0.0077 0.9243 0.0181 0.0121 0.0078

1 0.9317 0.0166 0.0105 0.0068 0.9280 0.0179 0.0111 0.0072

5 0.9587 0.0098 0.0054 0.0035 0.9422 0.0167 0.0086 0.0053

10 0.9713 0.0064 0.0033 0.0022 0.9500 0.0156 0.0072 0.0042

𝛼 = 0.02

0 (Pois.) 0.9013 0.0359 0.0136 0.0086 0.9013 0.0359 0.0136 0.0086

0.01 0.9012 0.0362 0.0136 0.0085 0.9013 0.0362 0.0136 0.0086

0.1 0.9024 0.0360 0.0133 0.0084 0.9024 0.0361 0.0133 0.0085

0.5 0.9078 0.0352 0.0120 0.0077 0.9065 0.0357 0.0122 0.0078

1 0.9139 0.0339 0.0107 0.0069 0.9101 0.0355 0.0115 0.0072

5 0.9415 0.0259 0.0063 0.0036 0.9251 0.0330 0.0093 0.0053

10 0.9550 0.0212 0.0047 0.0024 0.9337 0.0307 0.0084 0.0045

𝜏2(k)

0.9038 0.0346 0.0148 0.0075 0.9038 0.0346 0.0148 0.0075

𝜏3(k)
𝛼 = 0

0 (Pois.) 1 0.3674 0.2701 0.2231 1 0.3674 0.2701 0.2231

0.01 1 0.3676 0.2706 0.2221 1 0.3653 0.2703 0.2189

0.1 1 0.3489 0.2457 0.1976 1 0.3538 0.2484 0.1974

0.5 1 0.2964 0.1874 0.1340 1 0.3090 0.2022 0.1468

1 1 0.2499 0.1489 0.1024 1 0.2779 0.1677 0.1197

5 1 0.1144 0.0618 0.0403 1 0.1895 0.0981 0.0654

10 1 0.0724 0.0378 0.0248 1 0.1532 0.0740 0.0466

𝛼 = 0.02

0 (Pois.) 0.9804 0.3648 0.2695 0.2247 0.9804 0.3648 0.2695 0.2247

0.01 0.9802 0.3645 0.2695 0.2186 0.9802 0.3656 0.2669 0.2217

0.1 0.9802 0.3499 0.2450 0.1950 0.9801 0.3494 0.2466 0.1984

0.5 0.9803 0.2950 0.1876 0.1391 0.9803 0.3090 0.1981 0.1436

1 0.9804 0.2515 0.1498 0.1052 0.9803 0.2782 0.1689 0.1218

5 0.9812 0.1172 0.0620 0.0429 0.9810 0.1888 0.0959 0.0629

10 0.9819 0.0711 0.0374 0.0255 0.9817 0.1524 0.0750 0.0486

(Continues)
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T A B L E 4 (Continued)

NBI PIG

k 0 1 2 3 0 1 2 3

𝜏4(k)
𝛼 = 0

0 (Pois.) 0.9835 0.6893 0.2974 0.1943 0.9835 0.6893 0.2974 0.1943

0.01 0.9834 0.6890 0.2995 0.1938 0.9833 0.6867 0.2989 0.1905

0.1 0.9820 0.6603 0.2811 0.1742 0.9821 0.6648 0.2827 0.1760

0.5 0.9764 0.5788 0.2372 0.1304 0.9778 0.5890 0.2484 0.1416

1 0.9701 0.5203 0.2108 0.1125 0.9739 0.5369 0.2232 0.1243

5 0.9427 0.4043 0.1710 0.0858 0.9593 0.3919 0.1694 0.0929

10 0.9305 0.3910 0.1677 0.0851 0.9513 0.3387 0.1521 0.0822

𝛼 = 0.02

0 (Pois.) 0.9831 0.3516 0.2935 0.1957 0.9831 0.3516 0.2935 0.1957

0.01 0.9829 0.3484 0.2935 0.1919 0.9830 0.3495 0.2911 0.1934

0.1 0.9817 0.3357 0.2735 0.1733 0.9817 0.3350 0.2745 0.1751

0.5 0.9759 0.2898 0.2316 0.1348 0.9774 0.2991 0.2403 0.1379

1 0.9696 0.2567 0.2066 0.1141 0.9735 0.2712 0.2168 0.1259

5 0.9419 0.1562 0.1469 0.0890 0.9584 0.1979 0.1520 0.0887

10 0.9293 0.1162 0.1172 0.0799 0.9503 0.1715 0.1320 0.0808

is no obvious response variable, so analysts may be interested in associations between variables.
Therefore, a log-linear analysis was chosen as a suitable way to test the specific utility of synthetic
data generated with the synthesis method described in Section 3. It is difficult to obtain parame-
ter estimates and parameters’ standard error estimates for the full five-variable data, since large
amounts of memory and storage are required—the same problem faced when fitting synthesis
models. To relieve some of this pressure, the all two-way interaction model was fitted to three of
the data’s five variables, ethnicity, age and language, resulting in 608 parameters.

The confidence interval overlap metric (Karr et al., 2006) was used to measure similarities
between estimates. In order to define confidence interval overlap, let (lo,uo) and (ls,us) denote
confidence intervals for a univariate population parameter Q, obtained from the original and
synthetic data, respectively; and let (li,ui) denote the intersection of the two intervals, that is,
li = max(lo, ls) and ui = min(uo,us). Then the confidence interval overlap IQ is given as:

IQ =
1
2

(
ui − li

uo − lo
+ ui − li

us − ls

)
. (12)

Thus IQ is the mean of two ratios: the length of the confidence interval intersection divided by (i)
the length of the confidence interval from the original data, and (ii) the length of the confidence
interval from the synthetic data.

Combining rules are required to obtain valid parameter estimates and standard errors from
synthetic data, even when just m = 1 synthetic data set is generated. This is because there are
always two sources of uncertainty in synthetic data that need to be accounted for: the sampling
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uncertainty inherent in the original data, and the uncertainty owing to synthesis. To simplify
the analysis—after all, the purpose here is just to evaluate the utility of the synthetic data—the
original data were assumed to constitute a simple random sample drawn from a super-population.
This allowed the estimator given in Raab et al. (2016) to be used, which provides valid variance
estimates for large samples when analysing synthetic data generated through the mechanism
described in Section 3. When estimating a population parameter Q from m≥ 1 synthetic data sets,
̂Q is found by averaging over the m data sets, and its variance is given as:

V̂ar( ̂Q) = vm(nsyn∕n + 1∕m), (13)

where vm is the mean variance estimate across the m synthetic data sets, and nsyn and n are the
‘sample’ sizes of the synthetic and original data respectively. Unlike other estimators, such as the
one given in Reiter (2003), this estimator allows valid variance estimates to be obtained from just
m = 1 synthetic data set, as done here. When m = 1 (vm = v) and n = nsyn, the estimator in (13)
simplifies to 2v, that is, the variance estimate from the synthetic data, doubled.

Finally, in log-linear models, estimability issues can arise through the presence of zero counts
in the data. This can lead to issues surrounding non-existence and non-identifiability of estimates
(Fienberg & Rinaldo, 2012). But no serious model fitting issues arose in this particular example.
There were some parameters included in the model with a true value of−∞. For such parameters,
R returned a large negative value, typically in the vicinity of −20.

4.4.1 Results

Figures 4 and 5 present boxplots of confidence interval overlap values for the log-linear model
parameters across the different synthesis models. They demonstrate how increasing 𝜎 and 𝛼

causes utility to fall away. For example, irrespective of 𝛼, whenever 𝜎=10, the median confidence
interval overlap is zero. In general, a high proportion of the overlap values are equal to 1/2. This
can be seen, for example, in the centre and right plots of Figure 5, where several of the upper
quartiles are equal to 1/2. This, incidentally, is owing to the nature—and perhaps a criticism—of
the confidence interval overlap metric (given in 12): whenever one of the confidence intervals’

F I G U R E 4 These boxplots show how 𝜎 and 𝛼 affect log-linear parameters’ confidence interval overlap
when the NBI distribution is used for synthesis. The left frame is the case where 𝛼 = 0; the middle frame where
𝛼 = 0.01; and the right frame where 𝛼 = 0.02.
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F I G U R E 5 These boxplots show how 𝜎 and 𝛼 affects confidence interval overlap when the PIG
distribution is used for synthesis. The left frame is the case where 𝛼 = 0; the middle frame where 𝛼 = 0.01; and
the right frame where 𝛼 = 0.02.

T A B L E 5 How 𝜎 and 𝛼 affect the trimmed mean (top and bottom 10% excluded) percentage difference
between log-linear parameter estimates obtained from the observed and synthetic data. The trimmed mean
was used to subdue the effect of huge percentage differences arising through the presence of zero counts. For
clarity, for an arbitrary original log-linear parameter estimate q and its corresponding synthetic estimate qsyn,
the percentage difference was calculated by 100 × (qsyn − q)∕q

𝝈 = 0 𝝈 = 0.1 𝝈 = 0.5 𝝈 = 1 𝝈 = 2 𝝈 = 5 𝝈 = 10

(Pois.)

The NBI model

𝛼 = 0 −1.7 3.9 −12.0 −0.1 −18.7 10.6 −108.4

𝛼 = 0.005 −23.5 −30.9 −31.7 −34.8 −34.0 14.8 −32.9

𝛼 = 0.01 −32.5 −33.2 −33.7 −38.9 −47.8 41.0 −64.7

𝛼 = 0.015 −38.8 −39.8 −47.7 −52.3 −47.6 −20.3 −3.5

𝛼 = 0.02 −37.1 −34.0 −44.4 −40.9 −27.7 −42.0 −33.5

The PIG model

𝛼 = 0 −1.7 −2.2 16.2 11.2 −33.0 −6.6 187.4

𝛼 = 0.005 −23.5 −21.7 −28.4 −21.7 −33.0 −73.6 −990.4

𝛼 = 0.01 −32.5 −29.6 −31.7 −48.6 −42.3 25.9 −399.3

𝛼 = 0.015 −38.8 −26.4 −36.6 −37.6 −20.6 −64.4 −504.0

𝛼 = 0.02 −37.1 −47.8 −40.2 −20.6 −40.5 −76.2 425.2

lengths tends to infinity—but the other confidence interval is finite—the overlap value tends to
1/2.

Table 5 presents (trimmed) mean percentage differences between synthetic and observed
parameter estimates for various 𝜎 and 𝛼. Even setting 𝛼 small can have an adverse effect on utility.
For example, when 𝜎 = 0 (the Poisson model), increasing 𝛼 from 0 to 0.005 causes the (trimmed)
mean percentage difference in estimates to fall from −1.7% to −23.5%, thus demonstrating the
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F I G U R E 6 This plot, which is resemblant of a product possibility frontier in economics, provides a visual
representation of the risk-utility trade-off for different 𝜎 (𝛼 = 0).

bias caused by 𝛼 > 0. The general trend is that increasing 𝛼 and 𝜎 results in larger percentage
differences.

4.5 Balancing risk and utility

A key question a synthesizer would have is: which synthesis method offers the best balance
between utility and risk? To address this, the risk-utility trade-off from each generated synthetic
data set can be plotted. An example is displayed in Figure 6. Privacy has been measured on the
y-axis via 1 − 𝜏4(1) (that is, 1 − risk) and utility on the x-axis by mean confidence interval over-
lap. The original data sit at the point (1, 0), that is, maximum utility and minimum privacy. All
points must lie within the unit square [0, 1] × [0, 1] and the further from the origin, the better the
synthetic data. For instance, when a point is near the origin, it suggests that for the same level of
privacy, a greater level of utility is achievable (or vice versa).

This visualisation offers a convenient way to compare the performance of different synthesis
models. For example, it may be possible for one synthetic data set to strictly dominate another: the
PIG model with 𝜎 = 10 provides greater utility and lower risk than the NBI model with 𝜎 = 100.
The choice depends on the priorities of the data holder and users. For example, it may be that
synthetic data can only be released if 𝜏4(1) is at least 0.5, in which case the synthetic data with the
highest utility that satisfies this requirement could be released, here this would be the PIG model
with 𝜎 = 10. Alternatively, it may be that only data with a utility value of at least 0.5 would be
deemed useful enough for release, in which case the synthetic data generated under a NBI model
with 𝜎 = 0.1 would be chosen.

In practice, a range of different metrics for utility and privacy can be created and feed into
determining which synthesis method is chosen. This decision is also likely to be application
specific.



JACKSON et al. 27

4.6 The Poisson model (vs.) the NBI model (vs.) the PIG model

The intention is that the synthesizer would usually use the NBI or PIG distributions, rather than
the Poisson, which is far too limited to be used in practice. In general, the NBI and PIG models
give similar results, yet this is to be expected as both share the same variance function. Neverthe-
less, there are some marked differences between the two, especially when 𝜎 is large; for example,
when 𝜎 = 10 and 𝛼 = 0, there are substantially fewer zeros in the synthetic data when the PIG is
used than when the NBI is used (𝜏1(0) values of 0.950 and 0.971 respectively). There is, of course,
scope to use other count distributions here; those with a different variance function would have
an entirely different profile altogether. Moreover, both the NBI and PIG are also both limited in
that they can only model overdispersion and not underdispersion, hence the variance is always
greater than the Poisson—and this may be unnecessary. The double Poisson distribution (see
Rigby et al., 2019), for example, which can be used to model underdispersed count data, would
allow the variance to be set lower than in the Poisson.

5 DISCUSSION AND FUTURE WORK

In this paper, the case of generating m = 1 synthetic data set was considered. But m > 1 data
sets can be generated using the same framework and, in the same way, certain properties can be
found analytically. There might be advantages of doing this, especially in relation to the risk-utility
trade-off. It effectively introduces another tuning parameter, thus providing further flexibility.
Investigations unreported in this paper have shown promising signs for m > 1; for example, par-
ticularly for large 𝜎, the gains in utility appear to outweigh the relatively small increase in risk.
Moreover, an optimal value for nsyn, the sample size of the synthetic data, was not sought. There
is scope to set nsyn lower or higher than n (the sample size of the original data), which again can
be evaluated in relation to the risk-utility trade-off.

While the two-parameter count distributions allow the synthesizer to set the synthetic counts’
variance, they cannot control where the variability falls. It is not desirable for the variabil-
ity to manifest itself in, say, a heavy right tail in the synthesis distribution’s probability mass
function, because, while some movement is required in synthetic counts to reduce risk, large
movements are unnecessary and may have an adverse effect on the data’s utility. The use of
three-parameter count distributions, such as the Delaporte and Sichel distributions (see Rigby
et al., 2019), would provide the synthesizer with control over the skewness in addition to
the variance.

This method assumes that the cell counts in the multi-way table are independent. This
assumption can be exploited further by specifying different models—for example, different 𝜎 and
𝛼 values—when synthesizing different parts of the original data’s multi-way table. Smaller cell
sizes could be synthesized using a relatively larger 𝜎 than larger cells, which would inject more
variability where it is needed.

The method as presented here also assumes that the size of 𝛼 is constant across all random
zeros. However, it can be argued that some random zeros in the original data are more (or less)
likely to be non-zeros than others; for example, some zero cells pertain to higher order marginal
counts that are also zero. This can be accounted for, to a certain extent, by smoothing the orig-
inal counts through fitting, for example, an all two-way interaction log-linear model. But the
benefits of using saturated models would be lost. The pseudo-Bayes estimator, as presented in
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Chapter 12 of Bishop et al. (1975), provides an alternative to adding constant 𝛼. A set of prior
cell probabilities (denoted by 𝝀 ) are selected using, for example, external information. Based on
these prior probabilities, the observed counts are re-weighted to provide a set of adjusted counts,
and a saturated model would then be applied as before, synthesizing from these adjusted val-
ues. Hence, while the observed counts are smoothed—and potentially reducing the number of
zero cells, thereby helping to minimise the impact of the problem discussed in Section 3.2—they
are not smoothed through modelling decisions (setting interactions to zero), but through the
choice of 𝝀 . This means, however, that the fundamental challenge is just transferred from choos-
ing 𝛼 to choosing 𝝀 . The strategies provided in Bishop et al. (1975) may offer some insights
into this, although the objectives of the synthesis would also be relevant here. This is some-
thing that would involve further careful consideration and is a substantial research question
on its own.

In the empirical study (Section 4), only variables at the pupil level were considered. However,
administrative data might have a hierarchical structure that would need to be taken into account.
In this example, this could involve incorporating school-level variables into the synthesis. This
clearly presents challenges from the modelling and utility perspective, such as ensuring relation-
ships between pupil-level variables within schools are preserved in the synthetic data. However,
this also presents interesting questions around disclosure risk because the school-level variables
may increase the risk at the pupil-level. The risk and utility challenges associated with multi-level
data in this area merit further consideration.

There is no panacea for synthetic data generation. A compromise always needs to be struck
between risk, utility and, in the case of large data sets, computational time. Different methods
are, of course, suited to different data types and sizes. The conditional approaches outlined in
Section 2.1.1, which typically either use GLMs or CART, are effective in synthesizing microdata
sets, particularly those comprising a mix of continuous and categorical variables. Yet, when n
is large, demands on memory makes it challenging, computationally, to implement such meth-
ods. It is more efficient to undertake synthesis of categorical data at the aggregated level. Among
these approaches, the advantage of using saturated models is twofold. They eliminate the need
to make modelling decisions, which ensures the preservation of relationships, and support an
a priori approach to synthesis, whereby expected properties of the synthetic data can be estab-
lished beforehand. This does not just apply to the ‘𝜏 metrics’ used in this paper, but to many
other risk and utility metrics; for example, expressions can be similarly derived—or at least
approximated—for general utility measures such as Hellinger distance and Kulback–Leibler
divergence. This facilitates a more formal approach to risk and utility that may, in turn, invite
greater transparency.

This paper hopefully gives confidence to organisations holding large administrative databases
that generating synthetic data is not necessarily a computationally intensive and time-consuming
endeavour. Furthermore, the organisations can easily tune the synthesis models in a very trans-
parent way to achieve pre-specified levels of risk and utility.
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