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 Effect of Time as % of Effect of Precipitation with Respect to Rate of: 

 

Severe Events Very Severe Events Severe Events Very Severe Events 

Model Weighted by National Fire 

Activity 
Model Unweighted 

Indonesia 58 39 67 49 

Central-South Sumatra 85 19 113 69 

Southern Kalimantan 40 34 51 43 

Targeted Areas 43 18 65 45 

Supplemental Table 1 The effect of the passage of time on rates of (a) Severe or (b) Very severe fire events 

per annum, as a percentage of the effects of total fire-season (July-December) precipitation, by region, 2002-

2019. 

 

 

 

 

Supplemental Figure 1 Fire-affected regions of Central-South Sumatra and Southern Kalimantan relative to 

Peatland and areas targeted for fire prevention. 

Notes: Thick black lines delineate the fire-affected regions.  

  



4 
 

Supplemental Note 1: The Severity of Seasonal Fire Activity 

The severity of seasonal fire activity was given by the skewness (Eqn. 2) of fire-event severity scores (Eqn. 1) 

bi-annually.  The precision, power, and bias of our skewness measure are similar to alternative measures 

designed for robustness to outliers1-3, especially where frequency distributions are highly skewed and samples 

large, as is the case here.  Below we detail various checks to the fidelity and robustness of our measure. 

 

1.1 Sensitivity to the Specification of the Severity of Seasonal Fire Activity  

Our measure of the severity of seasonal fire activity (Eqn. 2) discriminates amongst bi-annual seasons of 

extreme and moderate fire activity better than an alternative, direct measure of the total magnitude of fire 

severity.  Supplemental Figure 2a illustrates this upon plotting our measures of severity of seasonal fire 

activity (Eqn. 2) against the seasonal magnitude of fire-activity severity, the latter expressed as the sum of 

cubed deviations of fire-event severity scores per bi-annual season relative to the mean severity score of 2002-

2019: 

     Total Cubed Deviations of Fire-Event Severityt  from Grand Mean= ∑(𝑋𝑖𝑡 − �̿�)
3
                                 (S1) 

where, for a given region, Xit
 is the severity of the ith fire event for bi-annual season t; and �̿� is the mean fire-

event severity of 2002-2019, termed the grand mean.  Eqn. S1 is analogous to the cubed term in Eqn. 2 and 

similarly heavily ‘weights’ larger deviations via its cubic exponent.  In principle, Eqn. S1 should aptly 

discriminate bi-annual seasons with respect to relative extremeness of their fire activity, consistent with 

common understanding of the relative severity of fire seasons historically, where extreme fire actively entails 

relatively large and frequent positive deviations from the grand mean.   

 

Our original measure of seasonal severity (Eqn. 2) significantly correlates with the alternative measure (Eqn. 

S1) but also distinguishes between critical dimensions of extreme fire activity conflated by the alternative 

measure (Eqn. S1).  Supplemental Figure 2a plots our original and alternative measures for Indonesia for all 

bi-annual seasons of 2002-2019 and reveals two dimensions defined by these measures.  Dimension A 

describes heightened burning during fire seasons that coincided with relatively limited precipitation and 

generally also with elevated (≥0.5˚C) Oceanic Niño Index (ONI) values 4 over multiple months (e.g., late 

2015, late 2018), with such months frequently comprising portions of broader El Niño periods (i.e., ONI 

≥0.5˚C for >4 consecutive months), when burning is historically most extensive and severe.  Virtually all fire 

activity during periods of heightened burning characterising Dimension A concentrated between mid-July and 

late October5.  In contrast, Dimension B describes appreciable but relatively limited and less severe burning, 

occurring outside of fire seasons, largely during January and February prior to the onset of the first rainy 

period of the year (Sumatra), and coinciding either with the end of El Niño periods carried over from a prior 

year (e.g., early 2003, early 2005) or with other periods that were not particularly dry but which experienced 

relatively  
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Supplemental Figure 2 Relationship between 

severity of seasonal fire activity (Eqn. 2) and 

the seasonal magnitude of fire severity (Eqn. 

S1), by region and seasonal period.  

Notes: Axis scales are not consistent between panels.  

Dimensions A and B in (a) were determined heuristically.   

 

variable fire-event severity scores suggestive 

of elevated fire activity (e.g., early 2014).  

Dimensions A and B are also apparent for the 

two fire-affected regions (Supplemental 

Figure 2b, Supplemental Figure 2c).  The 

fact that our measure of the severity of 

seasonal fire activity correlates with the 

alternative measure pertaining to absolute 

severity magnitude while also discriminating 

between dimensions A and B qualifies it as the 

superior indicator of fire-activity extreme and 

extent. 

 

We further scrutinised the severity of seasonal 

fire activity with respect to the robustness of 

modelled temporal trends thereof (Figure 3).  

As per Eqn. 2, our measure of seasonal 

severity reflects deviations of fire-event 

severity scores relative to the seasonal (bi-

annual) mean severity.  Given variability 

amongst seasonal means, with potential 

implications for the modelled trends in 

seasonal severity, we re-fit our models of 

Figure 3 while holding means constant.  

Specifically, for each region of interest, we 

substituted the seasonal mean severity �̅�𝑡 in 

Eqn. 2 with the grand mean fire-event severity 

score for 2002-2019, �̿�, defined above.  

Subsequently, for the resultant, alternative 

metric of seasonal severity, we re-fit 
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regressions on seasonal precipitation and time elapsed since 2002.  The results of these alternative regressions 

are largely consistent with the regressions underlying Figure 3.  Controlling for precipitation, the alternative 

metric of seasonal severity declined significantly with time in South-Central Sumatra (p<0.05); declined 

moderately in the Targeted Areas (p=0.1); and declined insignificantly in Southern Kalimantan and nationally.  

Alternative models’ explanatory power was lower (R2=0.34-0.50) than for the original models (Supplemental 

Table 2), seemingly due to weaker linear relationships between precipitation and the alternative metric of 

seasonal severity.  Still, in South-Central Sumatra, the effect of time on the alternative metric was equivalent 

to that of the original model (Supplemental Table 2) in terms of contributions to model R2.  Methodological 

details for the alternative models are summarised below.   

 

Methodological Details: Upon substituting grand mean �̿� for �̅�𝑡 in Eqn. 2 for a given region as above, the 

corresponding alternative metric of the severity of seasonal fire activity M was transformed as Sign(M)  

(Log10(1+|M|) prior to re-fitting the regression models.  Sign(M) equals -1 or +1 where M is negative or 

positive, respectively.  This transformation approximates a standard logarithmic transformation but is also 

suitable for negative values (Supplemental Figure 2c).  Transformation improved linear fit with seasonal 

total precipitation and, not incidentally, with the logarithm of seasonal severity (Eqn. 2).  Seasonal periods of 

2017 were excluded as extreme outliers for all regions but Indonesia. 

 

1.2 Sensitivity of the Severity of Seasonal Fire Activity  

Skewness measures such as Eqn. 2 are potentially subject to perverse variation unrelated to extreme fire-event 

impacts.  Specifically, at least where skewness is moderate, skewness may decrease appreciably while holding 

constant the values and frequencies of the higher fire-event impact scores (Eqn. 1), should the relative 

frequencies of fire events with lower and intermediate impact scores decrease and increase, respectively.  As 

detailed below, we examined the possibility in our data and find it irrelevant, given the acute skewness 

observed.  Observed declines in seasonal severity described by skewness (Figure 3) are therefore considered 

largely a function of declines in the value and frequency of higher fire-event severity scores.    

 

We tested the sensitivity of observed skewness over four scenarios that progressively replaced lower-value, 

higher-frequency fire-event severity scores with higher-value, lower-frequency scores.  These scenarios 

progressively increased the central tendency of a given seasonal (bi-annual) frequency distribution of severity 

scores while holding constant those scores above the 75th percentile as well as the total number of fire events.  

The four scenarios are as follows:   

• Scenario 1 – Fire-event severity scores of the 45-50th percentile replaced those of the 1-5th percentile; 

• Scenario 2 – Fire-event severity scores of the 40-50th percentile replaced those of the 1-10th percentile;  

• Scenario 3 – Fire-event severity scores of the 25-50th percentile replaced those of the 1-25th percentile; 

• Scenario 4 – Fire-event severity scores of the 50-75th percentile replaced those of the 1-25th percentile. 
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Percentiles here are with respect to the fire events of a given seasonal period.  Two such periods were 

examined – July-December of 2015 and January-June of 2017 – having respectively the maximum (61.3) and 

minimum (4.1) skewness for Southern Kalimantan over 2002-2019.  Southern Kalimantan was selected for 

scrutiny because its skewness values are moderate compared to Central-South Sumatra and Indonesia 

(Supplemental Figure 2). 

 

In the case of July-December 2015, all four scenarios were within 0.01% of the observed skewness.  In the 

case of January-June 2017, scenarios 1, 2, 3 and 4 deviated from the observed skewness by less than 1%, 2%, 

3%, and 1%, respectively.  Hence, the possibility of perverse variation to observed skewness is dismissed.   

 

*****  
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Region 

Seasonal 

Severity 

Explained 

[R2]ϕ(%) 

Model Coefficient 

(Bias)† Effect of 

Time 

Relative to 

Precipitation 

(%)|| 

Seasonal 

Severity 

Explained 

[R2] by Time, 

Net of 

Precipitation¶ 

(%) 

Durbin-

Watson# 

(Bias)† 

Precipitation 

[total mm] 

Time  

[No. 

Intervals] 

Indonesia 54**** 

-9.154 E-

6**** 

(2.34 e-7) 

-0.34 

(-0.01) 12 1 
2.25 

(-0.83) 

Southern 

Kalimantan 
53**** 

-1.36 e-

5**** 

(-1.960 e-7) 

-0.33*‡ 

(-0.01) 32 5 
2.16 

(-0.75) 

Central-

South 

Sumatra 

45**** 

-3.448 e-

5**** 

(5.094 e-7) 

-0.84**§ 

(0.00) 62 16 
1.92 

(-0.60) 

Targeted 

Areas 
53**** 

-5.488 e-5** 

(3.288 e-7) 

-0.30*‡ 

(-0.01) 
30 4 

1.60 

(-0.40) 

Supplemental Table 2 Regressions of the severity of seasonal fire activity on precipitation and time elapsed 

over 2002-2019, seasonally by region. 

Significance: * p<0.1, ** p<0.05, *** p<0.01, **** p<0.001 

Notes: (ϕ) R2 according to final model of severity of seasonal fire activity (Eqn. 2) as a function of precipitation and the number of bi-

annual seasonal intervals elapsed since July 2002, i.e., time. (†) Bias is the difference in the coefficient computed from the 

bootstrapped samples and the original sample, defined as the former less the latter; (‡) Variable is equally significant (p<0.1) in an 

equivalent model without bootstrapping; (§) Variable is more significant (p<0.001) in an equivalent model without bootstrapping; (||) 

Defined as the standardised coefficient for time expressed as a percentage of the standardised coefficient for precipitation; (¶) Increase 

to model R2 upon including the time variable in the final model, after including the precipitation variable in a partial model. Both the 

final and partial models included constants; (#) Durbin-Watson tests reject the assumption of positive autocorrelation of residuals 

(Targeted Areas, Central-South Sumatra) or are conservatively inconclusive (Indonesia, Southern Kalimantan) at p<0.056, where 

Durbin-Watson test statistics are defined by observed values and their corresponding bias.  
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Supplemental Note 2: Land-Use/Cover Shifts and Extreme Fire Activity  

2.1 Severe Fire Events for Land-Use/Cover Trend Analysis  

For the analysis of land-use/cover relative frequency amongst fire events and ignitions (Table 2), we defined 

severe fire events as those comprised by either the top 25% of all AFDs (set (a) in Methods) or the top 25% of 

ignition AFDs (set (b)) in terms of the fire-event severity scores (Eqn. 1) of corresponding fire events of 2002-

2019.  Land-use/cover trends for sets (a) and (b) are given respectively in Tables 2a and 2b.  The minimum 

‘threshold’ fire-event severity necessarily differed between severe fire events of set (a) (7268.8) and of set (b) 

(138.1).  Both of these thresholds also differed from the 75th percentile severity threshold defining annual rates 

of severe fire events (Figure 1).  Threshold differences between set (a) and set (b) owe to the fact that ignition 

AFDs are less concentrated amongst fire events with higher severity scores than are AFDs generally.  The 

potential use of the threshold of set (a) to define set (b) would have selected too few ignition AFDs for reliable 

analysis in Table 2b.  Conversely, defining severe fire events for Table 2a using the threshold of set (b) or 

that used to model rates of severe fire events would have proven too unselective by qualifying half or two-

thirds of all AFDs of 2002-2019 as severe, respectively. 

 

2.2 Model Sensitivity to the Effects of Recent Years of Severe Fire Activity  

Both 2015 and 2019 are years of anomalously severe and extensive fire activity late in our 2002-2019 time 

series5,7,8 (Figure 1).  Accordingly, observations for these years may be relatively influential to the 

significance of trends in the prevalence of land uses/covers amongst fire events and ignitions, summarised in 

Table 2.  Here, we experimentally exclude 2015 and 2019 from the models underlying Table 2 to assess the 

effects of recent, anomalous fire activity on trends modelled for the full time series.  Significant trends across 

the full time series in Table 2 are generally robust to the exclusion of 2015 (Supplemental Table 3) or 2019 

(Supplemental Table 4).  Exclusions of 2015 and 2019 also highlight the centrality of such years of 

heightened burning to the ascendency of flooded vegetation amongst fire activity over 2002-2019 (Table 2).  

The following describes methodological details and observations.   

  

2.2.1 Methodological Background 

Table 2 summarises regression models describing changes to the relative frequency of land uses/covers 

amongst fire-activity sets a-d (see Methods in the main text).  As elsewhere, these models were bootstrapped 

1000 times to ensure reliable, robust significance estimates.  Bootstrapping entailed randomly re-sampling the 

2002-2019 time series with replacement to yield 1000 time series for as many models, ultimately summarised 

in Table 2.  While all 1000 bootstrapped samples pertained to the full time series 2002-2019 and so had n=18 

annual observations, most samples were ‘partial’ insofar as they randomly omitted one or more years and 

therefore randomly included other year(s) more than once.  Along such lines, the models summarised in 

Supplemental Table 3 and Supplemental Table 4 are identical in design to those of Table 2 but explicitly 

excluded observations for 2015 or 2019 from all 1000 bootstrapped samples, respectively.     
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 (a) Active-Fire Detections of Severe Fire Events (b) Ignition Active-Fire Detections of Severe Fire Events 

Indonesia 0.07 -0.35 -0.03 -0.86 0.08 0.29 0.55 0.09 -0.6 -0.17 -0.05 0.15 0.24 0.31 

Southern Kalimantan 0.19 -0.13 -0.2 -0.78 0.01 0.34 0.59 0 -0.56 -0.07 0.19 0.01 0.26 0.16 

Central-South Sumatra -0.34 0.06 0.35 -0.66 0.01 0.01 0.58 0.1 -0.51 -0.36 -0.09 0 0.24 0.61 

Elsewhere 0.74 -1.38 -0.48 -0.59 0.13 0.32 0.59 0.21 -0.74 -0.13 -0.15 0.34 0.22 0.19 

Peatland 0.16 0.18 0.1 -1.15 0 0.11 0.62 0.12 -0.15 -0.07 -0.8 0 0.22 0.53 

Mineral Soil 0.05 -1.9 -0.54 0.32 0.22 0.75 0.35 0 -0.93 -0.18 0.46 0.25 0.23 0.12 

Targeted Areas 0.23 0.19 -0.02 -1.02 -0.01 0.08 0.56 0.05 -0.37 0 -0.34 0 0.23 0.45 

 (c) Active-Fire Detections of All Fire Events (d) Ignition Active-Fire Detections of All Fire Events 

Indonesia -0.05 -0.49 0.02 -0.18 0.05 0.18 0.38 -0.1 -0.62 0.06 0.12 0.06 0.14 0.25 

Southern Kalimantan -0.04 -0.46 0.04 -0.05 0.01 0.26 0.22 -0.16 -0.62 0.14 0.3 0.01 0.18 0.11 

Central-South Sumatra -0.28 -0.48 -0.08 -0.08 0 0.14 0.75 -0.13 -0.77 -0.19 0.22 0 0.15 0.68 

Elsewhere 0.17 -0.62 0.02 -0.23 0.12 0.16 0.18 0.02 -0.45 0.16 -0.17 0.1 0.11 0.08 

Peatland -0.01 -0.09 0.12 -0.9 0 0.17 0.72 -0.19 -0.4 0.06 -0.57 0 0.21 0.87 

Mineral Soil -0.06 -0.85 0 -0.37 0.11 0.17 0.1 -0.11 -0.72 0.11 0.34 0.09 0.12 0.06 

Targeted Areas -0.02 -0.18 0.08 -0.67 0 0.16 0.61 -0.18 -0.57 0.1 -0.15 0 0.22 0.58 
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Supplemental Table 3 Percentage change in land uses/cover frequency across fire events per annum, for 

2002-2019 omitting 2015, by region, for either (a) Active-fire detections of severe fire events, (b) Ignition 

active-fire detections of severe fire events, (c) Active-fire detections of all fire events, and (d) Ignition active-

fire detections of all fire events. 

Notes: Positive and negative values are interpreted as for Table 2.  Blue and red cell borders respectively denote decreasing and 

increasing fire activity over 2002-2019 omitting 2015 and having of least moderate significance without Bonferroni correction (Thick 

border, p<0.001; Medium border, p<0.01; Dashed border, p<0.05).  Cells with borders are also distinguished by bold text.  Blue and 

orange cell shading respectively denote decreasing and increasing trends over the full time series 2002-2019 as per Table 2 and having 

at least moderate significance without Bonferroni correction (dark shading, p<0.001; medium shading, p<0.01; light shading, p<0.05).  

Interpretation based on shading/borders denoting p<0.01 and p<0.001 is favoured according to Bonferroni adjustments.  For all 

regions, including Indonesia, Java and the Lesser Sunda Islands are excluded.  

 

In Supplemental Table 3 and Supplemental Table 4, cells are formatted to indicate agreement between 

models of the full time series (Table 2) and the models excluding 2015 or 2019, respectively.  Here, 

agreement is with respect to statistical significance.  Cells’ shading denote significance according to the full 

time series 2002-2019 and is therefore exactly as in Table 2.  Cells’ border colour and thickness denote 

significance according to models excluding 2015 or 2019.  Thus, agreement between a cell’s border and its 

shading indicates agreement between models for the full and partial time series.   

 

As in Table 2, Supplemental Table 3 and Supplemental Table 4 report significance values without 

Boneronni adjustment.  Bonferroni adjustments prioritise significance at p<0.01.  Such an adjustment is 

proportional to the number land use/cover classes in our models (Table 1), not the product of classes, fire-

activity sets, and/or regions, considering the nested nature of our regions and sets and that our main hypothesis 

concerns differences amongst classes, not regions or sets9.   

 

2.2.2 Model Sensitivity  

Significant trends across the full time series (Table 2) are generally robust to the exclusion of 2015 

(Supplemental Table 3) or 2019 (Supplemental Table 4).  Significant decreases in the prevalence of mosaic 

cropland and forest are affirmed across all sets of fire activity for both partial time series (Supplemental 

Table 3 and Supplemental Table 4, panels a-d).  A partial exception to this consistency is that the models for 

either partial time series attribute weaker significance to the increasing prevalence of flooded vegetation 

amongst severe fire events.  If excluding 2015, the significance of the increasing prevalence of flooded 

vegetation amongst severe fire events weakens but remains moderate, except for the two fire-affected regions, 

where it become non-significant (Supplemental Table 3a).  If excluding 2019, trends in the prevalence of 

flooded vegetation amongst severe fire events become non-significant for all regions (Supplemental Table 

4a).  The trend for flooded vegetation remains significant for all other sets of fire activity, however, regardless 

of whether 2015 or 2019 is excluded (panels b-d in Supplemental Table 3 and Supplemental Table 4).   
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 (a) Active-Fire Detections of Severe Fire Events (b) Ignition Active-Fire Detections of Severe Fire Events 

Indonesia 0.07 -1.0 -0.31 -0.90 0.24 0.53 0.43 -0.04 -0.75 -0.19 0.19 0.19 0.20 0.38 

Southern Kalimantan 0.48 -0.50 -0.31 -0.73 0.01 0.09 0.68 -0.09 -0.68 -0.10 0.35 0.00 0.20 0.33 

Central-South Sumatra 0.03 -0.13 0.43 -0.83 0.00 -0.05 0.54 -0.06 -0.67 -0.21 0.07 0.00 0.22 0.64 

Elsewhere 0.38 -1.67 -0.47 -0.66 0.57 0.45 0.45 0.16 -0.80 -0.33 0.11 0.44 0.20 0.18 

Peatland 0.43 -0.08 0.37 -1.30 0.00 -0.05 0.64 0.00 -0.27 0.05 -0.73 0.00 0.19 0.77 

Mineral Soil -0.17 -2.37 -0.73 0.17 0.57 0.96 0.18 -0.12 -1.05 -0.20 0.72 0.31 0.19 0.13 

Targeted Areas 0.62 0.15 -0.18 -0.96 -0.01 -0.23 0.62 -0.01 -0.50 0.02 -0.26 -0.01 0.13 0.63 

 (c) Active-Fire Detections of All Fire Events (d) Ignition Active-Fire Detections of All Fire Events 

Indonesia -0.11 -0.81 0.00 0.03 0.15 0.16 0.40 -0.16 -0.55 -0.05 -0.05 0.14 0.10 0.51 

Southern Kalimantan 0.00 -0.70 0.18 0.06 0.00 0.16 0.23 -0.21 -0.49 0.00 -0.02 -0.03 0.11 0.64 

Central-South Sumatra -0.19 -0.85 -0.25 0.06 0.00 0.15 1.02 -0.19 -0.39 0.01 -0.05 0.00 0.04 0.56 

Elsewhere 0.05 -0.72 -0.04 -0.13 0.26 0.18 0.14 0.04 -1.03 -0.29 0.32 0.52 0.20 0.19 

Peatland 0.01 -0.53 -0.04 -0.78 0.00 0.14 1.21 0.01 -0.06 0.04 -0.83 -0.04 0.02 0.86 

Mineral Soil -0.15 -1.02 -0.04 0.48 0.22 0.19 0.09 -0.27 -1.16 -0.15 0.82 0.33 0.20 0.16 

Targeted Areas 0.10 -0.48 0.03 -0.47 0.00 0.02 0.82 0.15 -0.04 -0.01 -0.69 -0.12 -0.14 0.84 
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Supplemental Table 4 Percentage change in land uses/cover frequency across fire events per annum, for 

2002-2018, by region, for either (a) Active-fire detections of severe fire events, (b) Ignition active-fire 

detections of severe fire events, (c) Active-fire detections of all fire events and (d) Ignition active-fire 

detections of all fire events. 

Notes: Positive and negative values are interpreted as for Table 2.  Blue and red cell borders respectively denote decreasing and 

increasing fire activity over 2002-2018 having of least moderate significance without Bonferroni correction (Thick border, p<0.001; 

Medium border, p<0.01; Dashed border, p<0.05).  Cells with borders are also distinguished by bold text.  Blue and orange cell shading 

respectively denote decreasing and increasing trends over the full time series 2002-2019 as per Table 2 and having at least moderate 

significance without Bonferroni correction (dark shading, p<0.001; medium shading, p<0.01; light shading, p<0.05).  Interpretation 

based on shading/borders denoting p<0.01 and p<0.001 is favoured according to Bonferroni adjustments.  For all regions, including 

Indonesia, Java and the Lesser Sunda Islands are excluded.  

 

The varying significance of the increasing prevalence of flooded vegetation between the full and partial time 

series underscores the key role played by years of heightened fire activity, such as years host to El Niño 

events, which were weighted relatively heavily in the models.  In this respect, the varying significance is 

consistent with the concentration of severe fire activity on peatlands since the late 1990s7 as well as the strong 

association between extensive peatland burning with drought.  The weaker significance of the increasing 

prevalence of flooded vegetation amongst severe fire events for the partial time series may also reflect the 

following factors: (i) The relatively high inter-annual variability of land-use/cover frequencies amongst severe 

fire events, compared to other sets of fire activity (Supplemental Figure 3); and (ii) Differences in the 

geographies (Figure 2a, 2b) and land-use/cover compositions (Supplemental Figure 3) of severe fire events, 

compared to other sets of fire activity.  
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Supplemental Figure 3 Changing prevalence of land uses/covers across fire events, 2002-2019 as 

percentages of (a) Active-fire detections of severe fire events, (b) Ignition active-fire detections of severe fire 

events, (c) Active-fire detections of all fire events, and (d) Ignition active-fire detections of all fire events, by 

region.  

 

 

 

*****
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Supplemental Note 3: Land-Use/Cover Management Intensity 

To verify and demonstrate the management intensities of our three land-use classes (cleared/cultivated, 

mosaic cropland with >50% vegetation, and mosaic vegetation with <50% cropland), we compared our land-

use/cover classification (Table 1) against active land use visually interpreted using high-resolution satellite 

imagery.  The notion of active land use pertains to relatively intensively-managed lands with clear signs of 

current usage (as of the observation year).  Such lands are distinguished from those subject to low-intensity or 

sporadic use and/or degradation associated with proximate land use, typically being less managed or 

peripheral lands.  Comparisons between our land-use/cover classification (Table 1) and visual interpretations 

of active land use were realised for 2015 across 7.5 Mha of Targeted Areas within the fire-affected regions of 

South-Central Sumatra and Southern Kalimantan (Supplemental Figure 5).    

 

Active land use is defined as the predominance tilled lands, crops/planted trees (including saplings), and fresh 

clearings as visually apparent at 1:3000 to 1:12,000 scale in high-resolution imagery of Google Earth for 2015 

± two years.  The interpreted high-resolution images were acquired for a variety of months and seasons, as 

determined by image availability per locale within Google Earth.  Acquisition dates presumedly correspond 

largely to the relatively cloud-free months of June-November (Southern Kalimantan) and January-March and 

May-October (South-Central Sumatra). Mixed areas not under active use but still managed, exploited, or 

subject to human activity were largely excluded from the extent of active land use, although such areas were 

inevitably incorporated to a limited degree in the process of manual delineation.  Such mixed areas include 

open but unplanted/untilled lands, older fallows/regrowth, sparse peripheral swidden cultivation, scrublands, 

and degraded forest, amongst others.  When manually delineating active land-use polygons, no more than half 

of a given polygon hosted such mixed land covers.  This proportion was generally far less in practice, 

however, e.g., ~1-20% per visual estimations.  Further details on active land-use mapping are given by Sloan 

et al.5. 

 

Our three land-use classes are comprised of ample proportions of active land use, ranging from 75% for 

cleared/cultivated lands to 58% for mosaic vegetation (Supplemental Figure 4a).  Active land use is 

correspondingly concentrated within these three land-use classes, as illustrated by these classes’ positive 

deviations from the diagonal line in Supplemental Figure 4b.  Such observations are consistent with the class 

descriptions and corresponding nominal land-management intensities described in Table 1.  Notably, 

Supplemental Figure 4b also shows that flooded vegetation and forest comprise just over one-quarter of 

active land use.  Within the realm of active land use, the proximity of these nominally unmanaged land covers 

to mosaic cropland underscores how declining fire-activity severity and ignitions over mosaic cropland 

(Table 2) may foment similar declines over forest (Table 2a).  

 



16 

 

 

Supplemental Figure 4 (a) Percentage area of a land-use/cover class that is dedicated to active land use, and 

(b) Percentage of total active land-use area by land-use/cover class, for the Targeted Areas within the Fire-

Affected Regions, 2015.   

 

 

 

*****  
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Supplemental Figure 5 Land-use/cover classes relative to Peatland and Targeted Areas, for Central-South Sumatra and Southern Kalimantan, 2015.
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Original 

Class ID  
Original Class 

Aggregated  

Class  

Percentage of 

AFDs in Original 

Class, Indonesia 

(2018) 

10 Cropland, rainfed Cleared/Cultivated 4 

11 Herbaceous cover Cleared/Cultivated 5.4 

12 Tree or shrub cover Cleared/Cultivated 5.7 

20 Cropland, irrigated or post‐flooding Cleared/Cultivated 0.2 

30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, 

herbaceous cover) (<50%) 
Mosaic Cropland 

20.1 

40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) 

/ cropland (<50%) 
Mosaic Vegetation 

21.5 

50 Tree cover, broadleaved, evergreen, closed to open (>15%) Forest 24.4 

60 Tree cover, broadleaved, deciduous, closed to open (>15%) Forest  

61 Tree cover, broadleaved, deciduous, closed (>40%) Forest  

62 Tree cover, broadleaved, deciduous, open (15‐40%) Forest  

70 Tree cover, needleleaved, evergreen, closed to open (>15%) Forest  

71 Tree cover, needleleaved, evergreen, closed (>40%) Forest  

72 Tree cover, needleleaved, evergreen, open (15‐40%) Forest  

80 Tree cover, needleleaved, deciduous, closed to open (>15%) Forest  

81 Tree cover, needleleaved, deciduous, closed (>40%) Forest  

82 Tree cover, needleleaved, deciduous, open (15‐40%) Forest  

90 Tree cover, mixed leaf type (broadleaved and needleleaved) Forest  

100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) Mosaic Shrubland 0.8 

110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) Mosaic Shrubland 2.8 

120 Shrubland Low/Sparse Vegetation 0.2 

121 Evergreen shrubland Low/Sparse Vegetation  

122 Deciduous shrubland Low/Sparse Vegetation  

130 Grassland Low/Sparse Vegetation <0.1 

140 Lichens and mosses Low/Sparse Vegetation  

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Low/Sparse Vegetation 6.4 

151 Sparse tree (<15%) Low/Sparse Vegetation  

152 Sparse shrub (<15%) Low/Sparse Vegetation  

153 Sparse herbaceous cover (<15%) Low/Sparse Vegetation  

160 Tree cover, flooded, fresh or brackish water Flooded Vegetation 4.4 

170 Tree cover, flooded, saline water Flooded Vegetation 0.5 

180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water Flooded Vegetation  

190 Urban/Settled areas Other 2.7 

200 Bare areas Other  

201 Consolidated bare areas Other  

202 Unconsolidated bare areas Other  

210 Water bodies Other 0.1 

Supplemental Table 6 Original Copernicus land-use/cover classes and corresponding aggregated classes of 

this study, alongside percentages of 2018 active-fire detections amongst the original classes as of 2018.  

Notes: Percentages do not sum to 100 due to rounding.  Percentages were calculated using land-use/cover data and MODIS AFD data 

as of 2018.    
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Supplemental Figure 6 Very severe fire events and Peatland in Sumatra and Kalimantan, Indonesia, for years 

of severe fire activity.   

Notes: Years of severe fire activity are those for which ≥25% of fire events are severe. 
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Supplemental Figure 7 Frequency of 

fire-event severity scores by year, for 

Peatland and mineral soils, 2002-2019, 

Indonesia. 
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 Percent of Fire-Event Scale Explained 

by Total Fire Radiative Power 

 
Severe Fire Events 

Very Severe Fire 

Events 

Peatland 51 52 

Mineral Soil 33 30 

Supplemental Table 7 Percentage of fire-event scale explained by total fire radiative power, controlling for 

the number of active-fire detections per fire event. 

Note: Values are squared partial correlation coefficients significant at p<0.01.  Fire events were weighted by their respective severity 

scores (Eqn. 1) to account for the relative importance of individual events.  Fire-event scale is defined by Eqn. 1.  Total FRP, AFD 

frequency, and severity per fire event were logarithmically transformed to enhance linear fit.   
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Supplemental Note 4: Fire Events and Burned Areas 

Fire events are spatio-temporal clusters of MODIS MCD14ML active-fire detections (AFDs) (Figure 4).  

Individual AFDs represent thermal anomalies indicative of one or more active fires in a given ~1 km2 MODIS 

pixel10.  AFD data do not indicate burned area (BA) at local scales, though AFD frequency and BA are highly 

correlated regionally11-13.  Accordingly, fire events are best understood as discrete instances of fire activity 

integrated by local human agency and land-use systems and for which burning is often physically contiguous 

but not necessarily always so.  Here, to qualify our fire events in terms of their degree of burning, we 

compared fire events to a variety of satellite-derived BA products below.  For the purposes of aerial 

comparisons, we buffered fire-event AFDs by 500 meters (Figure 4), being roughly half the width of a 

MODIS pixel.   

 

To summarise our results of the comparisons below, 24-46% of total fire-event buffer area was burned on 

average according to a Sentinel-2 BA estimate of 201914 for the fire-affected regions of Southern Kalimantan 

and Central-South Sumatra, with this proportion increasingly log-linearly with increasing fire-event severity.  

Comparisons of fire-event buffer areas against Landsat BA estimates in Central Kalimantan province and 

Central-South Sumatra for shorter periods over various years observed a similar estimate of 22-45% of buffer 

area burned.  Note that BA estimates here are conservatively low, given the arbitrarily shape of our fire-event 

buffers and the greater tendency for BA data to overlook smaller, ephemeral, or cooler fires compared to our 

AFD data12,14.  The following details each comparison of our fire-event buffer areas against BA estimates in 

turn. 

 

4.1 Comparisons Against Sentinel-2 Burned Area Data in the Fire-Affected Regions 

Fire events of 2019 were compared against the national 2019 BA product of Gaveau et al.14 for Southern 

Kalimantan and Central-South Sumatra.  This BA product is a classification of temporally-dense stacks of 

Sentinel-2 satellite imagery trained by visual interpretations of burned/unburned areas as well as by sudden 

spectral changes to land cover indicative of burning.  User’s and producer’s accuracies are high compared to 

similar BA classifications, at 97-99% and 63-83%, respectively, according to validation against visually 

interpreted burn scars14.  Given the annual temporal resolution of this 2019 BA classification, overlapping fire 

events and BA patches of 2019 were assumed to capture the same fire activity over a common period. 

 

Nationally, 72% of AFDs in 2019 occurred within BAs of the Sentinel-2 classification.  For fire events 

buffered by 500 m, BA as a percentage of fire-event buffer area varied between 24% and 46% on average 

(Supplemental Table 8).  The lower estimate reflects the fact that the buffers of some, generally 

smaller/lower-severity fire events did not encompass any BA according to the Sentinel-2 classification 

(Supplemental Figure 8).  Such events are presumed to be instances of BA omission error, not AFD 

commission error, as BA omission error is generally high12,14 compared to MODIS AFD commission 
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error10,11,13,15.  To account for BA omission error, we excluded fire events without any corresponding BA and 

re-estimated the mean percentage buffer area that burned, at 40% (Supplemental Table 8). 

 

Notably, as fire-event severity increased, the percentage of all fire-event buffers comprised by BA also 

steadily increased while the variability thereof decreased (Supplemental Figure 8).  This relationship affirms 

the fidelity of our fire-event severity measure (Eqn. 1) and is consistent with correlations between regional 

AFD frequency and BA11-13.  In light of this relationship, we re-estimated the percentage fire-event buffer area 

that burned after weighting fire events by their respective ADF frequencies.  The weighted means percentages 

of buffer areas that burned were slightly to moderately greater than the unweighted means, at 39 to 46% 

(Supplemental Table 8). 

 

 

Supplemental Figure 8 Burned area as a percentage of 500-m buffer areas surrounding fire events, Southern 

Kalimantan and Central-South Sumatra, 2019.  

Notes: Burned area as of 2019 is as defined by Sentinel-2 satellite estimates by Gaveau et al.14.  Fire events are as specified for this 

study, here for 2019, buffered by 500-m in order to observe their spatial overlap with burned areas.  The trend line is defined by an 

iteratively-weighted lest-squares Epanechnikov loess function robust to outliers16.  The trend line includes fire events without 

corresponding burned areas. Note the logarithmic scale of the x-axis.    
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Set of Fire Events 

Fire-Event Buffer 

that is Burned (Mean 

%) 

Fire-Event Buffer that is 

Burned (Mean %), 

Weighting by Event AFD 

Frequency 

 

Including Events with no Burned Area 24 39 

Excluding Events with no Burned Area 40 46 

Supplemental Table 8 Percentage area of fire-event buffers that are burned according to Sentinel-2 burned-

area estimates, for Southern Kalimantan and Central-South Sumatra, 2019. 

 

4.2 Comparisons against Landsat Burned Area Data in Central Kalimantan 

We also compared our fire events of 2003-2015 against Landsat-classified BAs for the Mawas area of Central 

Kalimantan province – a 53,000 ha tract of degraded peatlands prone to burning (2°21'20.03" S 114°32'01.72" 

E).  Landsat TM/ETM/OLI classifications of BA produced by the NASA Carbon Monitoring System17 were 

trained using visually-interpreted burned/unburned sites, with MODIS MCD14ML AFD data helping 

distinguish pre-fire from post-fire conditions.  Classification accuracies are reportedly ~98%17, though no 

validation methods or omission-error data were reported.  Given the annual temporal resolution of the Landsat 

classifications, comparisons between the BAs and our fires events again presume that spatial overlap between 

the data is due to each dataset capturing local burning over a common period of a given year. 

 

Supplemental Table 9 summarises the comparison for the Mawas area.  A median and mean of 41% and 

45% of fire-event buffer area was classified as burned between 2003 and 2015 in the Mawas area, 

respectively.  BAs outside fire events were less extensive but still appreciable, equivalent to 17% (mean) or 

21% (median) of fire-event buffer area in the Mawas area.  Estimated percentages of buffer areas that burned 

in the Mawas area may be higher than typical for Indonesia, given the extensiveness of burning in the Mawas 

area, but are consistent with upper estimates based on the Sentinel-2 BA product (Supplemental Table 8).  

On the other hand, the estimated percentages of buffer areas that burned may be relatively depressed, and 

omission rates inflated correspondingly (right column of Supplemental Table 9), given that AFD data tend to 

have elevated omission rates for low-temperature smouldering peatland fires where such fires are not hot or 

large18,19.  
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Year 

Burned Area Inside 

Fire-Event Buffer, 

as a Percent of 

Buffer Area 

Burned Area Outside 

Fire-Event Buffers, as a 

Percent of Buffer Area 

2003 19 20 

2004 40 12 

2005 53 9 

2006 64 15 

2007 4 40 

2009 58 10 

2011 31 26 

2012 41 12 

2013 41 17 

2014 64 49 

2015 83 25 

Median 41 17 

Mean 45 21 

Supplemental Table 9 Burned area within fire-event buffer areas, according to Landsat classifications in the 

Mawas peatlands of Central Kalimantan, 2003-2015. 

Note: No Landsat classifications were produced for 2008 and 2010. 

 

4.3 Comparisons against Landsat Normalised Burned Ratio Data in Kalimantan and Sumatra 

We further compared fire events against Landsat-estimated BAs across a diversity of landscapes and years in 

Sumatra and Kalimantan.  We defined a burned/unburned reference layer by calculating change to the 

Normalised Burned Ratio metric between pairs of Landsat images.  Given two Landsat Normalised Burned 

Ratio (NBR) images acquired within 90 days of each another, any area for which NBR values increased by 

>0.15 was classified as burned.  This ∆NBR threshold reflects ground knowledge and visual inspections of 

burn scars in Landsat imagery, and was also adopted by Cattau et al.20 and Sloan et al.5 for similar 

qualifications of Indonesian fire events.  All Landsat imagery had ≤10% cloud cover and was radiometrically 

and geometrically corrected to Precision Terrain Tier 1 standards.  Areas with cloud cover, cloud shadow, or 

open water were excluded to prevent spurious ∆NBR values.   

 

We focused on parts of Central-South Sumatra (Riau, South Sumatra, and Jambi provinces) and Central 

Kalimantan province hosting major conglomerations of Targeted Areas (Supplemental Figure 1).  

Comparisons also included extensive areas adjacent to these Targeted Areas that were encompassed by the 

Landsat images.  For Sumatra, a search for Landsat TM, ETM, and OLI images acquired between 2001 to 

2019 identified three image pairs for three Landsat scenes (Supplemental Table 10).  For Kalimantan, a 

search for the scenes previously surveyed by Cattau et al.20 yielded two image pairs for a single scene 

(Supplemental Table 10).  Landsat ETM imagery of May 2003-2019 was not considered due to its SLC-off 

data error.  Comparisons considered all fire events for which ignitions occurred during the period spanned by 

a given Landsat ∆NBR image pair. 
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Results of the comparisons are summarised in (Supplemental Table 10).  The percentage of fire-event buffer 

area classified as burned ranged from 6% to 45% across all five Landsat scenes.  Higher measures for a given 

scene correspond to relatively extensive fire activity and early-to-mid fire seasons coincident with El Niño 

periods, when fire activity is historically elevated.  Upon weighting scenes by their respective areas of fire-

event buffers, an overall average of 35% of buffer area is observed as burned.  The tendency towards greater 

proportions of fire-event buffers in BAs given greater total fire activity, as well as the range of estimates in 

question, are consistent with the comparisons of fire events against the Sentinel-2 BA product above.    

 

 
 

Period of ∆NBR Image Pair 

Burned Area 

Inside Fire-

Event Buffer, as 

a Percent of 

Buffer Area 

Landsat 

Scene 

Location  

(WRS2 Path / 

Row) 

Landsat Sensor 

(TM, ETM, 

OLI) 

Fire-Event 

Buffer Area 

(km2) 

C
en

tr
a

l-
S

o
u

th
 

S
u

m
a

tr
a

 

30 June - 17 August, 2002 26 124/62 ETM 450.0 

5 July - 6 August, 2016 6 125/62 OLI 34.9 

26 June - 12 July, 2016 7 126/60 OLI 58.3 

Sumatra Average* 22    

C
en

tr
a

l 

K
a

li
m

a
n

ta
n

 

16 May - 17 June, 2004 9 118/62 TM 13.4 

20 August - 21 September, 2004 45 118/62 TM 685.8 

Kalimantan Average* 44    

Overall Average* 35    

Supplemental Table 10 Burned area within fire events according to Landsat ∆NBR data. 

Notes: (*) Overall and per-island averages are weighted by the fire-event buffer areas of respective Landsat scenes. 

 

 

 

*****  
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Supplemental Note 5: Fire-Event Severity Scores from Active-Fire Detection vs. 

Burned-Area Data 

5.1 Fire-Event Severity Distributions for AFD and BA Fire Events 

For comparison against our measures of fire-event severity (Eqn. 1) based on MODIS MCD14ML active-fire 

detections (AFDs), we defined an analogous fire-event severity index for Indonesian fire events of the Global 

Fire Atlas described by Andela et al.21,22 between January 2003 and November 2018 using MODIS MCD64a1 

500-m burned area (BA) data23:   

Fire-Event SeverityBAi = Fire Event Area × Fire Event Duration                                                   (S2) 

where, for the ith fire event, Area is the extent of the fire event in square kilometres, and Duration is as for 

Eqn. 1 but estimated post facto according to the spectral signatures of burned pixels23.  Eqn. S2 describes fire-

event scale in terms of Area, not ∑FRP as in Eqn. 1, because BA data do not observe FRP while AFD data are 

unsuited to estimate BA locally.  First-order comparisons may be cautiously entertained between the general 

shapes of fire-event severity frequency distributions from Eqn. 1 and Eqn. S2 (Supplemental Figure 1), while 

differences between MODIS AFD and BA data preclude direct comparisons.  Units are not comparable 

between the two indices.  

 

Frequency distributions of our measure of fire-event severity (Eqn. 1) are significantly more skewed than 

distributions of analogous severity scores for fire events of the Global Fire Atlas (Eqn. S2; p<0.001, 

Kolmogorov-Smirnov test of equivalent histogram shape based on index percentiles, 2003-2018).  

Distributions of our measure of fire-event severity have much longer tails than distributions for the Global 

Fire Atlas (Supplemental Figure 9, Supplemental Figure 10), both for years of severe fire activity (≥25% of 

fire events are severe) and all other years, suggesting greater extremes amongst discrete fire events than 

previously indicated.  Greater extremes amongst our fire events likely reflect (i) the tendency for relatively 

large, radiative, and/or persistent fires tend to have more AFDs for a given burned area24,25, as well as greater 

fire radiative power per AFD26, so boosting the scale and thus severity of our fire events; and (ii) the fact that 

AFD data capture more fire activity across mosaic agricultural lands and tropical forests24,27 common in 

Indonesia, as well as ephemeral fire activity, possibly integrating larger fire events.  
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Supplemental Figure 9 Frequency of fire-event severity scores for fire events defined by (a) Active-fire data 

of this study and (b) Burned-area data of the Global Fire Atlas. 

Notes: Years severe fire activity (‘severe years’) are 2002, 2003, 2004, 2006, 2009, 2013, 2014, 2015 and 2019.  Fire events of the 

Global Fire Atlas are as defined by Andela et al.21,22. Fire-event severity scores for (a) and (b) are given by Eqn. 1 and Eqn. S2, 

respectively. Scores are not comparable between (a) and (b). Note the logarithmic scales.   

 

The measures of fire-event severity defined for our study (Eqn. 1) and for the fire events of the Global Forest 

Atlas (Eqn. S2) are analogous in that both describe severity according to interactions between fire-event scale 

and duration.  Direct comparisons are however precluded by inherent differences between underlying AFD 

and BA data.  These differences respectively pertain to (a) spatial structure (points vs. pixels), (b) fire-

detection methods (local thermal anomalies vs. burned-cover spectral signatures), (c) sensitivity to fire activity 

(higher vs. lower), (d) temporal accuracy (direct daily observation vs. post-facto estimation of day of burning), 

and (e) fire-activity recording rate10,23,27,28.  The latter difference refers to the fact that, for a given geographic 

coordinate, AFDs of ~1-km spatial resolution may be recorded repeatedly over successive days of fire 

activity, while a BA pixel of ~500-m resolution may be recorded as burned only once over successive days.  

This possibility warrants caution when comparing the skewness of the fire-event severity frequency 

distributions defined by AFD data and BA data in Supplemental Figure 1.  Specifically, for each additional 

day of fire-event duration, if the scale of an AFD-based fire event (∑FRP in Eqn.1) should increase more 

rapidly than the scale of a BA-based fire event (km2 in Eqn. S2), then skewness (Eqn. 2) may be greater for the 

AFD-derived fire events than the BA-derived fire events in Supplemental Figure 1 without necessarily 

capturing greater extremes of fire activity.  There is however no clear evidence of such a trend for our context 

generally, notwithstanding the partial exception of point (i) below pertaining to certain larger fire events.  In 

fact, regression analyses of standardised scores of fire-event scale on duration indicate that, for our AFD-

derived events, the rate of  
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Supplemental Figure 10 Frequency of 

fire-event severity scores by year, for 

fire events defined by (a) Active-fire 

detection data of this study and (b) 

Burned-area data of the Global Fire 

Atlas, Indonesia. 

Notes: Fire events of the Global Fire Atlas are 

as defined by Andela et al.21,22. Fire-event 

severity scores for columns (a) and (b) are 

given by Eqn. 1 and Eqn. S2, respectively. 

Values are not comparable between (a) and (b). 

Note the logarithmic scales. No data exists for 

2002 and 2019 for (b).  

 

 

increase to scale given increase to 

duration is less than half that for BA-

derived events on average.  This 

discrepancy in rates reflects the weaker 

linear relationship between scale and 

duration for AFD-derived fire events 

(r=0.27, p<0.01) compared to BA-

derived fire events (r=0.64, p<0.01). 

 

5.2 Advantages of Fire-Event 

Severity as Described by AFD Data 

With respect to describing fire-event 

severity, the MODIS MCD14ML AFD 

data we use have certain advantages 

over the MODIS MCD64A1 BA data 

used by Andela et al.21 to define fire 

events for the Global Fire Atlas.  Our 

AFD data capture more fire activity across croplands and tropical forests24,27, especially where fires are 

ephemeral or smaller, and so are well suited to the Indonesian context.  Also, the BA data tend to omit 

dispersed, smaller-scale, and/or ephemeral fire activity12,14 (e.g., agricultural fires or interstitial burning 

between larger fire fronts), a fact which may depress measures of fire-event scale and duration for BA-derived 

fire events in Eqn. S2, consistent with Supplemental Figure 1.  Given such omissions, we refrained from 

spatio-temporally integrating our AFD-derived fire events with the BA-derived fire events of Andela et al.21, 
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as to observe fire-event severity in terms of event area, duration, and fire radiative power (FRP).  Indeed, 

previous attempts at such integration report large proportions of ‘unpaired’ fire events between the AFD and 

BA data5,29.   

 

Fire-activity extremes are well profiled against the relatively extensive and diverse burning captured by AFD-

derived fire events.  The following AFD data attributes illustrate their utility to this end:  

 

(i) Extensive, persistent, intense fire activity tends to yield more AFDs for a given nominal 

burned area24,25,29.  The dense cluster of AFDs comprising Fire Event 2 in Supplemental 

Figure 11b is illustrative of this attribute.  Our measure of fire-event severity, which 

incorporates AFD frequency (Eqn. 1), would therefore reflect the scale of large, intensive, 

and/or persistent fire events more comprehensively than would the severity index for BA data 

(Eqn. S2).   

  

(ii) Our AFD data allow for fire-event scale to be estimated as a function of total FRP per event 

(Eqn. 1).  Total FRP covaries with AFD frequency per event but also correlates with the 

biomass consumption rate of a given event30.  FRP thus expands the scope of our fire-event 

severity index from event magnitude to event intensity, as demonstrated by Peatland-vs-

mineral soil comparisons in Supplemental Table 7. Greater sensitivity to ephemeral or 

small-scale burning means that lower-intensity fringes of larger fire events may be captured 

more fully11 by the AFD data, again increasing fire-event scale and thus severity, including by 

inter-connecting nodes of burning into larger fire events.  Indeed, the greater extremes of our 

fire-event data compared to the fire events of the Global Fire Atlas (Supplemental Figure 9) 

may reflect the priority given by Andela et al.21 to splitting contiguous BAs into discrete fire 

events according post-facto estimations of fire chronology (Fire Event 1 in Supplemental 

Figure 11b).   

 

(iii) Our time series is longer than that the BA-derived fire events of the Global Fire Atlas21,22, 

which presently omits 2002 and 2019, each host to El Niño periods during which both fire 

activity and drought were severe (Supplemental Figure 6, Figure 1c). 
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Supplemental Figure 11 Fire 

events derived from MODIS 

active-fire detection data and 

MODIS burned-area data, with 

corresponding fire-event severity 

scores, for two areas of peatland 

in Southern Kalimantan, 2015. 

Notes: The locations of panels A and B 

are shown in the inset map. All fire 

events are for 2015. Fire events defined 

by burned-area data are as per the Global 

Fire Atlas and described by Andela et 

al.21,22. Percentiles for fire-event severity 

are with respect to all fire events 

nationally over 2002-2019 (active-fire 

detections) or 2003-2018 (burned 

areas).For fire events derived from 

active-fire detections, only those events 

with severity scores >90th percentile are 

shown as discrete. All other events of 

2015 are visible but not shown as 

discrete. Red numbers labelled as 1 and 2 

in panel B identify two notable fire 

events defined by active-fire detections, 

discussed in Supplemental Note 5.  
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Supplemental Figure 12 Trends in the total annual fire-event severity of severe or very severe fire events in 

(a) Central-South Sumatra and (b) Southern Kalimantan over 2002-2019. 

Notes: >95% of the total fire-event severity of all fire events is accounted for by severe fire events alone.  Graphed linear trends are as 

per regressions of total annual fire-event severity on time elapsed since 2002, without controlling for precipitation.  Regressions were 

bootstrapped and unweighted.  Weighting the regressions with respect to annual AFD frequencies defined negative, but statistically 

insignificant, trends. 
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Supplemental Figure 13 Density of very severe fire events in Sulawesi and Papua, Indonesia for (a) years of 

severe fire activity during 2002-2019 and (b) all other years, relative to (c) Peatland and (d) land-use/cover 

classes as of 2015. 

Notes: Years severe fire activity in (a) are those for which ≥25% of fire events are severe, i.e., 2002, 2003, 2004, 2006, 2009, 2013, 

2014, 2015 and 2019.  In (d), classes are adapted from the Copernicus Climate Change Initiative Land-Cover Product31,32 (Table 1). 

Figure 2 repeats panels (a) through (d) for other areas of Indonesia.   
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