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Abstract— A novel quantum landscape optimization with
respect to bias field control inputs is developed with the goal
of achieving optimal transfer fidelity subject to robustness
against bias field, spin couplings and other uncertainties. This
objective is achieved by minimization of a convex combination
of fidelity error and worst-case perturbation of fidelity error
under directional perturbation of uncertain parameters. The
novelty is that the end-point perturbations of the parameters
are points of a random uniform sampling of the sphere centered
at the nominal values of the parameters. This reveals that the
previously developed perfect state transfer with zero sensitivity
solution keeps high fidelity and robustness under large rather
than differential perturbations.

I. INTRODUCTION

Over the past few years, the search of control laws
for quantum devices to achieve ultra-accurate tasks under
technological limitations on both the devices and the imple-
mentation of the control inputs has emerged of paramount
importance for the quantum revolution to be successful [1]–
[3]. More technically speaking, the hope is to achieve high fi-
delity simultaneously with high robustness. The fundamental
limitations on achievable performance imposed by traditional
control under the single degree of freedom configuration
appears to place a roadblock to such endeavor [4]. However,
the difficulty of implementing a traditional feedback around
an uncertain quantum system has led to quantum control
architectures differing from the formalized traditional control
architecture [5], leaving a glimpse of hope that an ideal high-
fidelity, high-robustness solution could be found. In fact, such
an elusive control law has been found for single excitation
transfer in spin chains [6, Th. 3]: the so-called super-optimal
fidelity solution has vanishing fidelity error and vanishing
differential sensitivity relative to Hermitian perturbations of
the Hamiltonian. This overshadows the adversarial game
approach [7], in which the controller is designed under the
worst possible circumstances in the uncertainties. However,
the game approach is not restricted to differential pertur-
bations and could give the elusive differentially optimal
solution of [6] some numerical robustness by considering
larger variations than the differential ones.

Specifically, the design optimization criterion is a convex
combination of fidelity error and worst-case deviation of the
fidelity under uniform sampling of the directions of uncer-
tainties of the parameters. An optimisation over a weighted
sum of fidelity error and its first derivatives would yield a
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“flat” minimum. But here instead of first order derivatives,
we use finite differences, which then still seek for a flatter—
hence more robust—minimum, depending on the range.

Regarding applications, emphasis is on excitation-encoded
information transfer in spin chains.

II. THEORY AND PROBLEM SETUP

A. Network of Spins & Control Problem

This paper investigates information propagation in net-
works of N spins. Our focus is a spin-1/2 system, with two
spin states, |0〉 and |1〉, where the Hamiltonian H∆ is given
by [8]:

H∆ =

N∑
n=1

dnZn +

N∑
n 6=m

Jmn (XnXm + YnYm) . (1)

The first term of the RHS of Eq. (1) is the control part of the
Hamiltonian where dn is the external control input on spin
# n. The second term denotes the unforced spin dynamics.
Xn is an operator in the 2N -dimensional Hilbert space and
is defined by the tensor product of N − 1 identity operators
and the Pauli operator σx in the nth position. Operators
Yn and Zn are defined in the same way as Xn using the
Pauli operators σy and σz , respectively, and Jmn denotes
the coupling between the nth and mth spins. We consider a
network with chain topology, i.e., there are only couplings
between neighboring spins; thus Jmn = 0 for m 6= n+1 and
we further assume that the spins are linked with the same
strength, which is normalized to 1 for simplicity, resulting
in Jn,n+1 = 1. Based on the above, restricting H∆ from
Eq. (1) to the single excitation subspace where one and only
one spin is excited, we obtain the following Hamiltonian:

H∆ =


d1 1 0 . . .
1 d2 1 . . .

0
. . .

1 dN

 .
H∆ is a tridiagonal matrix containing the vector of control
inputs ∆ = [d1 d2 . . . dN ] in the diagonal and the couplings
of 1 in the sub- and super-diagonals. The diagonal element
dn represents the bias field or voltage that controls the
potential of the nth spin [8].

The dynamics of the information propagation in a chain
with a single excited qubit are given by Schröndiger’s
equation:

i~
∂

∂t
Ψ(t) = H∆Ψ(t), (2)



where Ψ(t) is an N -dimensional unit-norm vector denoting
the state of the spins. A common performance metric of state
propagation is the overlap between a target state |OUT〉 and
the state propagated by the system’s dynamics (Eq. (2)) with
initial state |IN〉:

Ft(∆) , | 〈OUT| e−iH∆t |IN〉 |2. (3)

Eq. (3) defines the fidelity Ft(∆) and can be interpreted as
the probability of successful information propagation; thus
0 ≤ Ft(∆) ≤ 1. The fidelity error or infidelity is defined
as 1 − Ft(∆). The time t is the time required to complete
the propagation of an excitation in the network. As shown
in [8], the parameter t greatly affects the fidelity and it is
imperative to treat it as a variable rather than as preselected.
Thus, our goal becomes the computation of the appropriate
input vector ∆ and time t such that the fidelity Ft(∆) is
maximized:

min
∆,t

(1− Ft(∆)) . (4)

Relevant work [9] has shown that the landscape of Eq. (4)
is complicated with many local maxima/minima, making
the accurate solution for the optimal parameters ∆ and
t a challenging task. In [10], the authors modify convex
optimization methods to maximize the fidelity subject to
model uncertainties and in [11] Khalid et al. use model-
agnostic reinforcement learning methods to explore the com-
plex fidelity surface and obtain high fidelity solutions.

B. Robustness under Uncertainties

In practice, the bias controls dn applied as inputs to
the spin network (theoretically to the Hamiltonian) will
involve field uncertainties. Maintaining high fidelity given
the input or Hamiltonian uncertainties requires robustness-
aware solutions to transfer fidelity optimization. In addition
to maximizing Ft(∆), we want the solution that yields high
fidelity to be robust against such uncertainties as those of the
bias fields and the couplings. Thus we modify the optimiza-
tion problem of Eq. (4) to minimize a convex combination
of fidelity error and worst-case large-scale sensitivity:

min
∆,t

α (1− Ft(∆)) + (1− α)‖δFt(∆)‖∞. (5)

The first term of Eq. (5) penalizes the fidelity error whereas
the second term of (5) penalizes the worst-case perturba-
tion of the fidelity for a uniform sampling of directional
variations of the control parameters. δ is the directional
variation operator along the unbiased sample of directions,
and the infinity-norm indicates the worst-case direction of the
variation of Ft(∆). By appropriately choosing the parameter
α in problem (5), we opt to slightly lower the fidelity to
achieve significantly higher robustness.

The new metric ‖δFt(∆)‖∞ is a large-scale version of the
differential metric,

∂Ft(∆) = max
‖h‖=1

|∇Ft(∆) · h|

Intuitively, if ∂Ft(∆) = 0, the peak of the fidelity is “flat”
hence giving the design some good sensitivity properties;

if on the other hand ‖δFt(∆)‖∞= 0 the fidelity “peak”
would be “flatter” across a larger region of ∆’s, hence with
better robustness properties. This resolves the concern that
points with high fidelity lie in sharp peaks of the optimization
landscape and even minor in scale noise or uncertainties can
greatly increase the fidelity error.

As shown in [6] and using the first order optimality
criteria, the differential of the fidelity with respect to any
control input and the differential with respect to coupling
uncertainties are zero. But a better solution would be one
that results in high fidelity and low large-scale differential.
This solution is attempted to be achieved with the parameter
0 ≤ α ≤ 1 which is set to balance the tradeoff between
fidelity Ft(∆) and robustness ‖δFt(∆)‖∞.

C. Fidelity Large-Scale Differential

We define the fidelity large-scale differential as the for-
ward difference of the fidelity along ∆ or other perturbative
directions.

1) Perturbation I: In a network of N spins, the fidelity
large-scale differential δF relative to a basis {ei} is an
N -dimensional vector with ith component given by

[δF et ]i =
Ft(∆ + εei)− Ft(∆)

ε
, (6)

where ε is a larger than infinitesimal change that represents
the strength of such change and ei is the ith standard basis
vector.

2) Perturbation II: More generally, the fidelity large-scale
differential for a sample of vectors h uniformly distributed
over the unit sphere is defined as

δFht =
Ft(∆ + εh)− Ft(∆)

ε
, (7)

where ε is the strength.
3) Hamiltonian perturbation: We also consider uncertain-

ties in J-couplings between the spins in the Hamiltonian.
Those uncertainties can be caused by coupling identification
errors, by non-homogeneous bias fields, or chain engineering
errors. The perturbed Hamiltonian is then given by

Hp
∆ =

N∑
n=1

dnZn +

N∑
n 6=m

Jmn(1 + εn) (XnXm + YnYm) .

(8)
Here, contrary to the ei and h cases, ε is a 0-mean random
noise of standard deviation σε : εn ∼ N(0, σε). Using
the perturbed Hamiltonian, we compute the corresponding
fidelity

F pt (∆) , | 〈OUT| e−iHp
∆t |IN〉 |2

and define the fidelity large-scale differential corresponding
to Hamiltonian perturbation Hp

∆:

δF pt =
F pt (∆)− Ft(∆)

σε
. (9)

The dimension of the vector δF pt is the size of the random
sampling of ε.



4) Computational complexity: Each component of either
δF et , δFht or δF pt requires evaluation of a matrix exponen-
tial, which for every single directional perturbation requires
O(N3) flops (assuming diagonalization or Pade approxima-
tion is used).

III. RESULTS & DISCUSSION

A. Solution Perturbations I

Initially we examine the fidelity and robustness perfor-
mance of our formulation of Eq. (5) using the robustness
metric given by Eq. (6). For that matter, we investigate the
effect of the parameter α in weighing the infidelity 1−Ft(∆)
and robustness δF et (∆). We ran simulations with increasing
α. For each α we repeated the simulation 10 times, each time
for different N (4 ≤ N ≤ 12), |IN〉 and |OUT〉 randomly
chosen. The average performance of the 10 trials for each
α for strength level ε = 5% is presented in Fig. 1. We
observe that increasing α results in lower infidelity and worse
robustness since the large-scale differential is significantly
increased. It should be mentioned, however, that for some
α we obtain good performance on average for both fidelity
error and large-scale sensitivity, the point (0.025, 0.25) that
lies at the bottom left-hand corner of the plot. Such data
point contradicts the traditional conflict between error mini-
mization and error sensitivity minimization [4].

Finally we compare the effect of α in each individual met-
ric. Using the same simulation setup as above, we present the
distributions of 1−Ft(∆) and δF et (∆) in Figs. 2 and 3, resp.
As expected, for small α, the infidelity distribution spans
the whole range of [0, 1], while the large-scale differential
remains low. Increasing α results in an increasing trend in
the differential and a decreasing one in the infidelity. Thus,
statistically, a Pareto-like conflict between two objectives
develops where improving one objective is accompanied by
a deterioration of the other objective.

B. Solution Perturbations II

In this section we further investigate the robustness per-
formance of Eq. (5) under control input uncertainties in any
direction, as per Eq. (7). We designed a similar experimental
setup as in Sec. III-A and simulated Eq. (5) for 20 randomly
chosen N , |IN〉 and |OUT〉. The results are presented in
Figs. 4-6.

In Figs. 5 and 6, we note that α has similar effect as in
the results of Sec. III-A. Namely, increasing α decreases the
fidelity error and increases the large-scale sensitivity. In this
case, we can also achieve a result in which both the infidelity
1−Ft(∆) and worst-case differential δFht (∆) are kept low,
the (0.03, 0.24) data point in the bottom left-hand corner of
Fig. 4.

C. Hamiltonian Perturbations

In this section we consider the uncertainties in the Hamil-
tonian Hp

∆ rather than in the control input ∆, as defined
by Eq. (9). We simulated Eq. (5) using δF pt as robustness
metric, for different α and σε. The number of spins N was
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Fig. 1. Scatter plot of average fidelity error 1− Ft(∆) vs ‖δF e
t (∆)‖∞

for bias field perturbations. The strength level was set to ε = 5% and the
range of α was from 0.1 to 1. Each simulation of Eq. (5) was ran 10 times
for the same α value and the average results per α are presented.

randomly chosen between 4 and 12, and |IN〉 and |OUT〉
were randomly sampled from {1, . . . , N}.

Fig. 7 shows the effect of the parameter α on fidelity
error and robustness. For each α we simulated Eq. (5) 20
times, and each time we sampled Hp

∆ 10 times. Each point
in the plot represents the average fidelity error and large-
scale differential for a specific α. Overall, the fidelity error
is relatively low ranging from 1% to 10% while the differ-
ential shows greater variance. The same figure illustrates the
tradeoff between minimizing the two conflicting objectives,
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Fig. 2. Infidelity 1−Ft(∆) distributions for bias field perturbations. The
strength level was set to ε = 5% and the range of α was from 0.1 to 1.
Each simulation of Eq. (5) was ran 10 times for the same α value.
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Fig. 3. Worst-case differential ‖δF e
t (∆)‖∞ distribution for bias field

uncertainties. The strength level was set to ε = 5% and the range of α was
from 0.1 to 1. Each simulation of Eq. (5) was ran 10 times for the same
α value.

i.e. fidelity error and differential: low α values yields low
‖δFt(∆)‖∞ hence increased robustness performance, at the
cost of higher fidelity error. As for the case of bias field
uncertainties, the case of Hamiltonian uncertainties also
reveals a near perfect solution, but this time in the sense
of a Pareto-optimal point (0.1, 0.01) at the bottom left-hand
corner of Fig. 7.

From Figs. 8 and 9, as we increase α, the infidelity is
slightly decreased while ‖δFt(∆)‖∞ is slightly increased.

Finally, the direct comparison of the fidelity optimiza-
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Fig. 4. Scatter plot of average infidelity 1− Ft(∆) vs ‖δFh
t (∆)‖∞ for

input uncertainties. The strength level was set to ε = 5% and the range of
α was from 0.1 to 1. Each simulation of Eq. (5) was ran 10 times for the
same α value and the average results per α are presented.
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Fig. 5. Infidelity 1−Ft(∆) for bias field uncertainties. The strength level
was set to ε = 5% and the range of α was from 0.1 to 1. Each simulation
of Eq. (5) was ran 20 times for the same α value.

tion (Eq. (4)) and mixed sensitivity optimization (Eq. (5))
reveals that mixed sensitivity offers increased robustness
performance. For the same N , |IN〉 and |OUT〉 we simulated
Eq. (4) and Eq. (5) for varying σε. The distribution of the
robustness δF pt (∆) for 20 simulation runs for each noise
level σε is presented in Fig. 10, where δF pt is lower for mixed
sensitivity at each noise level. For the same experimental
setup, we also present the infidelity in Fig. 11. For every
noise level ε, the fidelity error is greater for the mixed
sensitivity, a fact that indicates the trade-off between fidelity
and robustness.

IV. CONCLUSION

Classical control places some severe limitations on designs
of the single degree of freedom configuration attempting to
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Fig. 6. Worst-case differential ‖δFh
t (∆)‖∞ distribution for bias field

perturbations. The strength level was set to ε = 5% and the range of α was
from 0.1 to 1. Each simulation of Eq. (5) was ran 20 times for the same
α value.
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Fig. 8. Fidelity error 1−F p
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for different α. The noise level was set to ε = 5% and the range of α was
from 0.01 to 0.999 with step 0.04. Each boxplot contains 20 samples from
simulations of Eq. (5). Despite the perturbations, our approach kept the
fidelity error in relative low levels (< 10%), even though in some cases we
have some outlier values.

achieve small error and small sensitivity of error to pertur-
bation [4]; however, the 2-degree of freedom configuration
alleviates such limitations [12]. Architecturally, information
transfer by bias field control appears to be of some 2-degree
of freedom configuration with an additional global phase
along the loop [5]. This at least partially explains—from a
classical control perspective—earlier studies [6], [13] point-
ing to concordance between small error and small differential

sensitivity to perturbations. The scatter plots of Figs. 1, 4,
and 7 show the extent to which such concordance holds for
large perturbations. The case of Hamiltonian perturbation
of Fig. 7 with the data points clustering to the left appears
to defy this conflict, whereas the case of sphere sampling
of Fig. 4 with its hyperbolic cluster is more mitigated.
However, for all 3 cases, there is an α (close to 0.9) achieving
concordance between error and large-scale sensitivity. Such
conclusion corroborates the earlier findings of [6], [13]
by showing that they hold under variation larger than the
differential one—in a move that parallels the development of
classical robust control when it transitioned from differential
to large variations [4].

APPENDIX

A. Uniform sampling of the sphere

Eq. (7) explores different directions defined by the unit
vector h. Since h ∈ RN and ‖h‖ = 1, h runs on the unit
sphere SN−1. Clearly, uniform sampling of the sphere is
required to have an accurate estimate of the variation along
the worst direction with a minimum number of function calls.
Such sampling can also be defined as fair, that is, it does not
privilege any direction. Formally, a uniform sampling of the
sphere is a set of points that is invariant under discrete groups
of rotations around N basis axis. For example, the vertices
of a regular icosahedron form a 12-point uniform sampling
of the sphere invariant under 2π/5 rotation about the axis
from the center of the sphere to the vertex. Symmetry about
axes from the center of the sphere to the centers of the faces
involves a representation A5 → SO(R3) of the alternating
group on 5 elements. The problem is that construction of a
uniform sampling by forcing rotational invariant is not an
easy task. Therefore, in the sequel, we will construct a fair
random sampling by a random draw of a N -dimensional
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kept the fidelity error in relative low levels (< 10%), even though in some
cases we have some outlier values.
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zero-mean Gauss distribution after normalizing the sample
vectors [14].
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