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RESEARCH ARTICLE

Disambiguating spatial prepositions: the case of geo-spatial sense

detection

Abstract

Spatial relations in natural language are frequently expressed through prepositions.

Thus, in the locative expressions “New York in the United States” and “the house

on the river” the prepositions “in” and “on” respectively serve to communicate the

relationships in space between the subject and object of the preposition. Automatic

detection of the use of prepositions in a spatial and in particular a geo-spatial sense

that refers to geographic context is of interest in supporting automated methods

for determining the actual geographic location referred to by locative expressions.

This work focuses on disambiguation of prepositions in natural language, with the

goal of distinguishing whether a preposition is used in a specifically geo-spatial

sense. We conduct machine learning experiments that demonstrate the clear bene-

fit for geo-spatial sense detection of using transformer model deep learning methods

when compared with a variety of methods, that include Naive Bayes, Support Vector

Machine (SVM) and Random Forest classifiers with hand crafted linguistic features,

and a bag of words approach with a meta-classifier that adds geo-spatial features.

The best performance was obtained with the BERT-based XLNet transfomer model,

with a best precision of 0.96 and and an F1 score of 0.94 when evaluated on a corpus

of natural language expressions that were annotated for this task. We also conducted

experiments to detect generic spatial sense, in which the best the best F1 score, of

0.95, was again obtained with XLNet.

KEYWORDS:

Preposition disambiguation, geo-spatial sense, generic spatial sense, transfer learning, BERT-based mod-

els, geo-spatial corpus, geo-referencing, locative expressions

1 INTRODUCTION

Natural language texts contain a great deal of geo-spatial information which, if extracted and geo-referenced to locations on

the Earth’s surface, constitute a massive potential source of data that could be exploited in geographical information systems.

Descriptions of locations typically include relationships between some entity or event and a geographical place, where the spatial

relationship is very commonly expressed with a preposition [Herskovits, 1987], though parts of speech such as verbs can also be

employed [Dittrich et al., 2015]. For example in the locative expression “Otaki Gorge Road near Otaki Forks”, the preposition

“near” indicates a spatial proximity relationship between the named places “Otaki Gorge Road” and “Otaki Forks” . In spatial

relational expressions of this form, “Otaki Gorge Road” is regarded as the located object (or trajector, locatum or figure) while

“Otaki Forks” is the reference location (also referred to as a landmark, relatum or ground).
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Automated detection of the presence of locative expressions that describe the spatial relationship of one entity to another is a

challenge however in that the preposition terms, such as near, in and at, that are so commonly used to convey spatial relations

can also be used in a non-spatial sense. Furthermore when a preposition is used in a spatial sense it is very often the case that

the spatial sense is not actually geo-spatial. The distinction that we draw here between generic spatial senses and geo-spatial

senses is important, because many locative expressions describe non-geographical situations (for example in so-called table-top

space) that cannot normally be geo-referenced.

The task of determining the sense of prepositions (or other parts of speech) is an integral component of processes of automated

spatial relation extraction that detect the located object, the spatial relational term and the reference object [Kordjamshidi et al.,

2011, Rahgooy et al., 2018, D’Souza and Ng, 2015] and is sometimes referred to as spatial indicator classification [Kordjamshidi

et al., 2017]. While there is some previous work on the demanding task of extraction of spatial relations in specifically geo-

spatial contexts (e.g. Khan et al. [2013], Zhang et al. [2009, 2011], Zenasni et al. [2018]), little progress has been made on

development of methods focused specifically on identifying geo-spatial senses of prepositions and distinguishing them from

other spatial senses. A study that was focused specifically on this task by Radke et al. [2019] reported relatively poor classifier

performance with the best precision only being 0.63. More effective methods would contribute to progress on this broader task

of extracting geo-spatial relational expressions.

A significant motivation for working on aspects of geo-spatial relation extraction, such as preposition disambiguation, is that

it contributes to the longer term aims of automated geo-referencing of natural language location descriptions that assert spatial

relationships relative to a reference place [Liu et al., 2009, Doherty et al., 2011]. Automated detection of geo-spatial loca-

tional descriptions and their subsequent geo-referencing has considerable potential value for many real world applications. For

example, in disaster management emergency responders can determine where damage has occurred, or where stranded people

need to be evacuated from; health workers can extract and map infectious disease information from social media; and ecologists

can extract data on the location of sightings of biological species and events from biological records. Notably the related task of

coarser-grained geo-referencing of entire textual documents and social media posts has received significant attention in recent

years Melo and Martins [2017], Stock [2018].

This downstrean process of geo-referencing textual expressions involves generating map coordinates which then enable spatial

indexing and hence efficient access to documents and to entities and events that are mentioned within documents [Wu et al.,

2012, Purves et al., 2018]. Achievement of this goal can require contextually-specific interpretation of essentially vague spatial

words such as near, at and beside. Models of the use of vague spatial relations may be learnt from multiple examples of uses of

spatial relations which in turn will benefit from automated identification of locative expressions and their subsequent extraction,

as well as from direct human subjects experiments [Logan and Sadler, 1996, Worboys, 2001, Robinson, 2000, Hall et al., 2011].

Acquisition of substantial knowledge bases of spatial relations between explicitly defined located and reference objects could

also facilitate the direct answering within search engines of questions about spatial relationships.

These potential benefits of effective automation of the process of detecting geo-spatial preposition sense, in combination with

the limited progress to date in achieving that goal, have motivated the work that we present in this paper. Our main aim is to

address the challenge of obtaining high performance in a machine learning classifier to detect the geo-spatial use of prepositions

and distinguish that use from other spatial but not geo-spatial uses of prepositions. Specifically we consider the following research

questions:

• Q1 Can machine learning methods achieve high performance for precision and recall in the task of detecting the geo-spatial

sense of prepositions in locative expressions and distinguishing them from other spatial and non-spatial senses?

• Q2 For the task geo-spatial preposition sense detection, do transformer-based deep learning models outperform classical

machine learning methods?

As noted above, preposition sense detection by itself can be regarded as a sub-task of relation extraction and can be treated as

part of a relation extraction pipeline or integrated with the detection of located and reference objects. We regard the presentation

of effective methods for preposition sense detection in isolation as being of value in that they have the potential to be integrated

with geo-spatial relation extraction methods, but they also serve the purpose of helping to identify the presence of sentences

that are communicating geo-spatial information [Stock et al., 2022]. They can therefore serve as a filter prior to application of

methods that extract entire spatial relations.

We distinguish geo-spatial from generic spatial senses of prepositions based on the reference object. Both geo-spatial and

spatial senses involve a preposition that describes the physical configuration of the located object in space, relative to a reference

object. However, the geo-spatial sense describes location that can be geo-referenced to the earth with coordinates that can be
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determined directly or through co-reference with other text. Thus the reference object is a feature in geographic space, most often

a place name (e.g. “Times Square”) or a geographic feature type such as city. In contrast, the expression “the book is on the table”

contains a spatial preposition “on” that describes a spatial configuration that explains where the book is relative to the table, and

the sense of “on” is spatial, but not specifically geo-spatial, because the table is not normally regarded as a geographical object for

which geographical coordinates would be derived. In contrast, the expression “the church is beside the Waikato River” contains

the spatial preposition “beside” that describes the spatial configuration of the church relative to the Waikato River which is a

named geographic feature that can be geo-referenced with coordinates from a gazetteer such as Geonames1. Note that all geo-

spatial senses of prepositions are also spatial, but not all spatial senses of prepositions are geo-spatial (geo-spatial senses are a

sub-set of spatial senses).

In order to distinguish geo-spatial from other spatial and non-spatial senses of prepositions we investigate the use of a variety

of types of classifier. These include several deep learning transformer models that employ transfer learning [Ruder et al., 2019]

that benefit from prior training on very large corpora, and Naive Bayes, Support Vector Machines (SVMs) and Random Forest

classifiers. For the latter non-deep learning classifiers we experiment with several types of features, including the linguistic

features of Kordjamshidi et al. [2011] combined with features that record the presence of words that are place names or types

of geographic feature. We also use Bag of Words (BoW) represented by a vector with a dimension for each word in the corpus

The BoW classifiers learn, in training, associations between particular word usages and the given sense of a preposition.

Our deep learning transformer methods include several BERT-based models [Devlin et al., 2018], the input features of which

are the embeddings of the words in the context of the word to be classified, where the word embeddings are multi-dimensional

vectors that can be regarded as encapsulating the sense of each word. Our experiments include an adaptation of the textual input

to BERT-based models to include tags of place name words, where present, which we show to provide significant advantage.

In the absence of existing labelled data applicable to our main task of geo-spatial sense detection, we annotated two datasets

that combine geo-spatial, other-spatial and non-spatial expressions.

The main contributions of the paper can be summarised as follows:

• We demonstrate that BERT-based transformer deep learning classifiers can provide high precision and recall in detecting

the geo-spatial sense of prepositions and distinguishing the sense from generic spatial senses.

• We show that a transformer deep learning classifier for detecting the geo-spatial sense of prepositions is superior to those

using hand crafted linguistic features, bag of words features and features representing the presence of place names and

geo-feature types.

• Our use of the BERT-based transformer classifiers is shown to be enhanced by adding tags to the input text to indicate the

presence of place names.

• We publish two new corpora with annotations of prepositions as either geo-spatial, other-spatial (but not geo-spatial) or

non-spatial.

The remainder of the paper is organised as follows. Section 2 reviews related work, while Section 3 explains the methods

used in this work. Section 4 presents experimental results including a description of the data sets used, their annotation, and the

experimental results obtained for the various methods. Section 5 concludes the paper pointing out directions for future work.

2 RELATED WORK

A number of authors have discussed the nature and properties of spatial language [Coventry and Garrod, 2004, Talmy, 2000,

Jackendoff, 1983, Levinson, 2003]. The term locative expression has been used to refer to “an expression involving a locative

prepositional phrase together with whatever the phrase modifies (noun, clause, etc.)” [Herskovits, 1987, p.7]. The most common

syntax of a locative expression consists of a preposition and two noun phrases. In the case of a spatial preposition, the preposi-

tion describes the spatial relation (configuration in space) between the objects referenced in the subject and object noun phrases.

The combination of the preposition and its reference object (the object noun phrase of the preposition) is known as a preposi-

tional phrase. Examples of prepositional phrases are across the road, along pavements and underneath the piers. This typical

association of spatial prepositions with reference objects places them in the class of transitive prepositions that take an object.

1https://www.geonames.org/
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It distinguishes them from intransitive prepositions that do not have arguments (as for example the use of in in the phrase she is

in today), and selected prepositions where the meaning is determined by a governor word that is usually a verb (as for example

the use of with in dispense with cutlery [Baldwin et al., 2009]).

The distinction between spatial and non-spatial language is not always straightforward, as the same prepositions may be used

by both kinds of expressions. For example in the use of the preposition in in the phrases She lived in London and She was born

in 1772. Other examples are due to metaphorical uses as in she’s really in a pickle and He liked to throw his weight around.

These various distinctions have been addressed by a number of authors such as Tyler and Evans [2003] and Coventry and Garrod

[2004].

The common association of prepositions with governor and object words has led to a focus on the use of these head words as

distinguishing features that can be used in machine learning. Hovy et al. [2010] studied the effectiveness of different features for

machine learning and found that it was the governor and object words and the word to the left that were the most important. This

finding was reflected in a later study by Litkowski [2016] that considered many different possible features for machine learning.

While specific linguistic features have been a focus for many previous studies in machine learning methods for preposition

disambiguation [Cannesson and Saint-Dizier, 2002, Alam, 2004, Litkowski and Hargraves, 2005, 2007, Ye and Baldwin, 2007,

O’Hara and Wiebe, 2009, Baldwin et al., 2009, Hovy et al., 2010], more recently the potential of word embeddings of contextual

words to serve as features has gained interest (see for example Hassani and Lee [2017] and Premjith et al. [2019]). Notably the

word embeddings capture the semantics of words and thus might be of more general value than the use of the individual context

words themselves.

The particular task of spatial sense detection of prepositions has been the subject of relatively few studies. Contributions

to automated spatial sense detection, treated as an aspect of spatial role labelling, include Kordjamshidi et al. [2011], Hassani

and Lee [2017], Kordjamshidi et al. [2017] and Manzoor and Kordjamshidi [2018]. Even less attention has been given to the

task of detecting whether a preposition is being used in a specifically geo-spatial (as opposed to generic spatial) sense. As

indicated above, distinguishing the geo-spatial sense of a preposition from other spatial senses is a challenge in that it depends

on determining that the context of use is geo-spatial. This could be indicated in practice by reference to a named place or to

a type of geographical feature or indeed by anaphoric reference (or co-reference) as in the use of ‘it’ to refer to a geo-spatial

feature introduced in a different sentence.

In their study of geo-spatial sense detection Radke et al. [2019] reported classifier performance that was quite low with a best

F1 score of 0.64 and best precision of 0.63 (from different classifiers). The machine learning methods did include features to

represent the presence of geo-spatial entities in the sentence, but they were derived using a method that employed only a single

gazetteer, and a dictionary of place types, and is likely to have missed many actual geo-spatial references. Here we also detect

geo-spatial entities, including when emulating their approach. However we use an algorithm that exploits multiple gazetteers

and employs various heuristics to avoid false positives (as many place name words also have other meanings), which resulted in

superior performance. We also use a dictionary of place types, but our additional use of bag of words and word embeddings as

features enables training a classifier to recognise a range of terminology associated with the geo-spatial sense, including terms

that might not be present in some dictionaries of place types.

In Kordjamshidi et al. [2011], the disambiguation of spatial prepositions is considered as an aspect of spatial role labelling

and as the first step in a machine learning pipeline to extract triples of a trajector, a spatial preposition (referred to as a spatial

indicator) and a landmark. They disambiguate prepositions as either generic spatial (i.e. with no particular attention to geo-

spatial sense) or non-spatial. A Naive Bayes classifier was used to disambiguate the preposition once it has been identified with

a part of speech (POS) tagger. The features for the classifier were all linguistic being obtained with tools such as a part of speech

tagger, a dependency parser and a semantic role labeller. They included the word itself and its part of speech, and words that are

dependent on it and on which it depends, along with their parts of speech. They also include the dependency path to such words.

This classifier achieved an F1 score of 0.88 on the TPP (The Preposition Project) dataset Litkowski and Hargraves [2005]. As

part of their pipeline approach, once a preposition is classified as being spatial, then the trajector and landmark are detected

using Conditional Random Fields (CRFs). They also implemented a joint learning approach using CRF to identify all three

components of a triple but this did not provide superior performance in the subtask of detecting the sense of a preposition.

Several classical machine learning methods were employed in Stock et al. [2022] to identify expressions that consist of relative

geo-spatial descriptions of locations (i.e. locative expressions) and distinguish them from other spatial (but not geo-spatial) and

non-spatial expressions. The study differs from ours in that their goal was to document the different forms of speech that can

be used in geospatial locative expressions, including the use of verbs, adverbs, adjectives, apostrophes and prepositions, and

to develop a classifier to recognise these expressions irrespective of the grammatical form. Our work focuses on the particular
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case of detection of geo-spatial prepositions within sentences that could contain multiple prepositions with different senses (of

either geo-spatial, other spatial or non-spatial). For this more specialised task, we demonstrate that our best methods, which use

deep learning, can achieve an F1 value of .94 (and precision of 0.96) which is a considerable improvement over the F1 value of

.90 (precision 0.91) that was achieved in the classifier presented in Stock et al. [2022]. It may also be noted that the expressions

classified in the latter work might not contain any geo-spatial preposition as the spatial relations could be communicated with

other parts of speech. Also their methods employed only classical machine learning methods.

In Khan et al. [2013], the term degenerative locative expression (DLE) is introduced to refer to a spatial indicator and landmark

without the trajector. They distinguish between locative DLEs in which a preposition has an explicit spatial sense and partial

DLEs in which it does not though the landmark is a geographic feature. The focus of the work is on the extension of locative

DLEs, that use only the prepositions “at”, “in” and “on”, with a trajector, and the subsequent automated extraction of triples of

trajector, spatial indicator and landmark. On extraction of static (non-motion) expressions they report accuracy of 60.5%, that

increased to 77.4% when assisted with manual annotation of references to places.

Dittrich et al. [2015] introduce rules to distinguish spatial prepositions from non-spatial prepositions, taking account of factors

that constitute non-spatial uses, such as abstract located or reference objects that might be associated with phrases that express

emotions or actions, or idiologies (e.g. “in love” or “good at singing”) and the presence of collocated phrases such as “to focus

on”. Preliminary experiments applying their rules provided an F1 of 0.8. The rule based approach of the reported experiments is

characterised by hand crafted features that relate to particular uses of prepositions in contrast to the use of more purely linguistic

features as in Kordjamshidi et al. [2011], which they also introduce with a view to constructing other classifiers. In our work, as

indicated earlier, the bag of words approach is intended to exploit the characteristic use of associated words with the different

prepositions’ senses and is found to be relatively effective, though is outperformed by the deep learning approach that employs

word embeddings that are intended to encapsulate the meaning of words. A few studies have applied deep learning approaches

to spatial role labelling, including generic spatial sense disambiguation. An early example is Mazalov et al. [2015] in which

a multilayer perceptron (MLP) convolutional neural network was used to extract complete spatial relations. Their approach

involves first detecting the spatial indicator term using a simple MLP network that has no convolutional layer. Input is the word

embeddings of the words within a 7-word window surrounding the word to be classified, supplemented by embeddings of POS

tags of words. No results for this stage of the process are reported though overall F1 for spatial relation extraction when the

system detects the spatial indicator was 0.7 on the IAPR TC-12 dataset from SemEval-2013. A deep learning approach dedicated

to generic spatial sense disambiguation is presented in Hassani and Lee [2017]. Their most effective method is a hybrid approach

that combines word embeddings with a range of linguistic features in a convolutional neural network. The linguistic features

include uni-grams and bi-grams and their probabilities, part of speech tags and named entity types. Their evaluation dataset

was derived from the Pattern Dictionary of English Prepositions (PDEP) and they report an F1 score of 0.94 in identifying the

generic spatial sense. In a joint spatial role labeling task Guo et al. [2020] applied a deep learning technique that uses a novel loss

function, Inference Masked Loss, that resulted in an F1 score for spatial indicator detection of 0.95 when applied to the CLEF

2017 mSpRL dataset [Kordjamshidi et al., 2017]. Our work differs from these latter studies in addressing the task of geo-spatial,

rather than generic, spatial preposition sense detection. Though as part of our study we also obtain a similar F1 score of 0.95

for generic spatial sense detection. The benefits of BERT-based transformer models for semantic role labeling in general was

demonstrated in Shi and Lin [2019]. Application of such methods to spatial role labeling in a medical context of X-ray reports

was presented in Datta et al. [2020]. There the task of spatial indicator detection was isolated prior to detection of other roles

(of trajector, landmark, diagnosis and hedge) using explicit tagging of the spatial indicator based on the first stage. With their

X-ray report dataset they obtained an F1 score of 0.91 for the spatial indicator detection task.

3 METHODS

Here we describe the methods that we have developed to address our research questions, concerning the development of effective

machine learning classifiers for detecting whether prepositions have a geo-spatial or a generic spatial sense, or neither. We

investigate the effectiveness of transformer deep learning methods for this task, when compared to classical machine learning

approaches. For each preposition in a sentence, as identified with a POS tagger, our objective is to determine whether it conveys

a geo-spatial sense or whether it can be classed as having a generic spatial sense that includes a geo-spatial sense. We include

consideration of the latter case in order to provide a comparison with previous methods that report only on the detection of the

generic spatial sense of prepositions, such as Kordjamshidi et al. [2011], Hassani and Lee [2017], Guo et al. [2020].
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In what follows we clarify our distinction between geo-spatial, other spatial and non-spatial preposition sense before describ-

ing our various machine learning methods. We believe that the high precision that we obtain with some of these methods is a

reflection of the effectiveness of our procedure for extracting place names and geographic feature type that are used as input

features for some of the methods. Those feature extraction methods are summarised in subsection 3.3. Essential to implementa-

tion of our methods is the use of two datasets that we use to train and test the classifiers. One of these was derived from source

texts of the Nottingham Corpus of Geo-spatial Language Stock [2018] while the other, which is intentionally characterised by

the sparse occurrence of geo-spatial senses, was derived from the Pattern Dictionary of English Prepositions (PDEP) dataset

Litkowski [2014]. More detailed description of these datasets is provided in Section 4 along with details of the implementation

of the machine learning experiments. The code for the paper is made available publicly 2.

3.1 Definition of geo-spatial, other spatial and non-spatial preposition sense

Following Stock et al. [2022]’s definition of geo-spatial expressions, we define geo-spatial prepositions in terms of both the

preposition and the reference object. For a preposition to be geo-spatial, it must meet two criteria. First it must describe the

physical location in space of an object relative to a reference object, and second it must have a reference object that is geo-

graphic. In grammatical terms, the reference object is the object of the preposition and in geo-spatial expressions this is normally

the object that is an anchor point for the location description. By geographic, we mean that the reference object can be geo-

referenced (geographic coordinates could be determined for it, if sufficient information were available). This may include place

names (toponyms), or specific geographic features. Geographic objects are normally found outdoors or in transitional spaces

that are large and public [Kray et al., 2013], and are normally of a scale that corresponds to Montello’s vista, environmental and

geographic spaces [Montello, 1993].

In contrast, the reference object of a preposition with our other-spatial sense is not geographic. This situation can be regarded as

equivalent to what is sometimes referred to as table-top space, especially in the context of applications in robotics [Kelleher and

Costello, 2009, Tellex and Roy, 2009]. The reference objects are often objects that are movable, can be picked up or manipulated,

such as cups, pens and computers, or they could be a person or a part of a person such as an arm or a hand.

Our third category of non-spatial includes all prepositions that are used non-spatially, meaning that they do not describe

a physical location in space. This may include temporal, metaphorical, metonymic or figurative uses of prepositions that are

otherwise used spatially (e.g. “as my friend, you should be on my side”).

An example of a sentence that uses geo-spatial and non-spatial prepositions is “You can paddle and portage carry the canoe

overland to the next lake for days weeks even months camping on the shores of a different lake every night pulling fresh walleye

or northern pike from its crystal clear waters for dinner”. It includes the following prepositions (in the order in which they

appear), along with their classification according to the scheme.

• for: non-spatial - “for days” - sense describes time, not location

• on: geo-spatial - “camping on the shores...”

• of: geo-spatial - “shores of ...lake...”

• from: geo-spatial - “pike from ...waters...”

• for: non-spatial - “pike....for dinner” - sense describes purpose/function, not location

Here, the second and third prepositions (“on” and “of” respectively) are classed as geo-spatial because their reference objects

(“shores” and “lake” respectively) are geographic in nature, being geo-referenceable and typically in vista or environmental

space. The question of what counts as a geo-spatial/geo-refenceable reference object can be difficult to resolve in some cases,

including for example those that refer to generic parts of the environment such as “waters” in the example above. In this case, we

consider the preposition “from” geo-spatial because it clearly refers to the waters of a specific lake. However, there are cases in

which such terms are used more generically, and in those cases might not be considered geo-spatial. Stock et al. [2022] provide a

detailed discussion of the challenges of classifying spatial language, providing an extensive explanation of borderline examples

and specific types of challenges such as descriptions of weather and hypothetical or metonymic references. We also discuss

some other borderline cases when we describe the annotation process in Section 4.1.2.

2https://figshare.com/s/9899575b0617a6a9eaa5
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The following example provides all three classes of prepositions: “Yvonne and I at South Queensferry a couple of summers

ago across the road from the Hawes Inn at the slipway underneath the tall stone piers of the rail bridge the mile wide river bright

before us people promenading along pavements...”:

• at: geo-spatial - “Yvonne and I at Queensferry”

• of: non-spatial - “a couple of summers”

• across: geo-spatial - “across the road”

• from: geo-spatial - “from the Hawes Inn”

• at: geo-spatial - “at the slipway”

• underneath: geo-spatial - “underneath the ...piers”

• of: geo-spatial - “piers of the rail bridge”

• before: other-spatial - “river bright before us”. Note that the preposition describes a spatial relationship, but the reference

object is the observer, not regarded as a geographic object, so the preposition sense is spatial, but not-geo-spatial.

• along: geo-spatial - “people promenading along pavements”

Another set of examples of each type, with the preposition highlighted in italics, is mentioned below:

• geo-spatial

1. “The Kadets led other radical deputies across the border to Vyborg in Finland where they issued a manifesto calling

for protest in the form of passive resistance.”

2. “The orthodox theory of the eighteenth-century constitution was provided by the influential jurist and lawyer Sir

William Blackstone in his lectures at Oxford in 1765.”

• other-spatial

1. “On April 18 , 1943 at 0700hrs Yamamoto climbed aboard a Mitsubishi G4M Betty bomber and set off for

Bougainville , his formation was accompanied by another Betty and six Zeros.”

2. “These sticks would be twisted round until the bag was tightly pressed and the essential oil oozed out of the petals.”

• non-spatial

1. “Their conclusions were kept under wraps.”

2. “This internecine strife within the Christian community was a sad diversion of effort at a time when faith was rapidly

decaying.”

3.2 Machine Learning Classifiers Overview

We present four types of classifier, being the three classical methods of Naive Bayes, SVM and Random Forests that serve as

forms of baseline for our main method that employs transformer deep learning models. For the first three types of classifier

we compare the use of two main types of feature. The first type of feature consists of those used in a previous study of geo-

spatial sense detection Radke et al. [2019], which uses a combination of linguistic features and features that indicate whether

place names or geo-feature type terms are present in the context of the preposition to be classified. The latter place names and

geo-feature types are a significant aspect of input to our classifiers and our methods for extracting them are summarised in the

following section. The second type of feature uses a bag of words approach in which the feature is a vector recording data on the

presence of which words from the entire vocabulary are present in a window of text surrounding the preposition to be classified.

The transformer model classifiers, for which we use several BERT-based models, take as input the text in a window surround-

ing the preposition to be classified. That text is initially converted to word embeddings which are then progressively updated

in the BERT model so that they adapt to the contexts of the training data. We also experiment with a variation on the standard

input to BERT in which we tag place name words present in the input text.
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3.3 Extraction of geographical place names and geographic feature types from input sentence to
use as features in classifiers

The definition of a geo-spatial sense of a preposition depends on the reference object of the preposition being required to be

a geographic feature (an object in geographic space). Some of the classifiers presented in the following sections reflect this

requirement by relying on the detection of the presence of features that include the number of place names and the number of

geographic feature type words occurring in the context of the preposition to be disambiguated.

The geo-parsing algorithm proposed is explained in detail in this subsection. The gazetteer lookup module is capable of

extracting the count of place names and geographical feature types from a sentence. In this work the OpenStreetMap, Ordnance

Survey OpenNames, Geonames, and Geotext gazetteers are used. The use of multiple gazetteers is intended to optimize the

performance of the geo-parsing module.

The numbers of place names and geographic feature types are extracted with the help of various natural language processing

tools and gazetteers. Unlike the study in Radke et al. [2019] that used a single gazetteer, Geonames, to detect place names, we use

the multiple gazetteers listed above. Our gazetteer lookup module works as a wrapper around all the gazetteers and additionally

uses some natural language processing principles to extract the number of place names and geographic feature types from the

input sentences. The algorithm for the gazetteer lookup module which counts the number of place names and geographic feature

types is as shown in Algorithm 1.

The input to the algorithm is a sentence i.e. one instance from the dataset. The algorithm finds date entries in any format in the

sentence and removes those in line 1 of the algorithm through a function call 𝑓𝑖𝑛𝑑𝐷𝑎𝑡𝑒𝑠(). In line 2, the function to count the

geo-features in the sentence is called and returns the count as well as the modified sentence 𝑆 with those geo-features removed

from it. In line 3 it calls the Stanford NER Finkel et al. [2005] on the instance and it returns two lists, namely the list of place
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names and the list of organization names. It also returns the modified sentence with those entries removed from it. In line 4, a

call to the Stanford part of speech Tagger Toutanova et al. [2003] is made which returns a temporary list 𝑡𝑒𝑚𝑝𝐿𝑖𝑠𝑡 in which all

extracted proper nouns are stored. For each entry in this list, it checks if the entry is present in any of the four gazetteers, namely

Geonames 3, Ordnance Survey 4, Geotext 5, or OpenStreetMap 6 and if so inserts the entry in the placename list 𝑃 𝑙𝑎𝑐𝑒𝑛𝑎𝑚𝑒𝐿𝑖𝑠𝑡.

This is done in lines 5-9 of the algorithm. In line 10, Algorithm 2 (ExtractGeoFeatureplace/Org) is invoked to check if any of

the place names or organization names in our lists 𝑃 𝑙𝑎𝑐𝑒𝑛𝑎𝑚𝑒𝐿𝑖𝑠𝑡 and 𝑂𝑟𝑔𝑛𝑎𝑚𝑒𝐿𝑖𝑠𝑡 are actually geo-feature types. If they are,

they are removed from the placename list. The geo-feature count which was initially calculated in line 2 is updated accordingly.

Some of the geo-feature types which occur in the sentence 𝑆 in some other form than their lemma are now extracted in line 11,

wherein it stems the remaining words in 𝑆 and checks if any root form is there in the geo-feature dictionary (ADL dictionary

of geo-feature types) 7. For this it uses the SnowBall stemmer 8 to bring the words to their root forms. Finally the length of the

placename list, which is the count of place names, and the count of geo-feature types is returned by the algorithm. Algorithm 2

3https://www.geonames.org/
4https://www.ordnancesurvey.co.uk
5https://pypi.org/project/geotext
6https://www.openstreetmap.org
7https://www.legacy.alexandria.ucsb.edu
8https://snowballstem.org/
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checks if any of the words or phrases in the sentence 𝑆 are present in the ADL dictionary of geo-feature types and returns their

count. 9 Note that this function assumes that the geo-feature type is present in the sentence in singular lowercase, i.e. root, form.

3.4 Bayesian Learning with Linguistic features

The first baseline approach in this work makes use of the Naive Bayes classifier with the linguistic features used in Kordjamshidi

et al. [2011] to which we add geo-spatial features, namely the number of geographical place names and the number of geographic

feature types in the input sentence. The linguistic features are specific to each preposition to be classified and include the word

to be classified, its part of speech and words (and their parts of speech) that are dependent on it and on which it depends, plus

the dependency path to these words. We combine the geo-spatial features in three different ways, emulating the methods of

Radke et al. [2019] for detecting geo-spatial sense, as summarised below. A full list of the linguistic features can be found in

Kordjamshidi et al. [2011] and Radke et al. [2019].

The different combinations of additional features are summarised in the following three bullet points. They replicate those

reported in Radke et al. [2019] and we use the same terminology of "Kord-Geo" etc (see below):

• “Kord-Geo” uses the number of place names and number of geographic feature types occurring in the input sentence (two

additional features).

• In “Kord-Geo-Sum”, the sum of the counts of number of place names and number of geographic feature types in the input

sentence has been used as a feature.

• In “Kord-Geo-Or” the binary value of 1 or 0 indicates whether place names or geographic feature types are present or not

in the input sentence.

9https://www.legacy.alexandria.ucsb.edu
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3.5 Bag of words with SVM and an SVM Metaclassifier

In this approach, rather than employing hand crafted features, we use as features a Bag of Words (BoW) that creates a vector

with an element for every word in the corpus (i.e. all our source sentences). For each preposition to be classified, the feature

vector has a non-negative weight value for those words present in a window surrounding the preposition to be classified. This

vector becomes the input feature to various machine learning models of Naive Bayes, Support Vector Machine (SVM), and

Random Forest. Prior to extraction of the BoW vector, we pre-processed the data, including removing stopwords and applying

a stemming algorithm. Each word in a window on either side of the preposition in each expression was represented by a tf-idf

(term frequency - inverse document frequency) weight to reflect its relative significance in the document collection.

In addition to the basic BoW classifiers, we used a meta-classifier approach comprising two SVM classifiers where the pre-

dicted classes and class probabilities of the first classifier act as input features to the second one, which may include other features

in addition to the predictions. Our additional features for the second classifier were counts of the geographic feature types and

place names for each sentence containing a preposition to be classified.

3.6 Transfer Learning with various BERT-based models

Deep learning based models involving transformers [Vaswani et al., 2017] are state-of-the-art in many Natural Language Pro-

cessing (NLP) tasks. These models aim to understand the context of a token and output a vector called a Contextual Word

Representation or Contextual Word Embedding for each token in the input sentence, based on adapting initial pre-trained word

embeddings to the contexts of the training data. This means that these models are not only capable of differentiating homonyms

but are also able to understand the contextual meaning of out of vocabulary words, i.e. words which are not in the vocabulary of

the tokenizer used for training the model. This makes these models useful for a wide variety of tasks even on domains different

from the original domain over which the model was trained. A widely used transformer model is Bidirectional Encoder Repre-

sentation from Transformers (BERT) Devlin et al. [2019], which is pre-trained over English Wikipedia and BookCorpus using

Masked Language Modeling and Next Sentence Prediction methods. BERT has more than 340 million parameters making it

a computationally intensive model. The architecture of BERT consists of a set of encoding and decoding layers in which the

encoder successively transforms embeddings (i.e. multidimensional vector representations) of the textual input data to a form

that is then decoded to generate what becomes the predicted output of the network. All layers of the model employ a self-attention

process in which the initial input embeddings of individual words are adapted by learning from the surrounding words of the

actual text (or sentence) that is input. The attention process modifies the embeddings of individual words as weighted sums of

the surrounding word embeddings. The result is that the initial individual word embeddings are adapted to the context of their

use. This is unlike more conventional embedding methods such as GloVe Pennington et al. [2014] and Word2Vec Mikolov et al.

[2013] in which in their basic form the embedding is fixed for each particular word. Retraining of these latter types of embedding

is computationally a very expensive process. Each layer of the BERT encoder itself has two layers, one of which is a (multi-head)

self-attention mechanism followed by a simple feed-forward neural network. The decoder layers each have these two compo-

nents plus a further multi-head attention sub-layer that “attends” to the output of the stack of encoder layers, as well as that of

the other self attention sub-layer, prior to input to the feed-forward network. The decoder layers are also characterised by the

use of masks to prevent predictions at one position being dependent on subsequent positions. The input representation of each

token is an embedding that is the sum of the embedding of the token, the embedding of the segment, which simply distinguishes

whether the token belongs to the first or the second sentence (or just one sentence if only one), and the position embedding that

records the position of the token in its sentence. The token embeddings are WordPiece embeddings [Wu et al., 2016] which have

a relatively small (30,000) size vocabulary due to breaking up and separately representing components of compound words.

Following BERT, several alternative versions have been developed. Here we briefly summarise the ones that we have used

in our experiments in addition to BERT. DistilBERT was proposed by Sanh et al. [2019] and as the name suggests is a reduced

version of BERT. This model preserves about 97% of BERT’s performance while reducing the number of parameters by 40%

which makes it faster by 60% compared to BERT. It was found by Liu et al. [2019] that BERT was quite under-trained. Hence,

they trained it for longer, increased the batch size and tested on huge corpora. They focused on changing the masking pattern

on the training data dynamically as required and trained on longer sequences as opposed to predicting the next sentence, which

led to the model RoBERTa.

In Lan et al. [2020], ALBERT was presented in an effort to avoid computing intensive operations and to reduce TPU/GPU

dependencies. It has fewer parameters compared to BERT, is faster in training time and has lower memory consumption leading

to a more scalable version of BERT without compromising on the efficiency and accuracy of the model.
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Transformer-XL [Dai et al., 2019] is a modified form of transformer model which has the capability to learn long term

dependencies as opposed to the base transformers which learn fixed length dependencies. When regression of a variable against

itself is done, it is termed as autoregression. Here the predicted future values of the variable are based on the past values of the

input and the current input. The BERT model is not an autoregressive model but it is an autoencoder model. An autoregressive

model can see the context in backward or forward direction while the autoencoder model of BERT can see the context in both

directions. However, BERT, though an autoencoder model, is known to have pre-train/fine-tune discrepancy due to the use

of masking. This is due to the fact that masking should not be done in fine-tuning. BERT achieves better performance than

approaches based on autoregressive methods when it comes to pre-training.

XLNet [Yang et al., 2019] is a BERT-like model that incorporates the ideas from Transformer-XL into the pretraining pro-

cedure. It has been shown to outperform BERT significantly in many NLP tasks including natural language inference (NLI),

question/answering (QA) and sentiment analysis. The main idea of XLNet is that it provides a new method by which an

autoregressive model learns from the bi-directional context to avoid the disadvantages brought by the masking method in the

autoencoder language model.

Lim and Madabushi [2020] introduce new features by calculating the TF-IDF vector for each sentence and concatenating

it to the corresponding BERT output. This vector is then fed to a fully connected classification layer. Usually, to handle the

concatenated features, an additional dense layer is added to the network. A drawback of this method is that the feature vector

becomes too long and the parameters of the model increase which in turn leads to a rise in the training time of the pre-trained

model.

In our use of BERT-based models we experiment here with incorporating an additional feature to indicate that a word in the

input text is a named geographic feature. As indicated above, BERT-based models take, as input, text the tokens of which are

converted initially to pre-trained embeddings. We incorporate the knowledge that a word is a named geo-feature by prepending

and appending a location tag before and after any place name that has been detected in the input sentence. Consider the input

sentence - “John lives in New York”. The sentence is first parsed using an NER (Named Entity Recognition) Tagger. The tagger

returns occurrences of place names in the sentence, here “New York”. A location tag is prepended and appended at the start and

end of the place name, resulting in this case in “John lives in <LOCATION> New York </LOCATION>.” Note that tags handle

multi-word place names as in this example. These new tags are added to the vocabulary of the tokenizer so that the information

about whether a place name exists in the sentence or not is conveyed to the pre-trained model. The motivation behind this process

is that prepositions with a geo-spatial sense are frequently, but certainly not invariably, associated with occurrences of place

names. This architecture is illustrated in Figure 1.

The specific use of the above BERT-based models for our classification task is described in detail in section 4.2

4 EVALUATION

In this section we describe details of the experiments that we conducted including how we applied the various methods described

in Section 3. For all experiments the aim is to classify the sense of a selected preposition as either geo-spatial, generic spatial

or non-spatial. This was done in practice by conducting individual binary experiments in which the target class was either geo-

spatial, other spatial or non-spatial, before then merging results to generate precision, recall and F1, in the first instance for

geo-spatial vs other spatial or non-spatial and in the second (generic spatial) case for geo-spatial or other-spatial vs non-spatial.

For the method “Bayesian Learning with Linguistic features” we generated the same features used in Radke et al. [2019]

(which themselves include the features from Kordjamshidi et al. [2011]) for each preposition to be classified. Thus these features

are all generated relative to that target preposition including for example the head words of the preposition, and their parts

of speech and lemmas, and the dependency paths to the head words. For the Bag of Words methods, the input data for each

preposition to be classified was the words within a window surrounding the preposition. It is these words that are used to generate

the bag of words vectors. In the case of the BERT-based methods the input text for training and testing the methods was again

the text within a window surrounding the preposition to be classified. Note that an individual sentence can have more than one

preposition and hence the context words in these windows is different in each case.
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FIGURE 1 Architecture of BERT based models used

4.1 Data Set Preparation and Annotation

We use two datasets in this work, both of which have been made available publicly on the Figshare repository10,11. The process

of annotation that we adopted for these datsets followed the guidelines set out in Artstein [2017] and Carletta [1996], in which

the use of more than one annotator with verified agreement ensures consistent and reproducible annotation.

4.1.1 Dataset 1 (Derived from the source of the Nottingham Corpus of Geo-spatial Language)

Dataset 1 was created in the following manner. 6221 unique sentences were randomly selected from the original source data of

the Nottingham Corpus of Geo-spatial Language (NCGL). The data was first harvested using an automated method described

in Stock et al. [2013], and then manually filtered to remove expressions that were not geo-spatial. We used the data harvested

after the first step, but not yet filtered, in order to create a corpus with examples of all three classes, but with a higher proportion

of geo-spatial and other-spatial sentences than would appear in randomly selected text.

Each sentence contains one or more prepositions. For example, if an input sentence under consideration s1 has 2 prepositions,

say p1 and p2, we created 2 instances of the same sentence <s1, p1> and <s1, p2>. In this manner we derived 18828 instances

from the total 6221 unique sentences in the dataset. Each instance <sn, pn> was then manually annotated by the paper authors

with one of the three values described in Section 3.1 according to the use of the preposition pn: non-spatial, other-spatial or

geo-spatial.

The annotation process began with a training phase, in which two authors of the paper annotated a sample of expressions. The

annotators were provided with written guidelines/definitions of the classes before starting, and worked independently of each

other. The guidelines were based on the descriptions contained in Section 3.1 and were an adapted version of those included

in Appendix A and B of Stock et al. [2022] to address only prepositions (since that paper provides examples of spatial rela-

tions with a range of parts of speech), including both the definitions of each class and multiple examples. Then another author,

10https://figshare.com/s/5ff1f127948145681af5
11https://figshare.com/s/7407f37544f910fdbb9e
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TABLE 1 Example of PDEP Sense Metadata

Preposition Sense Definition

near 1(1) at or to a short distance away from (a place)

near 2(2) a short period of time from

near 3(3) close to (a state); verging on

near 4(3a) a small amount below (another amount)

near 5(4) similar to

who was more experienced in geographical data annotation, reviewed a sample of 1000 annotations (500 from each annotator)

and provided feedback, identifying incorrectly annotated instances and pointing out any patterns in the errors made by annota-

tors. Following this training phase, the first two annotators annotated approximately half of the prepositions each independently.

A sample of 500 was then randomly selected from each group to be annotated by the other annotator for cross-checking pur-

poses, resulting in 1000 expressions that had been annotated by both annotators. The inter-annotator agreement (Cohen’s kappa)

was calculated as 0.818 for these 1000 prepositions (indicating strong agreement [McHugh, 2012]). This method follows the

guidelines set out in [Artstein, 2017] to ensure a correct and reliable process.

The final annotated data set consisted of 5557 geo-spatial prepositions; 3027 other-spatial prepositions (and hence 8584

generic spatial prepositions), and 10,238 non-spatial prepositions, thus having a reasonable representation of each class.

4.1.2 Dataset 2 (Derived from the PDEP corpus)

The second dataset is derived from the PDEP corpus12 and is intended to test the ability of our method to successfully classify

sparse data, in which there are few geo-spatial sentences. Given that in non-specialised text of the kind harvested from many

web sites or other text documents, geo-spatial sentences are relatively infrequent, this can be regarded as a realistic scenario.

Dataset 2 contains 45279 instances (<sn, pn> pairs), 2122 of which are geo-spatial, making the ratio of geo-spatial instances to

the other instances intentionally skewed. We created this dataset using a two stage process: in Stage 1, we identified instances

with prepositions that had senses that were likely to be spatial (whether geo-spatial or other-spatial), and in Stage 2 we manually

annotated these with our three target classes, as described below.

Stage One

Dataset 2 was created by first filtering the PDEP (Pattern Dictionary of English Prepositions) corpus, by removing rows

containing incomplete information or empty or null columns. Then, one of the authors annotated the set of senses provided

with the PDEP corpus in order to identify prepositions used in a spatial sense (which could encompass both our geo-spatial

and other-spatial classes). The PDEP corpus metadata lists prepositions, their corresponding senses and definitions for each. An

example is shown in Table 1 for the preposition near. As can be seen, only the sense 1(1) listed here is clearly spatial in nature.

The others refer to time, similarity, quantity and state.

Again following recommended practice for sound creation of annotated data sets [Artstein, 2017], a second author annotated

a sample of 100 senses to verify the process, achieving a Cohen’s Kappa of 0.76 (see Figure 3), considered to indicate moderate

agreement [McHugh, 2012]. Many of the discrepancies between the two annotators were to do with the more liberal interpre-

tation of senses, with the second annotator marking as spatial any sense that might possibly include a spatial use, while the first

only marked as spatial those that were exclusively for spatial uses. This stricter interpretation was thought to be more appropri-

ate given the use of this process to identify potential geo-spatial and other-spatial expressions ahead of manual filtering in the

following step (see below).

The PDEP corpus marks each preposition with a sense, and we next extracted <sn, pn> tuples from the PDEP corpus that

were annotated with one of the senses that the first (stricter) annotator marked as spatial (encompassing both geo-spatial and

other-spatial classes in our classification scheme). From the resulting set of 34834 instances, we randomly selected 6000.

Stage Two

While the preposition senses in the PDEP dataset suggest that the 6000 randomly selected instances with spatial senses from

Stage 1 of the process are likely to be spatial, for our sense-detection method, we need to distinguish geo-spatial and other-spatial

12https://www.clres.com/pdep.html
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FIGURE 2 Stage 1 of the Annotation Procedure for Dataset 2

senses for training and testing purposes, as well as verifying that the expressions that are assumed to be spatial based on their

selected PDEP senses, are indeed spatial. Thus in the second stage of annotation, the sample of 6000 expressions extracted in

the previous stage was manually classified using our ternary classification scheme (geo-spatial, other-spatial and neither). The

6000 expressions were divided among three of the paper authors. A sub-sample of 200 was randomly selected and annotated

by all three authors, achieving an average Cohen’s kappa value of 0.73 (average calculated between three binary comparisons),

and the remainder were annotated by one of the three authors (see Figure 3). While the Cohen’s kappa value of 0.73 is lower

than is ideal, the average accuracy of the binary pairwise comparisons is 0.85. We note greater discrepancies among annotators

for geo-spatial/other-spatial annotations, while disagreement about which expressions are non-spatial is rare. This is due to the

challenges involved in annotation of geo-spatial language more generally [Aflaki et al., 2018, Wallgrün et al., 2014], with some

examples provided below.

The final data set was then constructed as follows:

• 2122 geo-spatial instances resulting from the second stage of manual annotation.

• 2994 other-spatial instances resulting from the second stage of manual annotation.

• 40163 non-spatial instances, being 904 instances that were annotated as non-spatial in Stage 2 of the annotation process

plus 39259 instances from the PDEP data set that were annotated with senses that we had classified as non-spatial in Stage

1 of the annotation.

As explained above, Dataset 2 is already sparse, but to test the model further, we considered an even more skewed ratio

between the classes, and hence an even sparser dataset, by taking 1000 geo-spatial, 1500 other-spatial and 40163 non-spatial

instances for (geo spatial vs others) and (generic spatial vs others). We call this dataset the “Sparser version of Dataset 2”.

The task of annotating geo-spatial, other-spatial and non-spatial sentences is challenging for humans, due to the multiple

nuances; and thus of course for the classifier too. Some examples of sentences which were difficult to annotate from Dataset 1

are given below:

1. “According to this article the first direct passenger plane between the Republic of China Taiwan and the Peoples Republic

of China happened early this morning.”

Disagreement about whether China here is meant as a country (and thus geospatial), or a political entity (metonymic use

of a place to represent a government).

2. “After 50m you will reach a road with wide verges where you turn left toward Lambley.”

Disagreement about whether after is purely temporal, or also spatial since it describes the process of travelling along
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FIGURE 3 Stage 2 of the Annotation Procedure for Dataset 2

for 50m and then reaching a road, and thus indicates the spatial configuration of different locations (as well as having a

temporal aspect).

3. “’It has seemed like that’, he said sombrely, looking off into the distance.”

The reference object (distance) may be considered abstract, rather than physical, and thus not georeferenceable.

4. “FIRE broke out yesterday on a cross-Channel ferry sailing from Dieppe to Newhaven.”

The reference object is mobile, and thus may be considered not geo-referenceable. However, descriptions of transport

routes are numerous and could be mapped.

5. “Nobody is seriously being invited to stand on top of the mountain of verbiage to get an overview.”

The preposition (“on top of”) is immediately followed by a geographic feature type (“mountain”), but refers to a mountain

of verbiage, and is thus metaphoric.

6. “Later, these functions will move outboard of the servers and will be implemented as either an in-band or out-of-band

function in the storage network itself.”

The preposition “outboard of” describes the location of software functions on a server/network, and there is a question

about whether this refers to physical, or purely digital space.

4.2 Experiments and Results

In this work, experimental results for two main preposition sense classification problems of geo-spatial and generic spatial are

presented based on combining individual results for each of the three classes used in annotation of the data. These three classes

are geo-spatial (gs), other-spatial (sp), and non-spatial (nsp). In the first experiment the target class is geo-spatial (gs) and the

other two classes (sp and nsp) are merged as one alternative class. Note that every geo-spatial sentence is also spatial, but the

classes geo-spatial, other-spatial and non-spatial are mutually disjoint. The second experiment detects the generic spatial class

in which the results for the target class are computed by merging geo-spatial (gs) and other-spatial (sp) results. The target class
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TABLE 2 Naive Bayes using features in Kordjamshidi et al. [2011]+ additional features, with Dataset 1

Geo-spatial Generic Spatial

i.e. (gs) vs (nsp+sp) i.e. (gsp+sp) vs (nsp)

Features used P R F1 P R F1

Kord-Geo 0.746 0.902 0.816 0.913 0.611 0.732

Kord-Geo-Sum 0.792 0.882 0.834 0.852 0.730 0.786

Kord-Geo-Or 0.927 0.744 0.826 0.800 0.797 0.798

generic spatial of this second experiment corresponds to the spatial class of for example Kordjamshidi et al. [2011] and Hassani

and Lee [2017].

In Table 2 the results of experiments performed using a Naive Bayes classifier with Dataset 1 are presented. In all three

experiments, the linguistic features from Kordjamshidi et al. [2011] in combination with some additional features allow us to

compare our results directly with those of Radke et al. [2019] who present results for the task of geo-spatial sense detection with

prepositions. The linguistic features were summarised earlier in the part of the Related Work section that describes Kordjamshidi

et al. [2011]. Extraction of these features included the use of the Stanford POS tagger and dependency parser and the LTH

semantic role labelling tool [Johansson and Nugues, 2007] at barbar.cs.lth.se:8081.

Regarding extraction of the features for the three variants of the Kordjamshidi et al. [2011] method, i.e. “Kord-Geo”, “Kord-

Geo-Sum” and “Kord-Geo-Or”, presented in Radke et al. [2019], and summarised here in Section 3.4, we employed the methods

described in Section 3.3.

For these three variants, all of which used 10-fold cross validation for training and test, the Kord-Geo-Or experiment (with a

feature indicating the presence of either place names or geographic feature types) provides the best results, with a geo-spatial F1

value of 0.826 and generic spatial F1 of 0.798. The precision for the geo-spatial class is relatively strong at 0.927, but with poorer

recall, which is highest for geo-spatial with the Kord-Geo features. These results are significantly better than those reported by

Radke et al. [2019] despite using a similar test corpus. We believe that our improved results are a consequence of providing more

effective detection of place names and place type words, as summarised in Section 3.3 in which we employ multiple gazetteers

in combination with several heuristics.

To compute the bag of words (BoW) features, the words in a window extending 5 words to the left and to the right of the

target preposition were used. For the machine learning techniques of SVM and Random Forests, the hyperparameters were tuned

using grid search Pedregosa et al. [2011]. In grid search, we specify a list of values for each hyperparameter which needs to be

tuned. Grid search tries out every combination of the hyperparameter values and determines the combination which best fits the

data. The resulting optimal values were used to perform the training and testing process. For SVM, we used the RBF (Radial

Basis Function) Kernel. The value of C was set to 10. Gamma took values from the set 0.1, 1, 10 and varied according to the

experiment at hand. The test results for the basic BoW experiments were obtained with 10-fold cross validation. For the meta-

classifiers, following the 10-fold cross validation on the first SVM classifier, the probabilities for each fold were calculated. The

obtained average probabilities along with the counts of the geographic feature types and place names for each instance become

the input features to the second classifier. Ten-fold cross validation was then performed on the second classifier.

In Table 3 we report the results for the BoW geo-spatial experiment with various classifiers, again with Dataset 1: SVM,

Naive Bayes and Random Forest (RF) using the Bag of Words features as described in Section 3.5. Of these experiments the

Random Forest classifier provides better geo-spatial precision, at 0.945, than the previous linguistic features approaches but

this is accompanied by lower recall. The difference in precision for BoW with the three types of classifier is quite marked

and indicates that the decision tree approach of the Random Forest classifier may be particularly well suited to detecting the

contextual geo-spatial words that are characteristic of the geo-spatial prepositions. The F1 value for geo-spatial sense detection

with SVM bag of words is higher than for any of the methods using linguistic and additional geographically-based features, but

for precision it was not able to match the Random Forest classifier, or the Naive Bayes Kord-Geo-Or method.

Table 4 reports the results of two meta-classifiers with Dataset 1. The first row in the table refers to an SVM classifier in which

the features are the output probabilities from the SVM Bag of Words classifier (the probabilities of a preposition belonging to

the relevant class) combined with features representing the counts of place names and geographical feature types in the context

of the preposition to be classified, while the second row refers to a similar classifier that uses the output predictions rather

than probabilities from the BoW classifier. While the F1 value for the geo-spatial experiment for the second meta-classifier is

slightly higher than the best Bag of Words result (SVM), the improvement is very modest, and the precision does not show any
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TABLE 3 Results of geo-spatial classification i.e. gs vs (sp+nsp) with Bag of Words, with Dataset 1

Method used Precision Recall F1

Naive Bayes with BOW 0.773 0.882 0.824

SVM with BOW 0.874 0.845 0.864

RF with BOW 0.945 0.649 0.770

TABLE 4 Metaclassifier Results using Bag Of Words (SVM+SVM), with Dataset 1

Geo-spatial Generic Spatial

i.e. gs vs (nsp+sp) i.e. (gsp+sp) vs nsp

Features Used P R F1 P R F1

o/p probabilities + Geo 0.946 0.770 0.849 0.782 0.831 0.805

o/p predictions + Geo 0.901 0.851 0.875 0.850 0.768 0.807

significant improvement. However the overall performance, when considering both precision and recall, is better for the first

meta-classifier than for the RF BoW classifier (which had the highest precision for the geo-spatial sense). The F1 values for the

generic spatial experiment are only very slightly improved over the Kord-Geo-Or (the best of the linguistic feature methods),

and the precision is lower than that of Kord-Geo.

A notable outcome specifically for the geo-spatial preposition classification task, when comparing the BoW methods with

those using linguistic features methods, is that despite the relative simplicity of the BoW approach (being based just on tf-idf

values of individual words) it is able to match and sometimes outperform the methods based on quite complex hand-crafted

linguistic features. The experiments that follow, using the BERT-based methods, in turn are able to significantly outperform the

BoW methods, illustrating the power of representing the semantics of words as multi-dimensional word embeddings in a deep

learning environment.

The final method which is presented involves the use of various BERT-based models to determine the geo-spatial or generic

spatial sense of prepositions (see Section 3.6). Here the BertForSequenceClassification model is employed with uncased text in

the Hugging Face13 implementation. This version of BERT adds a final classifier layer that is used as part of the process of fine

tuning to output the class labels. For the BERT experiments, the pre-trained ‘BERT tokenizer’ (which is based on the WordPiece

tokenizer) is used to tokenize the sentences and is provided by the transformer library. The tokenizer maps each word of the

input text ‘sentence’ to a numeric value and creates a numeric vector for each sentence. It uses a variety of techniques including

byte pair encoding (BPE) to handle words such as “can’t”. To mark the start and end of each instance, the [CLS] (classifier) and

the [SEP] (separator) tokens are added to the start and the end of each sentence. In our experiments the input text consisted of all

words in a window that extended 5 words to the left and to the right of the preposition to be classified. The sentences are padded

using a padding (PAD) token to ensure that all of them are of the same length. The value of length is a maximum value equal

to the number of tokens in the longest instance. The entire dataset is divided into train (80%), test (10%) and validation (10%)

datasets. The validation data is used to set the hyperparameters. The recommended batch size of 32 is used to train the model

and sample batches randomly from the dataset for the training process. The batches are randomly selected for training purpose

so that the model trains in an unbiased manner. The number of output labels is set to 2 as both experiments have binary class

labels. The Adam Optimizer was employed with a learning scheduler for the training process, specified by a warm up period

followed by a gradual increase in the learning rate. The learning rates for each BERT model were set as follows: XLNet: 4.00E-

04; Transformers XL: 4.00E-04; Roberta: 2.00E-05; BERT: 2.00E-05; ALBERT: 1.76E-03; DistilBERT: 2.00E-05. The models

were trained for 4 epochs, and for each epoch the training vs validation loss was calculated to keep a check on overfitting. The F1

scores were recorded for the test set. The whole process was repeated 10 times and each time the training, testing and validation

datasets were randomly sampled from the entire dataset. Averaged values were computed for Precision, Recall and F1 score.

The analysis of the GPU training times for the various BERT-Based models is shown in Figure 4. The blue line indicates the

GPU training times for the geo-spatial versus others (gsp vs (sp+nsp)) experiment. The red line indicates the GPU train times

for the generic spatial versus non-spatial experiment ((gsp+sp) vs nsp).

13https://huggingface.co
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FIGURE 4 Analysis of the GPU training time for the experiments

FIGURE 5 Impact of the proposed modification to the BERT architecture on F1 scores for the Geo-spatial versus (other spatial

+ non-spatial) experiment for Dataset 1

The results of modifying the input to the transformer models to include tags indicating the presence of place names, as

explained in Section 3, are reported in Figures 5 and 6 which relate to Dataset 1. The approach was found to provide significant

improvement in performance of all six transformer models, as reflected in the precision and F1 scores. Therefore all subsequent

BERT-based model experiments on Dataset 2 were conducted by incorporating this feature. All results in Table 5, for both

datasets relate to the use of the place name (location) tags.

As illustrated in Table 5, the F1 results for all BERT-based models when applied to Dataset 1 exceed those for the other

(non-BERT-based) experiments for both geo-spatial and generic spatial sense detection. This was the case for the best BERT-

based methods even when the location tags were omitted. While the XLNet model provides the best overall performance,

considering both senses, it may be noted that precision of the geo-spatial sense prediction obtained with the Bag of Words

metaclassifier matched the XLNet performance (being 0.946 vs 0.943), though its recall was poorer than all of the BERT-based

models. We observed that BERT is slightly better at predicting the generic spatial class than the geo-spatial class, in contrast to

the methods that combine linguistic and additional geographic features (Kord-Geo, Kord-Geo-Sum and Kord-Geo-Or) and the
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FIGURE 6 Impact of the proposed modification to the BERT architecture on F1 scores for the Generic spatial (geo-spatial +

other spatial) versus non-spatial experiment for Dataset 1

TABLE 5 Experiment with Transfer Learning on Dataset 1 and Dataset 2

Geo-spatial Generic Spatial

i.e. (nsp+sp) vs (gs) i.e. (nsp) vs (gsp+sp)

Dataset Algorithm P R F1 P R F1

XLNet 0.943 0.928 0.935 0.953 0.937 0.944

Transformer-XL 0.917 0.937 0.927 0.915 0.948 0.932

Dataset 1 RoBERTa 0.902 0.939 0.92 0.954 0.909 0.933

BERT 0.915 0.895 0.904 0.902 0.917 0.91

ALBERT 0.936 0.867 0.901 0.931 0.896 0.913

DistilBERT 0.871 0.869 0.87 0.893 0.899 0.896

XLNet 0.958 0.917 0.938 0.941 0.952 0.947

Transformer-XL 0.931 0.932 0.931 0.925 0.957 0.941

Dataset 2 RoBERTa 0.912 0.942 0.926 0.948 0.929 0.939

BERT 0.925 0.898 0.911 0.924 0.918 0.92

ALBERT 0.927 0.899 0.913 0.922 0.913 0.918

DistilBERT 0.864 0.901 0.882 0.898 0.897 0.898

meta-classifier approaches. However the absolute performance on generic spatial sense prediction of the BERT-based models

significantly outperforms the other approaches. The improvement of geo-spatial over generic spatial prediction in the linguistic

and meta-classifier experiments may be due to the incorporation of the features that indicate the presence or number of place

names and geographic feature types, which are key to the definition of the geo-spatial class (see Section 3.1). It may be noted

that the superiority in geo-spatial vs generic sense detection was not found in the study of Radke et al. [2019] and we attribute

the difference here to our more sophisticated methods for detecting place names that employ multiple gazetteers.

Table 5 illustrates the results of applying our methods to Dataset 2, which in addition to coming from a different data source

that was designed for preposition sense detection, is characterised by a much lower proportion of geo-spatial and other spatial

prepositions when compared with Dataset 1. The precision of XLNet for this sparse dataset was actually superior at 0.96 to that

obtained for Dataset 1, while F1 was very similar, both being 0.94 when rounded to 2 significant figures. Generic sense detection

performance with the best BERT-based models was very similar to that for Dataset 1.

When the best model XLNet was tested on an even sparser version of dataset 2, illustrated in Table 6, the classifier’s perfor-

mance degraded somewhat, but still obtained a precision of .93 for geo-spatial sense detection, with an F1 of 0.88. Precision

and F1 for generic spatial sense detection were both 0.90. This lower performance is attributed to the reduction in both cases in

the quantity of training data for the target class.
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Experiment Model P R F1

Geo-spatial : gsp vs (sp+nsp) XLNet 0.926 0.844 0.883

Generic spatial: (sp + gsp) vs nsp XLNet 0.898 0.907 0.902

TABLE 6 Experimental results on sparser version of Dataset 2

TABLE 7 Examples of correct prediction of geo-spatial prepositions by the XLNet classifier.

ID Sentence (preposition in bold; context window in italics)

1 Above us, waterfalls tumbled down the mountainside from glaciers that hung over the lip of high cols.

2 Critics complained of the ‘drab uniformity’ of such seemingly endless streets, which frequently concealed

behind them a network of older and certainly less well ordered thoroughfares.

3 John Elsley spoke for many booksellers up and down the country: ‘Unemployment and the fear of unem-

ployment have been a major adverse factor, during the year and particularly in the period up to Christmas.

4 The annual report by the UK government’s Radioactive Waste Management Advisory Committee suggested

that water could seep from deep volcanic rocks beneath the site to sandstone nearer the surface , introducing

a continuous rivulet of radioactive waste into the environment.

5 Although hierarchy was not expressed by ritual along the coastal strip, inequality remained fundamental

to perceptions of caste.

6 A 1500ft volcano in the Timanfaya National Park.

TABLE 8 Examples of incorrect prediction of geo-spatial prepositions by the XLNet classifier. The predictions (Pred.)

were either other-spatial (sp) or non-spatial (nsp)

ID Sentence (preposition in bold; context window in italics) Pred.

7 They edged round the bend. nsp

8 Peter’s dream of unclean animals is recorded in Acts, Chapter 10 : 9 On the morrow, as they went

on their journey, and drew nigh unto the city, Peter went up upon the housetop to pray for about the

sixth hour.

sp

9 Liberal opinion began to waver as the extent of the violence was revealed on newsreels, on television,

in Paris Match, across the globe.

sp

10 Alongside the rugose corals low cushions or branching masses of a different kind of calcite coral

are often found.

nsp

In summary the best F1 performance for both geo-spatial and generic sense detection was obtained with the XLNet transformer

model. This outcome reflects results in other domains in which BERT-based transfer learning approaches often outperform

methods that use hand-crafted features as well as some alternative deep learning approaches. In our case we can interpret this as

indicating that the contextual embeddings that the model learns in training can be more powerful in communicating significant

linguistic features than the explicit linguistic features such as part of speech tags and dependency paths, or the presence of

individual words as in the bag of words methods. This benefit was however only clearly expressed with regard to improving

recall values. Thus the bag of words classifier, in which features are tf-idf values of individual words, provided the best precision,

though this was almost the same (differing only in the third decimal place) as that obtained with XLNet. An important outcome

of the present study is however the fact that explicit tagging of place names in the BERT-based input resulted in a significant

boost in performance of up to 2%.

Study of results of XLNet classification on individual instances casts light on the effectiveness and limitations of the BERT-

based approach. In Table 7 we illustrate examples of successful prediction of the geo-spatial sense. Note that the words in italics

are those in the context window that extends 5 words to the left and right of the preposition to be classified, and which is input

to the classifier. With one exception, we intentionally focus on the more challenging cases in which there is no place name in

the sentence. For example in sentence 1, in which the preposition down is correctly classified, the classifier has successfully
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identified the geo-spatial semantics of terms such as mountainside and glaciers. Other examples of terms that we might expect

to be encoded with geo-spatial semantics within the classifier’s adaptive word embeddings include streets in sentence 2, country

in sentence 3, rocks, site and sandstone in the gelogical context of sentence 4, and coastal strip in sentence 5. Sentence 2 is

of particular note in that the preposition behind has as its object (landmark) the word them which is an indirect (anaphoric)

reference to streets that occurs elsewhere in the context window. The sixth example is a more straightforward case in which

the sentence contains a place name (Timanfaya National Park). Sentence 3 is of note for illustrating the fact that our approach

includes processing multi-word prepositions as in up and down. Table 8 illustrates examples of some failed cases. The examples

are characterised by the use of relatively rare prepositions such as unto in sentence 8, and infrequently used terms that might not

have have been learnt as having geo-spatial semantics due to inadequate examples in training, such as bend in sentence 1, globe

in sentence 9 and rugose coral in sentence 10. It may also be remarked that in sentence 7 the short text has resulted in a smaller

than normal context window and hence less evidence for the classifier.

While all of the BERT-based methods perform well, the results for DistilBERT, and to a lesser extent ALBERT and BERT

are lower than for XLNet, Transformer-XL and RoBERTa. This is unsurprising given that DistilBERT and ALBERT intention-

ally sacrifice performance in order to reduce processing load (see Section 3.6), confirmed in particular for DistilBERT by our

training time comparisons (Figure 4); and XLNet, Transformer-XL and RoBERTa were all specifically designed as improve-

ments over BERT. To further examine the differences in classification between the BERT-based methods, we examined cases

of prepositions that were classified differently by different methods. Given the high precision for all BERT-based methods, we

specifically identified challenging cases for comparison, including prepositions that were multi-word, slang (e.g. ’thru’), obselete

(e.g. ’abaft’), unusual (e.g. ’modulo’), vague or frequently used for senses other than the one used in our data. One of the most

common types of instances that were misclassified by ALBERT and DistilBERT, but not by the other methods, included those

that used prepositions metaphorically, but often in the company of place names or geographic feature types (e.g. “the realities

of France in the throes of revolution”, “was achieved through citizenship of the United Kingdom”). Metonymic uses of place

names to represent governments or organisations also proved challenging for the reduced forms of BERT (e.g. “Macdonalds all

over the world contribute”), especially if other geographic feature types or place names were present. There were also cases in

which geospatial prepositions were misclassified as spatial and vice versa by DistilBERT and ALBERT, with reference objects

such as bodies “bodies are dropping all over the place” and indoor rather than outdoor items (bedroom, furniture). We can see

by these examples that while all of the BERT-based methods perform well, the full, and particularly the more recent/extended

versions for the original BERT are better able to identify the nuances in the particularly challenging expressions that include

misleading or ambiguous elements.

The improvement that resulted from the use of LOCATION tags around place names (see Section 3.6) is evident in cases

such as the following, that were correctly classified with XLNET when the location tags were included, but not when they were

excluded (using only the text):

1. “they descended from the hills at West Quantoxhead.”

2. “right on the sea front opposite St Johns Church.”

3. “The trumpeter defected to the West in the mid-Seventies.”

These examples demonstrate the importance of multi-word place names (as well as single-word) (Example 1), names that are

not immediately adjacent to or the direct object or subject of the preposition (Example 2), and vague names (Example 3) in the

detection of geo-spatial language. It may also be remarked that our best methods proved effective in classifying expressions as

geo-spatial in those cases where the reference object is geographic but is not a place name, as in “Note Clock Tower and track

to right leading to the Cricket ground”.

5 CONCLUSION AND FUTURE WORK

In this paper we have addressed the problem of disambiguation of the sense of prepositions with a particular focus on geo-spatial

senses that refers to a geographical context. The motivation is that detection of such geo-spatial uses of prepositions supports the

increasingly important field of geographical information retrieval which is aimed at finding documents and extracting textual

information that relate to geographical locations. The use of BERT-based transformer architectures was compared to a variety of

alternative methods. These included an extension of the linguistic features of Kordjamshidi et al. [2011] with features that detect
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the presence of place names and geographic features; a bag of words method based on a window surrounding the word to be

classified; and meta-classifiers that combined class predictions and probabilities from the bag of words method with features that

indicate the counts of place names and geographic feature types in the local context. The transformer models, that are notable

for incorporating transfer learning in which a pre-trained deep learning model is fine-tuned to the training data, provided clear

superiority in performance for both geo-spatial (F1 0.94) and generic spatial (F1 0.95) sense detection. This performance for geo-

spatial sense detection improves very significantly on previous work focused on that task. The success of the transformer model

deep learning approach for geo-spatial sense detection demonstrates the benefits of the context-dependent word embedding

approach relative to the use of hand-crafted linguistic features and to the use of a bag of words approach. With regard to precision

however, the BERT-based methods did not improve on the SVM meta-classifier that combined predictions from a bag of words

classifier with counts of place names and of geofeatures. The BERT-based methods did provide markedly superior results for

recall. While the BERT-based methods provided the best F1 performance with standard text input, a significant outcome of our

study of spatial preposition sense detection is to demonstrate the benefit with the BERT-based models of explicit tagging of

words that represent place names. Although the generic spatial sense detection was a subsidiary aim of this work, it may be

noted that F1 performance on our datasets matched results of previous published work on the application of deep learning to

that task with different datasets.

We regard a significant contribution of this work to be its role in enabling much finer grained geo-referencing than is cur-

rently the norm. Most work on geo-referencing to date has been focused on determining representative coordinates for entire

documents or for social media posts. Effective automation of detection of the geo-spatial use of relational terms (as presented

here) will support extraction and geo-referencing of locative expressions that refer to geo-spatial entities with relative spatial

relationships. Such locative expressions commonly occur in natural language descriptions of for example impacts of natural

disasters; the location of road accidents; and the vast numbers of historic records of the locations at which biological or other

natural environmental samples were obtained. Future work in this field can be envisaged on tasks such as improved extraction of

all components of locative expressions, and more effective modelling of the applicability of individual spatial relational terms

to enable determining the exact locations referred to by such expressions.

In other future work we will investigate augmenting the transformer language model approach with tagging of geographic

features types (in addition to place names), as well as supplementing the text input with linguistic features. We also plan to extend

these methods to address the problems of detecting other parts of speech that communicate geo-spatial relations, in particular

focusing on the role of verbs when used in a spatial sense. Further investigations could also address detection of the distinction

between static and dynamic uses of spatial relations in geo-spatial contexts.
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