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A B S T R A C T

With the rapid progress and significant successes in various applications, machine learning has been considered
a crucial component in the Internet of Things ecosystem. However, machine learning models have recently
been vulnerable to carefully crafted perturbations, so-called adversarial attacks. A capable insider adversary can
subvert the machine learning model at either the training or testing phase, causing them to behave differently.
The vulnerability of machine learning to adversarial attacks becomes one of the significant risks. Therefore,
there is a need to secure machine learning models enabling the safe adoption in malicious insider cases.
This paper reviews and organizes the body of knowledge in adversarial attacks and defense presented in IoT
literature from an insider adversary point of view. We proposed a taxonomy of adversarial methods against
machine learning models that an insider can exploit. Under the taxonomy, we discuss how these methods can
be applied in real-life IoT applications. Finally, we explore defensive methods against adversarial attacks. We
believe this can draw a comprehensive overview of the scattered research works to raise awareness of the
existing insider threats landscape and encourages others to safeguard machine learning models against insider
threats in the IoT ecosystem.
. Introduction

Internet of Things (IoT), as defined by the International Organiza-
ion for Standardization (ISO) and the International Electrotechnical
ommission (IEC), is ‘‘an infrastructure of interconnected entities, people,
ystems and information resources together with services which process
nd react to information from the physical world and from the virtual
orld’’ [1]. In simple terms, the IoT extends the current Internet by
roviding connectivity between physical things and cyberspace.

The IoT has rapidly grown in prominence in the last decade. IoT
pplications range from consumer-oriented, such as smart homes, to
nterprise-oriented IoT domains, such as Industrial IoT (IIoT). Ac-
ording to the McKinsey Global Institute [2], around the world, an
stimated 127 new IoT devices connect to the Internet every second. In
020, for the first time, the number of IoT connections represented 54%
f the active connections and hence exceeded the number of non-IoT
onnections (smartphones, laptops, and computers) [3].

The IoT concept comprises a broad ecosystem of interconnected
hings, including sensors/devices, communication services, data analyt-
cs, and a user interface. Machine Learning (ML) based data analytics
s one of the valuable components in the IoT ecosystem for several
easons: First, ML plays a vital role in learning from the vast amount
f data generated by IoT devices, allowing meaningful insights to be
rawn. Second, it provides embedded intelligence in the IoT application
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that is leveraged to cope with various IoT problems [4,5]. Finally, IoT
devices encompass the notion of actuating; thus, there is a need to
deploy a decision-making technique [6].

A well-known application of ML models in the IoT environments is
cybersecurity. ML, including deep learning (DL), has proven its success
in protecting cyber- environments from cyber-threats. Among these
various threats are insider threats. ML-based approaches have been
proposed for insider attack detection, including those that consider
behavior analysis [7–9]. Insider threats are widely perceived to be
significant and often even considered to be more damaging than out-
sider threats [10,11] . The protection against adversarial insiders is
usually more challenging than others for several reasons [12]. First and
foremost, insiders tend to access sensitive resources because they are
trusted. Second, there are more attacks venues available to the insider
adversaries than the external adversaries. Finally, insider threats are
more difficult to detect.

Despite the advantages of ML in the context of insider threats detec-
tion, recent studies, such as [13,14], have shown that ML models can
be vulnerable to a novel class of attacks, so-called adversarial attacks,
posing severe security threats to the systems that deploy them. Deploy-
ing ML models without considering their vulnerability to adversarial
attacks can cause them to be the weakest link in the entire chain of
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IoT security [15]. A capable insider can subvert the ML-based model at
either the training or testing phase, causing them to behave differently
with carefully crafted input perturbations. For example, suppose an
organization asks its employees to submit an ID photo for its ML-based
facial recognition control system; an insider adversary can provide a
poisoned photo that gives the adversary control of the face recognition
system.

According to Gartner’s report [16], by 2022, 30% of cyberattacks
will involve adversarial attacks such as data poisoning, model theft, or
adversarial perturbation. As a result, a robust ML models against insider
threats are required, where a robust model is defined as a ML-based
model that can withstand adversarial attacks. However, to build these
models, one must understand how the insider adversary can manipulate
the ML models’ input points. That leads us to the following question
how can ML-based systems in IoT environments adapt when an insider
adversary actively manipulates the system’s inputs?

Research on Adversarial Machine Learning (AML)‘‘the study of effec-
tive machine learning techniques against an adversarial opponent’’ [13],
as only begun, and many complex obstacles remain unaddressed.
hus, we aim to analyze the insider threats against ML models deployed

n IoT environments.
Our paper aims to review and organize the body of knowledge in

he AML and IoT literature from an insider point of view. We review
nd taxonomize the adversarial attacks that can be exploited by the
nsiders, present applications of these methods in real-life domains, and
iscuss what defense methods have been proposed so far. Our review
ocuses on supervised ML-based systems associated with IoT. We hope
his work will raise awareness of the existing adversarial insider threats
andscape and encourages others to safeguard ML-based systems from
alicious insiders in IoT ecosystems.

The structure of the paper is as follows: Section 1 gives the introduc-
ion and motivation. Section 2 discusses the related works, limitations,
nd contributions. Section 3 describes the research methodology. Sec-
ion 4 gives a background of the primary concepts used in the paper.
ection 5 discusses adversarial insider threats in IoT. Section 6 presents
eal-life applications of adversarial insider threats. Section 7 depicts
dversarial insider attacks taxonomy. Sections 8 and 9 discuss two
se cases. Section 10 elaborates on current countermeasures against
dversarial insider threats. Section 11 concludes the paper.

. Related work

In the field of cybersecurity, the concept of AML and its impact on
he performance of ML-based systems has raised substantial concerns
n the academic and industrial communities. Our survey lies at the
unction of AML and the IoT from insider threats point of view. Thus,
e briefly summarize the related comprehensive surveys and compare
ur work with them. The surveys surrounding the AML literature
an be categorized into three environments: traditional IT systems,
yber–physical Systems (CPSs), and the IoT.

Duddu [15] and Wang et al. [17] discuss the research works on
raditional systems under adversarial conditions. Both surveys mainly
ocus on attack methods and defense strategies that are presented in
he literature. Moreover, Duddu and Wang et al. review the privacy-
reserving methods which are used to protect the sensitive data, data
sed to build the ML-based systems, against information leakage at-
acks. Biggio and Roli [18] provide a detailed review of adversarial
achine learning evolution over the last ten years. From earlier to more

ecent years, Biggio and Roli review the adversarial machine learning
iterature in the context of computer vision and cybersecurity. Their
eview aims to provide a deep understanding of the security properties
f deep and non-deep learning, respectively. Pitropakis et al. [19]
rovided a detailed taxonomy of evasion and poisoning attacks against
raditional systems that deploy ML models. The proposed taxonomy
an be broadly classified into two main phases: the attack preparation
2

phase and the attack manifestation phase. The authors organize the lit-
erature knowledge according to different applications, including visual
recognition, spam filtering, and intrusion detection. The survey aims to
motivate the creation of a defense taxonomy, which is not investigated.
Martins et al. [20] review the literature on intrusion and malware
detection systems that apply adversarial machine learning concepts.
They explore the adversarial attacks and defensive solutions and discuss
the application of these techniques to intrusion and malware detection
scenarios. Apruzzese et al. [21] proposed a taxonomy to model real
capabilities and circumstances required by an adversary to launch
a successful adversarial attack against ML-based Network Intrusion
Detection Systems (NIDSs). The taxonomy is based on five elements on
which the adversary has power over the target system: training data,
feature set, detection model, oracle feedback, and manipulation depth.
The authors aim to guide researchers in devising threat models that
reflect realistic research on adversarial attacks against ML-based NIDSs.
The above-mentioned surveys review the AML literature on traditional
IT environments rather than IoT environments, and hence, the IoT
literature is not covered. Conventional methods may not always be an
option for IoT environments with a sheer amount of data and limited
computing and storage [5,22]. Thus, exploring the applications of AML
methods in IoT literature can reveal in what ways the strategies of
adversarial attack and defense in traditional IT environments and IoT
environments may differ.

Li et al. [23] discuss the AML literature on sensor-based CPSs. The
paper focuses on CPSs applications beyond computer vision, including
surveillance sensor data, audio data, and textual data. The authors first
describe the general workflow of adversarial attacks in CSPs. Then, they
cover the existing works of recent adversarial attacks against CPSs and
potential defenses that can be performed in CPSs. The work presented
by Li et al. based solely on CPSs and cannot be hence generalized for all
IoT environments. In other words, although the CPSs do overlap with
IoT environments, differences do exist, and they tend to be considered
two different paradigms [24,25]. In addition, the surveyed papers are
limited to only three application domains.

Yulei [26] focuses on robust learning of ML-based systems in IoT
environments. Their survey explores the existing research that discusses
the IoT-related data issues and their impact on the learning process
during the training phase. The robustness of ML-based systems is dis-
cussed from two perspectives. First, when the training data has noises.
Second, when IoT devices are compromised, and adversarial examples
exist in the training set. The discussion of AML in the IoT environments
is only a part of the survey, focusing only on the learning phase. There
are other key stage where adversarial attacks can happen, such as
inference phase, which highlight the need for a comprehensive survey
where more potential attack points can be covered. In addition, the
concept of AML is looked at through a different lens, i.e., measuring
the reliability of the ML model rather than attack and defense methods
and adversarial examples’ generation methods.

Only a few published surveys have considered the AML literature in
the IoT setting and have not primarily focused on insider threats against
ML-based systems. As a result, a comprehensive survey that explores
the susceptibility of the ML-based systems in IoT for insider threats
and the corresponding countermeasures is still lacking, but it is highly
desired. It will facilitate understanding the existing attack landscape
and offer a new perspective of breaking down the insider threats in
IoT literature into various characteristics to pave the way for follow-up
works. Moreover, it will provide a guideline of what defense methods
have been proposed so far in the literature and serve as a stepping stone
toward improving defense mechanisms against insider threats within
the field of AML in IoT environments.

Based on this conclusion, we conduct a comprehensive survey on ad-
versarial insider threats and the potential defenses in IoT environments.
To the best of our knowledge, this is the first survey that discusses
insider threats against ML-based systems in the context of IoT. The main

contributions can be summarized as follows:
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• Analyze and taxonomize adversarial attack methods against ML-
based systems in IoT from an insider point of view.

• Discuss how these methods can be applied in real-life IoT use
cases.

• Provide an overview of defensive strategies that can withstand
these attacks in IoT.

3. Methodology

For this review, we defined a search methodology for selecting
the relevant literature to ensure the coverage of the most relevant
studies in the intersection of AML and IoT literature from an insider
point of view. The method of Kitchenham and Brereton [27] was
generally followed (not all the steps) as a guideline for the searching
and selecting process. The rationale for selecting this methodology
was that it follows a uniform protocol comprising structured steps,
which is efficient in analyzing published papers in a particular research
area. Moreover, hundreds of citations indicate its successful adoption
in literature searching related studies.

The search process as divided into the two following steps: auto-
matic search and manual search. These steps are described below.

3.1. Automatic search

Automatic search is considered an initial search step. The key objec-
tive of the step is to have a broad overview of the available literature
without any bias favoring a specific publisher. It was performed using
a search engine, Google Scholar, with a defined list of keywords. The
root search words stemmed from the research’s main dimensions: They
were ‘‘adversarial’’ and ‘‘IoT’’. To ensure that we would not miss papers
that discuss specific areas and applications, the keyword ‘‘adversarial’’
was expanded to its variations, for example, poisoning and evasion
keywords [13,28]. Similarly, the keyword ‘‘IoT’’ was expanded to well-
known IoT applications, such as smart grid, wearable devices, and
IIoT.

It is worth noting that the automatic search process can lead to
many thousands of results such as 22,100 results for ‘‘Adversarial’’ AND
‘‘IoT’’ query. Some of these papers are loosely related which makes the
analysis process difficult. To reduce the scope, the advanced search in
Google Scholar is used to limit the appearance of the keywords to be
in the title only.

3.2. Manual search

The manual search was conducted using the list of publishers result-
ing from the automatic search and by applying forward and backward
snowballing. Libraries such as Scopus, IEEE Xplore, Springer, ACM,
and ScienceDirect and a list of journals and conferences were searched
manually to look for relevant literature. The resulting papers were col-
located with the papers from the automatic search. A filtering process
has been undertaken based on the paper’s abstract to limit the scope to
the relevant papers. Then, forward snowballing (cited-by search) and
backward snowballing (paper’s reference list search) have been applied.

The filtered results from automatic and manual searches represent
the final bodies of the studied literature. These papers will be passed
through a stricter relevance criterion, where the paper is fully read
and analyzed. The paper will be included if inclusion criteria are met.
The inclusion criteria for a research paper were: written in English,
have a full version (not only a poster or abstract), discuss adversarial
attack methods or defensive solutions that deployed in IoT ecosystem
in a white-box setting, insider threat setting. Fig. 1 illustrates the
fundamental steps included in our search methodology.

4. Background

This section outlines the preliminary knowledge of the main con-
3

cepts used in this work.
Fig. 1. Research methodology.

4.1. AML overview

AML is a research field that studies the design of a robust ML
model that can withstand adversarial opponents [13,15]. It discusses
the various adversarial threats and their defensive strategies related
to the use of ML models in artificial intelligent-based systems [28].
Moreover, it studies the capabilities and limitations of adversaries
under a successful attack scenario [13]. In 2006, Barreno et al. pre-
sented an initial attempt to classify attacks against ML-based systems
and also provided an overview of a variety of defenses against these
attacks [29]. The work presented by Barreno et al. was improved in
2011 by Huang et al. [13] where the concept of AML was formally
introduced. Moreover, a taxonomy of AML attacks was proposed. It is
worth noting that most of the papers presented in the AML and IoT
literature adopted Huang et al. taxonomy [13].

According to Huang et al. taxonomy, an adversarial attack can
be studied based on four primary dimensions. Firstly, the influence
dimension reflects the adversary’s capability over the target system.
It can be either causative (can tamper with the training dataset) or
exploratory (does not influence the training dataset but can manip-
ulate the model during the test or inference phase). Secondly, the
specificity dimension draws the broadness of the adversarial attack
manipulations. These can be targeted attacks (generate adversarial
samples to be misclassified into a targeted label/group of labels) or
indiscriminate attacks (generate adversarial samples to be misclassified
into any label other than its original label). Thirdly, the knowledge
dimension describes the adversary’s level of knowledge about the
target system (i.e., training data, feature set, and model configuration).
The adversary can have full (white-box), partial (grey-box), or no
(black-box) knowledge about the target system. Lastly, the adversary
goal dimension refers to which security property the adversary aims
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Table 1
Dimensions of adversarial attacks analysis.

Causative attack Alter the training process through influence over the training dataInfluence Exploratory attack Evade the detection after the deployment

Targeted attack Focus on a single or small set of target samplesSpecificity Indiscriminate Involve a very general class of points.

Confidence reduction Reduce the ML model prediction confidenceImpact Misclassification Mislead the ML model response in any way possible

White-box Adversary has full knowledge about the target system
Grey-box Adversary has partial knowledge about the target systemKnowledge
Black-box Adversary has zero knowledge about the target system

Integrity violation Result in malicious points being classified as normal
Availability violation Result in many errors that the system being unusableGoal
Privacy violation Result in obtaining private information from the ML model
to violate. These can be integrity violation (where the adversary aims
to violate the ML-model integrity by classifying adversarial samples as
benign), availability violation (where the adversary aims to increase
misclassification errors rendering the system useless), and privacy vi-
olation (where the adversary aims to obtain private information by
probing the ML-based system). Papernot et al. [30] presented an addi-
tional dimension: the impact dimension of an adversarial attack refers
to the effect that results from a successful adversarial attack. These can
be confidence reduction impact (which happens when the adversary
successfully manipulates the training data in a way that can corrupt the
decision process of the ML-based system) or miss-classifications impact
(which happens when the adversary successfully fools the ML-based
system and hence, adversarial sample is misclassified).

In order to facilitate understanding of the upcoming sections the five
dimensions are summarized in Table 1. The first three dimensions de-
scribe the attack characteristics, while the last two dimensions describe
the adversary’s goal and level of knowledge.

4.2. IoT overview

As discussed in Section 1, IoT describes a network of physical
objects, so-called things. Currently, there is no universal consensus
on the IoT architecture. However, based on the reviewed literature,
the standard IoT architecture has four layers, namely, the perception,
network, middleware and application layer [31–35]. Fig. 2 depicts an
outline of the typical IoT architecture. A detailed description of each
layer is given below.

• Perception layer: it is the bottom layer of IoT architecture. It is
also known as the physical or sensing layer because it primarily
deals with physical IoT sensors and actuators. The primary func-
tion of this layer is to collect data from the real world through
various sensors.

• Network layer: it serves as a communication channel to transmit
data collected in the perception layer either to other connected
things or to a computational unit for processing and vice versa.
It uses a variety of communication protocols, such as Wi-Fi and
IPv6.

• Middleware layer: it is located between the network and the
application layers. It is also known as the processing layer. The
key function of this layer is to provide a diverse set of services to
the lower layers. It stores, analyzes, and processes vast amounts
of data that comes from the network layer. The middleware layer
is the candidate target of adversarial attacks in the IoT ecosystem
because it is where the ML model usually resides.

• Application layer: it is the highest layer within the IoT archi-
tecture. The main goal of the application layer is to provide
different application services and user interface (UI) to the end-
users. It defines various applications for IoT deployment, such as
environmental monitoring, smart grid, and smart healthcare.
4

Fig. 2. Layers of IoT architecture.

5. AML and insider threats in IoT

Undoubtedly and as discussed in Section 1, ML has been considered
a promising approach for the IoT. It has been adopted in a plethora of
applications, representing one of the most widely used computational
paradigms in the IoT architecture, specifically in the middleware layer.
Given the proven vulnerability of ML, does adding the ML approach
to an IoT ecosystem introduce a vulnerability to adversarial threats that
a malicious insider can exploit? In fact, the vulnerabilities of ML to
adversarial threats stem from an assumption made when the ML meth-
ods were developed. It was assumed that both training and testing
data have identical statistical characteristics, and ML models will be
trained and used under a benign environment [17]. Nevertheless, this
is not always the case, especially in the IoT ecosystem. To demon-
strate, IoT architecture comes with unique design challenges compared
to traditional systems that may not fully meet the above-mentioned
assumption [4,34,36]. Firstly, IoT devices generate a sheer volume of
real-time data in the perception layer from various data types and are
expected to be the most significant source of new data in the future [4].
Secondly, IoT deals with heterogeneous communications in the network
layer where various devices with different capabilities communicate
within the network. Thirdly, most IoT device manufacturers are trying
to be ‘first to market’ by introducing new smart applications, which
in turn may compromise some of the security requirements [37].
Finally, IoT networks expand rapidly with more devices being added
continually, resulting in a massive scale deployment [5,6]. As a result,
these challenges can contribute to multiple vulnerabilities in each layer
of the IoT architecture. Surveys on vulnerabilities of IoT layers can
be found in [32,33,35]. These vulnerabilities can facilitate access to
ML-based systems residing in the IoT ecosystem and hence can make
the adversarial perturbations easier compared to perturbating the ML-
based system residing in traditional systems, which are more secure
against malicious access. Moreover, IoT applications tend to focus more
on the open-loop platform, i.e., interconnecting all the things in the
physical world. While CPS applications tend to focus more on the
closed-loop platform, i.e., sensing information and feedback loop to
control the physical world [38]. The open loop platform can result
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in larger adversarial attack entry points in IoT compared to CSP and
traditional systems.

In addition, the original assumption does not consider that, in some
cases, the ML model training environment may not be benign too.
In other words, data collection in some IoT applications can be done
unsupervised, such as in [39], giving the adversary direct access to the
training data. Therefore, a capable insider with an advantage over a
malicious outsider, such as being familiar with the security protocols
and systems, knowing the ML model configuration, or/and the training
data set, can exploit vulnerabilities presented in different IoT layers
to access and consequently manipulate the ML model. For example, a
malicious insider can exploit some of the vulnerabilities presented in
the perception layer to manipulate a small fraction of the training data
and thus mislead the ML learning process (causative attack).

We conclude that due to the inherently insecure nature of IoT
architecture layers and the mutual communication between the mid-
dleware layer, where the ML model is usually located, and other layers,
deploying ML models within the IoT ecosystem without considering
their susceptibility to adversarial attacks introduces a vulnerability that
a malicious insider can exploit. Examples of adversarial attacks that can
be exploited by an insider are discussed in Sections 8 and 9.

In what follows, we review the AML literature in IoT from insider
threats point of view. The filtered papers resulted from Section 3
will be discussed. This includes adversarial attacks methods and their
applications, use cases, and defensive solutions.

5.1. Threat model

To define the scope of our review, we consider an insider threat
scenario where a malicious insider attempts to harm an organization
without being detected. The organization deploys an IoT platform, and
only authorized personnel can access it. The malicious insider aims to
lunch an adversarial attack on the ML model located on the middleware
layer of the IoT platform.

Inspired by the adversarial dimensions presented in Table 1, we
re-defined the scenario mentioned above according to the adversarial
taxonomy dimensions. We assume the adversary knowledge is white-
box or grey-box; that is the adversary can have complete or partial
knowledge about the target ML model, including data sets or/and
ML model configuration, a malicious insider scenario. Moreover, the
adversary can aim to manipulate the target ML model’s integrity,
availability, or privacy. With regard to the dimensions related to the
attack characteristics, namely influence, specificity, and impact, we
consider all the possibilities presented in the explored literature be-
cause they are all applicable in the case of insider threat scenarios. For
example, the malicious insider can lunch causative (training) or/and
exploratory (inference) attack and the attack can be either targeted or
indiscriminate. The adversarial dimensions of the reviewed IoT papers
are presented in Table 2.

5.2. Adversarial attacks methods in IoT

It is worth mentioning that adversarial attack methods are data-
nature dependent. Methods used in some domains, like image process-
ing, cannot be applied directly to other domains, like voice recognition.
Thus, the question is, what are the adversarial methods that can be used
by a malicious insider to lunch a successful attack against ML based systems
in IoT?

Based on the defined threat model, we reviewed the IoT literature
to elaborate on the various adversarial attack methods against the
ML based systems. The adversarial attack methods can be organized
into two main categories based on the phase where an attack can be
launched: training attack methods and inference attack methods [13].
5

• Training attack (causative attack): an adversarial attack con-
ducted during the training phase. It assumes that the adversary
compromises the learning process and can manipulate the train-
ing data set. The adversary can either aim to degrade the ML
model’s overall performance, resulting in a denial of services, or
only target specific training samples [28].

• Inference attack (exploratory attack): an adversarial attack
conducted during the testing or inference phase. The adversary
aims to construct an Adversarial Example (AE) by adding some
crafted perturbation to a benign data point. The constructed
AE can then force the ML model to misclassify it to any class
other than its original class. The miss-classification can result in
bypassing a cybersecurity defense to deliver an exploit or other
form of cyber-attacks without detection.

5.2.1. Training attack methods
Below, we describe the training attack methods that have been

discussed in IoT literature:

• Label flipping method: it is a subclass of the causative attack
methods, in which the adversary can influence the labels assigned
to a fraction of the training dataset [40]. There are two different
methods for poisoning the training dataset through label flipping:
random and targeted label flips [40]. In the random flipping, the
adversary randomly selects a fraction from the training samples
and flips their labels, whereas in the targeted label flipping, given
a number of allowed label flips the adversary’s main objective
is to find the combination of label flips that maximizes the
classification error on the testing data.

• Gradient ascent method: Biggio et al. constructed a causative
attack that significantly decreases the Support Vector Machine’s
(SVM) classification accuracy [41]. The attack’s goal is to find,
using the gradient ascent method, a specially crafted data point
whose addition to the training data set can manipulate the opti-
mal solution reached by the SVM.

5.2.2. Inference attack methods
The Inference attack methods presented in IoT literature can be

further categorized into three main subcategories based on the method
used to generate the AEs which are gradient-based, optimization-based,
and graph-based attack methods. First, the gradient-based attack meth-
ods:

• Fast Gradient Sign Method (FGSM): It is the simplest and the
most widely used gradient-based attack [42]. It generates AEs by
performing a one-step gradient update of the model loss function
with respect to every input in the dataset. Then, the gradient sign
is computed to indicate the perturbation direction. The signed
gradient adjusts the original input 𝑥 by adding a specified per-
turbation. The strength of FGSM depends on perturbation size.
If perturbation size is too small, then y(x′) might not differ from
y(x). However,it is crucial to consider the actual range (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)
of each feature in the dataset.

• Basic Iteration Method (BIM): It is an iterative version of FGSM
attack [43]. The AEs are created by applying FGSM iteratively
with a small step size instead of a single large step. Although
BIM is slower and consume a higher computation cost compered
to FGSM, it generates a stronger attacks with subtle perturba-
tions [43].

• Momentum Iterative Method (MIM): it introduces an additional
momentum term to BIM; momentum is a technique to accelerate
and stabilize stochastic gradient descent algorithm [44]. By incor-
porating the momentum term into the iterative process for AEs
generation, the MIM can stabilize update directions and escape
from poor local maxima during the iterations. Therefore, the MIM

method results in more transferable AEs compared to BIM [44].
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• Projected Gradient Descent (PGD): This is a variant of the
FGSM like the BIM [45]. The main difference from BIM resides
in the fact that PGD initializes the search for an AE at a random
point, then runs several iterations of the BIM attack to find the
AE [46]. Due to the randomization, PGD regarded as the strongest
first-order attack compared to FSGM and BIM [45,46].

• Jacobian Saliency Map Attack (JSMA:) it was proposed for
crafting AEs that can fool the Deep Neural Networks (DNNs) [30].
Compared to the previous methods, JSMA reduces the perturba-
tions by controlling the number of perturbated features rather
than the perturbation size itself. In doing so, JSMA uses saliency
map to select features that should be modified; feature that will
not increase the probability of the target label or will not decrease
the probabilities over all other labels is rejected. The perturbation
reduction comes with significant computational cost [30].

• DeepFool: it is a gradient-based attack proposed by [47] that
aims to efficiently compute the adversarial perturbations that
fool DNNs in the untargeted setting. When compared to FGSM
and JSMA, DeepFool produced less perturbation [48]. Moreover,
DeepFool reduce the size of the perturabtion rather than the
number of selected features, as JSMA does [48].

Second, the optimization based inference attack methods can be
summarized as follows:

• L-BFGS Method: it generates AEs based on L-BFGS optimization
algorithm. The L-BFGS attack has two key differences from the
FSGM method [49]. First, it is optimized for the 𝐿2 distance
metric rather than 𝐿∞ used in FSGM, and second, it is designed
to produce very close AEs instead of being fast.

• Carlini & Wagner (C&W) Method: Carlini and Wagner proposed
a targeted attack to defeat defensive distillation, an adversarial
defense method, by extending L-BFGS method [49]. The au-
thors discussed three kind of attacks based on different distance
metrics: C&W 𝐿0, C&W 𝐿2, and C&W 𝐿∞ attacks.

• Elastic Net (EAD) method: The EAD method proposed by [50]
as a modification of the C&W attack and aimed to generalize the
C&W attack by exploring L1 based adversarial attacks. The EAD
targets the DNN systems and is based on elastic-net regularization
to craft L1 oriented AEs different from existing attack methods.

Finally, the graph-based inference attack method can be summa-
ized as follows:

• Graph Embedding and Augmentation Attack (GEA) method:
GEA is an AE’s generation method proposed by [51] to manip-
ulate the graphical representation of an IoT software, namely
Control Flow Graph (CFG). The GEA generates an adversarial
IoT software through combining the original graph with an ad-
versarial target graph using shared entry and exit nodes while
maintaining the practicality and functionality of the attacked
sample. The GEA targets a DL-based model that is trained over
CFG features. In contrast to the above-mentioned adversarial
methods, GEA manipulates the CFG rather than the features
extracted from the CFG.

. Applications of adversarial insider attack methods in IoT

In the previous sections, namely Sections 5.2.1 and 5.2.2, we re-
iewed the adversarial attack methods that a malicious insider can
se against a target ML model in IoT ecosystem. This section explores
ifferent application domains of these methods. Indeed, this section
ainly focuses on two questions: first, based on the reviewed literature,
hat domains in IoT applications can be susceptible to adversarial insider
ttack methods? Second, how these attacks are generated in those domains?
able 2 summarizes the reviewed applications based on adversarial
imensions mentioned in Table 1.

The applications of adversarial insider attack methods during the
raining phase are presented first, followed by the inference phase
pplications.
6

6.1. Training attack methods applications

6.1.1. Environmental sensing
Baracaldo et al. [59] further enhanced in [39] showed that the

poisoning attack could be successful in a scenario where several IoT
devices contribute data points used to train ML-based system. For
example, an environmental government regulator installs IoT sensors
around each factory to regulate factory emissions. A polluting fac-
tory (insider) tampers the collected data in ways that will violate
the integrity of the trained ML. To craft poisonous data, they used
two different methods: [41,58]. Both methods target the SVM. The
first method focuses on a label flipping attack [58], while the second
method uses the gradient ascent attack [41]. The adversary’s ultimate
goal is to reduce the accuracy of the poisoned SVM model.

6.2. Inference attack methods applications

6.2.1. Smart home
Anthi et al. [52] have explored the vulnerability of ML-based In-

trusion Detection System (IDS) to adversarial inference attack, an ex-
ploratory attack. They proposed a rule-based approach to generate
indiscriminate AEs that target a range of pre-trained supervised ML
models, namely Decision Tree(DT), Random Forest (RF), Naive Bayes
(NB), and SVM, used to detect Denial of Service (DoS) attack in an IoT
smart home network. It was assumed that the adversary successfully
retrieved the password for the central access point within the smart
home network; the adversary may have a pre-existing relationship
with the victim. Subsequently, the adversary can scan the network and
lunch different attacks. For adversarial inference attacks, the adversary
mainly focuses on identifying the most important features that best dis-
criminate between the malicious and benign packets. Then, manually
perturbing the values of these features forces the IDS to misclassify the
incoming packet. The experimental results showed that all ML models’
performance was affected, decreasing a maximum of 47.2% when the
adversarial packets were present.

6.2.2. Healthcare
Away from the defensive DL-based systems, Rahman et al. [54]

showed that the DL-based diagnostic model that relies on medical
IoT could be vulnerable to adversarial inference attacks, exploratory
attacks. They tested six DNN-based COVID-19 applications against
different adversarial methods, including FGSM, MI-FGSM, Deepfool, L-
BFGS, C&W, BIM, Foolbox, PGD, and JSMA. Given that the adversary
has complete knowledge of each DNN model, open source libraries,
including PyTorch, Tensorflow, and Keras, were used to design the
targeted and indiscriminate AEs that aim to violate the integrity of the
DNN-based model. It was concluded that DL-based systems that do not
consider defensive measures against adversarial perturbations remain
vulnerable to adversarial inference attacks.

6.2.3. Malware detection
Abusnaina et al. [51] studied the robustness of malware detec-

tion systems against adversarial inference attacks, particularly those
trained over CFG features. To do so, first, the CFG of benign and
malicious samples were generated, and the CFG-based features were
extracted. Second, a Convolutional Neural Network (CNN)-based model
that distinguishes IoT malware from IoT benign software was built.
Finally, using an imbalanced dataset with 276 and 2281 begin and
malicious samples, respectively, two different approaches are designed
to generate targeted and indiscriminate AEs. The first approach is
based on off-the-shelf adversarial methods like FSGM, PGD, MIM,
JSMA, C&W, DeepFool, and ElasticNet. The second approach is GEA
which manipulates the CFG itself instead of the extracted features.
The adversary’s ultimate goal is to violate the integrity of the ML-
based malware detection model; in such a manner a malware can be
delivered to the target IoT system successfully. The findings showed
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Table 2
Applications of adversarial insider attack methods in IoT.

Ref. Domain AE Method Influence Specificity Impact Knowledge Goal Attacked ML Dataset

[52] Smart home Rule-based Exploratory indiscriminate Misclassify Integrity DT, RF, NB, SVM [53]

[54] Healthcare Gradient-based,
L-BFGS, C&W,

Exploratory Targeted and
indiscriminate

Misclassify Integrity DNN [54]

[51] Malware Gradient and optimization
based, GEA

Exploratory Targeted and
indiscriminate

Misclassify Integrity CNN [55]

[56] Malware Software transplantation Exploratory Targeted Misclassify Integrity SVM [57]

[39] Environmental sensing Label flipping & gradient
ascent

Causative Targeted Confidence
reduction

White-box

Integrity SVM [41,58]
that the first approach achieved 100% misclassification rate while the
second approach misclassified all malware samples, six samples, as
benign ones. Similarly, Pierazzi et al. [56] propose a novel problem-
space adversarial attack, where the adversarial manipulations target
the software object rather than the features vectors, to generate an
Android malware. The attack aims to evade the static analysis detection
at test time (exploratory attack) without relying on code obfuscation
as it may increase the suspiciousness of the generated malware. They
assume the attacker has perfect knowledge about the target system,
which can be an insider scenario. They use the automated software
transplantation concept to generate a targeted (malware classified as
benign) adversarial sample. It extracts slices of bytecode from benign
donor Android software and injects them into actual malware until
the detection system misclassifies it as benign. To do so, they defined
a set of constraints on the software transplantations process, includ-
ing available transformations, methods to preserve generated malware
semantics, its robustness to software analysis techniques, and its plau-
sibility (i.e., resembles an actual, functioning Android software). Using
Android applications collected from AndroZoo [57], Pierazzi et al.
showed that it is practically feasible to generate Android malware in
problem-space that were able to evade the SVM-based Android malware
classifier DREBIN [60] and its hardened variant, Sec-SVM [61].

7. Taxonomy of adversarial insider attacks in IoT

Based on the reviewed literature and inspired by concepts presented
by Huang et al. [13] and Apruzzes et al. [21], we propose a taxonomy
to model adversarial insider attacks in IoT ecosystems as depicted
in Fig. 3. The taxonomy aims to position adversarial attacks in the
context of the IoT ecosystem and raise awareness of potential adver-
sarial insider threats. It breaks down the adversarial attack into various
characteristics to facilitate the evaluation of different attack scenarios.
For example, one scenario can be an exploratory attack with full
knowledge power, while the other can be an exploratory attack with
partial knowledge power. Eventually, the identified attack scenarios
can serve as a stepping stone for cybersecurity analysts toward what
defense methods should be implemented.

As shown in Fig. 3, the taxonomy is built upon three main bases:
the adversary (malicious insider), adversarial attack characteristics, and
layers of the IoT architecture, each of which is expanded to different
characteristics. Using the taxonomy, the first step to build an attack
scenario is to examine the different layers of the IoT ecosystem. Then,
with reference to Fig. 3, from left to right, the flow of a potential
attack scenario can be built by answering the following questions: Is
he layer inside the organization boundary? if yes, then we move to the
ther questions; otherwise, we skip the layer because it is out of our
axonomy scope. Does the layer interact with the ML-based system? if yes,
hen we can identify the potential scenarios as follows:

• What power a malicious insider can have at this stage?
• What goal a malicious insider can achieve at this stage?
• Based on the insider power, What is/are the candidate adversarial
7

attack(s) at this stage?
• What IoT layer can be used by a malicious insider as an entry point
to manipulate the ML-based system at this stage?

• Can a malicious insider lunch targeted or/and indiscriminate adver-
sarial attack at this stage?

• What is/are the potential impact(s) of successful candidate attack(s)
identified in question three?

Given a determined insider’s goal and power, the attack character-
istics can be determined. For example, selecting ‘‘write to training data
set’’ power results in a possible training phase or so-called causative
attack.

The concept of adversary power was introduced by Apruzzes et al.
[21] to model realistic adversary capabilities. They defined the adver-
sary power based on five elements on which the adversary has power
over the target system: training data, feature set, detection model,
oracle, and manipulation depth. Depending on the element, the power
level can be defined. In the training data set element, the adversary
power can be read, write, or has no access to the data set. Regarding
the feature set element, which is features used by the ML-based model
to perform its decision, and the detection model element, which is
a trained model used to perform detection, the adversary power is
knowledge about these elements and it can be full, partial, or zero
knowledge. In the oracle element, the adversary power is feedback,
i.e., the possibility of obtaining feedback from the ML-based model by
observing the relationship between changes in inputs and outputs. The
feedback can facilitate launching the intended adversarial attack and
can be limited, unlimited, or absent. Finally, the manipulation depth
element refers to the nature of adversarial perturbation. The adversarial
perturbation can be at problem space, perturbing raw data input, or
at feature space, perturbing input data after it has been transformed
into features representation. Generally, the more power the adversary
has, the more likely the attack will be successful; however, it can be
unrealistic.

In modeling adversarial insider attacks on the IoT ecosystem, in-
siders tend to have more control ‘‘power’’ on these elements than
malicious outsiders. The reason is that insiders already have access to
the organization’s systems, networks, and data, and with vulnerable IoT
devices being around, they could take advantage of them to harm the
organization’s ML systems [62,63].

In what follows, we present two use cases to illustrate how the
proposed taxonomy can be used in real-life scenarios. The first use case
is considered a representative use case of the industrial IoT sector, and
the second use case represents an example of everyday organizational
activities.

8. First use case: Chatty factory

This section elaborates on how the proposed taxonomy can be ap-
plied to a real-world case. Our main objective is to increase awareness
of potential insider threats against the ML-based system by show-
ing how our taxonomy can be used to determine potential insider

adversarial threats.
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Fig. 3. Taxonomy of adversarial insider attacks in IoT.
8.1. Chatty factory description

Chatty Factory [64] is a three-year investment by the Engineering
and Physical Sciences Research Council (EPSRC) through its program
for New Industrial Systems. The chatty factory concept explores the
increasingly significant role of the IoT in the manufacturing sector.
In other words, the chatty factory concept investigates the potential
of placing data collected from IoT sensors at the core of design and
manufacturing processes. The project focuses on how consumers’ col-
lected sensor data that represent real-time use might be immediately
transferred into usable information for the benefit of design and manu-
facturing processes. Further information about the project can be found
in [64]. In what follows, we discuss how the proposed taxonomy in
Fig. 3 can be applied to the chatty factory case.

8.2. Chatty factory architecture

In order to understand the potential insider threats, it is imperative
to get a good understanding of the chatty factory architecture. As
depicted in Fig. 4, the chatty factory consists of different blocks [64,
65]:

• Product data block: is the starting point of the chatty factory.
The factory products are embedded with various IoT sensors that
collect live data from the wild about their use and environment.

• Data annotation block : is where the collected data from the IoT
sensors is annotated by a semi-automated process; where the data
is partly annotated by human and partly by ML tools.

• Product use model block: is where the processed data from the
previous block and their labels are used to train ML models to
automatically identify points of interest in the collected data.

• New form of design block: is where the insights obtained from
the analyzed data can be used to support enhancements to exist-
ing products and/or the creation of a totally new product.

• Rapid product manufacture: is where the new production in-
struction is mapped onto a digital twin of the product design; so
the design tweaks can be made.

8.3. Potential insider threats against chatty factory

Cyber security is a crucial concern when it comes to adopting
technological innovations, namely the IoT. Opening the factory floor
8

Fig. 4. Chatty factory vision.
Source: Adopted from [64].

to the IoT will capitalize on cyber-attack surfaces and introduce new
vulnerabilities for adversaries [64]. Despite different cyber-attacks that
could be launched against the chatty factory, this section focuses on
adversarial attacks against ML-based systems from a malicious insider
point of view.

Based on the chatty factory architecture depicted in Fig. 4, we can
observe that the IoT perception layer is outside the chatty factory yet
connected to the chatty factory boundary. In contrast, the other IoT
layers are inside the chatty factory boundary. Fig. 5 shows how the IoT
layers are distributed in chatty factory architecture. In what follows,
we identify potential attack scenarios in the chatty factory:

• Product data block: this stage is where the IoT perception layer
is located. It mainly deals with the wild (outside the chatty factory
boundary). Thus, identifying the possible attacks in this stage is
outside our review scope.

• Data annotation block : the input to this stage is the collected
IoT sensors data, and the output is the data set(s) used to train
the ML-based system in the next stage. This stage represents the
initial phase of ML-based model(s) building and has an interaction
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Fig. 5. IoT layers in chatty factory.

with the ML-based system. As mentioned earlier, collected data is
partially annotated by humans(insiders), which means that they
have direct access to the training data set(s). Based on the answers
presented in Table 3, we can conclude that a malicious insider
at this stage can exploit a possibility of a causative adversarial
attack (can be a label flipping). Depending on the collected data,
they can manipulate the data at problem or feature spaces as they
have access to raw and transformed data. A malicious insider with
a competitive interest can manipulate the annotation process to
produce refinement products that may not represent consumers’
views, consequently degrading product revenue and consumer
satisfaction.

• Product use model block: The input to this stage is the processed
data from the previous block along with their labels, and the
output is insights into the new design form. This stage is where
the ML models are trained. Based on the stage’s functionality, the
malicious insider can exploit a possibility of a causative attack as
in the previous stage, however, with an advantage of knowledge
about the ML-based model configuration. This, in turn, can help
in launching more sophisticated causative attacks. It is worth
mentioning that insiders may only manipulate data at feature
space as they usually do not have access to raw data at this stage.
They can launch targeted and indiscriminate adversarial causative
attacks to harm the chatty factory vision.

• New form of design block: The input to this stage is the drawn
design insights, and the output is the suggested enhancement.
This stage has does not interact with IoT ML-based systems; thus,
the potential cyber threats are outside our taxonomy scope.

• Rapid product manufacture: The input to this stage is new
production instruction, and the output is the digital twin of the
product design. This stage has does not interact with IoT ML-
based systems; thus, the potential cyber threats are outside our
taxonomy scope.

Table 3 provides a summary of the above-discussed scenarios based
on the taxonomy questions.

9. Second use case: Facial recognition system

One of the most common IoT use cases is Facial Recognition Systems
(FRSs). IoT has been applied in FRS in a wide range of applications,
including airports, bank lockers, and home and workplace security.
Although machine learning algorithms embedded in IoT products im-
proved how FRS works, it opens the doors for new vulnerabilities. With
reference to Fig. 3, this section discusses potential adversarial insider
attacks in FRSs.

9.1. Facial recognition system description

IoT based FRS, such as [66–69], is a biometric technology that aims
to identify individuals by measuring their facial variables and matching
9

Fig. 6. Facial recognition system architecture.

them with pre-enrolled facial samples. If there is a match, the FRS can
approve the individual identity. Then, this identification can be used,
for example, to grant an access to a proprietary entity or record an
individual attendance. Below, we present the general architecture of
IoT-based FRSs followed by the identified adversarial attack scenarios.

9.2. Facial recognition system architecture

As shown in Fig. 6, the facial recognition system generally consists
of three basic components:

• Image acquisition module: this is considered as the FRS’s sens-
ing layer where the system captures the individual face via a
webcam. The captured image is then used as an input to the
second layer of the FRS.

• Pre-processing module: this is considered as a part of the FRS’s
middleware layer where all the image pre-processing for ML tasks
occurs. In this module, the FRS extracts patterns from the cap-
tured image, aiming to find the main features for classification.

• Identification module: this is considered as a part of the FRS’s
middleware and application layers where the extracted features
are compared to the training dataset samples to classify the indi-
vidual image as known or unknown. If the individual is known,
then depending on the application of the FRS, the identification
module can send a command to other IoT devices, such as a smart
lock, to unlock a door or grant access to a service.

9.3. Potential insider threats against facial recognition system

Organizations have adopted the FRS for its benefits; However, FRS
is susceptible to misuse, creating cybersecurity concerns. While eval-
uating the FRS architecture for vulnerabilities, we have identified a
number of cyber-attacks that can render the system useless. Using the
proposed taxonomy questions, we focused on identifying insider attacks
that target ML-based systems associated with the FRS. Attacks scenarios
are summarized in Table 3.

• Image acquisition module: the input to this module is real-time
face patterns, and the output is the captured image. The module
provides inputs to FRS’s ML-based system. A malicious insider
with knowledge of how the system works and a victim’s identity
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Table 3
Taxonomy-based adversarial insider attack scenarios.

Use case Scenario ID Stage Insider power Insider goal Attack IoT entry Attack Attack impact

Access Knowledge Manipulation
depth

Feedback category point specificity

Chatty
factory

Scenario 1 Data
annotation

Write Feature set: full
ML model: none

Both None Integrity
violation

Training
phase

IoT
middleware

Both Misclassification

Scenario 2 Product use
model

Write Feature set: full
ML model: full

Feature
space

None Integrity
violation

Training
phase

IoT
middleware

Both Misclassification

FRS Scenario 1 Image
acquisition
module

Read Feature set: full or partial
ML model: full or partial

Both None Integrity
violation

Inference
phase

IoT
sensing

Targeted Misclassification

Scenario 2 Identification
module

Write Feature set: none
ML model: none

Feature
space

None Integrity
violation

Training
phase

IoT
application

Both Confidence
reduction
information and face image can manipulate the input to fool the
ML-based system embedded in the webcam. The malicious insider
can present a fabricated face image for the webcam using the
virtual camera app [70] or physically manipulated image [71]
to evade the model. This can result in targeted misclassification
and, consequently, impersonation of the victim with all of its
privileges. Depending on the strategy used by the attacker, both
problem and feature space perturbations can be applicable at this
stage.

• Pre-processing module: the input to this module is the captured
image and the output is the processed image features. The module
acts as a bridge between the first and last modules; hence, no
realistic adversarial attack scenarios can be identified at this
stage.

• Identification module: the input to this module is the image
features, and the output is the identification result. When an
organization asks its employees to submit an ID photo for the
FRS dataset, a malicious insider can exploit the possibility of a
training phase attack. A malicious insider with a ‘‘write to training
dataset’’ power can provide a poisoned ID photo, feature space
perturbations, as a backdoor to give the adversary control over
the FRS. Depending on the adversary’s goal, this can generate a
targeted or indiscriminate impersonation.

The attack identification process is the first step toward defend-
ing the ML-based system against adversarial insiders. The proposed
taxonomy can be seen as a starting point of what adversarial attacks
exist. What entry point can a malicious insider use? At which stage can
attacks happen? Given this information, an appropriate security control
can be implemented. Section 10 presents different defensive solutions
that can be used to improve the robustness of ML-based systems against
adversarial insiders.

10. Defense against adversarial insider attacks in IoT

The defense against adversarial attacks remains an open problem.
Nevertheless, several promising solutions have been proposed during
the last years. Before presenting the reviewed defensive solutions, we
would like to discuss why adopting the IoT applications highlights the need
for awareness about defensive solutions against adversarial insider attacks?

In fact, the inherent nature of IoT devices renders them vulnerable
to cyber-attacks. Moreover, intelligence provided by ML-based systems
can be manipulated, as proven by recent research, if they are not
well protected. Therefore, malicious insiders can use their familiarity
and level of access to exploit the IoT devices’ vulnerabilities and
manipulate the IoT ML-based system at either training or inference
phase. In addition, the impact of a successful adversarial attack can
be tightly bounded to physical world like in IIoT and smart healthcare
applications; thus, influencing the ML-based decision of IoT devices
can negatively affect the physical world, including human life. Finally,
despite the growing number of cybersecurity-related incidents, many
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organizations do not know how to secure their system and need guid-
ance. A study conducted across 20 countries involving 3100 IT and
business decision-makers as participants showed that 84% of organiza-
tions adopting IoT have experienced an IoT-based security breach [72].
A survey on an industrial grade level showed that 25 out of 28 or-
ganizations do not know how to secure their ML-based systems and
need explicit guidance [73]. Similarly, Gartner’s report [74] showed
that fewer than one-third of chief information security officers are
confident about the reliability of their information systems in assessing
and mitigating IoT-related risks.

As a results, raising the awareness of potential adversarial insider
attacks is a need. The upcoming sections present in detail the defensive
solutions proposed in the IoT literature to answer how can ML-based
systems in IoT environments adapt when an insider adversary actively
manipulates the system’s inputs?

Defensive Solutions can be generally divided into two classes [30].
The first class is a proactive solution that aims to improve the ML-
based system’s robustness during the training phase. The second class
is a reactive solution whose main objective is to detect the AEs in real-
time during the inference phase. Sections 10.1 and 10.2 present the
defensive solution against training and inference attacks discussed in
Section 5.2 respectively.

10.1. Defense against training phase attacks

10.1.1. Tamper-free provenance frameworks
Baracaldo et al. [59] further enhanced in [39] proposed a proactive

defense that acts as a filter prior to the learning phase to identify
and remove poisonous data in IoT systems. They take advantage of
provenance data which is meta-data associated with each data point
and show information about its creation, origin and derivation [59].
The provenance data is used to segment the training data points that
share a provenance signature into groups. Once the training data has
been segmented appropriately, each segment is then evaluated by
comparing the performance of a model trained on the full data set with
a model trained on a data set that excludes that segment. By doing so,
the poisonous segment, which degrades the performance of the model
trained with that segment, can be identified and removed from the
training data set.

10.2. Defense against inference phase attacks

10.2.1. Adversarial training
Adversarial training, in which the ML-based system is trained on

a data set containing both the original and adversarial data sam-
ples, is one of the proactive defenses against adversarial attacks that
withstands strong attacks. Goodfellow et al. [42] demonstrated that
adversarial training could result in ML-based system regularization,
which in turn improves its efficiency against adversarial attacks.
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10.2.2. Defensive distillation
Papernot et al. [75] presented defensive distillation, which de-

fends DNN against adversarial perturbation by leveraging the distilla-
tion technique. The defensive distillation proceeds in two main steps.
Firstly, it trains a teacher network by setting the temperature parameter
𝑇 of the soft-max to a significant value resulting in smooth labels.
Secondly, it trains a distilled or so-called student network with the
same architecture as the teacher network on the smooth labels using
the temperature T. Finally, when running the distilled network at the
test phase, it sets the temperature 𝑇 to 1. This, in turn, reduced the
effectiveness of AEs and increased the average minimum number of
modified features required to create AEs [75]. Nevertheless, It is worth
mentioning that research, such as [49,50], showed that the defensive
distillation could not withstand C&W and EAD attacks.

10.2.3. Generative Adversarial Network (GAN)
Yumlembam et al. [76] presented a defensive solution that leverages

the GAN architecture. GAN consists of two rival networks: the generator
(GN) and the discriminator (DN) [77]. On the one hand, The GN’s
objective is to generate fake data, which tends to be malicious, that
is similar to real data, and cannot be detected by DN (which plays the
adversary role). On the other hand, the DN aims to distinguish between
real and fake data generated by GN (which plays the defender role).
Yumlembam et al. [76] showed that retraining an Android malware
detection model with the GN samples after labeling them as malware
can help harden the detection model against adversarial inference
attacks. The authors focus mainly on the robustness of graph-based
Android malware detection models that uses Graph Neural Network
(GNN) to discriminate malware from benign applications.

10.2.4. Large Margin Cosine Estimation (LMCE)
Wang and Qiao [78] proposed a defensive solution against ad-

versarial inference attacks in IoT. They aim to withstand white and
semi-white box attacks, including FGSM, BIM, JSMA, C&W, and MIM,
that target DNN. Their approach was based on the intuition that if
the neural network layers can provide critical features that distinguish
the samples, then adversarial examples can be detected. Therefore,
they propose a mathematical model that predicts the degree to which
the sample is deviated from the actual sample in the data manifold
dimension using the LMCE feature and Kernel Density Estimate (KDE)
feature from the neural network layers. The LMCE detects points in low
confidence regions, while KDE detects points far from the data mani-
fold. The logistic regression was then used with these two features to
generate the mathematical model. Experiments reflected the robustness
and the pervasive of the proposed approach.

It is worth mentioning that adversarial defensive solutions were
substantially less explored in the IoT ecosystem, although their effec-
tiveness was proven at withstanding adversarial attacks in traditional
systems. For example, solutions proposed in [79–81].

11. Conclusion

The wide adoption of IoT has made it a trendy area of scientific
research regarding what threats they face and how we can defend
against them. In this paper, we review the recent papers that discuss
the vulnerability of ML-based models in IoT to adversarial attacks from
an insider point of view. Given that the insider can access critical ML-
based resources, such as training data sets and model configuration,
we propose a taxonomy of the adversarial approaches that the insider
can exploit. We categorize adversarial attacks into two main classes:
training attacks and inference attacks. Then, we showed how the
proposed taxonomy could be used to identify adversarial insider attacks
using two representative use cases: the chatty factory and the FRSs. In
addition, we review how the malicious insider can apply the adversarial
attack methods in real-life IoT applications, including environmental
sensing, smart home, healthcare, and malware detection. Finally, we
11
explored the proposed countermeasures for adversarial insider threats
in IoT environments.

We can conclude that malicious insiders can deteriorate the perfor-
mance of ML-based systems residing in the IoT if their vulnerability to
adversarial attacks is not considered. To further extend the studies that
were analyzed in this review, we suggest the following for future work:

• There is a greater variety of insider attack methods in the in-
ference phase than attack methods in the training phase. Con-
sequently, exploring training attack methods in IoT from a ma-
licious insider point of view is a promising venue for future
work.

• The defense strategy against adversarial insider attacks in the IoT
ecosystem should include more attention. Many research works
have demonstrated the vulnerability of ML-based systems in IoT
compared to those which proposed defensive solutions. Therefore,
developing a secure ML-based system under adversarial insider
settings is a challenge that can be investigated further.

• Developing a unified framework for supervised, unsupervised,
and semi-supervised ML-based models that will digest each newly
introduced attack or defense in an IoT ecosystem and adapt ac-
cordingly can be extremely useful. It will act as a solid knowledge
base that will raise awareness of the adversarial insider threats
landscape and serve as a stepping stone toward improving defense
mechanisms.
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