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Abstract

Purpose

Genetic variants identified through population-based genome-wide studies are generally of

high frequency, exerting their action in the central part of the refractive error spectrum. How-

ever, the power to identify associations with variants of lower minor allele frequency is

greatly reduced, requiring considerable sample sizes. Here we aim to assess the impact of

rare variants on genetic variation of refractive errors in a very large general population

cohort.

Methods

Genetic association analyses of non-cyclopaedic autorefraction calculated as mean spheri-

cal equivalent (SPHE) used whole-exome sequence genotypic information from 50,893

unrelated participants in the UK Biobank of European ancestry. Gene-based analyses

tested for association with SPHE using an optimised SNP-set kernel association test

(SKAT-O) restricted to rare variants (minor allele frequency < 1%) within protein-coding

regions of the genome. All models were adjusted for age, sex and common lead variants
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within the same locus reported by previous genome-wide association studies. Potentially

causal markers driving association at significant loci were elucidated using sensitivity analy-

ses by sequentially dropping the most associated variants from gene-based analyses.

Results

We found strong statistical evidence for association of SPHE with the SIX6 (p-value = 2.15 x

10−10, or Bonferroni-Corrected p = 4.41x10-06) and the CRX gene (p-value = 6.65 x 10−08, or

Bonferroni-Corrected p = 0.001). The SIX6 gene codes for a transcription factor believed to

be critical to the eye, retina and optic disc development and morphology, while CRX regu-

lates photoreceptor specification and expression of over 700 genes in the retina. These

novel associations suggest an important role of genes involved in eye morphogenesis in

refractive error.

Conclusion

The results of our study support previous research highlighting the importance of rare vari-

ants to the genetic risk of refractive error. We explain some of the origins of the genetic sig-

nals seen in GWAS but also report for the first time a completely novel association with the

CRX gene.

Introduction

Myopia is a common eye disorder characterised by an imbalance between different refractive

components of the eye and axial length [1]. The prevalence rates of myopia and its related com-

plications are on the rise in South East Asia and rapidly increasing in Europe and the US [2].

Both environmental and genetic factors play a role in the pathophysiology of refractive errors

(RE). Refractive errors, especially high and pathological myopia, are leading causes of prevent-

able vision loss worldwide and sources of significant ocular complications [1]. Previous studies

have shown that individuals with myopia greater than 6 dioptres are at increased risk of other

eye conditions and are more susceptible to several sight-threatening complications [1].

Recent genome-wide studies discovered hundreds of distinct loci harbouring genes

involved in refraction development [3]. Cumulatively those variants accounted for approxi-

mately 18% of total heritability [3], while twin studies estimate the RE heritability between

50%-90% [4]. The missing heritability in refractive error GWAS could be attributed to several

causes, such as confounding arising from linkage disequilibrium, statistical power limitations,

epistasis and heritability explained by rare genetic variants that are usually not identifiable by

traditional genetic association studies. Statistical power to detect associations with individual

genetic variants is proportional to the magnitude of the risk they individually confer, but more

crucially, to their frequency in the population.

Here we aim to evaluate the impact of lower frequency genetic variation on refractive error

in the UK Biobank sub-sample of 50,893 unrelated individuals of European descent.

Materials and methods

Study population

The UK Biobank is a cohort of 500,000 volunteers for whom extensive demographic, pheno-

typic and biomarker data is available. Approximately 23% of individuals (N = 117,279)
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participated in comprehensive eye examination, including assessment of non-cycloplegic

refractive error represented by mean spherical equivalent [5]. The measurements of non-cyclo-

plegic autorefraction were performed by Tomey RC 5000 device (Tomey Corp., Nagoya,

Japan) for each eye separately, and the mean spherical equivalent of the two eyes was taken.

The study was conducted with the approval of the North-West Research Ethics Committee

(ref. 06/MRE08/65), following the principles of the Declaration of Helsinki. Study participants

provided written informed consent.

Full genotypic data was available for all participants who were included in our analyses.

Based on a pre-computed Principal Component Analysis, we ascertained individuals’ ancestry

identity by state. Only individuals who were of full and homogenenous European ancestry

were analysed; in cases where familial relatedness was observed (defined as a PI_HAT > 0.06),

only one individual for each pair was included in the analyses.

Whole exome sequencing data

Approximately 200,629 participants from the UK Biobank cohort were selected for the second

tranche of whole-exome sequencing. Individuals who had more complete data, such as base-

line measurements, MRI imaging, hospital episodes and primary care records, were prioritised

for the sequencing [6]. Although the whole-exome study sample was enriched for clinical out-

comes and availability of physical measures, it remained largely representative of the general

UK Biobank cohort in terms of demographic characteristics and composition. Exome

sequencing was performed as described previously [6]. The panel targeted 39 Mb of the

human genome and covered 19,396 genes on autosomal and sex chromosomes, including

4,735,722 variants within the targeted regions, comprising 1,229,303 coding synonymous,

2,498,947 nonsynonymous and 231,631 potential loss of function variants within at least one

coding transcript. In addition to targeted regions, some variation in exome adjacent regions

was also captured–precisely 9,693,526 nucleotide and indel variants. About 98% of the

sequenced coding variants had an allele frequency below 1%. To avert issues related to popula-

tion structure, we restricted our analyses to a homogeneous sample of European ancestry, as

ascertained through a principal component analysis of the directly genotyped variants in the

sample, as described before [3].

The CREAM consortium dataset

CREAM (Consortium for Refractive Error and Myopia) was established in 2011 as a collabora-

tion between studies with data on refractive error which had performed genome-wide associa-

tion analysis based on SNP arrays. For the current study, we included 10 participating studies

with available exome chip data. These studies included: Singapore Indian Eye Study (SINDI),

Age-Related Eye Study (AREDS), Rotterdam Study I (RSI), Erasmus Rucphen Family Study

(ERF), Estonian Genome Center of the University of Tartu (EGCUT), Finnish Twin Study on

Aging (FITSA), Ogliastra, Croatia-Korcula, TwinsUK, Raine eye health study (REHS) and

Beaver Dam eye study (BDES).

The phenotypes for all individuals participating in any of the CREAM cohorts were assessed

through methodologies similar to those used for the UK Bobank participants [7]. Specifically,

refractive error in the CREAM-participating cohorts was measured using autorefraction. All

cohorts had been genotyped on either the Illumina HumanExome-12 v 1.0 or v 1.1 array. All

cohorts were jointly recalled to obtain a larger sample size of rare variants (here defined as var-

iants with a minor allele frequency (MAF) < 0.01), as recalling genotypes simultaneously

across all samples increases the ability to call rare variants with a more discrete distinction

between allele calls and sensitivity for low-frequency (high-intensity) loci. All data was recalled
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using GenomeStudio1 v2011.1 (Illumina Inc., San Diego, CA, USA). Nine of these predomi-

nantly European CREAM cohorts were combined in a single cohort (N = 11,505), henceforth

referred to as the CREAM cohort, for analysis. Because of legal requirements the BDES data

(N = 1740) made it impossible to analyse this cohort alongside the rest of cohorts participating

in CREAM.

Statistical analyses

To minimise confounding arising from population structure, the study sample was restricted

to 50,893 unrelated UK Biobank participants of European descent. The ancestry and related-

ness information was calculated based on the genetic data made available from the UK Bio-

bank [8]. Individuals with European descent were identified by projecting UK Biobank

participants onto the coordination of 1000 Genome Project principal components. The genetic

data was used to identify related individuals by calculating kinship coefficients for all pairs and

third-degree or closer relatives were excluded.

Gene-based analyses were conducted in the optimised SNP-set kernel association test

SKAT-O test [9] implemented in the rvtests package [10]. The spherical equivalent measure-

ments were the dependent variable and the weighed allelic burden the independent variables.

All analyses were adjusted for age and sex. Our analyses incorporated several variant annota-

tions that previous works have shown to boost the power and accuracy of detecting causal asso-

ciations in gene-based analyses [11]. Variants in protein-coding regions of genes including

synonymous and non-synonymous, stop gain/loss, start gain/loss or splice-site mutations with

minor allele frequency below 1% were selected for inclusion. The splicing sites were defined as 3

bases into exon and 8 bases into an intron. Mutations in these regions were annotated as "Nor-

mal_Splice_Site" unless they affected the functionally important "GU. . .AG" region of the intron

which was annotated as "Essential_Splice_Site". We excluded UTR variants and polymorphisms

with unknown or inconclusive molecular consequences such as intronic variants. We used the

GRCh38/hg38 assembly of the human genome (https://www.ncbi.nlm.nih.gov/assembly/GCA_

000001405.29) as a reference and variants were identified and annotated using the ANNO pack-

age (https://github.com/zhanxw/anno). Gene-based associations with probabilities below the

selected Bonferroni multiple testing correction level derived by dividing 0.05 by the total num-

ber of 19,293 protein-coding genes that analysed were considered statistically significant (p<

2.59 × 10−6). We sought replication of significant genes using the results of the gene-based analy-

sis performed in the predominantly European CREAM cohort, described elsewhere [12] and the

BDES cohort described elsewhere [13, 14]. Replication was considered successful if the associa-

tion probabilities were below the selected Bonferroni multiple testing correction level.

Sequential analyses evaluating the role of single variants in gene-based associations.

To elucidate which variants were driving observed associations with candidate genes, we per-

formed sequential sensitivity analyses by progressively removing markers from the gene-based

analyses. The associations with target genes were assessed using the SKAT-O test adjusted for

age, sex and lead common variants within the same locus. The lead common variants were

selected from previously published refractive error GWAS [3]. Minor allele frequencies

observed were compared with those reported in the gnomAD database [15] and pairwise link-

age disequilibrium between any two variants was calculated with reference to the entire Euro-

pean panel included in the “ldlink” online tool (https://ldlink.nci.nih.gov/).

Results

The study sample included 50893 unrelated UK Biobank participants of European descent;

54% were women with a median age of 57 years (±8 years). Detailed information about the
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study participants’ demographic and refractive characteristics can be found in Table 1 and

characteristics of the spherical equivalent (SPHE) distribution in S1 Fig.

We ran SKAT-O tests using 2,923,839 rare (minor allele frequency, MAF < 0.01) variants

in 19,293 genes (Fig 1). The statistically strongest association was observed between SPHE and

SIX6 gene (p-value = 2.15 x10-10). The second Bonferroni-significant association was found

with CRX (p = 6.65 x 10−08). This finding was novel and not described in prior refractive error

GWAS. Suggestive statistical evidence of association was found for the RPSAP52 (p = 1.65 x

10−05), PCCA (p = 1.82 x 10−05), MIR4683 (p = 2.81 x 10−05), SELENOM (p = 3.52 x 10−05),

NAPA (p = 4.55 x 10−05) and VWA8 (p = 5.68x10-05) genes, whose association however did not

meet our criteria of statistical significance after multiple testing correction (Table 2).

Table 1. Characteristics of the study participants.

Age (mean (SD)) 56.8 (7.9)

Sex (N, %)

Women 27,221 (53.5)

Men 23,672 (46.5)

SE (mean (SD)) -0.3 (2.7)

Refractive status (N, %)

Emmetropia 23,193 (32.9)

Hyperopia 13,952 (33.8)

Myopia 13,748 (33.3)

The refractive status was determined based on the measured spherical equivalent and which, for descriptive

purposes, we are defining as Emmetropia (spherical equivalent in the range of -1.0 D +1.0 D), myopia (�-1.0 D) and

hyperopia (� +1.0D).

https://doi.org/10.1371/journal.pone.0272379.t001

Fig 1. Manhattan plot displaying SKAT-O association results. Each point represents one of the 19,293 genes tested

for the association with the spherical equivalent in the UK Biobank cohort (N = 50,893). The plot shows -log10

transformed p-values for each gene plotted against the chromosomal location. The red dashed line indicates the

Bonferroni significance threshold (p< 2.59 × 10−6). Regions are named with symbols of genes that were most strongly

associated with refractive error.

https://doi.org/10.1371/journal.pone.0272379.g001
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No other exome sequencing datasets of comparable size were available to us. However, two

smaller cohorts were genotyped for a selection of rare exonic variants using SNP chip arrays,

in both of which data from only four of our candidate genes, including SIX6, CRX and two

genes associated with SPHE at suggestive levels in the UK Biobank analysis were available. In

addition, only 2 and 3 variants were present in the exome chip data for the SIX6 and CRX
genes respectively, that had demonstrated the statistically strongest relationship with spherical

equivalent in the discovery cohort. Unsurprisingly given the low minor allele frequencies,

none of these variants was in strong linkage disequilibrium with the rare variants that showed

significant association with the phenotype in the discovery cohort (R2 < 0.002 for all of them),

although they were likely located on the same haplotypes (D’ = 1). None of these genes was

associated at statistically significant levels with SHPE in the pooled exome chip cohort from

the Consortium for the Refractive Error and Myopia (CREAM, N = 11,505), but we observed a

strong association for the NAPA gene (SKAT-O p = 3.73 x 10−05), in the smaller Beaver Dam

Eye Study (BDES, N = 1,740) cohort (Table 3).

To identify independent variants driving gene-based associations at the SIX6 and CRX loci,

sensitivity analyses were performed by progressively removing SNPs from gene-based analy-

ses. The removal of rare variants from the gene-based SKAT-O analyses revealed a decrease in

the statistical significance of the analyses. The results of these analyses suggested that associa-

tion with the SIX6 gene was most strongly influenced by the rs146737847 variant, whose

removal resulted in the loss of statistical significance in our samples (S2 Fig). Similarly, exonic

marker rs61748438 was identified as a lead variant in the CRX locus (S3 Fig). The removal of

other functionally important variants within this gene also resulted in a progressive decrease

in statistical significance. This gradual decrease may suggest that although gene-based associa-

tion at both loci is mostly due to the presence of a few lead variants, additional lower frequency

variants within these genes may also contribute to associations with spherical equivalent, but

Table 2. Top eight gene associations with refractive error.

Gene

symbol

Genetic coordinates Number of

variants

Top SNP at the

locus

A1 A1 freq GnomAD

freq

Beta p-value Bonferroni corrected p-

value

SIX6 14:60509145–60512849 67 14:60509783:G:A A 0.007 0.0042 -0.86 2.15 x

10−10
3.65 x10-06

CRX 19:47821936–47843324 92 19:47836338:G:A A 0.004 0.002 0.71 6.65x 10−08 0.001

RPSAP52 12:65758020–65826974 6 12:65825320:G:T T 3.93x10-

05
-6.04 1.65x10-05 0.28

PCCA 13:100089014–

100530437

215 13:100368479:G:T T 0.0097 0.002 -0.35 1.82x10-05 0.31

MIR4683 10:35641171–35641252 4 10:35641193:C:G G 9.82x10-

06
4x10-06 -11.70 2.81x10-05 0.48

SELENOM 22:31104776–31107568 50 22:31105965:T:C C 1.97x10-

05
-8.28 3.52x10-05 0.6

NAPA 19:47487636–47515063 90 19:47488308:C:T T 9.82x10-

06
1.2x10-05 -8.99 4.55x10-05 0.77

VWA8 13:41566834–41961109 583 13:41891421:C:T T 9.82x10-

06
4 x 10−06 -14.55 5.68x10-05 0.96

Column "Gene symbol" lists the symbols of the genes associated with spherical equivalent. Fields "Genetic coordinates", "p-value" and "Bonferroni corrected p-value"

include genetic coordinates (reference genome hg38) of the tested genes, and denote p-values and Bonferroni-corrected p-values for the respective associations. The

column "Number of variants" includes the number of tested genetic variants in each respective gene. The field "Top SNP at the locus" lists variants with the statistically

strongest associations at the locus. The columns "A1" denotes the effect allele for which betas (Beta) were calculated. The field "A1 freq" shows the frequency of the effect

alleles in the study sample and "GnomAD freq" provides the allele frequency from GnomAD database.

https://doi.org/10.1371/journal.pone.0272379.t002
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our abilities to fully evaluate their role at a general population level may be constrained by

sample size and statistical power limitations.

Discussion

Here we report significant associations between spherical equivalent and rare variants located

within SIX6 and CRX, but also RPSAP52, PCCA, MIR4683, SELENOM, NAPA and VWA8
genes. In our study, the strongest association was observed with the SIX6 gene, located on

14q23.1 and which encodes a homeobox protein involved in ocular development [16], mor-

phogenesis and visual perception [17]. The SIX Homeobox 6 (SIX6) is part of a group of evolu-

tionarily conserved genes, which were known eye transcription factors [18], which regulate the

proliferation of specific retinal cells during optic disc development [18] and retain their impor-

tance in the mature retina [18]. SIX6 is implicated both in the early stages of eye formation and

subsequent differentiation of retinal progenitor cells (RPC). Interestingly, previous works have

shown that the rs146737847 (Glu129Lys) adversely affects the SIX6 gene function [19] and is

also associated with primary open-angle glaucoma potentially through its known effect over

the vertical cup-disc ratio [20]. While observational correlation between glaucoma and myopia

status is well known [21, 22] there is little evidence of large-scale shared allelic risk between

spherical equivalent and vertical cup-to-disc ratio [3]. The associations observed with both

spherical equivalent and glaucoma phenotypes for the rs146737847 suggest that genetic pleiot-

ropy may explain a considerable proportion of the phenotypic correlation between these two

common ocular conditions.

The Cone-Rod homeobox gene, or CRX, located on 19q13.33, encodes a photoreceptor-

specific transcription factor [23]. Although a previous association with refractive error was

detected for the broader chromosomal location (1), this is the first time that direct evidence

links this gene with spherical equivalent or myopia. This gene is a master regulator of photore-

ceptor development [24] and differentiation [25]. Certain mutations in this gene cause several

retinal disorders, including cone-rod dystrophy, retinitis pigmentosa, adult-onset macular dys-

trophy and Leber congenital amaurosis [23, 26]. Additionally, the Cone-Rod

Homeobox (CRX) Transcription Factor regulates the expression of over 700 genes in the ret-

ina, including downstream effects over rhodopsin and cone arrestin [27]. CRX expression in

the retinal cells was inhibited by light stimulation, a mechanism previously implicated in myo-

pia development [28, 29].

We identified suggestive associations with rare variants located within other genes and

SPHE. In particular, our analyses implicate the NAPA and PCCA genes. Common

Table 3. Replication of four loci associated with refractive error using gene-based analyses performed in Beaver Dam (N = 1740) and CREAM Consortium dataset

(N = 11,505).

Beaver Dam (N = 1740) CREAM (N = 11,505)
Gene symbol Genetic coordinates Number of variants p-value Number of variants p-value

PCCA 13:100089014–100530437 6 0.6 3 0.7

SIX6 14:60509145–60512849 2 0.2 2 0.1

NAPA 19:47487636–47515063 1 3.73 x 10−05 6 0.2

CRX 19:47821936–47843324 2 0.8 3 0.4

Column "Gene symbol" lists the symbols of the genes associated with spherical equivalent. Fields "Genetic coordinates", "Replication p-value" include genetic

coordinates of the tested genes, and denote p-values for the respective associations in Beaver Dam and predominantly European CREAM replication cohorts. The

column "Number of variants" includes a number of tested genetic variants in each respective gene. The associations that had p-values below Bonferroni multiple testing

correction threshold are shown in bold letters (0.05/5 = 0.01).

https://doi.org/10.1371/journal.pone.0272379.t003

PLOS ONE Association analyses of rare variants identify two genes associated with refractive error

PLOS ONE | https://doi.org/10.1371/journal.pone.0272379 September 22, 2022 7 / 18

https://doi.org/10.1371/journal.pone.0272379.t003
https://doi.org/10.1371/journal.pone.0272379


polymorphisms at genomic loci encompassing these genes are associated with refractive error

[3] and the age of refractive correction [7], but this is the first time that, to our knowledge, rare

variants within their coding regions are associated with SPHE. PCAA encoded the biotin-bind-

ing region of mitochondrial Propionyl-CoA carboxylase involved branched and odd chain

fatty-acid and cholesterol catabolism [30]. The protein product of the NAPA gene is a member

of the soluble NSF attachment protein family aiding the fusion and docking of vesicles to target

membranes [31]. NAPA also participates in synaptic activity and plays a role in neurogenesis

[31]. Notably, this particular gene was the only candidate that achieved replication in an inde-

pendent dataset.

Several novel potential candidates for which we found suggestive evidence of association

are implicated in cognitive development and learning difficulty disorders. In particular, Ribo-

somal Protein SA Pseudogene 52 (RPSAP52) is associated with brain structure variations in

TWAS [32] and described in genetic investigations of cognitive impairment, neurodevelop-

mental and neurodegenerative disorders [33]. The polymorphisms within the RPSAP52 gene

were associated with schizophrenia in founder populations [34] and associated with biomark-

ers of Alzheimer’s disease, such as cerebrospinal fluid beta-amyloid 1–42 levels [35]. Similarly,

mutations in microRNA MIR4683 may be associated with epilepsy in children [36]. Another

interesting candidate VWA8 encodes a mitochondrial ATPase, whose precise function is not

fully understood [37]. Genome-wide association studies demonstrated that variation in VWA8
may influence susceptibility to autism [38] and bipolar disorder [39], and also educational

attainment and mathematical ability [40]. SELENOM, another novel candidate suggested by

our analyses, encoded a selenoprotein that is highly expressed in the brain and that is thought

to be essential for normal neurocognitive development [41].

For this study, we used some of the largest ever sample sizes analyzed to date to assess the

role of rare variants in refractive error. However, our study has a number of limitations. In our

analyses, we assumed a simple dominant model of inheritance, while recessive or compound

heterozygosity models of inheritance may also play a role in refractive disorders. Our analyses

were restricted to the coding regions of the genome. However, non-coding areas of the

genome also proved to be important for several other diseases [42–44] and could potentially

provide a new direction for additional myopia work. In our study, we used chip array informa-

tion in two replication datasets and found relatively little evidence for replication. However,

the arrays only include a small number of variants within the exome of the genes of interest

and none of which was a particularly strong contributor to the overall gene-based association

in the discovery data. This is a general limitation of array-based studies, and to fully validate

our results, future work on large scale exome sequencing on independent cohorts will be

needed. Additionally, despite the large sample size, statistical power for rare variants is often

limited due to the very low allele frequencies. Power will benefit from additional sequencing

data from the several national cohorts and biobanks whose data will become available in the

future. Finally, the results obtained from an exclusively European population sample are

unfortunately not representative of more diverse populations and may not be generalisable to

other ancestral groups.

This study demonstrates that variants with significantly large effects on refractive error are

extremely rare (Table 2). We identify associations between population spherical equivalent

and rare variants located within the protein-coding regions of the SIX6 gene, which plays an

important role in eye morphogenesis and is implicated in several ocular disorders, including

myopia. We also identify the CRX gene, a transcription factor crucial for the development of

photoreceptors, as the origin of an important association signal. Our investigation demon-

strates high-quality whole-exome sequencing provides a superior alternative to array-based

methods that have power limitations and are prone to bias arising from population admixture
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[45]. Beyond novel associations, the incorporation of rare variants in existing myopia risk pre-

diction models that currently rely on common polymorphisms will improve their accuracy

and augment our understanding of refractive disorders.

Supporting information

S1 Fig. Spherical equivalent distribution in UK Biobank cohort (N = 50,893). The distribu-

tion of the spherical equivalent (x-axis) in the samples; the number of participants for each

spherical equivalent bin is given in the y-axis.

(PNG)

S2 Fig. Sensitivity analyses results for the SIX6 gene. Y-axis shows the number of SIX6 vari-

ants included in gene-based analyses, testing associations with SPHE. The model was adjusted

for age, sex and the best common variant within the same locus. The -log(p-values) from

SKAT-O tests are displayed on X-axis.

(PNG)

S3 Fig. Sensitivity analyses results for the CRX gene. Y-axis shows the number of CRX vari-

ants included in gene-based analyses, testing associations with SPHE. The model was adjusted

for age, sex and the best common variant within the same locus. The -log(p-values) from

SKAT-O tests are displayed on X-axis.

(PNG)
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