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Abstract

We consider the problem of designing experiments for regression in the presence
of correlated observations with the location model as the main example. For a fixed
correlation structure approximate optimal designs are determined explicitly, and it is
demonstrated that under the model assumptions made by Bickel and Herzberg (1979)
for the determination of asymptotic optimal design, the designs derived in this article
converge weakly to the measures obtained by these authors.

We also compare the asymptotic optimal design concepts of Sacks and Ylvisaker
(1966, 1968) and Bickel and Herzberg (1979) and point out some inconsistencies of
the latter. Finally, we combine the best features of both concepts to develop a new
approach for the design of experiments for correlated observations, and it is demon-
strated that the resulting design problems are related to the (logarithmic) potential

theory.
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1 Introduction

Consider the common linear regression model

y(t) =01f1(t) + ...+ 0,1,(t) +<(t) , (1)

where fi(¢),..., f,(t) are given functions, () denotes a random error process, 6y, ..., 0, are
unknown parameters and ¢ is the explanatory variable. We assume that N observations,
say v1,...,Yyn, can be taken at experimental conditions —T < t; < ... < ty < T to
estimate the parameters in the linear regression model (1). If an appropriate estimate 0
has been chosen, the quality of the statistical analysis can be further improved by choosing
an appropriate design for the experiment. In particular an optimal design minimizes a
functional of the variance-covariance matrix of the estimate, where the functional should
reflect certain aspects of the goal of the experiment. In contrast to the case of uncorrelated
errors, where numerous results and a rather complete theory are available [see for example
the monographs of Fedorov (1972), Silvey (1980), Pazman (1986), Atkinson, Donev and
Tobias (2007) or Pukelsheim (1993)], the construction of optimal designs for dependent
observations is intrinsically more difficult. On the other hand this problem is of particular
interest, because in many applications the variable ¢ in the regression model (1) represents
the time and all observations correspond to one subject. This field of statistics is called
the analysis of repeated measurements, see for example Morrison (1972), Lindsey (1997),
Mentre, Mallet and Baccar (1997), Hughes-Oliver (1998). The difficulty in the development
of the optimal design theory for correlated observations can be explained by the fact that
optimal experimental designs have an extremely complicated structure and are very difficult
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to find even in simple cases. Some exact optimal design problems were considered in Boltze
and Néather (1982), Néther (1985a, Ch. 4), Nather (1985b), see also Pazman and Miiller

(2001), Miiller and Pazman (2003).

Because explicit solutions of optimal design problem for correlated observations are rarely
available several authors have proposed to determine optimal designs based on asymptotic
arguments [see for example Sacks and Ylvisaker (1966, 1968), Bickel and Herzberg (1979)
and Néther (1985)]. Roughly speaking there exist two proposals to embed the optimal
design problem for regression models with correlated observations in an asymptotic optimal
design problem. The first one is due to Sacks and Ylvisaker (1966, 1968), who assumed
that the covariance structure of the error process £(t) is fixed and that the number of design
points tends to infinity. Alternatively Bickel and Herzberg (1979) and Bickel, Herzberg and
Schilling (1981) considered a different model, where the correlation function depends on a

number of observations.

The purpose of the present article is to introduce a new design methodology for constructing
asymptotic optimal designs for correlated data. This methodology combines the best features
of the approaches of Sacks and Ylvisaker (1966, 1968) and Bickel and Herzberg. In Section 2
we introduce the main notation and prove auxiliary results. In Section 3 we derive optimal
designs for several types of correlation structure in the non-asymptotic setting. We also
demonstrate how these results are related to the designs derived in Bickel, Herzberg and
Schilling (1981). Section 4 starts with the comparison of the transition to the asymptotic

optimal designs proposed by Sacks and Ylvisaker (1966, 1968) and Bickel and Herzberg



(1979). In particular, we observe the following inconsistency of the Bickel-Herzberg model.
The covariance between observations at consecutive time points remains constant although
for an increasing sample size the explanatory variables are arbitrary close. As a consequence,
the covariance of the ordinary least squares estimate based on the optimal design vanishes
asymptotically, but it does not converge to the covariance matrix corresponding to the
uncorrelated case, despite the fact that the correlation structure approximates the case of
uncorrelated observations. In order to address these problems a new concept of asymptotic
optimal designs for correlated observations is introduced. The resulting optimality criteria
contain a singular kernel and we are able to resolve this technical difficulty. We solve the
asymptotic optimal design problem for two families of correlation functions and establish
a connection with the logarithmic potential theory. In Section 5 we summarize the results
and discuss two main areas of possible applications, the analysis of repeated measurements
and the analysis of computer experiments. For the sake of the transparency proofs of all

statements are provided in Appendix.

2 Preliminaries

Consider the linear regression model (1), where £(t) is a stationary process with

Ee(t) =0, Ee(t)e(s) = o?p(t — s) (2)
where p(+) is the correlation function. If N observations, say y = (yi,...,yn)’ are available
at experimental conditions t1, ..., ty and some knowledge of the correlation function is avail-

able, the vector of parameters can be estimated by the weighted least squares method, i.e.



0 = (XTL1X) 1 XT 1y with X7 = ( fz(tj))f;lév, and the variance-covariance matrix of

this estimate is given by
Var(f) = o?(XT271X) !

with 3 = (p(t; — t;))ij=1,..~. If the correlation structure of the process £(t) is not known,
one usually uses the ordinary least squares estimate 6 = (XTX)~1XTy, which has covariance

matrix
Var(d) = o*(X"X) 1 XT"EsX(XTX) 1. (3)

An exact experimental design &y = {t1,...,tx} is a collection of N points in the interval
[—T,T], which defines the time points or experimental conditions where observations are
taken. Optimal designs for weighted or ordinary least squares estimation minimize a func-
tional of the covariance matrix of the weighted or ordinary least squares estimate, respec-
tively, and numerous optimality criteria have been proposed in the literature to discriminate

between competing designs.

Note that the weighted least squares estimate can only be used if the correlation structure of
errors is known, and its misspecification can lead to a severe loss of efficiency. On the other
hand, the ordinary least squares estimate does not employ the structure of the correlation.
Obviously the ordinary least squares estimate can be less efficient than the weighted least
squares estimate but in many cases (see for example Example 3 in Section 3) the loss of
efficiency is often negligible. Throughout this article we will concentrate on optimal designs
for the ordinary least squares estimate. These designs require also the specification of the

correlation structure but a potential loss by its misspecification in the stage of design con-



struction is typically much smaller than the loss caused by misspecification of the correlation

structure in the weighted least squares estimate [see Tables 1 and 3 in Dette et al. (2009)].

Note that in Example 3 the design used in conjunction with the weighted LSE is optimal
for this estimate so that the pair {optimal design, estimate} is asymptotically as efficient for
the ordinary LSE as for the weighted LSE, at least in the situation considered in Example 3.
On the other hand, if we use the weighted LSE under the assumption of wrong correlation
structure then the resulting estimate (and consequently the pair {design, estimate}) may be

much less efficient than that for the ordinary LSE.

Because even in simple models exact optimal designs are difficult to find, most authors usu-
ally use asymptotic arguments to determine efficient designs for the estimation of the model
parameters. Following Sacks and Ylvisaker (1966, 1968) and Néather (1985a, Chapter 4), we
assume that the design points {t1,..., tx} are generated by the quantiles of a distribution

function, that is
tv=a((i—1)/(N-1)), i=1,...,N,

where the function a : [0, 1] — [=7, T is the inverse of a distribution function. If {5 denotes
a design with N points and corresponding quantile function a, the covariance matrix of the

estimate § = 0, given in (3) can be written as
Var(é) = UQDf(§N> s

where



R (¢) = / / ol — 0)E ()T (0)€(du)é(dv).

The matrix D(€) is called the covariance matrix of the design ¢ and can be defined for any
distribution on the interval [—T, T]. Following Kiefer (1974) we call any probability measure
¢ on the interval [T, T an approximate design. An (approximate) optimal design minimizes

a functional of the covariance matrix D () over the class of all approximate designs.

Note that in general the function D () is not convex (with respect to the Loewner ordering)
on the space of all approximate designs. This implies that even if we have a convex functional
® on the space of symmetric matrices, the functional ®(D(¢)) is generally not convex on

the space of designs. In particular, for p = 1 the functional D(§) is

Dy (€) = [ / f%u)«du)} R [ [ tu =g, (1)

and this functional does not have to be convex. On the other hand, for the location model

y(t) =0 +e(t) (5)

we have p =1, f(t) =1 for all t and D(§) = D(§) where

D() = / / plu— 0)E(du)e(dv). (6)

This functional is convex on the set of probability measures on the interval [—T,T], see
Lemma 1. For this reason most of the literature discussing asymptotic optimal design prob-
lems for least squares estimation in the presence of correlated observations considers the
location model, which corresponds to the estimation of the mean of a stationary process [see

for example Boltze and Nather (1982), Néther (1985a, 1985b)]. Throughout this article we



will follow this line and restrict our main attention to the model (5). The following lemma
states that in this case the optimality criterion (6) is convex and even strictly convex. The
proofs (in a slightly different language) can be found in Nather (1985a). For the sake of

completeness we provide a proof of this lemma as we shall need it for references in Section 4.

We shall use the following definition. A function g : R — R is positive definite if for any
n € N and any set of real numbers x4, ..., z, the n x n matrix H with entries h;; = g(z; —z;)
is a non-negative definite matrix; correspondingly, the function ¢ is strictly positive definite
if the matrix H is positive definite for all 1 < ... < x,. Also, without loss of generality, we

assume that 7" = 1 so that the design space is given by the interval [-7, 7] = [—1, 1].

Lemma 1 The functional D(-) defined in (6) is conver. Moreover, if p(-) is strictly positive

definite, then D(-) is strictly convex. That is,

D((1 = a) +a&y) < (1 —a)D(§) + aD(&)

for all 0 < a < 1 and any two measures £ and & on [—1,1] such that & — &y is a non-zero

(signed) measure.

In the following lemma we calculate the directional derivative of the functional D(-).

Lemma 2 If ¢, = (1 — o) + a& and D(-) is defined in (6), we have for the directional

derivative of the functional D at the design & in the direction of &

seDe)| =t ZEZPE) o (g6 - Do)

a=0



where

o(t,€) = / plt — w)e(du).

Using Lemmas 1 and 2 we obtain the following equivalence theorem, which characterizes the

optimality of a design for the location model.
Theorem 1

(i) A design & minimizes the functional D(-) defined in (6) if and only if

min_@(t,£) > D(E). (7)
te[—1,1]

(i1) In particular, a design £* is optimal if the function ¢(t,£*) is constant, that is ¢(t,£*) =

D(&*) for allt € [—1,1].

Recall that for an arbitrary one-parameter model the functional D¢(&) (defined in (4)) does
not have to be convex and, consequently, the equivalence theorem (which is a necessary
and sufficient condition of the design optimality) cannot be easily generalized to this case.
However, the necessary condition for the design optimality can be derived similarly, see the

next theorem.

Theorem 2 Assumep =1 and the function f : [=1,1] — R is bounded and is not identically

equal to 0. Consider any design £ which minimizes the functional Dy(§). Then

f(t)/p(t—U)f(U)f*(dU) > fA(t) Dy(€7) /fZ(U)é*(dU) (8)
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for allt € [—1,1].

Note that if f(¢) > 0 for all ¢t € [—1, 1] then we can divide both parts of (8) by f(¢).

3 Optimal designs for particular correlation functions

3.1 The exponential correlation function

We begin our investigations with the exponential correlation function, that is

pt) = e, 9)

where A > 0 is fixed. Our first result is simple to prove (using Theorem 1) and is known in

literature [see Boltze and Nather (1982)]. It is presented here for the sake of completeness.

Theorem 3 For the location model (5) with correlation function (9) the optimal design £* is
a mizture of the continuous uniform measure on the interval [—1,1] and a two-point discrete

measure supported on {—1,1}. In other words: £ has the density

1 1 1
() = (G0 + 3540 + (=) 10w (10)
where w* = 1/(1+ \), d,(-) denotes the Dirac measure concentrated at the point x and 1 (-)

is the indicator function of a set A. Moreover, the function ¢(t,£*) defined in (7) is constant

and given by D(§*) = 1/(1+ \).

It might be of interest to study the efficiency of the naive equidistant design &, supported
at n equidistant points ; = =14 2(i—1)/(n—1), 4 =1,...,n, with respect to the optimal
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design &¢*. This efficiency is

where

n n

D(&) = 15 D D exp(-2i — l/(n — 1)

i=1 j=1

The efficiency of the design &, for different n and A is presented in Table 1. We can observe

that the efficiency of &, is not high even for large n.

Table 1. Efficiencies of the naive equidistant design supported at n points.

A 1.5 25 35 45 55 6.5

n=> 940 905 842 768 .695 .627

n =10 923 933 932 918 .896 .868

n =20 903 919 933 941 944 942

n=100 .883 .898 .914 .928 .938 .946

n=1000 .881 .895 .911 .924 .935 .943

3.2 The triangular correlation function

Next we consider the triangular correlation function defined by

p(t) = max{0,1 — A[¢|}. (11)

12



In the particular case A = 1 the optimal design can be obtained from Example 1 in Néther
(1985b). The following theorem extends this result and specifies the optimal designs for all

A > 0.

Theorem 4 Consider the location model (5) with correlation function (11).

(a) For N € N = {1,2,...}, the optimal design is a discrete uniform measure supported
at 14 2\ equidistant points, t; = j/A—1, j =0,1,...,2X. For this design, D(¢*) =

1/(1+2X).

(b) For any A > 0, the optimal design £* is a discrete symmetric measure supported at 2n

points +ty, +to, ..., +t, with weights wy, ..., w, at ty, ..., t,, where n = [2X\],

1
) = ————([n)2],....3,n—2,2.n —1,1,n).
Here ty,...,t, denote the ordered quantities |uyl, ..., |u,|, where u; = =1+ j/\, j =

1,....,n—1, u, = 1. Moreover, D(§*) =2\/(n(n+1)).

Example 1 For the triangular correlation function (11) we obtain the following optimal

designs for the location model (5):

e If A\ € [0,.5], the optimal design is supported at the points —1 and 1 with weights .5.

e If A € [.5,1], the optimal design is given by
1 1-1/A 1/A-1 1

1/3  1/6 1/6  1/3
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0.5

Figure 1. Support points of the optimal designs in the location model with triangular cor-

relation function (11) for different values of X\. The corresponding weights are given in

Theorem, 4.
e If A\ € [1,1.5], the optimal design is given by
-1 1-2/x —14+1/x 1-1/x —1+2/A 1
1/4 1/12 1/6 1/6 1/12 1/4
e If \ € [1.5,2], the optimal design is given by
-1 1-3 1-2 141 1-3 —1+2 143 1
4/2 1/2 2/2  3/2  .3/2 2/2 1/2 4)2

For larger values of A\ the support points of the optimal designs for the location model (5)

with correlation function (11) are displayed in Figure 1.

Example 2 Let the correlation function p(-) be defined in (11) with 0 < A < 1. Assume
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that the functional D;(€) is (4) with f(¢) = t*, where k is some positive integer. Consider
the two-point design £* assigning masses 1/2 to the end-points 1 and —1. Straightforward
calculations show that the optimality condition (8) is met for this design. Indeed, for this

design and p(-) we compute:

and

[ ptt = w )€ () = 5 [ole = 1) + (- ple + 1]
where \ = min{i, A} for odd k and A= max{3,1 — A} for even k. For example, if A < %
then the optimality condition (2) becomes At**1 > \t?! for odd k and (1 — \)tF > (1 — \)t?*
for even k; these inequalities hold for all ¢ € [—1,1]. Similarly we can check the validity
of the optimality condition (8) when % < A < 1. Numerical study shows that despite the

optimality criterion Df(£) is not convex, the design £* is optimal in all these cases.

3.3 The Gaussian correlation function

For most correlation functions the optimal designs have to be determined numerically even
in the case of the location model. We conclude this section presenting several new numerical

results in this context. Consider now the Gaussian correlation function
p(t) = e (12)

Some optimal designs are given in Table 2 for selected values of A € [0,8.5]. The support
points of the optimal design for larger values of A\ are depicted in Figure 2. From our
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numerical results we conclude that for the correlation structure (12) the optimal design for

the location model is a discrete measure, where the number of support points increases with

A. It is also worthwhile to mention that for this model the function ¢(t,£*) defined in (7) is

not constant, and as a consequence, the second part of Theorem 1 is not applicable.

Table 2. Optimal designs for the location model with correlation function (12) for different

values of \.

A4 to 13 wq w2 w3
0.1 =1 5

0.6 =1 D

0.7 =£1 0 4685 .063

1.9 =1 0 354 .292

2.0 £1 =+£.104 348 152

3.7 £1 +£.309 282 218

3.9 £1 +£.336 0 277 202 .043
6.0 =£1 +£.463 0 237 179 169
6.1 £1 £469 =£.058 .235 .176 .089
85 =£1 +£.553 £.178 207 154 .139
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0.5r

Figure 2. Support points of the optimal design for the location model with correlation function

(12) for different values of \.

3.4 The rational correlation functions

We conclude this section with two examples, where the optimal design is a mixture between a
discrete and an absolute continuous measure with a non constant density. The first example

is obtained for the correlation function

plt) = ——— (13)

VI

where A > 0. In this case we obtain by an extensive numerical study that the optimal design

&* is given by

pert) = (300) + 500(0) ) + (1= ) (1)

where w* € [0,1] denotes a weight and p*(u) is a density which depends on A. For the
selected values the optimal weights and corresponding densities are displayed in Table 3 and
the left part of Figure 3, respectively. It is also worthwhile to mention that in this case the
function ¢*(t,£*) defined in (7) is constant.
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Table 3. The weight of the optimal design (14) in the location model with correlation func-

tion (13) for different values of \.

A 0.2 1 2 4 10

w* 796 516 392 283 .173

1 =10 3 2=0.1
0.8 A=4 25

A=2 9 A=1
0.62 A=1

2=0.2 15 p=4
0.4F

’

0.2 05

‘ 0

-1 -0.5 0 0.5 1 -1 -0.5 0 05 1

Figure 3. The density p* of the optimal design (14) for the location model for different values

of A > 0. Left part: correlation structure (13); right part: correlation structure (15).

As the last example we consider the correlation function

1

t:—
P = T35

(15)

for which our numerical results show that the optimal designs for the location model with
this correlation structure are also of the form (14), where the optimal weight w* and the

optimal density are displayed in Table 4 and the right part of Figure 3, respectively.
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Table 4. The weight of the optimal design (14) in the location model with correlation function

(15) for different values of X.

w* 201 151 .118 .082 .056

3.5 Transition to the limiting design in the Bickel-Herzberg model

It might be of interest to investigate the relation between the designs derived in Theorem 1
and 2 and the designs obtained by the approach proposed by Bickel and Herzberg (1979).
These authors suggested a correlation structure depending on the sample size N in the

following manner

pn(t) = p(Nt), (16)

where the function p(t) satisfies [ |p(t)|dt < oo (note that this condition corresponds to
the case of short range dependence). It can be shown that for the location model (5) the
optimality criterion proposed by Bickel and Herzberg (1979) is asymptotically (as N — o)

given by

Digr(€) =142 / QU /p(t)p(t)dt, (17)

where 1/p denotes the density of the quantile function a, the function @ is defined by

o

Q(u) = Z p(ju)

[see Theorem 2.1 in Bickel and Herzberg (1979)]. For this criterion the asymptotic optimal
design &* on the interval [—1, 1] does not depend on p and has uniform density: p*(t) =
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%1[_171] (t)

We now investigate the asymptotic behavior of the design determined in Theorem 1 for the

correlation function py(t) = e V. In this case the optimal design £} is given by (10) with

wr=wy =1/(NA+1).

Because w* — 0 as N — oo it follows that the sequence of the optimal designs (£x)nen
converges weakly to the optimal design p* obtained by the approach of Bickel and Herzberg
(1979). Similarly, if py(t) = max{0, 1 — NA[¢|}, it follows from Theorem 4 that the sequence

of optimal design ({3 )nen converges weakly to the design p*.

4 New approach to the design experiments for corre-

lated observations

In this Section we briefly describe and compare several aspects of the approaches of Sacks and
Ylvisaker (1966, 1968) and Bickel and Herzberg (1979). Our goal is to develop an alternative
method for the construction of optimal designs for dependent data which combines the best
features of both concepts. In the method proposed by Sacks and Ylvisaker (1966, 1968)
the design space is fixed, the number of design points in this set converges to infinity and
the weighted least squares estimate 0 is investigated. As a consequence, the corresponding
asymptotic optimal designs depend only on the behavior of the correlation function in a
neighborhood of the point 0 and the variance of the (weighted) least squares 0 does not
converge to 0 as N — oo.
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In contrast to Sacks and Ylvisaker (1966, 1968), Bickel and Herzberg (1979) considered the
ordinary least squares estimate, say 9~, and assumed that the correlation function depends
on N according to py(t) = p(Nt), see (16). An alternative interpretation of this model is
that the correlation function is fixed but the design interval expands proportionally to the
number of observation points. In this model the correlation between two consecutive time
points t; and ¢;,1 is essentially constant, i.e. py(t;11 —1t;) = p(d’(t;)), and the variance of the
ordinary least squares estimate converges to 0 with a rate depending on the function p. We

illustrate this effect in the following example.

et

Example 3 Consider the correlation function p(t) = The variance of the ordinary

least squares estimate obtained from the optimal design £* provided by Theorem 2 is given by
Var(f) = o2D(&*) = o2/(1+ \) .

The variance of the weighted least squares estimate for the uniform design (which is an

~

asymptotically optimal design for this estimate) is exactly the same: Var(d) = o?/(1 + \).

Note that both variances do not converge to 0 as N increases, unlike in the case of i.i.d.
observations where the variance is 02/N. In other words: the presence of correlations be-
tween observations significantly increases the variance of any least squares estimate for the

parameter 6.

On the other hand, it follows from (17) and the representation Q(t) = 1/(e* —1) that in the

model considered by Bickel and Herzberg (1979) the variance of the ordinary least squares
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estimate for the parameter 6 is asymptotically given by

o? 2 1
N(1+62/\_1)+0<N>,N—>oo. (18)

Note that the dominating term in this expression differs from the rate o*/N, although the
correlation function py converges to the Dirac measure at the point 0, which corresponds
to the case of uncorrelated observations. For other correlation functions, for example p(t) =

max{0, 1 — A|¢|}, a similar observation can be made.

Consider now the case of long-range dependence in the error process, i.e. p,(t) ~ 1/|t|* as
t — oo where a € (0,1). It was shown by Dette et al. (2009) that the asymptotic optimal
design in the location model based on the approach of Bickel and Herzberg (1979) minimizes

the expression

Da€) = / Qu(1/p(t))p(t)dt (19)

where
1 & ,
Qa(u) - m Zpa(]u)-
7=1
For the correlation functions

1 1

1
WD)y = — @) () = Gy = —— 20
Po () (1+|t‘2)a/27 Po () 1—}—‘75’0‘, Po () (1+|t|)a7 ( )

(their properties and usefulness are discussed in Gneiting 2000, Anh, Knopova and Leonenko
2004) it can be shown that Q,(t) = 1/((1—a)|t|*), and we obtain for the asymptotic variance

of the ordinary least squares estimate the expression

2 2@ 1
J +0( ),N—>oo.

Nel—a Ne
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Again the dominating term in this variance is different from the variance o?/N, although
the correlation functions p%) (t) = p¥ (Nt) in (20) approximate the Dirac measure at the

point 0.

The computation of the asymptotic variances in Example 3 illuminates the following general

theoretical results:

- In the case of correlated observations, the variance of any least squares estimate does

not converge to zero as N — oo.

- In the approach of Bickel and Herzberg (1979) (with px(t) = p(Nt)), the variance of

any least squares estimate converges to zero as N — oc.

- In the approach of Bickel and Herzberg (1979) the variance of the ordinary least squares
estimate has a different first order asymptotic behavior as the variance of the ordinary
least squares estimate for the case of uncorrelated observations, despite the fact that

the correlation function py(t) = p(Nt) degenerates as N — oo.

Therefore the natural question arises, if it is possible to develop an alternative concept for the
construction of optimal designs for correlated observations, which on the one hand is based
on the normalization px(t) = p(Nt) used by Bickel and Herzberg (1979) and on the other

hand yields a variance of the ordinary least squares estimate, which is of precise order O(1).

The answer to this question is affirmative if we allow ourselves to vary the variance of
individual observations as N changes. To be precise let c(t, s) = o%p(t — s) be the covariance
function between observations at points ¢ and s, then assume that not only p(:) but also

23



0% may depend on N. In order to be consistent with the model discussed in Bickel and

Herzberg (1979), we consider sequences of covariance functions satisfying
en(ts) = ojpn(t —s) (21)

where

pn(t) = plant), oy =af7’, (22)

7>0and 0 < a < 1 is a constant depending on the asymptotic behavior of the function
p(t) as t — oo. The choice 0% = N2 yields that the variance of the ordinary least squares
estimate is of order O(1). Note that in the case of short-range dependence one has to use
a = 1. In the case of long-range dependence with p(t) = L(t)/t", where L(t) is a slowly
varying function at t — oo (Seneta, 1976), one has to use @ = k in order to obtain the order

O(1) for the variance of the ordinary least squares estimate.

Example 4 In the situation considered in the first part of Example 1 we have py(t) =

e~ N and with the choice 0%, = N7? the asymptotic expression in (18) changes to

2 1
2— —_—
TeA/2—1+O<N>’ N — 00.

Lemma 3 Assume that the function p(-) has one of the forms (20) with 0 < o < 1 and the
covariance function c(t,s) = cy(t,s) is of the form (21) and (22), where {an}nen denotes
a sequence of positive numbers satisfying ay — 0o as N — oo. If the sequence of designs
{&n} nen converges weakly to an asymptotic design &, then the variance of the ordinary least

squares estimate 8 for the location model is given by

Var(@) = [ [ extuo)én(du)e @
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and converges to 72Dy (&) as N — oo, where

Da(€) = / / o — 0)E(du)E(dv) (23)

and ro(t) = 1/|t|~.

Remark 1

(a)

As a particular case of the sequence {ay }yey in Lemma 3, we can take ay = N? with

any (3 > 0.

Note that the statement of Lemma 3 can be generalized to cover the more general
situation of functions p satisfying the condition p(t) = 1/|t|* + o(1/|t|*) as [t| — oc.
This case covers the specific cases when p belongs to the so-called Mittag-Leftler family,

see e.g. Schneider (1996), Barndorff-Nielsen and Leonenko (2005).

Lemma 3 implies that for certain positive functions r(-) with singularity at the point 0

it can be natural to consider

1l
D(©) = [ [ ru-vtanean), (21)

—1/-1
as an optimality criterion for choosing between competing designs for the location

model. For the particular choice () = 1/[t|* we obtain the optimality criterion (23).

A sufficient condition for the strict convexity of the design criterion (24) is the positive

definiteness of the function r(-) in the optimality criterion. This means that r(-) should be

a Fourier transform of a non-zero non-negative function h(-), that is

r(t) = /00 e " h(s)ds.

—00
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The positive definiteness implies that the function r(-) satisfies

/1 /1 r(u — v)¢(du)¢(dv) > 0 (25)

-1 -1

for any signed measure ((-) with ([—1,1]) = 0and 0 < (- ([—1,1]) < oo and the convexity of
the optimality criterion follows along the lines in the proof of Lemma 1. The list of examples
of positive definite functions 7(-) includes 7(t) = 1/[t|* with 0 < a < 1 and 7(t) = — log(t?),

|t| <1, see Saff, Totik (1997).

Remark 2 In Lemma 4, we derived an optimality criterion of the form (24) with a degen-
erate kernel r(-) at the point 0 using a sequence of kernels 0% py(t) where the sequence of
correlation functions {pn(t)}yen has a specified form. An alternative way of obtaining a
limiting criterion of the form (24) with a given positive definite kernel r(-) with r(0) = oo
is to define an approximating sequence {o% pn(t)}nen such that o% py(t) — 7(t) for all ¢
as N — oo. For example, we can define functions ry(t) = 0% pn(t) as convolutions of the

function r(t) with a density, that is

rn(t) =r* K,,(t) = /r(s)KwN(t — s)ds,

where K is a symmetric density,

Ko, (2) = i[((%)

and wy — 0 as N — oo. In this case the functions ry(-) are obviously Fourier transforms.

Our next result gives a sufficient condition for the convexity of the optimality criterion (24).
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Theorem 5 Let () be a function on R\ {0} with 0 < r(t) < oo for all t # 0 and
r(0) = +oo. Assume that there exists a monotonously increasing sequence {03 pn(t)}Nen
of covariance functions such that 0 < o3 pn(t) < 7(t) for all t and all N = 1,2,... and
r(t) = limy_o 0% pn(t). Then (23) defines a convex functional on the set of all distribu-

tions.

The next equivalence theorem is a simple generalization of Theorem 1. The proofs of both

theorems are very similar and therefore the proof of Theorem 6 is omitted.

Theorem 6 Assume that the criterion (24) is convex and define ¢(t,&) = [r(t — u)é(du).

The design & is optimal for (24) if and only if ¢(t,£*) > D(E*) for allt € [—1,1].

Note also that the asymptotic optimal design &*, which minimizes the criterion (24), cannot
assign positive mass to any point in [—1, 1] if 7(-) has a singularity at the point 0, because

in this case the functional D(&) becomes infinite.

The next theorem is a generalization of Theorem 2. Its proof is also omitted.

Theorem 7 Let the design £ minimizes the optimality criterion
Dy(€) = [ / f?(u)f(duﬂ N [ [ = vrsenga.
a version of the criterion (4) for the case when the kernel r(-) has singularity at 0. Then
1) [ vt = s (@ = PO DAE) [ Fue

for allt € [—1,1].
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We conclude this section presenting explicit solutions of the optimal design problem for two

specific singular kernels.

Theorem 8

(a) Let r(t) = 1/[t|* with 0 < o < 1. Then the asymptotic optimal design minimizing the

criterion (24) is a Beta distribution on the interval [—1, 1] with density

2704 a—1 a—1
Pt)= s ma(l+2) 2 (1-2)2.
B(lL i)

2 2

(b) Let r(t) = —In(t?). Then the asymptotic optimal design minimizing the criterion (24)

is the arcsine density on the interval [—1, 1] with density

5 Conclusions

In this article we discuss design problems for regression models with correlated observations.
New designs in the location model with various types of correlation structure in the non-
asymptotic setting are derived and for some examples the efficiency of the equidistant design

is investigated.

We also investigate the design problem when the number of observations increases. In par-
ticular we discuss the two main concepts introduced by Sacks and Ylvisaker (1966, 1968) and

Bickel and Herzberg (1979), which embed the optimal design problems for the location model
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in an asymptotic framework. It is well-known that in the case of correlated observations, the
variance of any estimate does not converge to zero as the number of observation increases.
The approach of Sacks and Ylvisaker (1966, 1968) maintains this property, however in the
approach of Bickel and Herzberg (1979) the variance of any least squares estimate converges
to zero. On the other hand, Sacks and Ylvisaker (1966, 1968) have considered the weighted
least squares estimate which, however, may be inefficient if the correlation structure is mis-
specified. As the main contribution this article proposes a new asymptotic setting, which
combines the attractive features of both approaches. The basic idea is to allow the variance
of the observations o = 0% to depend on the sample size N and assume that 0% — oo as
N — oo. The kernel in the resulting asymptotic optimal design criterion contains a singular-
ity at the origin and we are able to resolve this technical difficulty. In addition, we solve the
asymptotic optimal design problem for two families of correlation functions and establish a

connection with the logarithmic potential theory.

We conclude this article with a brief discussion of two fields in statistics, where the optimal
designs derived in this article can be useful. In the theory and practice of one-sample
repeated measurements, the distribution of errors is assumed known and the maximum
likelihood estimate of 6 is used for estimation of # under the null hypothesis that 6 is the
common mean of the observations, see Morrison (1972), Lindsey (1997) and Davis (2002). As
a rule, the usual practice of repeated measurements is to test the null hypothesis. Numerous
references to applied areas, especially in longitudinal studies, can be found in Lindsey (1997)
and Davis (2002). If the error distribution is unknown then the maximum likelihood estimate

cannot be used and the common practice is to use the least squares estimate. The weighted
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least squares estimate can only be used if the correlation structure of errors is known. In
our study (which goes along the lines of the study of Bickel and Herzberg) we do not need
to know the correlation structure to construct the estimate, but we do need to know it to
construct the optimal design. A potential loss cause by the misspecification of the correlation
structure in the stage of design construction is typically much smaller than the loss caused
by misspecification of the correlation structure in the weighted least squares estimate. This

can be seen from Tables 1 and 3 in Dette et al. (2009).

The second clear area of applications of our results is the theory and practice of computer
experiments (see, for example, Sacks et al. 1989, Welch et al. 1992, Santner, Williams and
Notz 2000). In this field, the location model y; = 6 + ¢;, where ¢, is a realization of a
Gaussian random process, is classical and have appeared in numerous papers. The most
typical covariance function for the Gaussian process is c¢(t) = o2 exp(—At?). One of the main
problems in the analysis of computer experiments is the estimation of parameter # and the
parameters of the covariance function, 0 and \. The design problems are often considered

in this context, but the number of observations is usually assumed small.

In Table 5 we present estimates of parameters for several one-dimensional computer models.

2 increase as the

We can see that the correlation parameter A and especially the variance o
number of points increases. These numerical results confirm the practical relevance of the

proposed approach.
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Table 5. Mazimum likelihood estimates of 0® = o3 and X\ = Ay for the Gaussian covariance

function a?p(At) and the model y; = 0 + ¢; when the observations are y; = n(x;) where n(x)

is a computer model observed at N points x; = (j —1)/(N —1), j=1,...,N.

N 6 8 10 14 18

the model n(x) = In(1 + z)

AN 0.60 0.70 0.80 1.00 1.18

o3 2.03 3.23 4.44 7.36 11.61

the model n(x) = 1/(1 + 2x)

AN 1.57 1.61 1.72 1.97 2.22

o3 0.27 0.62 1.19 3.45 8.52

the model n(x) = /(1 + x)

AN 0.95 0.99 1.07 1.23 1.39

o3 0.46 1.11 2.21 6.73 17.56

Appendix

Proof of Lemma 1. We have
D0+ (1 - a)éy) =
= [ st v)faga(an) + (1 - @) (@)lata(do) + (1 - a)és (@)
= - [ [ olu- o) + o [ [ - védnga)
+2a(1-a) [ [ plu= v duga)
— @D(&) + (1~ aPD(E) + 2a(1 - a) [ [ plu - v)6s(du)éa(a

= aD(&)+ (1 —a)D(&) —a(l —a)A,
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where

A = [ [ otu = vlga(augalan) + € lduéa(dv) - 26a(du)és (@)

— [ [ otu=victauican)

and ((du) = &(du) — & (du). Since the correlation function p(u — v) is positive definite, in
view of the Bochner-Khintchine theorem [Feller (1966), Ch. 19.2], we have A > 0. If p(-) is
strictly positive definite, we have A > 0 whenever ( is not trivial. Therefore the functional

D(+) is strictly convex. O

Proof of Lemma 2. Taking into account the proof of Lemma 1, it follows

a=0

Proof of Theorem 1. (i) Using the convexity of the functional D(-) and Lemma 2, the

necessary and sufficient condition for an extremum yields

m1n/¢ “)o(dv) > D(EY).

Note that

[ otv.ectae) =min [ o0,¢)50(ar)
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for any design ( satisfying

supp(C) C {t: ¢(t,€) = min g(v,§")}

where supp(() stands for the support of the measure (. Consequently, the necessary and
sufficient condition of extremum becomes min; ¢(t,£*) > D(£*), which is exactly (7). The

assertion (ii) obviously follows from (i). O

Proof of Theorem 2. Let £, = (1 — a)é + a&y. Straightforward calculations give

0
_Df (ga)
a=0

0 ((1—04)2Rf(§) + &? Ry (&) 4+ 2a(1—a) [[ pu—v) f(u)f(v)E (du)fo(dv)>

da 1—a) [ f2(u)é(duw) +aff2 §o(du)) o
fop(u—v)f(u)f( v)é(du)éo(dv) [ fA(w)é(d §) [ 2 (w)éo(du)
fo(u)g u))?
2 I p(u—v)f(u)f(v)E (du)fo (dv) ;
T Peid) ( ff2 w)E(du Dy [ P ).

For the delta-measure &, supported at a point ¢ and the necessary condition of the minimum,

we obtain the statement of the theorem. O

Proof of Theorem 3. Direct calculations show that

9 _ o= A1=t) _ o=A(1+1) 1

o(t, &) = w* b\ TI+N

(A1 4 X0 4 %(1 W)

N | —

which is a constant function. The statement of the theorem now follows from Theorem 1,

part (ii). O

Proof of Theorem 4. For a proof of the statement in part (a) we fix a value ¢t € [—1,1].
If t =t; for some j € {0,1,...,2\} then p(t —t;) = 1 and p(t —¢t;) = 0 for all ¢ # j. If
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t € (tj_1,t;) for some j € {1,...,2)\} then
plt—tja) +p(t—1;) =1=At = (G —1)/A=1) +1=M{/A-1) —t) =1
and p(t —t;) =0 for all ¢ > j and all i < j — 1. Therefore, for any ¢ € [—1, 1] we obtain

Zmax{o,l— At—(G/A=1)}=1.

This implies

o(1,67) = / plt — o) (dv) = ——— S max{0,1 = At — (i/A — [} = 1/(1 +2))

1+ 2) &

and

D(E) = [ [ ptu= )¢ (@ug (@) = 1/ +20).

The statement now follows from Theorem 2.

For a proof of part (b) we evaluate the function ¢(¢,£*) on the different intervals (¢;_1,¢;).

First we consider the case where t > t,_1, for which we have

o(t, &) = Z wip(t —t;) + Z wip(t +t;) = Z wip(t —t;) =
(En—1))\(t—1+1/;\)+)\(t+1—(n—I)/)\)—l—n)\(l—t))
n(n+1)

2\
nn+1) "

If t,,_o <t <t,_; it follows

¢(t> g*) - wn—3p<t - tn—3)+wn—2p(t - tn—2)+- . +wnp(t - tn) =

_ m(zx(tﬂ—(n—z)/x)

+(n—1))\(t—1+1/)\)+)\(—1+(n—1)/)\—t)+n)\(1—t))>

2\
nn+1)"’
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while for t,_3 <t < t,,_» we have

¢(t7 €*> = wn—4p(t - tn—4)+wn—3p(t - tn—3)+' . +wn—1p(t - tn—l) =

_ m«n—m}\(t—1+2/>\)+2>\(t+1—(n—2)/)\)
F(n = DA=T+1/A=0) + A1+ (n = 1)/A = 1))

o

- onln+1)

Other cases are considered in a similar way and the assertion follows from Theorem 2. [J

Proof of Lemma 3. Consider the correlation function p(t) = 1/(1 + |t|)®. Then

1 1
2 — a%7? =7’
o a T +

non(t) = ayT (1+ |ant])® (L/an + [t])*

which yields the statement of the lemma. The remaining cases in (20) can be treated similarly

and the details are omitted for the sake of brevity. O

Proof of Theorem 5. If D(&) = 00 or D(&;) = 400 and 0 < o < 1 then D(as + (1 —

a)&) = +oo and the convexity is obvious.

Assume now D(&;) < +oo and D(&;) < +o0o. Define

By = //aNpN u — v)&(du)éy (dv) // r(u —v)&(du)é (dv) ,

//J?VpN(u—v)f(du)f(dv), AN/I/IUJQVPN(U_U)C(‘Z“K(CZU%

14
where ((-) is the signed measure defined by ((du) = &(du) — & (du). Note that

Bx = 3 [Dx(&) + Dx(&) — Ax] 2 0 (20)
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and

Ay = Dn(&) + Dy(&) — 2Bw

A= [ [ rtu=)tdwian) = Di&) + D&) - 28.
Similarly to the proof of Lemma 1, for all N and all 0 < o <1 we have
Dy(aéy + (1 —a)&) =aDn(&) + (1 —a)Dy(&) — ol — a)Ay

and by the Bochner-Khintchine theorem Ay > 0. Levi’s monotone convergence theorem

gives for 4, j € {1,2}

[ [ shontu=v@igan) — [ [ =g ) 27)

as n — oo. The formulae (27) with i = j = 1 and i = j = 2 together with (26) and Ay >0

imply

1
limsup By < lim 3 [Dn(&1) + Dn(§2)] < o0

n—oo

This and (27) with i = 1, j = 2 now imply that the sequence By converges to B (as N — o0)

and B < co. Hence A = limy_.., Ay > 0 yielding the convexity. U

Proof of Theorem 8. A direct computation yields that the integral

1 1 a—1 a—1
/ ———(1+wu)z (1—u) 2 du

1t —ul
is constant for all 0 < a < 1. Consequently, the case (a) of the Lemma follows from the

second part of Theorem 5. Finally the part (b) of the Lemma is a well known fact in the

theory of logarithmic potentials, see for example Saff, Totik (1997). (l
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