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Feasibility and application 
of machine learning 
enabled fast screening 
of poly‑beta‑amino‑esters 
for cartilage therapies
Stefano Perni & Polina Prokopovich*

Despite the large prevalence of diseases affecting cartilage (e.g. knee osteoarthritis affecting 16% of 
population globally), no curative treatments are available because of the limited capacity of drugs 
to localise in such tissue caused by low vascularisation and electrostatic repulsion. While an effective 
delivery system is sought, the only option is using high drug doses that can lead to systemic side 
effects. We introduced poly‑beta‑amino‑esters (PBAEs) to effectively deliver drugs into cartilage 
tissues. PBAEs are copolymer of amines and di‑acrylates further end‑capped with other amine; 
therefore encompassing a very large research space for the identification of optimal candidates. 
In order to accelerate the screening of all possible PBAEs, the results of a small pool of polymers 
(n = 90) were used to train a variety of machine learning (ML) methods using only polymers properties 
available in public libraries or estimated from the chemical structure. Bagged multivariate adaptive 
regression splines (MARS) returned the best predictive performance and was used on the remaining 
(n = 3915) possible PBAEs resulting in the recognition of pivotal features; a further round of screening 
was carried out on PBAEs (n = 150) with small variations of structure of the main candidates from 
the first round. The refinements of such characteristics enabled the identification of a leading 
candidate predicted to improve drug uptake > 20 folds over conventional clinical treatment; this 
uptake improvement was also experimentally confirmed. This work highlights the potential of ML to 
accelerate biomaterials development by efficiently extracting information from a limited experimental 
dataset thus allowing patients to benefit earlier from a new technology and at a lower price. Such 
roadmap could also be applied for other drug/materials development where optimisation would 
normally be approached through combinatorial chemistry.

Biomaterials and drug design are regarded as a very resource (physical, economical and time) intensive 
 operations1; the process can be constructed into sequential stages (discovery, preclinical, clinical and pharma-
covigilance) named Phase0 to Phase4. During Phase0, traditional bench experiments are carried out to identify 
optimal candidates that are screened through further developmental stages; while further clinical trials progres-
sively assess toxicity, efficacy and long term safety (Phase1to Phase4)2. The overall development process can 
take from a minimum of 5 up to 15 years with an estimated total development cost per approved drug of $2168 
million in  20183. However, the actual costs are generally a commercial confidential information and, therefore, 
such estimates may not fully capture the complete investments  required4. The try-and-error approach to molecule 
development, particularly during the initial design and make phases of the design-make-test-analyse (DMTA) 
discovery cycle, is often directed by human intuition, which is inherently biased and limited in knowledge, 
thus slowing drug  development5. In such contest, the ability of data-driven in-silico prediction tools to model 
outcomes without the need to physically prepare candidates and run experiments would enable a fast through-
put screening of candidate molecules and thus reducing both the time and monetary investments required to 
identify lead  candidates6–9. This can be achieved by establishing correlations between certain properties of the 
molecules (inputs, also known as descriptors) and outcomes of interest using experimentally generated data on 
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a subset of relevant compounds; the established model would then be used to predict outcomes on the wider 
molecule search  space10.

Machine learning (ML) based regression techniques are becoming wide spread in many areas of data analysis 
in the  chemical11,12 and pharmaceutical  sector13–16; they have recently been employed in drug  development17–19, 
 diagnostic20, treatment algorithm  optimisation21, drug  repurposing2,22 and material  discovery23,24; however such 
applications are still quite limited despite being very  promising25,26. Another application of ML technologies in 
drug discovery is during compound screening or hit/lead generation and optimization enabling a virtual screen-
ing platform that offers a quicker and cheaper alternative to classic testing of large compounds  libraries27,28; virtual 
screening can be generally classified in ligand-based or structure-based28. Compound optimisation using ML 
enabled virtual screening has been successfully applied to drug development for Alzheimer’s  disease29, Class B 
G protein-coupled receptors (GPCRs)30 and  antiviral31. Figure 1 depicts how ML could be deployed to acceler-
ate the biomaterial development process through virtual screening. Despite the flexibility of ML techniques, 
material design and optimisation involving numerous parameters are situations more likely to benefit from the 
development of machine learning predictive models.

Osteoarthritis (OA) is a thinning or loss of the cartilage layer covering the surfaces of joints reducing articular 
mobility, causing pain and inflammation. Although OA is not a life threating disease, it has a great impact on the 
quality of life of patients and their ability to perform regular activities resulting in a great burden to society and 
health care providers. Worldwide, 303.1 million of people live with hip or knee  osteoarthritis32; furthermore, 
OA prevalence is expected to grow as consequence of the ageing population and overnutrition (two critical risk 
factors for OA). An effective treatment is still missing, current therapies (anti-inflammatory and analgesics) 
are only managing symptoms. This lack of therapeutic options is compounded by the inability of delivering the 
active molecule where is needed because of the obstacles posed by the low vascularisation and high electrostatic 
repulsion of cartilage tissues; these factors limit the amount of drug effectively available to the targeted  cells33. 
In order to achieve drug localisation, without a delivery system, high concentrations of drugs are used in the 
synovial fluid as mass transfer is governed by concentration differences (Fick’s law)34–36. Such approach has some 
problematic drawbacks; firstly, it is a wasteful use of the drug as only a minimal amount is actually therapeutic, 
with consequences on treatment acquisition costs. Secondly, drug washout lead to systemic exposure with pos-
sible side effects, as in case of  steroids37.

Different drug delivery systems have been developed for the localisation of drugs in cartilage in the attempt 
to overcome such barriers; poly-beta-amino-ester (PBAEs)38,39 and  avidin34 are two examples of these delivery 
systems. While no particular optimisation of the delivery system based on avidin performance is feasible as this 
a well-defined protein; there are, instead, essentially ∞2 possible PBAEs as these are copolymers of an amine and 
a di-acrylate40. Moreover, when PBAEs end-capping is also considered, the possible combinations rise to ∞3. In 
light of the performance of PBAE as cartilage drug delivery system being extremely dependent on the polymer 
backbone; ML algorithms predicting the efficacy of the drug delivery in cartilage from the polymer’s constituents’ 
properties would provide a high throughput screening for the optimisation of the PBAE driven cartilage drug 
localisation technology, reducing the cost and time to select the most promising candidate. We have previously 
demonstrated how the uptake of dexamethasone (DEX) (a drug routinely administered in clinics through intra-
articular injections to reduce OA symptoms) in cartilage tissue, through a poly-beta-amino-ester drug delivery 
system, could be modelled using partial least square  regression38,39. The inputs of this model are the physical 

Figure 1.  Schematic representation of machine learning driven drug development process.
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properties of the polymers and co-polymeric units (di-acrylate and amine) along with some experimentally 
obtained parameters such as the diffusion coefficient of the polymer through cartilage, the drug loading in the 
delivery system and the molecular weights (Mw and Mn) of the polymer  chain39. Through this previous work, 
we identified a polymer (current lead candidate obtained from screening the combination of 3 acrylates and 15 
amines) that increased DEX uptake in cartilage about 8 times compared to the clinical  formulation39. Despite 
the ability of predicting uptake, this model, in order to make predictions on new candidates, still requires inputs 
generated by experiments (such as Mw, Mn and diffusion coefficient) thus not fully able to completely substi-
tute lab-based work. With the purpose of accelerating the optimisation of the PBAE structure for the cartilage 
delivery system through a systematic screening of a large library of both acrylates and amines, we hypothesised 
that machine learning algorithms, utilising only predictors available in public libraries or calculated from the 
compound structure, namely the physico-chemical properties of the PBAE components, could be employed to 
fully predict the performance of the delivery system without the need for any experimentally originated data. 
Drug uptake data experimentally obtained from a subset of a large polymer library were utilised to train and 
optimise 25 machine learning models (e.g. Random Forests, Kth nearest neighbour (kNN), support vector 
machine (SVM), neural network and multivariate adaptive regression splines (MARS)) and investigated their 
predictive performance to identify the most accurate algorithm. This model was then employed to screen the 
PBAEs research space (round1) representing acrylates and amines with a wide range of structural features and 
moieties; key features in the amine and acrylate structure were recognised in the PBAEs predicted to return the 
greatest drug uptake, further elucidating correlations between PBAE structural properties and drug uptake. A 
further round of ML predictions (round2) was conducted to refine and improve efficacy, screening a new set 
of PBAE exhibiting structures with small variations of the core features of the main candidates identified in 
the first round. The most promising candidate identified at the end of round2 had a predicted 3 folds efficacy 
improvement over the previous best performing candidate (round1). Finally, the actual efficacy and safety of the 
predicted best candidate were also experimentally determined.

Results
Machine learning model selection. Amine 1 to 20, acrylates A to F and end-capping e-1 and e-2 were 
used to generate the library of PBAE-DEX used for the experimental determination of DEX uptake in cartilage; 
in total 15*6*2 = 180 unique PBAE were synthesised, doubling the size of the experimentally tested PBAE. After 
random splitting, the train set included 70 PBAEs, while the remaining 20 PBAEs constituted the test set. As the 
ultimate purpose of modelling is being able to estimate outcomes (in our work the uptake of DEX in cartilage) 
on previously unseen predictors, a split of the initial dataset into train and test set was implemented to be able to 
identify the model with the greatest predicting ability that is not necessarily the one that return the most accurate 
fit of the data used to calculate the model parameters (i.e. regression coefficients)41,42. For the same reason, data 
split in training and test set was stratified based on PBAEs thus experimental data of DEX uptake for different 
exposure duration and related to PBAE with different end-capping all belonged to one set only. The 25–75% split 
also is in the typical range to provide sufficient data points for both model parameters estimation (training set) 
and  testing43–46. Therefore, it was expected that all models performed better on the training set than on the test 
set (Fig. 2).

Bagged multivariate adaptive regression splines (bagged MARS) returned the lowest Root Mean Squared 
Error (RMSE) on the test set (0.072). Random Forest had the lowest RMSE on the training set (0.036) but the 
second lowest on the test set (0.073). Furthermore, regressions based on decision trees/random forests do not 
allow for extrapolation of the measured outcome beyond the training set and such would limit the possibility of 
identifying PBAE performing better the experimentally observed optimal candidate. Linear regression (forward, 
backward or stepwise) had the highest RMSE on the training datasets, 0.128, 0.128 and 0.124, respectively. The 
difference in model performance between train and test set depended on the algorithm used; for example elastic 
regulation had RMSE of 0.080 and 0.081 for train and test set respectively, while Bayesian addictive regression 
trees returned RMSE of 0.043 and 0.149 on train and test set, respectively. The small difference between the 
RMSE on train and test set observed for the elastic regulation model is a consequence of the penalties assigned 
to predictors in the algorithm that reduce the risk of  overfitting42,47. Moreover, boosting and bagging improved 
model performance (Fig. 2), for example RMSE of bagged MARS was lower than MARS and random forests 
had lower RMSE than decision tree. This was expected as such approaches have been developed to improve on 
model  performance42,47. Bagging is the process of resampling from the same data set to generate numerous new 
datasets then used to fit the model, this bootstrapping reduces overfitting and model  variability42,47; on the other 
hand, boosting employs weak predictors to improve on the predictions of other  predictors48.

The optimisation of the bagged MARS model hyper-parameters showed that with increasing number of 
bagged samples, mean RMSE during cross-validation decreased; averaging 75 resamples gave the lowest RMSE 
(Fig. 3a) while the number of pruned parameters increased model performance monotonically, but RMSE mar-
ginally decreased with the combinations of more than 10 (Fig. 3b). Moreover, performance of bagged MARS 
improved when the degree of interaction between parameters increased from 1 to 2 (Fig. 3b). The optimal bagged 
MARS model was made of a combination of 75 MARS models with a median number of predictors of 9 and a 
median number of terms of 15.

DEX uptake predicted by the optimised bagged MARS model against the actual data for the test data set 
(Fig. 4a) revealed a general good agreement between prediction and actual data regardless of the PBAE end-
capping agent while the residual distribution exhibited a gaussian distribution (Fig. 4b). Similar patterns were 
observed when the model was applied on the train set (Fig. 4c and d); however, the residuals were smaller 
resulting in a narrower distribution. Modelled uptake curves of DEX in cartilages with PBAE in the test set 
demonstrated a general good fit of the experimental data (Fig. 4e).
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Figure 2.  Comparison of the different performance of the tested algorithms on the train (blue) and test set 
(red).

Figure 3.  Relation for bag MARS models between RMSE (mean ± SD) for tenfold cross validation repeated 
3 times and (a) number of resamples and (b) number of terms and degree of correlation (n = 1 ■, n = 2 ■) 
(number of resamples = 75).
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The variable with the greatest importance in the bagged MARS model was ZStericQuad3D of the amine 
component, followed by the complexity of the amine component and the Henry’s law coefficient of the PBAE 
repeated unit; the variable with the lowest importance was the molecular weight (MW) of the acrylate component 

Figure 4.  Comparision of predicted and experimental DEX uptake for PBAE-DEX (endcapped with e-1 ■ and 
e-2 ■) in the test (a) and train set (c); distributioin of residuals of DEX uptake predictions for PBAE-DEX in 
the test (b) and train set (d). Comparison of time dependent DEX uptake (mean ± SD) in cartilages predicted by 
optimised bag MARS model for PBAE in the test dataset (e).



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14215  | https://doi.org/10.1038/s41598-022-18332-3

www.nature.com/scientificreports/

(Fig. 5a). In order to gain insights on the relations between the chemical and topological properties of the PBAE 
and the efficacy in localising DEX in cartilage, the specific dependence of the DEX uptake on the individual 
predictors was analysed on through the partial dependency plot (PDP).

These plots represent the predicted outcomes against a single varying input variable while maintaining the 
remaining constant at their mean values. PDP revealed ZStericQuad3D returned a maximum DEX uptake 
at ~ 0.83; while complexity of the amine decreased DEX uptake for values up to 50, for greater amine complex-
ity predicted DEX uptake increased monotonically but was lower than the maximum (complexity = 0) for the 
maximum amine complexity in the library tested (Fig. 5b). As the models were trained on transformed values 
the relations between variables and drug uptake does not appear linear on the back-transformed predictions.

PBAE structure optimisation. The optimised bagged MARS model was applied on the remaining PBAE 
search space constituted by 3915 un-synthesised polymers to predict DEX uptake in cartilage after 10 min of 
exposure to PBAE-DEX when end-capped with e-1 or e-2. The results of this round1 screening identified 3192 
PBAEs, regardless of the end-capping (end-capping agent e-1 returning predominantly higher drug uptake than 
e-2 on the same PBAE backbone), with an expected DEX uptake greater than the commercial formulation. 
Furthermore, 11 polymers with a predicted uptake greater than the previous leading candidate, which returned 
a drug uptake about 8 times that of DEX commercial formulation, were identified through the model. These 
PBAEs clustered very closely according to the dendrogram determined using the chemico-physical properties 
of the polymers and were made mainly by acrylate AAA (Phenylmethanediol diacrylate) or XX (1,4-Phenylene 
diacrylate) and amine 69 (2-Amino-5-(cyclopropyl)pyrazine) or 70 (2-Amino-6-propylpyrazine). PBAE can-
didate XX-69 was predicted to exhibit the greatest uptake among the full PBAE library tested, about 13 folds 
greater than the commercial formulation (Figs. 6 and S5).

1,4-phenylene diacrylate and (acrylate XX) and phenyl-methanediol diacrylate (acrylate (AAA) are the only 
acrylates tested exhibiting a benzene group where the electron of the oxygen atoms forming the di-acrylate groups 
can resonate reducing the impact of the electrostatic repulsion between some areas of the PBAE backbone and 
glycosaminoglycans (GAG) constituents of cartilage. Similarly, the presence of pyrazine in the amine constituent 
can increase the availability of the electron pair in the nitrogen resulting in higher positive charge. These two 
features were assumed to be key properties for effective drug delivery in cartilage and a refinement of the PBAE 
structure was carried out screening further acrylates (n = 3) exhibiting at least a benzene group in proximity 
of the acrylate moiety along with amines (n = 50) with a pyrazine in their structure (Fig. S6) in Round2. 17 of 
the 150 PBAEs tested in round2 had an estimated DEX uptake greater than XX-69 (best performer in round1); 
the presence of a further tertiary amine bound to the pyrazine ring resulted in greater DEX uptake in cartilage; 
moreover, two benzine groups (Bisacrylic acid oxybis(4,1-phenylene) ester) improved on the drug delivery 
(Figs. 7 and S7). The most effective PBAE (DDD-114) identified in round2 had a predicted DEX uptake about 
21 time greater than the commercial formulation.

Ex‑vivo performance of best candidate. DEX uptake in cartilage using DDD_114 increased with 
increasing exposure time; after 10 min the among of drug retrieved from the samples using the PBAE based 
drug delivery system was over 20-folds the commercial DEX-P formulation confirming the model predictions 
(Fig. 8).

Mitochondrial activity of chondrocytes was not affected by the presence of the polymer (DDD_114_e1) 
(p > 0.05) (Fig. 9).

Discussion
The key to accurate predictions through mathematical models is the size of the data set used for the estimation 
of the model  parameters49. As our previous work hinted to the possibility of modelling cartilage drug uptake 
achieved by PBAEs conjugated to  DEX39, the machine learning models in this work were trained using a  dataset39 
doubled in size with further polymers to reach a sufficient level of confidence in the model estimates. The work 
presented here considers only two end-capping agents treated as a categorical variable; the actual properties 
of the compounds were not considered as the number of molecules did not allow to capture such parameters.

Majority of research dedicated to implement ML in drug discovery/chemistry employs a very narrow range 
of potential models, even just  one49–51, without a clear rationale for the selection of the algorithms included in 
the pool  assessed5,18,52–55. Here instead, we purposely screened a large number of potential algorithms based on 
different approaches (e.g. decision tree, linear regression, SVM and neural network) in order to maximise the 
strength and transferability of the results while, simultaneously, increase the likelihood of identify a satisfactory 
predictive model.

MARS are an extension of linear models that can account for nonlinearities between input and output values 
through the use of hinge functions and interactions between variables combining flexibility and interpretability 
of  results42,47. The overall regression model “goodness of fit” depends on hyperparameters such as the number 
of pruned parameters and the degree of interaction between predictors. Bagged MARS is an ensemble of MARS 
constructed on a randomly generated bootstrapped set of data. Although it was expected that aggregating fur-
ther resamples would improve model predictive performance, no more than 75 resamples were implemented in 
this work as the reduction in RMSE from 50 to 75 resamples was already minimal and a further increase of the 
resamples would also impact computational time.

The efficacy end-point experimentally assessed in this study was the amount of drug retrieved from a cartilage 
sample after contact with the PBAE based delivery system; this could not itself differentiate between actual drug 
penetration or accumulation on the external cartilage surface. However, previous evidence demonstrated that 
PBAE drug delivery systems diffuse inside the cartilage tissue underlying the validity of the  approach38,56. The 
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Figure 5.  Variable importance in optimised bagged MARS model (a) and partial dependency plot of optimised 
bagged MARS model compared to experimentally obtained data for 10 min uptake of DEX into cartilage (b).
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electrostatic interactions between positively charged PBAE and cartilage tissue components (predominantly the 
highly negatively charged GAGs) are the key mechanism of action of the delivery system under the presented 
investigation. The ranking of the PBAE properties variables showing quadrupole on the Z axis of the amine com-
ponent as the key parameter demonstrated by the analysis of variable importance is in agreement with the mecha-
nisms of action and it was also found to be one the key parameters when PLS regression was carried out using not 
only chemico-physical properties but also experimentally determined characteristics (diffusion coefficient, zeta 
potential and molecular weight of the polymer)39. These PBAEs properties were not explicitly considered in the 
work as it was assumed that they depend on the properties of the amine and acrylate constituents and that the 
ML models would capture the correlation between drug uptake and polymer properties such as MW implicitly.

The optimal components identified here are structurally very different from those found as optimal copoly-
mers for PBAE application in DNA  vector40,57 and a direct consequence of the different mechanisms involved 

Figure 6.  Heatmap of predicted ratio of DEX uptake for PBAE endcapped with e1 conjugated with DEX over 
commercial formulation of DEX after 10 min of exposure and structure of PBAE repeated unit with predicted 
drug uptake superior to experimental found candidate.

Figure 7.  Heatmap of predicted ratio of DEX uptake for PBAE during round2 endcapped with e1 conjugated 
with DEX over commercial formulation of DEX after 10 min of exposure and structure of PBAE repeated unit 
with predicted drug uptake superior to best candidate in round1.
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in the technology (DNA binding and cell membrane penetration vs. electrostatic attraction toward negatively 
charged GAG chains in cartilage).

The application of ML to PBAE structure optimisation for drug delivery in cartilage presented in this work can 
also potentially act as blueprint for the optimisation of other applications of PBAE such as drug releasing degrada-
ble  coatings58, non-viral DNA vectors for gene  therapy40 and mRNA  vaccines57 fast-tracking products to patients 
where, to date, only a lab based combinatorial chemistry approach to optimisation has been  undertaken59. The 
expected reduction in the time required to screen numerous polymers will also be coupled with monetary saving 
in the drug development costs with clear benefits not only to patients but also to health care providers.

We demonstrated an ML guided drug design optimisation approach that accurately predicts the relation 
between structure/property and outcome requiring only 2% of the compositional space (90 out of at least 3915 
copolymers) to be experimentally explored. Our work led to the discovery of several PBAEs expected to result 
in a higher drug uptake than those of previously reported candidates. The actual efficacy was also determined 
and found to be very close to that predicted by the model (Fig. 8). Additionally, no negative impact on chondro-
cytes viability (Fig. 9) was detected for such PBAE as in line with the well-known safety of such  polymers40,59. 
Moreover, the trends uncovered between properties and efficacy of the polymers, along with the non-intuitive 
optimal design elements of PBAE for cartilage delivery identified in this study, such as the presence pyrazine in 
the amine constituent (likely related to the increased hydrogenation of the nitrogen atom), are also critical in 
the search for next-generation polymer driven cartilage delivery systems.

Methods
PBAE are denoted throughout the text with a code containing letters referring to the diacrylate (Fig. S1) and 
numbers (Fig. S2) referring to the amine; for example, A5 is the polymer made from 1,4-Butanediol diacrylate 
and 3-(dimethylamino)propylamine. The polymer backbone code is followed by e1 for PBAE end-capped with 
ethylene-diamine and e2 for PBAE end-capped with diethylene-triamine.

Figure 8.  Uptake profile of DEX in cartilage using predicted best performing PBAE (DDD_114_e1-DEX).

Figure 9.  Mitochondrial activity of chondrocytes in cartilage explants cultured with basal media or medium 
containing predicted best performing PBAE (DDD_114_e1-DEX).
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Data analysis. All models were fitted through  R60 and all other necessary packages necessary to perform 
regression with the “caret”  package61.

Manhattan distance between PBAEs and complete distance between clusters were used for generating 
dendrograms.

Datasets and descriptors. Two PBAE uptake datasets were used to develop predictions, the publicly available 
 set39 was expanded with a purposely obtained new set collected after the inclusion of further acrylate monomers 
in the library.

Drug uptake predictions were performed utilizing physical and chemical parameters of amine and acrylate 
components of each PBAE obtained from PubChem library (Mw, logP, tPSA, Complexity, Heavy Atom Count, 
Volume 3D, X_Steric Quadrupole 3D, Y_Steric Quadrupole 3D, Z_Steric Quadrupole 3D); along with param-
eters related to the repeated polymeric unit (amine + acrylate) calculated through ChemDraw. The later included 
boiling point, melting point, critical volume and pressure, Gibb’s free energy, logP (partition-coefficient between 
two immiscible phases at equilibrium which is proportional to hydrophobicity), solubility (logS), pKa, molar 
refractivity (CMR), heat of formation and the topological polar surface area (tPSA), which represent the total 
area of all polar atoms (mainly oxygen and nitrogen) including their affixed hydrogen atoms.

Kth nearest neighbour imputation was employed to handle missing  data47.

Machine learning algorithms training and predictions. Outcome data were transformed (1/y4) to achieve a dis-
tribution of the drug uptake closer to a gaussian profile; moreover, input values for possible predictive variables 
were centred and scaled using mean and standard deviation.

A random split of the PBAEs into training (75%) and test (25%) datasets was applied. Weights to each point 
were assigned proportionally based on the distance from the median. Classic Machine Learning methods, such 
as Bernoulli Naive Bayes, Elastic regularisation, kNN, generalised addictive models (GAM), Decision Tree, Ran-
dom Forests, Neural Networks and SVM were employed to establish correlations between predictors and drug 
uptake. Tuning and hyper parameters search for each model were conducted through tenfold cross validation 
repeated 3 times on the training dataset; final model selection was based on minimisation of RMSE. The same 
training and test data set were employed for all models tested.

The best performing predictive model was used to estimate the drug uptake of the PBAE not previously 
experimentally tested in a two-steps approach. During the first round, amine and acrylates exhibiting a variety of 
structural features and moieties was employed to recognise critical patterns. In round2, variations of the pivotal 
characteristics observed in round1were explored to further refine the optimal candidate.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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