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Abstract

Artificial neural networks are generally employed in the numerical solution of differential equa-
tion problems. In this paper, we propose an approach that deals with the combination of the
feed-forward neural network method and the optimisation technique in solving the partial differen-
tial equation arising from the valuation of barrier options. The methodology entails transforming
the extended Black-Scholes PDE, which defines a barrier option, into a constrained optimisation
problem, and then proposing a trial solution that reduces the differential equation problem to an
unconstrained one. This trial function consists of the adjustable and non-adjustable neural network
parameters. We design it to be differentiable, analytic, and satisfy the initial and boundary condi-
tions of the corresponding option pricing PDE. We compare the corresponding option values to the
Monte-Carlo simulated values, Crank-Nicolson finite-difference values and the exact Black-Scholes
prices. Numerical results presented in this research show that neural networks can sufficiently solve
PDE-related problems with sufficient precision and accuracy. Furthermore, they can be applied in
the fast and accurate valuation of financial derivatives without closed analytic forms.

Keywords: Barrier Options, Extended Black-Scholes Model, Artificial Neural network, PDE,
Optimization, Monte-Carlo simulation, Variable initialization.

1 Introduction

Barrier options belong to the class of path-dependent exotic derivatives whose payoffs depend on
whether the underlying entity’s price attains a certain threshold level (barrier). They are generally
classified as knock-out options and knock-in options. The knock-out barrier options expire worthlessly
when the underlying reaches the threshold level, whereas the knock-in option becomes activated and
payoff when the barrier equals the underlying price. These option types are further classified as ‘down’
and ‘up’ options. The former occurs when the barrier level is positioned below the underlying price
and the latter when the barrier level is positioned above the underlying price. For this research, we
will consider the down-and-out barrier call options, which pay no rebate or positive discount to the
option holder in the event of a premature knock-out. Numerical approximation of barrier options is
not new in finance since a lot of research has been done extensively. For instance, numerical methods
such as the continuous Fourier sine transform [24], Crank-Nicolson finite difference method (FDM)
[37, 38], binomial method [5], deep backward stochastic differential equation techniques [12, 40] have
been applied in the barrier options pricing process. For comparison purposes, we will employ the ex-
tended Black-Scholes pricing formula as the closed-form benchmark of the pricing process, and these
analytical formulas have been presented explicitly in [9, 32].
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With regards to differential equations, several numerical techniques have been developed to aid the
solution of either ordinary differential equations (ODE) or partial differential equations (PDE), con-
strained to certain boundary or initial conditions. These methods include finite difference, spectral
methods, domain decomposition, Meshfree methods, Runge-Kutta, gradient decomposition methods,
spline-based method, neural networks (NN), etc. The curse of dimensionality is often associated with
solving numerical PDEs due to modelling uncertainties as random coefficients in the given equations.
However, the implementation of deep NN has the theoretical guarantee of avoiding this dimensionality
problem [31]. Based on such observation, Khoo et al. (2021) proposed a convolutional NN for solving
problems relating to PDEs. Yadav et al. (2015) employed different forms such as the Multilayer
Perceptron (MLP) NN, radial basis function NN, multiquadric radial basis NN, cellular NN, finite
element NN and the wavelet NN techniques. Hussian & Suhhiem (2015) employed modified artificial
NN, in which the training points were selected over a given open interval, in solving PDE. Other
applications can be found in [1, 10, 20, 23, 33, 39].

Neural networks have proved essential in solving problems that have financial applications, and these
can be seen in volatility forecasting, pricing and hedging of derivatives, bond rating assessment, etc.
With regards to pricing and hedging, Chen & Sutcliffe (2012) conducted a comparative study on the
performance of the artificial NN over the modified form of the Black model[6] to price and hedge short
sterling options. Liu et al. (2009) employed a calibration NN, which is a data-driven approach, to
calibrate certain financial asset price models (Bates and Heston) using the artificial NN. They fur-
ther proposed that the parameters of stochastic volatility models, which are high-dimensional, can be
calibrated accurately and efficiently. Anders et al. (1998) employed statistical inference for NN to
improve the price of call options written on the German stock index (Deutscher Aktien Index -DAX).
Their results deduced that implementing statistical specification strategies on NN led to a more effi-
cient out-of-sample performance compared to the classical Black-Scholes pricing model. Morelli et al.
(2004) implemented both the MLP and the radial basis NN to capture the non-linearity conditions
which exist during the valuation of financial derivatives. They compared these techniques to the pric-
ing and hedging of European and American options. They further deduced that MLP is a robust tool,
requiring a longer training phase, whereas the radial basis function worked with limited performance.
Other applications of NN in pricing and hedging of financial derivatives can be found in [4, 7, 29, 35].

A lot of research, both analytically and numerically, has been done to obtain the solutions to initial
value and boundary value problems. Our focus in this work will be to implement the works of La-
garis et al. (1998), who employed the feed-forward neural network as an approximation technique in
solving general problems pertaining to ODE, systems of ODE and PDE. From [23], the parameters
of their proposed approximation element consist of ‘weights’ and ‘biases’ which need constant adjust-
ment to minimize a specified error function. Their findings resulted in the construction of numerical
solutions which are analytic, continuous and differentiable. Training the required network involves
implementing an optimization technique that computes the gradient of the error function with respect
to the parameters of the network. The choice for this numerical PDE solution is essential due to the
consequence of the Universal Approximation Theorem, “Any single-layer feed-forward network can
approximate a given measurable function to arbitrary accuracy irrespective of the activation function,
the input space dimension, and the environment of the input space” [16, 17]. Similarly, we will apply
this NN technique to solve the corresponding barrier options PDE, extend the solutions to capture
the valuation process for the barrier options and compare the results to other numerical methods.

Our proposed trial solution for the barrier options PDE will be decomposed into a non-adjustable
part that satisfies the boundary or the initial conditions of the corresponding options PDE and the
adjustable part, which contains the parameters of the neural network. The knowledge and the val-
uation of the barrier options are crucial in finance because they are one of the most widely traded
path-dependent exotic options in stock exchanges, and they are more suitable for hedging. Barrier
options are a class of exotic options that are specifically customized to meet the risk management
needs of investors. The majority of these option styles offer lower premiums compared to the clas-
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sical option types. The analytical form under the extended Black-Scholes pricing model is known,
and this research seeks to implement the pricing process from a different perspective. The essence of
conducting a numerical solution (in this case, the NN) to the barrier option pricing is to highlight
the applicability and accuracy of the NN techniques in solving problems pertaining to finance. The
knowledge and application of this numerical method can offer guidelines for solving similar problems
relating to the pricing of other exotic options without closed-form solutions. The analytical solution to
this problem stems from an extension of the classical Black-Scholes model, and the results will be used
as a benchmark in this research. Past reviews on applying this pricing model, which is well-known,
have noted several limitations, such as the constant risk-free interest rate, constant volatility, risk-less
arbitrage, etc.

To this end, the development of an efficient numerical valuation framework continues to be an actual
problem in computational finance. Therefore, it is important to approach this pricing problem from
a more non-parametric machine learning perspective, and applying the NN techniques to achieve this
pricing efficiency is worth considering. Hence, the major highlights of this research are as follows:

� We extend the NN PDE techniques of Lagaris et al. (1998) to the solution of the barrier options
PDE for pricing purposes.

� A neural network framework as an optimization technique in pricing the path-dependent barrier
options is established.

� We introduce other numerical techniques, such as the antithetic Monte-Carlo methods and the
Crank-Nicolson FDM, for comparison purposes.

� We provide numerical examples that highlight the valuation accuracy of the NN over the Crank-
Nicolson FDM and the antithetic Monte-Carlo methods.

The remaining sections of this work cover the following: Section 2 highlights the exact Black-Scholes
pricing model for the barrier options, as well as the implementation of the Monte-Carlo simulation and
the Crank-Nicolson methods. Section 3 details the main methodology employed in this research, as it
as provides an overview of the neural network implementation and its application to options pricing.
Section 4 presents the numerical results and some discussion of the results obtained. This section also
compares the exact Black-Scholes prices, the Monte-Carlo simulated values, Crank-Nicolson values,
and the neural networks’ approximated values. Finally, Section 5 concludes the study and provides
guidelines for future research.

2 Exact Black-Scholes pricing formula for barrier options

In this section, we provide a brief overview of the extended Black-Scholes pricing for the barrier options,
as well as the implementation of the Monte-Carlo simulation techniques in barrier option pricing. The
price evolution of a given financial underlying can be written in terms of a stochastic process, which is
defined on an appropriate probability space. We consider the assumptions which define the classical
Black-Scholes pricing model, and in this case, we consider the extended Black-Scholes model in pricing
the path-dependent exotic options. Let the price S(t) of a given underlying asset follow a geometric
Brownian motion, having constant volatility σ and constant expected rate of return µ (both µ, σ > 0)
be defined as:

dS(t) = µS(t)dt+ σS(t)dW (t) , (2.1)

where W (t) is the standard Brownian motion. The numerical approach employed in this section
considers the estimation of the expected value of the discounted payoff defined under the risk-neutral
pricing measure Q. Here, µ = r as defined in equation (2.1), such that r ∈ R+ > 0 is the risk-free
interest rate. The price of the barrier option V (t, S(t)) at any time t can be estimated by:

V (t, S(t)) = EQ[F (τ, S(τ))|S(t) = S] , (2.2)
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where τ is the stopping time or the first time which the underlying asset price S(t) hits the threshold
level and F (τ, S(τ)) is the discounted payoff. Approximating the option price in equation (2.2) entails
applying different numerical techniques, but the subsequent Section 2.2 employs the antithetic Monte-
Carlo simulation method. In this paper, we focused on the down-and-out barrier options, in which
the barrier or threshold level is positioned below the underlying price (S(t) > B), and the underlying
price has to take a downward movement in order for the option to be null and void. Furthermore, we
define the random variable τ as:

τ := β ≥ t : S(β) ≤ B ,

and the corresponding payoff function (call option), with the barrier conditions as:

F (τ, S(τ)) =

{
e−r(T−t)max{S(T )−K, 0}, B < S(x), ∀x ≤ T (τ = T )

e−r(T−t)R, τ < T
, (2.3)

where K and R are the strike price and the cash rebate respectively. Note that R = 0 since we are
limiting it to zero-rebate down-and-out barrier options. Let S′, t′ and V (t′, S′) denote the current
price of the underlying, current time and the down-and-out barrier call option value respectively, then
under the Black-Scholes pricing framework, V (t′, S′) satisfies the following PDE

∂V

∂t′
+

σ2S′2

2

∂2V

∂S′2 + S′ ∂V

∂S′ − rV = 0 , (2.4)

subject to the following terminal condition (TC) and boundary conditions (BC):
TC : V (T, S′) = max{S′ −K, 0}

BC : V (t′, B) = 0

BC : V (t′,S′)
S′ → 1 for S′ → ∞ ,

(2.5)

where t′ ∈ [0, T ] and S′ ∈ [B,Smax], where Smax is the maximum asset price prior to the option’s
expiration. The solution of the above PDE for the down-and-out call option is explicitly provided in
the following theorem

Theorem 2.1 The extended Black-Scholes pricing formula for a down-and-out barrier call option is
given as [9, 32]:

V (t, S′) = S′(d1)−Ke−rτN(d2)−

[
S′

(
B

S′

)2ϕ

N(d3)−Ke−rτ

(
B

S′

)2ϕ−2

N(d4)

]
(2.6)

for d1 =
log

(
S′

K

)
+
(
r + σ2

2

)
τ

σ
√
τ

, d3 =
log

(
B2

S′K

)
+
(
r + σ2

2

)
τ

σ
√
τ

, d5 =
log

(
B
S′

)
+

(
r + σ2

2

)
τ

σ
√
τ

,

where τ = T−t, d2 = d1−σ
√
τ , d4 = d3−σ

√
τ , ϕ = (2r+σ2)(2σ2)−1 and N(x) =

∫ x
−∞

1√
2π
e

−y2

2 dy

is the cumulative standard normal distribution function.

Note that Equation (2.6) occurs when K ≥ B. Furthermore, we substitute K = B into d1 and d3 for
K < B.

2.1 Crank-Nicolson finite difference method

The CN numerical method averages the explicit and the implicit FMD, as it attempts to solve the
corresponding barrier options PDE on a discrete asset-time grid. The stability criteria of this tech-
nique is unconditionally because it takes cognisance of a minute change in the option value for any
corresponding minute change of the initial condition. Its accuracy increases with an increase in the
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asset and time partitions, and are more accurate than either of the implicit or the explicit FDM.
Given the PDE in equation (2.4), the goal is to discretize it, together with the terminal and boundary
conditions. Denote the option price

V (t, S) = Vi,j ≈ V (i∆t, j∆S) , where i = 0, 1, · · · , N ; j = 0, 1, · · · ,M

Discretizing equation (2.4) using the explicit FDM and substituting gives the following:

Vi,j − Vi−1,j

∆t
+rj∆t

[
Vi−1,j+1 − Vi−1,j−1

2∆S

]
+
(σj∆S)2

2

[
Vi−1,j+1 − 2Vi−1,j + Vi−1,j−1

∆S2

]
= rVi−1,j . (2.7)

Discretizing equation (2.4) using the implicit FDM and substituting gives the following:

Vi,j − Vi−1,j

∆t
+ rj∆S

[
Vi,j+1 − Vi,j−1

2∆S

]
+

(σj∆S)2

2

[
Vi,j+1 − 2Vi,j + Vi,j−1

∆S2

]
= rVi,j . (2.8)

Taking the average and re-arranging gives the CN expression as follows:

−XjVi−1,j−1 + (−1− Yj)Vi−1,j − ZjVi−1,j+1 = XjVi,j−1 + (−1 + Yj)Vi,j + ZjVi,j+1 (2.9)

for i = N − 1, N − 2, · · · , 1, 0 and j = 1, 2, · · · ,M − 1, where

Xj =
∆t

4
[rj − σ2j2], Yj =

∆t

2
(σ2j2 + r) and Zj =

−∆t

4
[rj + σ2j2] .

The discretization scheme of the CN method results to a tridiagonal system of equation which is
solvable at each time step, and its order of accuracy is O(∆t2,∆S2). Further research on the imple-
mentation and the solution using the CN numerical techniques can be found in [19, 30, 37].

2.2 Monte-Carlo simulation method

The Monte-Carlo simulation (MCS) method is a robust and well-known numerical method that has
a series of applications in financial derivative pricing. This simulation technique is one example of
a stochastic model, as it has the ability to simulate the behaviour of a portfolio based on the given
probability of the asset returns. It is equally used extensively due to its coding simplicity, though it
has the drawback of a low convergence rate. Several MCS variance reduction techniques have been
proposed over the years, such as the antithetic MCS, quasi MCS, importance sampling, stratified
sampling, etc., to facilitate the convergence rate by increasing the precision of the estimates. This
work further implemented the antithetic MCS to estimate the values of the down-and-out barrier call
options. From Ito’s formula, the analytic solution to equation (2.1) is given as:

S(t) = S(0) exp

((
r − σ2

2

)
t+ σW (t)

)
, 0 ≤ t ≤ T . (2.10)

Sample paths are generated using the discretised form of equation (2.10). The antithetic MCS works
in such a way that two sets of normally distributed random variables which are negatively correlated
are simulated. The MCS of the underlying asset prices are simulated M times, the terminal payoff
F (τ, S(τ)) is discounted, and the subsequent barrier option price V (t, S) are obtained by taking the
average of the discounted terminal payoff. Generally, the following pseudo-code was implemented in
the valuation process using the antithetic MCS:
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Algorithm 1 Pseudocode for simulating down-and-out barrier call options using antithetic MCS

1: Discretize the time [0, T ] into N uniform subintervals, such that the time-step length ∆t = T
N ,

using the grid points ti = i∆t, for i = 0, 1, · · · , N .
2: Discretize two asset price processes in equation (2.10) such that both are negatively correlated as

S∗(t+∆t) = S(t) exp

((
r − σ2

2

)
∆t+ σ(

√
∆t)ϵ

)
(2.11)

S+(t+∆t) = S(t) exp

((
r − σ2

2

)
∆t− σ(

√
∆t)ϵ

)
, (2.12)

3: Apply the barrier condition in equation (2.3) on the discounted payoffs. The discounted payoffs
are given as:

v∗(t+∆t, S) = e−r∆tmax{S∗(t+∆t)−K, 0} (2.13)

v+(t+∆t, S) = e−r∆tmax{S+(t+∆t)−K, 0} . (2.14)

4: ForM= number of Monte-Carlo simulations, set vk to be the sum of v∗(t+∆t, S) and v+(t+∆t, S),
where k = 1, 2, · · · ,M . Finally, obtain the mean estimator (barrier option value) by averaging the
discounted payoffs as:

V (t, S) =
1

M

M∑
k=1

1

2
vk (2.15)

3 Neural Network approximation techniques

Neural network techniques can solve both ODE and PDEs, which depend on the function approx-
imation capacities of the feed-forward neural networks (FFNN), and the resulting solution is in its
analytic form. The advantages of using the neural network over the classical numerical methods
in solving differential equations involve: the steady but non-exponential increase of computational
complexity as the sampling points in the given interval is increased; the ability to provide good gener-
alisation properties; and the ability to offer differentiable solutions whose analytic forms can be applied
in any subsequent calculation [39]. Furthermore, research that considered the implementation of the
Multilayer Perceptron (MLP)1 technique, together with the extended backpropagation algorithm, has
been employed by He et al. (2000) to train the derivative of a given FFNN further. They focused
on solving a class of the first-order PDE for input-to-state systems, which are either linearisable or
approximately linearisable [15].

According to Yadav et al. (2015), employing the MLP techniques in solving a general differential
equation entails transforming the given differential equation into a constrained optimization problem
and then constructing an appropriate trial solution that reduces the problem to an unconstrained
one. This section focuses on using the neural network methods in solving the corresponding extended
Black-Scholes PDE, which defines the barrier options. We employ the numerical concept given by
Lagaris et al. (1998) via the use of ANN in solving initial and boundary value problems. The method
description is as follows: First, we define a general differential equation

F (x, η(x),∇η(x),∇2η(x), · · · ,∇nη(x)), with x ∈ D ⊂ Rn , (3.1)

where x = (x1, x2, · · · , xn), η(x) is the given solution that needs to be approximated and D is the
domain of the given differential equation. The equation (3.1) is subject to some boundary conditions,
which could be Dirichlet or Neumann. Solving the above differential equation entails discretising the
domain D, as well as its boundary S into finite element set of points D̂ and Ŝ respectively. Equation

1An MLP is a class of the FFNN which consists of at least three layers that are the input layer, hidden layer and the
output layer.
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(3.1) is then transformed into the following system of equations

F (xi, η(xi),∇η(xi),∇2η(xi), · · · ,∇nη(xi)), with xi ∈ D̂ ⊂ Rn . (3.2)

Suppose that ηt(x,
−→p ) represents the trial solution having −→p as the adjustable parameters of the

network’s weight and biases, then the system can be converted into an optimization problem, such
that we have

min−→p

∑
xi∈D̂

(F (xi, ηt(xi,
−→p ),∇ηt(xi,

−→p ),∇2ηt(xi,
−→p ), · · · ,∇nηt(xi,

−→p )))2, with xi ∈ D̂ ⊂ Rn . (3.3)

Thus, solving the specified PDE involves proposing a trial solution ηt which consists of a feed-forward
neural network. This trial solution satisfies the given equation, and this trial solution can be decom-
posed into two parts. The first part X(x), is written such that the initial or the boundary conditions of
the main differential equation is satisfied. The second part Y (x)N (x,−→p ), involves the neural network
adjustable parameters (the biases and the weights), and it is constructed such that it will not have
any impact on the initial or the boundary conditions. Generally, this can be written as

ηt(x) = X(x) + Y (x)N (x,−→p ) , (3.4)

N (x,−→p ) is the feed-forward neural network with parameter −→p and input vector x. Training of the
neural network involves minimizing the equation (3.3) in which the error F (xi) corresponding to the
input vector xi has to be tend to zero. Illustrating the concept of discretised and non-descretised
domain, we have the input vector x = (t, S) ∈ D, and D = [0, T ] × [B,Smax] is the domain of the
down-and-out barrier options. Then, it follows that xi = (ti, Si) ∈ D̂, where D̂ = [0, Nt∆t]×[B,Ns∆S]
is the discretised domain of the down-and-out barrier options. Also, note that D and D̂ ∈ R2, and
∆t = T

Nt
and ∆S = Smax

NS
. Hence, optimization techniques are then employed in the minimization of

the error function and the training of the neural network, which involves the error gradient estimation
with respect to the network parameters and the corresponding inputs.

3.1 Neural Network approximation techniques for barrier options PDE

In this research, however, we extend the above methodology and implement the technique in approx-
imating the extended Black-Scholes PDE. For the down-and-out barrier call options, the domain is
written as D = {(t, S) ∈ [0, T ] × [B,Smax]}. To proceed, we first discretize this numerical domain in
such a way that tx = x∆t and Sy = y∆S, where ∆t = 1

Nt
and ∆S = 1

NS
, for x = 0, 1, · · · , Nt and

y = 0, 1, · · · , NS . We impose certain restrictions on the spatial and time boundary so as to convert
the terminal value problem into an initial value problem. That is, denote t = T−t′

T , and S = S′−B
Smax−B ,

such that t ∈ [1, 0] and S ∈ [0, 1]. Substituting −T∂t = ∂t′ into the PDE (2.4), we have

1

T

∂V

∂t
− σ2S2

2

∂2V

∂S2
− rS

∂V

∂S
+ rV = 0 , (3.5)

with the following transformed conditions:
IC : V (0, S) = max

{
S − K−B

Smax−B , 0
}
, ∀S ∈ [0, 1]

BC : V (t, 0) = 0, ∀t ∈ [1, 0]

BC : V (t, 1) = 1− K−B
Smax−B .

(3.6)

Solving the corresponding barrier options PDE, we propose the following trial solution:

η(t, S : −→p ) = X(t, S) + Y (t, S)N (t, S : −→p ) , (3.7)

where Y (t, S) = tS(1−S). This term is constructed and chosen so as not to contribute to the boundary
conditions, since η(t, S : −→p ) is already designed to satisfy them. According to [23], this second part
does not have any impact on the boundary conditions since it vanishes upon the imposition of the
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Dirichlet boundary conditions. For instance, the term Y (t, S) = 0 at the boundary conditions of S = 0
and S = 1, as well as at the initial condition of t = 0. Furthermore, the first term X(t, S), without
any adjustable parameters, satisfies both the boundary and the initial conditions, and is denoted by

X(t, S) = (1− t)max

{
S − K −B

Smax −B
, 0

}
+ tS

(
1− K −B

Smax −B

)
.

The last term of equation (3.7) handles the minimization problem, as it contains the adjustable
parameters of the neural network. Thus, the trial function is explicitly given as

η(t, S : −→p ) = (1− t)max

{
S − K −B

Smax −B
, 0

}
+ tS

(
1− K −B

Smax −B

)
+ tS(1− S)N (t, S : −→p ) . (3.8)

Define η(t, S : −→p ) = η(x∆t, y∆S : −→p ) = ηx,y. The unknown NN parameter vector −→p can be estimated
by considering the minimization problem which is defined with the functional as

G(t, S : −→p ) =
1

2

Nt∑
x=1

Ns∑
y=1

[
1

Nt∆t

∂ηx,y
∂tx

−
σ2S2

y

2

∂2ηx,y
∂S2

y

− rSy
∂ηx,y
∂Sy

+ rηx,y

]2

, (3.9)

for x = 0, 1, · · · , Nt, y = 0, 1, · · · , Ns and G(t, S : −→p ) is the error or cost function. The process can
be constructed into an optimization problem

argmin−→p
G(t, S : −→p ) , (3.10)

given the known input-output pairs ((t, S), V (t, S)) and a loss function G(−→p ). In solving the mini-
mization problem of equation (3.10) after the derivative of the error function with respect to all the
neural network parameters has been obtained, BFGS quasi-Newton techniques have been employed
by Hussian & Suhhiem (2015). Furthermore, other series of backpropagation gradient descent tech-
niques have been employed likewise, such as the RMSprop, Adam (which we used in this paper) and
the stochastic gradient descent (SGD). Normally, the optimization algorithm is initialized, and they
work in such a way that the direction of the error function reduces. Furthermore, during the training
process, the weights and the bias of the network are constantly updated using the backpropagation
algorithm as given in the equations below:

w → w′ = w − ζ(i)∂G∂w

b → b′ = b− ζ(i)∂G∂b

(3.11)

where −→p ′ = (w′, b′) are the adjustable parameters, ζ ∈ (0, 1) is the learning rate which may vary
during the iterations. This learning rate plays a crucial role during the training phase, as a large value
of the learning rate can lead to the oscillation of the neural network’s convergence. Smaller values of
the learning rate, on the other hand, can result in the neural network ‘learning’ slowly and most likely
get trapped in the regions of the local optima [25]. Furthermore, the partial derivatives of the trial
function η(t, S : −→p ) in equation (3.9) are presented in the next section.

3.2 Gradient computation

The following section computes the gradient of the error function since, during the training stage,
efficient error minimisation entails finding the optimal neural network parameter. Estimating the
corresponding gradient of the error involves estimating the gradient of the neural network in connection
with the gradient of the derivatives with respect to its inputs. Thus, from the trial function in equation
(3.8), the following derivatives with respect to the parameters are obtained:
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∂η

∂t
= −max

{
S − K −B

Smax −B
, 0

}
+ S

(
1− K −B

Smax −B

)
+ tS(1− S)

∂N (t, S : −→p )

∂t
+ S(1− S)N (t, S : −→p )

(3.12)

∂η

∂S
= t

(
1− K −B

Smax −B

)
+ tS(1− S)

∂N (t, S : −→p )

∂S
+N (t, S : −→p )(t− 2tS) (3.13)

whenever S(Smax −B) ≤ K −B

∂η

∂S
= (1− t) + t

(
1− K −B

Smax −B

)
+ tS(1− S)

∂N (t, S : −→p )

∂S
+N (t, S : −→p )(t− 2tS) (3.14)

whenever S(Smax −B) > K −B

∂2η

∂S2
= tS(1− S)

∂2N (t, S : −→p )

∂S2
+ 2t(1− 2S)

∂N (t, S : −→p )

∂S
+−2tN (t, S : −→p ) . (3.15)

Next, consider a multilayer perceptron having 2 input units (t and S), one hidden layer with 10 sigmoid
units, and then a linear output. Define the output of the neural network as

N (t, S : −→p ) =

10∑
r=1

arf(wrt+ λrS + br) , (3.16)

where ar is the weight of the rth hidden unit; br is the bias; wr and λr are the coefficients of the time
t to the rth hidden unit and from the asset price S inputs to the rth hidden unit respectively. Also,
since f is a sigmoid activation function, then f(αr) = (1+ e−αr)−1, where αr = wrt+ λrS + br. Then
from equation (3.16), the derivatives of the neural network is given as

∂N (t, S : −→p ))

∂t
=

10∑
r=1

arwrf(αr)(1− f(αr)) (3.17)

∂N (t, S : −→p )

∂S
=

10∑
r=1

arλrf(αr)(1− f(αr)) (3.18)

∂2N (t, S : −→p )

∂S2
=

10∑
r=1

arλ
2
rf(αr)(1− f(αr))(1− 2f(αr)) . (3.19)

Suppose f is a tanh activation function, then f(αr) = (1−e−2αr)(1+e−2αr)−1, where αr = wrt+λrS+b.
Then from equation (3.16), the derivatives of the neural network is given as

∂N (t, S : −→p ))

∂t
=

10∑
r=1

arwr(1− f(αr)
2) (3.20)

∂N (t, S : −→p )

∂S
=

10∑
r=1

arλr(1− f(αr)
2) (3.21)

∂2N (t, S : −→p )

∂S2
=

10∑
r=1

2arλ
2
rf(αr)(1 + f(αr)

2) . (3.22)
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After defining the following derivatives of the error function with respect to all the parameters of the
network, then, applying any form of minimization techniques can be straightforward. In this paper,
we used the gradient descent algorithm, which involves the calculation of the partial derivatives of the
error function with respect to the unknown neural network parameters.

4 Results and Discussion

In this section, all the numerical experiments and computations will be performed on an Intel Core(TM)
i7-1165G7 CPU with a 2.80 GHz running on a 64-bit Windows 10 operating system. For the neu-
ral network implementation process, we used the Tensorflow (2.3.0 version), which is an open-source
software library of toolboxes used in training neural network [2].

4.1 Pseudocode and variable initialization

The following pseudo-code was implemented in the valuation process using the neural network tech-
nique:

Algorithm 2 Pseudocode for pricing down-and-out barrier options using neural network in Python

1: Import the tensorflow library and other required libraries for computation purposes.
2: Define the PDE function: First, introduce the trial solution as shown in Equation (3.8),

together with the actual option pricing PDE as shown in Equation (3.5) and then, compute their
derivatives.

3: Discretise the training and the prediction data into the preferred grid structure.
4: Build the neural network: Initialize the parameters of the NN, such as the learning rate, number

of the input, hidden and output units. Insert the placeholder using the tf.placeholder() to feed
the actual training examples and then the variables using the tf.Variable() for the trainable
variables −→p = (w, b).

5: Create the NN model: Introduce the MLP as the structure of the NN model, together with
their activation functions, and define the feed-forward flow.

6: Define the loss function and use the tf.reduce mean() function to estimate the average L2-norm
which describes the differential operator. Introduce the optimizer and activate the minimization
of the loss function.

7: Start the training process: First, initialize the global variables in the graph. Calculate the
minimized loss function and the corresponding accuracy.

8: Print the output (option value).

For the NN architecture, we used the Mean Squared error as the error function, together with the
Adam optimizer, which is an algorithm for first-order gradient-based stochastic optimization [22].
For the network construction phase, we considered 1000 training steps or iteration numbers with 100
display steps, a batch size of 100, and a learning rate of 0.001. We further built a NN architecture
consisting of one input layer with two neurons (taking up values for asset and time), two hidden layers
with ten neurons each, and finally, one linear output layer for the option value. We used the sigmoid
activation function for each of these layers and the Adam optimizer to minimize the loss function.
During the training phase, we initialized the global variables in the graph (i.e., assign default values to
the weights and set the initial biases to zero). This initialization process of the adjustable parameters
is essential because of the significant impact they have on the MLP values [14]. The execution stage
resulted in the calculation of the batch loss and the corresponding accuracy, thereby providing the
values at the output layers (option values).

In a variable generation, we used the tensorflow class of tf.Variable(), and when a variable is de-
fined, it essentially means passing a tensor and its corresponding value to the graph. Before training
the NN, it is important to initialise the variables because they can directly affect the NN convergence
and accuracy. These variables (or learnable parameters, such as weights and bias) can be initialised
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specifically globally or from other variables. We initialized the tensorflow global variables in the graph
with the ipython command tf.global variables initializer(). Normally, these parameters are
initialised to constant values such as 0’s or 1’s, or using samples from a normal or uniform distribution,
or even from more sophisticated techniques like the Xavier or Glorot Initialization. In our work, we
randomly initialised the weights from normal distribution to small values (close to zero) but not too
small since the latter could result in numerical instabilities.

We considered 1 input layer (2 × 1 neurons), 2 hidden layers (2 × 10 neurons) and 1 output layer
(1 × 1 neuron). Let h1 denote the weights2 from the input layer to the first hidden layer, then,
h1 = 20 values. Let h2 denote the weights from the first hidden layer to the second hidden layer,
then, h2 = 100 values. Let o1 denote the weights from the second hidden layer to the output, then,
o1 = 10 values. Similarly, let b1 be the bias3 to the first hidden layer, then b1 = 10 values. Let b2 be
the bias to the second hidden layer, then b2 = 10. Let o2 be the output, and we note that all these
variables were randomly initialized from the normal distribution before the training process. Random
initialization of NN weights is done because many learning algorithms and optimizations used to train
the models must operate in stochastic domains. Thus, the algorithm has to optimize and estimate the
best set of weights for some specified mapping functions in the dataset. In fact, weight initialization
is a crucial step to be employed before proceeding with the training process, and it can speed up the
whole learning process. More information on the initialization of weights can be found in [11, 28].

4.2 Application to pricing barrier options

For the pricing process, we consider the pricing of a barrier call option (down-and-out) having the
following features: K = 70, r = 0.05, t = 0, T = 0.25, S = 80, Smax = 200, B = 50 and σ = 0.4. It is
noted that the option knocks out when the asset price equals the barrier level, and hence we suppose the
range of asset prices to be 50 ≤ S ≤ 200 while confined in the asset boundary domain. The following
numerical solutions obtained were considered for different mesh parameter sizes (5× 5), (10× 10) and
(20 × 20) respectively. For the Crank-Nicolson method, we used the step size for time dT = T

N and

the step size for asset dS = Smax
M , where N = M = 250. For the Monte-Carlo methods, we consider

the time-step ∆T = T
N , where N = 100 and 100000 number of simulations. In considering each of

these grid sizes, we estimated the loss function values, the NN approximation for the option prices, as
well as the comparison with the Monte-Carlo prices. For the NN values, we used the python function
np.linspace() to generate numbers that are evenly spaced over the given interval [0, 1]. Hence,
for each grid size, we randomly chose three values inside [0, 1] to print their NN values. Here, the
NN values are the option values obtained while using the neural network method. We chose these
three-point values to ensure uniformity in the grids used in this research instead of printing all the
NN values at each discretised point in the interval. Finally, our major focus is on the last value, that
is, at t = 1, and this NN value will be compared to the options prices obtained using the antithetic
Monte-Carlo simulation.

4.2.1 Neural network option values for (5× 5) grid

In this subsection, the training data and the prediction data were transformed into a (5× 5) grid set.
From Figure 1, we observed that there was a steady decline when the loss values were being plotted
against the step-wise iteration numbers. Prior to the discretisation of the training steps, that is, for
the iteration number of 1, we observed the loss value was 1.07192; it reduced to 0.043156 when the
iteration number of 100; then, at the 1000th iteration number, the loss number became 0.00345. The
essence of implementing the neural network in the training process is to minimise the loss or error
function as closely as possible to zero in order to ensure an accurate prediction of the option prices.

2The weight is the parameter of connection between one layer and the other.
3Bias are similar to intercept on linear equations. They are additional parameters in the NN which are used to adjust

the output values together with the weighted sum of the input values to the neurons



Approximation of single-barrier options PDE using feed-forward neural network 12

Figure 1: Loss against training time

(a) 3D-View: neural network approximation (b) Option prices vs Asset prices

Figure 2: NN option values (5× 5 grid) for different assets and time

Figure 2a gives a 3-dimensional plot of the barrier option values (denoted as ‘Eta Value’) against
the time and stock grid. The option value increased with an increase in the stock prices, and this is
expected since we are dealing with call options. For the down-and-out barrier options, the stock grid
started from S = 50, which is equivalent to the threshold level B. Any values below this level give an
option value that is worthless, that is, V (t, S ≤ B) = 0. In Figure 2b, the predicted option price for
all the discretised time period converged to Smax = 200, and this is in line with one of the boundary
conditions for the call option features. Furthermore, we expect to see the impact of strike price 70 in
Figure 2b, as we plot the predicted option price against the asset or stock price. If the stock price
is less than the strike price, the option values become significantly close to zero, but this is not the
case as observed in Figure 2b. Thus, the use of the 5 × 5 grid did not capture it well, and hence we
further increased the grid in the next two subsections. Finally, Table 1 compares the values of the
down-and-out barrier call options using different methods. The exact prices were obtained using the
extended Black-Scholes pricing model as presented in Theorem 2.1, the antithetic Monte-Carlo values
as shown in Section 2.2, and the proposed neural network techniques as presented in Section 3.1. We
further showed the converging property of the NN method as we considered the option values for the
randomly selected time-grid t = 0.250, t = 0.750 and t = 1. Hence, it was noted that the neural
network methodology approximated the option pricing PDE reasonably well and gave rise to values
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that are significantly close to the exact value (for t = 1), in contrast to the antithetic MCS values.

Table 1: Option values using the NN (5× 5 grid) for different uniform time-grid and the MCS

Asset Value Exact Price Neural Network Values Antithetic MCS Values
t = 0.250 t = 0.750 t = 1.000

50 0.00000 0.00000 0.00000 0.00000 0.00000
87.5 19.27888 18.57066 19.67485 19.68020 20.98222
125 55.87765 54.59599 55.81658 55.82417 55.77751
162.5 93.36960 92.27423 92.37823 92.50000 92.16897
200 130.86955 130.00000 130.00000 130.00000 129.97920

4.2.2 Neural network option values for (10× 10) grid

This subsection increased the training and the prediction data grid to a (10 × 10) grid set. Figure 3
plots the loss values against the step-wise iteration number. We observed that prior to splitting the
training steps, that is, for the iteration number of 1, the loss value was 0.02131. It reduced to 0.00175
when the iteration number of 100, then at the 1000th iteration number, the loss number became
0.00046. The goal is to reduce the loss function further to be close to zero, as this directly impacts
the predicted option values.

Figure 3: Loss against training time

The 3-dimensional option value plot for the 10×10 grid is presented in Figure 4a, and the option value
against the underlying asset price is equally portrayed in Figure 4b. The latter figure further showed
that the predicted option price for all the discretised time period converged to Smax = 200. We also
observed that the predicted barrier option values increased with an increase in the asset prices. The
impact of the strike price K = 70 can be seen in both Figures 4a and 4b, as the option values became
null and void, provided that the strike remained greater than the underlying prices.
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(a) 3D-View: neural network approximation (b) Option prices vs Asset prices

Figure 4: NN option values (10× 10 grid) for different assets and time

The increment in the grid sizes used in the neural network training equally affected the performance
of the approximated option values, as seen in Table 2. The table compares the exact prices with the
approximated neural networks and Monte-Carlo simulated values. Additionally, after considering a
10 × 10 space and time grid, we randomly chose time-grid t = 0.333, t = 0.667 and t = 1 for the
computation of the NN option values and to highlight its convergence property. This result further
showed the high and accurate approximation capacity of neural networks over the antithetic Monte-
Carlo methods.

Table 2: Option values using the NN (10× 10 grid) for different uniform time-grid and the MCS

Asset Value Exact Price Neural Network Values Antithetic MCS Values
t = 0.333 t = 0.667 t = 1.000

50 0.00000 0.00000 0.00000 0.00000 0.00000
67 4.41940 4.02705 4.16974 4.30772 4.56927
83 15.34719 14.99001 15.22344 15.55932 15.98222
100 31.08007 31.34350 31.20172 31.05410 31.20362
117 47.89331 46.48068 46.55566 46.66664 49.62802
133 63.87226 63.20105 63.24549 63.33341 64.24460
150 80.86981 79.70591 79.82961 80.00001 82.33303
167 97.86958 96.66649 96.66675 96.74896 99.49788
183 113.86955 113.53766 113.62662 113.72443 114.34060
200 130.86955 130.00000 130.00000 130.00000 129.97920

4.2.3 Neural network option values for (20× 20) grid

This section finally considers when the grid is further increased to a (20× 20) grid size. Figure 5 plots
the loss values against the step-wise iteration number. We observed that prior to splitting the training
steps, that is, for the iteration number of 1, the loss value was 0.00681. It reduced to 0.00215 when
the iteration number of 100, then at the 1000th iteration number, the loss number became 0.00028.
Furthermore, we aim to minimise the loss function to zero, as this behaviour increases the precision
of the predicted option values. During the training process, as we compared the (20× 20) grid size to
the (10×10) and (5×5), we observed loss values reduced drastically for the larger grid sizes, and they
had the tendency to get to zero faster. Thus, we can say that increasing the grid sizes of the neural
network can positively affect the precision of the option values.
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Figure 5: Loss against training time

(a) 3D-View: neural network approximation (b) Option prices vs Asset prices

Figure 6: NN option values (20× 20 grid) for different assets and time

Figures 6a and 6b give the 3-dimensional option value plot and the plot for the option value versus
the asset price for the 10 × 10 grid size respectively. We further observed the effect of S = K = 70
in both figures, as they rightly captured the payoff structure, and for S < K, the option is out-of-
the-money and worthless. It is also seen that the predicted barrier option values increased with an
increase in the asset prices, thereby converging to the maximum of the underlying (Smax = 200), as
portrayed specifically in Figure 6b. Finally, Table 3 shows the results of the comparison between the
exact Black-Scholes, the Monte-Carlo simulated values, and the neural network values when the grid
sizes were further increased. Also, after considering a 20× 20 space and time grid, we randomly chose
time-grid t = 0.368, t = 0.684 and t = 1 for the computation of the NN option values and to highlight
its convergence property. The neural network values (in this case, for t = 1) also showed promising
results compared to the antithetic Monte-Carlo simulated values.
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Table 3: Option values using the NN (20× 20 grid) for different uniform time-grid and the MCS

Asset Value Exact Price Neural Network Values Antithetic MCS Values
t = 0.368 t = 0.684 t = 1.000

50 0.00000 0.00000 0.00000 0.00000 0.00000
58 1.28549 1.38380 1.20805 1.25326 1.31271
66 3.95584 3.25977 3.57737 3.89860 3.79920
74 8.46066 8.79561 8.25426 8.42306 8.34141
82 14.50977 14.06872 14.42716 14.49103 14.41354
90 21.55672 21.31054 21.43981 21.45724 21.72772
97 28.17264 27.97890 28.04630 28.11902 28.45943
105 35.98245 35.27261 35.29481 35.31392 37.27900
113 43.90984 43.13023 43.15271 43.15790 44.40159
121 51.88346 50.98578 51.02626 51.05263 52.95742
129 59.87424 58.86531 58.91171 58.94737 61.50167
137 67.87111 66.76206 66.80584 66.84211 68.92750
145 75.87006 74.67009 74.70577 74.73684 76.60668
153 83.86972 82.70855 82.74461 82.78091 81.00258
161 91.86961 90.79569 90.84035 90.88528 91.99876
168 98.86957 98.82728 98.87628 98.87628 98.98587
176 106.86956 106.77914 106.82671 106.87457 107.31739
184 114.86956 114.63317 114.67254 114.71210 114.36625
192 122.86956 122.37645 122.40008 122.42385 121.99875
200 130.86955 130.00000 130.00000 130.00000 129.97920

4.2.4 Neural Network vs Crank-Nicolson method

This section compares results from the Crank-Nicolson FDM to the values obtained using the neural
network. It is important to note that one of the disadvantages of using the Crank-Nicolson method is
in the estimation of the artificial limit for the asset price, that is, Smax. This is not the case with the
neural network since a fixed value of Smax = 200 was used throughout the implementation, serving
as an edge over the use of the Crank-Nicolson method. Choosing Smax, which is the upper bound
for the computational domain of the S variable, has remained an open problem in the FDM scheme
for option pricing. However, some researchers have expressed Smax as a a function of the asset price
S[30, 36]; and others, as a function of the strike price K [for instance Smax = 2K [34]; Smax = 4K
[26]; Smax = 5K [13]]. The wrong choice for Smax can result in a negative payoff, thereby leading to
numerical errors and inappropriate option prices[18]. For the purpose of this research, we print results
for Smax = 4K and Smax = 5K and ignore results for Smax = 2K. This choice is due to the fact that
Smax ≰ K, rather Smax >> K to avoid negative option prices4. Hence, we seek to place the Smax high
enough so as not to affect the computational domain and final option values.

From Table 4, we compare barrier option values using the NN and the Crank-Nicolson numerical
scheme. The values were shown for (5 × 5), (10 × 10), (20 × 20) asset grids for the NN with a fixed
Smax = 200; and Smax as a function of the strike price for the Crank-Nicolson option values. Overall,
for small S and for Smax = 5K, the option values were significantly close to the exact values. For
larger values of S, the error estimates started increasing. Also, for Smax = 4K, smaller values of S
gave rise to more correct option values, and larger asset values in the domain 50 ≤ S ≤ 200 led to some
decrease in the option values. A remarkable feature of the zero-rebate down-and-out barrier options is
that the option continues to be deep in-the-money provided that the asset prices keep increasing and
so far as the barrier is not breached at any point in the life of the contract. This feature ceases to exist
when we use Smax = 4K in the example used in this research, and one way of correcting this lag is to

4Consider Smax = 2K for K = 70. Then option values using the Crank-Nicolson method are -15.23418, -28.46260,
-42.59637 for S = 125, 130, 135, respectively.
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keep increasing Smax as large as possible, so far as the asset prices S increase. However, this is not
the case with the NN, as their option values were consistent throughout the whole domain, thereby
maintaining their accuracy. This behaviour further highlights the superiority of the NN over the
Crank-Nicolson numerical methods in pricing the path-dependent barrier options, and the subsequent
subsection analyses the error structure of the three methods.

Table 4: Option values using the NN and Crank-Nicolson method

Asset Value Exact Price Neural Network Values Crank-Nicolson Values
(5× 5 Grid) Smax = 5K Smax = 4K

50 0.00000 0.00000 0.00000 0.00000
87.5 19.27888 19.68020 19.28124 19.28007
125 55.87765 55.82417 55.87771 55.85888
162.5 93.36960 92.50000 93.31181 91.04683
200 130.86955 130.00000 128.41092 96.59700

Asset Value Exact Price Neural Network Values Crank-Nicolson Values
(10× 10 Grid) Smax = 5K Smax = 4K

50 0.00000 0.00000 0.00000 0.00000
67 4.41940 4.30772 4.42158 4.42173
83 15.34719 15.55932 15.35053 15.34808
100 31.08007 31.05410 31.08148 31.08073
117 47.89331 46.66664 47.89364 47.88916
133 63.87226 63.33341 63.87174 63.80426
150 80.86981 80.00001 80.85942 80.23592
167 97.86958 96.74896 97.76925 94.37190
183 113.86955 113.72443 113.31076 101.67852
200 130.86955 130.00000 128.41092 96.597001

Asset Value Exact Price Neural Network Values Crank-Nicolson Values
(20× 20 Grid) Smax = 5K Smax = 4K

50 0.00000 0.00000 0.00000 0.00000
58 1.28549 1.25326 1.28869 1.28707
66 3.95584 3.89860 3.95981 3.95805
74 8.46066 8.42306 8.46042 8.46099
82 14.50977 14.49103 14.51293 14.51103
90 21.55672 21.45724 21.55913 21.55808
97 28.17264 28.11902 28.17407 28.17324
105 35.98245 35.31392 35.98336 35.98265
113 43.90984 43.15790 43.91037 43.90821
121 51.88346 51.05263 51.88366 51.87433
129 59.87424 58.94737 59.87408 59.83774
137 67.87111 66.84211 67.86992 67.74941
145 75.87006 74.73684 75.86528 75.52038
153 83.86972 82.78091 83.85362 82.98417
161 91.86961 90.88528 91.82184 89.85601
168 98.86957 98.87628 98.75670 95.05257
176 106.86956 106.87457 106.59472 99.54524
184 114.86956 114.71210 114.25405 101.81549
192 122.86956 122.42385 121.59564 101.09163
200 130.86955 130.00000 128.41092 96.59700
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4.3 Analysis of the Models

This section compares the performance of the neural network, Crank-Nicolson and the antithetic MCS.
We consider the Root Mean Square Error (RMSE), also referred to as root mean square deviation,
which measures the difference between the predicted values of a model and the actual observed values
from the environment, which is modelled. Mathematically,

RMSE =

√∑n
i=1(Xobs,i −Xmodel,i)2

n
,

where the observation value is denoted by Xobs,i and the forecast value by Xmodel,i.

Table 5: Root Mean Square Error analysis for different grids

RMSE
Asset Grid Size Neural Network Antithetic MCS Crank-Nicolson

t = 0.250 t = 0.750 t = 1.000 Smax = 5K Smax = 4K
5× 5 0.905559 0.61635 0.57899 1.01446 1.09984 34.35118

t = 0.333 t = 0.667 t = 1.000
10× 10 0.80407 0.74970 0.68138 0.95780 0.79795 11.55790

t = 0.368 t = 0.684 t = 1.000
20× 20 0.70962 0.66214 0.63473 0.94338 0.63787 9.72751

Table 5 gives the analysis for the root-mean-square errors obtained during the pricing process when
the NN and the antithetic MCS are applied in valuing the down-and-out barrier call options. The
errors presented follows from the numerical result of the option values displayed in Tables 1, 2 and
3 corresponding to 5 × 5, 10 × 10 and 20 × 20 grid sizes respectively. Generally, from the table, we
observed that the RMSE from the NN (irrespective of the grid size) were lesser than those obtained
when the antithetic MCS were employed in the option valuation. It was also noted that as the grid
sizes for both the asset and time increased, the RMSE kept tending to zero. Furthermore, if we keep
the time constant and increase the asset’s grid, the RMSE decreases, and vice versa. For the Crank-
Nicolson method, the errors kept reducing with an increase in the asset grid size. For Smax = 4K, the
RMSE is huge when compared to Smax = 5K, and the other numerical methods used in this research.
This characteristic was noted due to the wrong choice of the artificial upper limit Smax in the valuation
process. For Smax = 5K, the RMSE were far lesser, and we can thus compare it with the NN and the
Crank-Nicolson error values. The NN outperformed both the antithetic MCS and the Crank-Nicolson
method, even though the CN tends to accurately price the barrier options when the value of Smax is
carefully and correctly chosen. Thus, we can deduce that the NN method provided a highly accurate
approximation of the solution of the down-and-out barrier call options.

5 Conclusion and Future Work

This research proposed a feed-forward neural network-based framework in the pricing and calibra-
tion of financial models, particularly the extended Black-Scholes model for barrier options. This
framework is combined with optimisation techniques in solving the PDE-related problems of the path-
dependent barrier options. Our methodology constructed a trial solution that converted a constrained
optimisation issue to a simplified unconstrained problem. We focused on the down-and-out barrier
options, which are options that become null and void once the underlying asset decreases and touches
the threshold level. From the results, we compared the approximated values of the neural network,
Crank-Nicolson values and the antithetic Monte-Carlo simulated option values to the exact Black-
Scholes price, and the NN proved more accurate.
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With regards to the grid points, we observed that the option values obtained using the 5 × 5 grid,
10× 10 grid, and 20× 20 grid points generally performed better than the antithetic simulated option
values. It was also observed that better accuracy is obtained when the grid points become larger, as
there was a significant reduction in the error function, which tended to zero faster than when a lower
grid point is considered. Notwithstanding, one must be careful not to use extremely large grid points
for the approximation scheme not to be computationally expensive. In conclusion, the numerical ex-
periments we presented in this research proved that the neural network is an excellent approximation
of option pricing PDE functions. The results further highlighted the accuracy and the precision of the
neural network implementation in solving problems pertaining to finance.

Future research can be channelled to the use of this methodology in pricing other forms of barrier
options, such as the up-and-out, down-and-in, up-and-in barrier options, as well as moving barrier
options. Additionally, more work can be done to implement other forms of neural networks, such as
radial basis networks and recurrent deep learning networks, in derivatives pricing, especially deriva-
tives without closed-form solutions. More research could be done by applying the above-proposed
methods to other financial models, such as the GARCH family models and the Heston pricing model.

Finally, it was noted that computational complexity does not necessarily increase with an increase in
sampling points for the neural network method. This is not the case when other numerical methods,
such as the finite difference and Monte-Carlo, are used in the valuation process. The computa-
tional cost quantifies the number of resources (power, number of computations, time) that the NN
utilises during the training and price prediction phases. Finally, it will be worth considering the
non-exponential computational complexity of the NN in solving similar problems in computational
finance.
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