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Abstract 

Property valuation contributes significantly to market economic activities, while it has 

been continuously questioned on its low transparency, inaccuracy and inefficiency. With 

Big Data applications in real estate domain growing fast, computer-aided valuation 

systems such as AI-enhanced automated valuation models (AVMs) have the potential to 

address these issues. On the one hand, while the advantages of Machine Learning for 

property valuation have been recognized by researchers and professionals, the predictive 

accuracy and model interpretability of current AVMs still need to be improved. On the 

other hand, the benefits and opportunities of BIM for property valuation have gradually 

captured the attention, but little effort has been made on standard data interpretation and 

information exchange in property valuation process.  

This thesis presents a novel system that leverages a holistic data interpretation, facilitates 

information exchange between AEC projects and property valuation, and an improved 

AVM for property valuation. A BIM and Machine Learning (ML) integration framework 

for automated property valuation was proposed which contains an IFC extension for 

property valuation, an IFC-based information extraction and an automated valuation 

model based on genetic algorithm optimized machine learning (GA-GBR).  

This research contributes to managing information exchange between AEC projects and 

property valuation and enhancing automated valuation models. The main findings 

indicated the proposed BIM-ML system: (1) in terms of 𝑅2, the predictive accuracy of 

current AVMs have been improved by the proposed GA-GBR model with 1.3% in the 

Chinese dataset, 3.57% in the American dataset, and 2.4% in the UK dataset; in terms of 

RMSLE, the proposed GA-GBR model has improved the predictive accuracy with 2%, 

comparing to a similar research from Quang et al. (2020), (2) data collection and 

exchange process has been partial automated by the developed IFC extension and 

information extraction, and (3) the BIM-ML system overall provides a valuable 

information source for property valuation, eases the use of BIM knowledge and skills for 

the valuation professionals, enhances the automated valuation process, and helps 

understand the implicit patterns behind property valuation. 
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Chapter 1. Introduction 

1.1 Problem Statement 

How to perform an accurate appraisal for property value is a daunting challenge. Apart 

from the opacity of real estate market, traditional property valuation methods are often 

questioned for the professionals’ subjective judgements on the selection of input variables. 

There might be a large difference between the predictive values from two different 

appraisal agents. Apart from this, the values of real estate asset often change significantly 

with market conditions, which makes property valuation a periodical activity. This makes 

it hard for professionals to perform an accurate and objective valuation of property price. 

With the exponentially accumulated real estate market data during last two decades, 

recent studies in property valuation literature indicated that researchers are focusing on 

improving the accuracy and efficiency of property valuation by using automated 

valuation models (AVMs). For property valuation tasks which are influenced by many 

objective and subjective factors, AI-enhanced AVMs have several advantages: to 

efficiently assess information from big data; to identify non-linear relationships between 

house characters, market factors and property price; and to be more objective of the 

selection of input attributes (Kontrimas and Verikas 2011; Park and Bae 2015; 

Dimopoulos and Bakas 2019). Researchers have applied different mathematic models to 

property valuation such as hedonic regression, ridge regression, support vector regression, 

ensemble learning, and neural networks (Graczyk et al. 2010; Liu et al. 2011; Ahn et al. 

2012; Wu 2017; Aladwan and Ahamad 2019). Many studies have concluded that neural 

network models provide good performances in house price predictions (Lewis et al. 1997; 

Liu et al. 2011; Morano et al. 2015).  

However, as robust and reliable data is a prerequisite for training automated valuation 

models (GIGO-Garbage in, Garbage out), little research and practice has studied the 

information exchange requirement between property valuation and Architectural, 
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Engineering and Construction (AEC) projects. Property valuation professionals 

concluded that there was great potential to expand the current of BIM data for property 

valuation use, such as linking data with Building Management Systems (BMS). For 

instance, property professionals currently use 24 different types of data in their technical 

practice and some of these data have already been found in BIM (Wilkinson and Jupp 

2016). But the value-relevant design information has not been widely utilized for property 

valuation, due to the gap of knowledge and digital skills between property valuation and 

AEC professionals. As the volume of data in BIM is rising exponentially, the use of BIM 

and artificial intelligence information technologies has been recognized as a revolution in 

construction industry, but it exists a significant gap in the property valuation field. 

1.2 Research Motivation 

1.2.1 Automated specific workflows for property valuation 

While it is still in its infancy, big data and artificial intelligence developments have a non-

negligible impact on valuation practice now. As digital technology advances fast, many 

stakeholders including investors, banks, public authorities and real estate companies 

expect to benefit from the full potential of automated valuation services which can 

perform the valuation quickly, improve the transparency of current valuation process, and 

reduce inaccuracies from the reliance on human judgement and attendant bias (RICS 

2017b). For instance, an appraisal system based on AVMs has been developed for the 

Canada government and implemented in the province of Quebec, with the aim of 

providing basis for property taxation implementation (Kettani and Oral 2015). 

In this context, the current valuation practice is facing challenges on several aspects 

including data collection and exchange, valuation method and the role of valuer, which is 

explained as follows: 

1) Data collection and data sharing: Currently, valuers predominantly use 

primary data sources including client, inspection, property analysis, market 

analysis and public sources. There are issues of data accessibility and uncertainty 

about the accuracy and reliability of the data gather during this process. In the 
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future, data collection is expected to become a more specialized profession or a 

more automated one, with the technological developments such as inspection with 

drones, the IoT and smart buildings. Big data could partially replace the primary 

data sources, as data can be collected from secondary data tools such as Google 

Analytics and Google Trends. For data sharing issues – real estate reports in many 

different formats (paper, PDF, Word, Excel, etc.), data standardization such as 

property measurement standards is expected to improve the accuracy and 

efficiency for the property industry (RICS 2017b). 

2) Valuation method: Despite traditional valuation approaches being extensively 

used in the valuation processes, over the last decade there has been a move 

towards automated valuation approaches, especially for residential property 

(Łaszek et al. 2018). Although currently automated valuation models (AVMs) 

cannot substitute the human valuer in all instances, with the impact of AI and big 

data developments, the usability of AI-enhanced AVMs is expected to expand 

towards different property types and more complex valuations (RICS 2017b). 

Some advocates hold the opinion that the majority of valuations will be carried 

out by AI systems that AVMs will replace the valuer in the future, considering the 

fact that AVMs are now undertaking mass valuation work performed for some 

banks. Others believe AI-enhanced AVMs will change the valuation process and 

help the valuer in many aspects, but it will not replace some part of valuation 

where the valuer interprets data and makes judgements on the impact of that data 

on value. 

3) The role of valuer: In the future, valuers will spend less time on property 

investigation and inspection, data verification and analysis, instead, they will act 

as an impartial judge or an adviser. For complex valuations, a valuer will need to 

check and interpret the outcome of the AVMs (RICS 2017b). 

The scope of this research is focused on exploring the automation of two possible aspects 

in property valuation. First, the author aims at comparing different types of AI-enhanced 

AVMs and exploring the change AVMs could bring to current valuation approaches, 

based on which design a new methodology for property valuation. Second, the author 

aims to establish an information exchange framework between AEC projects and property 
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valuation, so that partial value-related data required for property valuation can be 

automatically extracted from BIM models. 

1.2.2 Facilitate information exchange between AEC projects and 

property valuation 

Literature review revealed that there is potential for information contained in the AEC 

projects to be of use to property valuers at various stages of the property lifecycle, 

especially for building-related performance information such as energy cost, acoustics, 

air quality, environmental and health impacts (Munir et al. 2019). Similarly, Wilkinson 

and Jupp (2016) compared the lifecycle perspective of required building information for 

different processes in AEC projects and property management and development activities 

and concluded that the benefit of using BIM for property professionals. For instance, 

some of the currently used information in property development activities have been 

found within BIM and data needs and types that are outside of BIM could be easily 

digitised and made compatible to BIM. The application of BIM models and related 

standards in nature has the capability to define, collect, store, manage and exchange 

related information for property valuation in an interoperable and reusable way. In 

addition, the new trend of sustainable property valuation also indicates that there is a need 

for research on how information in AEC projects can generate value for property 

valuation in a virtual BIM-based environment. 

On the one hand, as there are many different data formats collected from disparate data 

sources, information losses and misunderstandings exist when required data exchanges 

among different market actors (Ventolo 2015). Currently, since no robust standards 

define the specific requirements for information exchange among different market actors, 

current property valuation professionals have to acquire related information manually. 

Building information modelling (BIM), as an innovative information modelling 

technology, has been widely developed by a large group of researchers and industrial 

professionals for project information exchange and management in the Architecture, 

Engineering, Construction, Operation and Maintenance (AECOM) domain (Eastman et 

al. 2008). For example, Marmo et al. (2020) proposed to extend the current IFC schema 

to support building performance assessment and maintenance management. Artus and 
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Koch (2021) tried modelling damage information using existing IFC schema to support 

mixed reality inspections and maintenance. Zhiliang et al. (2011) proposed an IFC 

extension to manage information about construction cost estimating for tendering in 

China. The low efficient and inaccurate data sharing process between AEC projects and 

property valuation can be partly automated by using BIM related technologies and 

concepts: Industrial Foundation Class (IFC) standards, Information Delivery Manual 

(IDM) and the domain-specific Model View Definition (MVD).  

1.2.3 Designing for Long-term Value 

‘As part of wider efforts to implement the Paris Agreement, every real estate asset owner, 

investor and stakeholder must now recognize they have a clear fiduciary duty to 

understand and actively manage environmental, social, governance (ESG) and climate-

related risks as a routine component of their business thinking, practices and 

management processes.’ (Bosteels and Sweatman 2016) 

In this context, research has concluded climate change and sustainability-related 

attributes of buildings can affect property value, such as reduced energy cost, lower risks 

of mortgage default and promote a healthy and productive environment. The discussion 

on a building’s sustainability is often directly linked with another topic between valuers 

and clients, namely, the subject of a building’s future, or the long-term value (RICS 

2017b). Long-term value research has already taken place in Germany and UK. For 

instance, in Germany, the Long-Term Sustainable Value (L-TSV) research led by the 

local valuation body HypZert set out the underlying principles of L-TSV and aimed at 

providing an internationally applicable methodology for the assessment of L-TSV (L-

TSV 2018). In the UK, the research sponsored by the Investment Property Forum 

provided seven recommendations for reducing the risk of damage to the financial system 

from the potential commercial real estate market crash, one of them was to use of long-

term value measures for risk management (IPF 2014). 

While clients are increasingly asking for long-term value, they do not exactly know what 

it looks like. As a result, it is vital for valuers of commercial property and players in the 

wider pricing sector to understand the various ways that climate change, increasing 
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urbanisation and changing demographics may impact on the long-term value of properties. 

In this aspect, RICS guidance note Sustainability and commercial property valuation 

provides guidelines on assessing a building’s sustainability characteristics, including 

sustainability-related design features, construction materials and services and social 

considerations (RICS 2013). For instance, design features that impact on the heat island 

effect, internal natural light distribution, natural ventilation and storm water management 

should be considered when values perform the building survey and make decisions on 

property value. Similarly, construction materials and services including the type of 

building materials used, the servicing and replacement of building materials, building 

services such as air-conditioning and heating installations, water efficiency should be 

considered.  

With the above-mentioned sustainability-related building features at the design, 

construction and operation stage, research concluded that BIM has the potential to add 

value when assessing sustainability in a property development and property valuation. 

Considering long-term value of buildings at early design stage within the BIM paradigm 

could greatly benefit the construction and property industry. 

1.3 Research Hypothesis and Research Questions 

Following the definition of the problem statement as well as the motivations for this 

research, the aim is to design a framework that leverages a holistic data interpretation, 

automates specific workflows for property valuation and improves information exchange 

between AEC projects and property valuation. To address the current limitations and 

challenges concerning property valuation, the overarching hypothesis adopted in this 

research is as follows: 

A BIM and Machine learning integration framework that allows the interpretation of 

value-relevant design information, information retrieval from BIM models automatically 

and an AI-enhanced automated property valuation by leveraging existing BIM data and 

comprehensive property value determinants to enhance the decision-making processes 

about property valuation. 
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To evaluate the hypothesis, the following five research questions (Q1-Q5) were 

formulated. 

While the aim is to design a BIM and Machine Learning (ML) integration framework for 

property valuation, the first thing to do is to figure out current implementation methods 

and tools used for property valuation and to what extent can BIM and Machine Learning 

together bring added value to property valuation and the construction industry. This leads 

to the first research question (Q1): 

Q1: What is the current BIM and Machine Learning implementation on property 

valuation and What are the opportunities and challenges concerning automated 

property valuation and information exchange between AEC projects and property 

valuation?  

Since the potential of BIM and ML for property valuation has been identified, the next 

step is to explore how current valuation process can be improved by BIM and ML, and 

what are the contents of value-relevant design information existed in AEC projects can 

be used for property valuation. This generates the second research question (Q2): 

Q2: How innovative information technologies such as BIM and Machine Learning 

(ML) will improve the current valuation process and what are the information 

requirements for property valuation? 

One important element of the integration framework is the AI-enhanced AVM, which 

serves as an automated valuation engine to predict property value from reliable 

information sources. Another important element is to build up an automated information 

exchange between AEC projects and property valuation referring to BIM related concepts. 

This generates research questions three (Q3) and four (Q4): 

Q3: What kind of automated valuation models (AVMs) might have a better 

prediction performance for property valuation and how to improve the current 

AVMs? 

Q4: How to implement the BIM-ML integration framework and how to develop the 

three main components accordingly? 
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To evaluate the developed system and figure out what steps need to be taken to use the 

system, research question five (Q5) is formed: 

Q5: How reliable is the proposed BIM-ML integration framework that can facilitate 

information exchange and support automated property valuation? 

1.4 Research Contribution 

First, this research contributes to the knowledge development of an extended IFC schema 

and a value-related BIM information extraction, which together support automated value-

specific information extraction from AEC projects. The extended IFC schema not only 

fills a knowledge gap that considering building entities and their various properties for 

property valuation, but also helps real estate appraisal professionals who lack of BIM 

knowledge and digital skills to acquire value-specific information from AEC projects. 

Furthermore, the IFC-based information extraction enables property valuation 

professionals to extract required value-relevant information from AEC projects in a more 

accurate and efficient way. For traditional building survey which involves a big number 

of different information sources, the innovative information modelling technology (BIM) 

has the potential to serve as an information management platform for property valuation.  

Secondly, property valuation has been questioned as inaccurate for the low-transparency 

market data and professionals’ subjective judgements of predictor variables. There might 

be a large difference between the predictive values from two different appraisals. The 

value of real estate often changes with market conditions, which makes property valuation 

a periodical activity. To address these issues, a genetic algorithm optimized machine 

learning model (GA-GBR) is firstly applied to automated property valuation. Since the 

model is comprehensive and includes a large number of variables, data dimensionality 

strategy has been considered. The GA-GBR model has many advantages such as 

recognizing complex patterns between property variables, market factors and real estate 

values, efficiently dealing with the market changes and objectively selecting input 

variables. The experimental outcomes suggest that the proposed GA-GBR model has a 

high generalization ability that can be adapted for other prediction tasks and facilitate 

human decision making.  
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Last but not least, the BIM-Machine Learning integration framework not only helps 

property valuation professionals who normally are not familiar with BIM language to use 

value-specific information in AEC projects, but it also benefits the AEC professionals in 

terms of selecting the design alternatives that offer the highest value to human beings. 

The real-time valuation results from the automated valuation model (GA-GBR) can be 

treated as constraints to optimized design, construction and operation strategies. This can 

be further developed as a decision-making tool for construction companies or property 

investors. In addition, the BIM-Machine Learning integration framework has the potential 

to be applied to other applications such as building energy prediction, automated damage 

prediction, sustainability assessment and supply chain management etc. 

1.5 Structure of the Dissertation 

Figure 1-1 shows the structure of this thesis and the way each of the sections and 

subsections are linked to each other. This chapter aimed to outline the wider context of 

the thesis, the main stages of the research, and the decomposition of the hypothesis into 

five research questions. 

The following Chapter 2 is a literature review, which contains the broader field of 

knowledge in the domains that are relevant to this research such as property valuation, 

BIM, machine learning, and Construction 4.0. The main findings of the review are closely 

related to the research gaps and methodologies.  

Chapter 3 provides the overarching research methodology that was then followed over 

the course of this research. This chapter break down the methodology in detail in order to 

explain the journey of this research and how each research question linked to different 

chapters. 

Chapter 4 is an extension of the literature whilst considering requirements for the 

envisaged proposed system. In this chapter, the current state of the art of property 

valuation process and determinants for property value are analysed. It then discusses the 

challenge of technological development, changing social conditions and client 
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requirements regards current property valuation. To address these issues, potential 

solutions are proposed based on the critical literature review. 

The first two subsections in Chapter 5 present the conceptual framework for the proposed 

BIM-ML system and an initial test of 11 AI-enhanced AVMs. Based on the literature 

findings and the initial test results, the genetic algorithm optimized ML model (GA-GBR) 

was proposed in the third subsection. The last subsection 5.4 then tested the proposed 

GA-GBR model with the UCI Machine Learning repository - Boston housing dataset. 

Chapter 6 is focused on the BIM-ML system development that includes an IFC extension 

for property valuation, an IFC-based partial information extraction, and an advanced 

valuation model (GA-GBR) based on machine learning and genetic algorithm. The first 

subsection is about developing a small version of an IFC extension for property valuation, 

which is based on the collected comprehensive determinants for property valuation in 

Section 4.2. In the second subsection, an IFC-based information extraction is developed 

to support automatic information exchange between AEC projects and property valuation. 

In the third subsection, the experiment data including the Chinese and the American 

datasets for training the GA-GBR model was described, the correlation relationship 

among different input features and feature importance ranking were analysed. At last, 

both GBR and GA-GBR model are trained with traded property data using the Chinese 

and American datasets. 

Chapter 7 addresses the testing and implementation of the BIM-ML integration 

framework, with the aim to prove that the system is functional and reliable when 

performing automated property valuation. The validation work was divided into 3 steps: 

(1) Validate the developed GA-GBR model (AVM) with datasets from three different 

countries including China, U.S. and the UK, where the UK dataset worked as a control 

group; (2) Verify the IFC-based information exchange between the AEC projects and 

property valuation with several case studies from different regions; and (3) Validate the 

comprehensive BIM-ML integration framework as a complete piece. 

Chapter 8 concludes the research work presented in the previous chapters and gives the 

conclusion and contribution of this research. The main research findings are highlighted 

to answer the research hypothesis and the five research questions. Lastly, research 
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limitations and future work suggestions for automated property valuation and applications 

of the proposed system in construction industry is discussed.  

In the end, the research contributions are summarized in Chapter 9. 

 

Figure 1- 1: The structure of this thesis 
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Chapter 2. Literature Review 

2.1 Property Valuation 

2.1.1  Introduction 

Property valuation, also known as real estate appraisal, plays a fundamental role in a 

nation’s economy and financial stability. According to Taffese (2007), financial and 

economic decisions are based on the accuracy of real estate appraisal results. For example, 

the housing market bubbles can cause serious financial risks such as the subprime 

mortgage crisis in the Great Recession 2008. Property valuation was defined ‘An opinion 

of the value of an asset or liability on a stated basis, at a specific date. Unless limitations 

are agreed in the terms of engagement this will be provided after an inspection, any 

further investigations and enquiries that are appropriate, having regard to the nature of 

the asset and the purpose of the valuation’ (RICS 2019). Various stakeholders ask for 

property valuation for several objectives: banks and insurance company use it for 

mortgage release, traders use it for house transactions, property developers use it for 

house investment, and local authorities use it for house taxation. 

There are several different kinds of real estate value, namely market value, fair value, 

book value, assessed value and asset value, of which market value seems to be one of the 

most common topics in previous real estate research (Pagourtzi et al. 2003; Mard and 

Todd 2010; Lorentzon 2011). Market value is defined as ‘the estimated amount for which 

an asset or liability should exchange on the valuation date between a willing buyer and 

a willing seller in an arm’s length transaction, after proper marketing and where the 

parties had each acted knowledgeably, prudently and without compulsion’ (IVSC 2016). 

Market value emphasises the importance of each party’s honesty and free will when 

indicating the estimated price at a specific time or the most probable price on a free and 

open market. Dorchester (2011) argues that market value is not equal to asset value since 

market value is related to the question ‘what do I have to pay’ while asset value is related 

to the question ‘what should I pay’. Market value could serve as one of the base values to 
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be used further by a property transaction, but sometimes it may differ from the transaction 

price. In some cases, a buyer or a seller may have special considerations that they are 

willing to pay or sell a premium price above the market value. A valuation refers to the 

act or process of determining an estimated of value of as asset or liability by applying 

IVS (IVS 2019). According to RICS (2019b), valuation is defined as ‘An opinion of the 

value of an asset or liability on a stated basis, at a specified data. Unless limitations are 

agreed in the terms of engagement this will be provided after an inspection, and any 

further investigations and enquires that are appropriate, having regard to the nature of 

the asset and the purpose of the valuation’. A valuation in essence is an estimation of the 

most likely selling price on the open market, on the basis of both a willing seller and a 

willing buyer (Sayce et al. 2006). 

Property valuation is affected by a number of subjective and objective factors such as 

technical information of buildings (structure, age, size, construction materials, indoor air 

quality, flexibility and adaptability), geographical locations (transport access, land use) 

and social and economic variables (vacancy rate, rental growth potential) (Ventolo 2015). 

A professional property valuer needs to have sufficient knowledge of the market and the 

district in which he or she operates (Sayce et al. 2006). The dynamics of some subjective 

factors and the low transparency of real estate market make it hard for real estate appraisal 

professionals to perform an accurate and objective valuation of property price. The data 

bank from Ventolo (2015) listed 45 typical sources that supply the information required 

for property valuation, which are classified into five different types: the regional, city, 

neighbourhood data, the site data, the building data, the sales and cost data, the income 

and expense data. The macroeconomic variables such as inflation, GDP growth, average 

real wage and unemployment rate have an influence on the market value of properties, 

however, they can be assumed as constant for a given moment or a short period of time 

during which a regional area maintains stable economic activities (Kutasi and Badics 

2016). The impact of macroeconomic variables on property value is beyond this research. 

On the other hand, as sustainability in property valuation is becoming a hot topic over last 

two decades, many researchers have studied the ‘green’ - related information for property 

valuation. For instance, Lützkendorf and Lorenz (2011) compared the information 

contained in the traditional building inspection taken by the valuers, information 

contained in the design and planning processes, information related to verifications of 



   

14 

 

conformity with national laws and standards, information contained in sustainability 

assessment systems, and information contained in facility management. Yamani et al. 

(2021) studied the 3D variables required for property valuation based on BIM and CIM 

models, where 25 subtypes of variables were summarized. 

For property valuation, an accurate analysis and estimation of the market price of 

properties or recent property transactions should be a representation of the attributes of 

properties, the underlying fundamentals of market culture and geographical locations 

(Pagourtzi et al. 2003). All property valuation approaches rely on some form of 

comparison to assess market value and they can be classified into traditional approaches 

and advanced approaches. According to IVS (2016), traditional property valuation 

approaches contain:  

• Market approach  

• Income approach 

• Cost approach 

Many studies have shown that traditional valuation approaches are inaccurate, inefficient 

and unreliable, for the low-transparency real estate market, the constantly evolving 

market conditions and the subjective judgements of property valuers. For instance, 

Cannon and Cole (2011) did a comprehensive research on the accuracy of commercial 

real estate appraisals from the NCREIF National Property Index during 1984-2010 in the 

U.S. commercial real estate sector and concluded that, on average, the appraisals are more 

than 12% above or below the subsequent transaction price. Similar studies published on 

other countries reported that the absolute difference between property appraisals and 

actual transactions ranges between 7.7% in Italy and 13.9% in Japan (Kok et al. 2017). In 

addition to how suitable the predictive accuracy can satisfy international standards in the 

appraisal domain, the percentage of the estimated property value had margin of error that 

fell within the international acceptable margin of ± 0 and 10% (Brown et al. 1998; 

Abidoye and Chan 2018). 

Over the last two decades, there has been a move towards the advanced valuation 

approaches, due to the increasing complexity of property transaction such as a fast 

delivery of the valuation report, taking into consideration of the added value from 
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sustainability-related features, and the exponentially accumulated property asset data. 

Advanced approaches can be better termed as ‘data analysis methods, as they are usually 

used for automated valuation models (AVM). According to Lorenz and Lützkendorf 

(2008), advanced property valuation methods contain:  

• Artificial neural networks (ANN)  

• Hedonic pricing method  

• Spatial analysis method  

• Fuzzy logic 

• Autoregressive integrated moving average (ARIMA)   

Literature analysis of real estate market and housing price valuation has concluded three 

popular research trends: research focusing on the hedonic pricing models, artificial 

intelligence for automated property valuation and sustainability assessment in property 

valuation (Tay and Ho 2004; Abdullah et al. 2016; Abidoye and Chan 2017b; RICS 2017b; 

Abidoye and Chan 2018). 

In the follow sections, the three traditional approaches and the three popular trends in 

property valuation mentioned above will be described.  

2.1.2  The three traditional approaches 

Market approach, income approach and cost approach are the three main approaches used 

internationally, with each of them suits different particular circumstances. The appraiser 

should choose the most appropriated method based on several principles as follows: (1) 

the basis of value which determined by the terms and purpose of the valuation assignment; 

(2) the respective pros and cons of the valuation approach; (3) the appropriateness of each 

method in view of the nature of the asset and the relevant market; and (4) the availability 

of reliable information associated with the individual method (IVS 2016). Valuers are not 

required to use more than one method for a specific valuation assignment unless there are 

insufficient inputs for a single method to produce a reliable conclusion. 

1) Market approach 

As it is based on a direct reading of market signals and minimises subjective assumptions 

by the valuers, the market approach (sales comparison method) is the most widely used 
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method for estimating the market value of residential properties (Lipscomb and Gray 

1990; Isakson 2002; Pagourtzi et al. 2003; Lisi 2019). The market approach is usually 

preferred to both the income and cost approaches when similar property transactions in 

the same market area are available (Glumac and Des Rosiers 2020). The market approach 

is heavily dependent on the availability and quality of comparable transaction data, with 

some critics arguing the subjective judgements of the ‘adjustment factors’ (Lisi 2019). 

Examples of common ‘adjustment factors’ are provided by the IVS, such as physical 

building characteristics (age, size, specification, etc), geographical location, profitability 

or profit-making capability of the assets, historical and expected growth, legal form of 

ownership, relevant restrictions on either the subject asset or the comparable asset, etc 

(IVS 2016). 

The appraisal process involves firstly comparing the attribute differences between the 

subject and similar transacted properties, and then adjusting the selling price based on so 

called “distance” (Pagourtzi et al. 2003). The “distance”, D is calculated as follows: 

                                                   𝐷 =  √∑ [𝐴𝑖(𝑋𝑖−𝑋𝑠𝑖)]λ
𝑖 + ∑ [𝐴𝑗  δ

− (𝑋𝑗,𝑋𝑠𝑗)]
λ

𝑗

λ

                                                 (1) 

where λ = Minkowski exponent lambda; 𝐴𝑖  = weight associated with the 𝑖𝑡ℎ continuous 

characteristic; 𝐴𝑗  = weight associated with the 𝑗𝑡ℎ categorical characteristic; 𝑋𝑖  = value of 

the 𝑖𝑡ℎ characteristic in the sale property; 𝑋𝑗  = value of the 𝑗𝑡ℎ characteristic in the sale 

property; 𝑋𝑠𝑖  = value of the 𝑖𝑡ℎ characteristic in subject property; 𝑋𝑠𝑗= value of the 𝑗𝑡ℎ 

characteristic in subject property; ∑𝑖= summation of terms of 𝑖𝑡ℎ  characteristics; ∑𝑗 = 

summation of terms of j characteristics; δ(a, b) = inverse delta function. 

After selecting the suitable comparable properties based on the ‘distance’, the appraiser 

will adjust the sales price of each comparable property to the subject property using a 

comparison grid. The adjustment is calculated as follows: 

             Adjusted sales price = sales price – (comparable MRA – subject MRA)        (2) 

where MRA refers to multiple regression analysis. 

Several adjusted selling prices may be obtained, the final price is based on the weighted 

estimate of all those adjusted prices. 
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2) Income approach 

The income approach provides an indication of value by converting future cash flows to 

a single current capital value (RICS 2019). This approach is based on assumptions that 

there is a relationship between the income an asset can earn and the asset’s value, it 

indicates that the market value of a piece of income-producing asset equals the capitalized 

value of the income flow it generated now and in the future (Glumac and Des Rosiers 

2020). In the investment market, the sales comparison method is typically not appropriate 

for the reason that the degree of heterogeneity is much higher (Pagourtzi et al. 2003).  

The income approach should be considered as the primary basis for a valuation 

assignment under the following circumstances (IVS 2016): 

1) The income-producing ability of the asset is the critical element determining the 

market value. 

2) Reliable projections of the amount and timing of future income are available for 

the subject asset, but there are few relevant market comparable properties. 

For income approaches, the accuracy of the valuation depends on the reliability of the 

income and expense assumptions associated with the real estate market, as well as the 

selection of the capitalization rate applied to the cash flows. The income approach is 

particular suitable for multiple income properties that are not transacted regularly such as 

hotels, shopping centres (Glumac and Des Rosiers 2020). 

3) Cost approach 

The cost approach is known as the contractor’s method or the depreciated replacement 

cost (DRC) method. This approach is based on the principle of substitution, in which the 

value of all property improvements (reproduction or replacement cost less depreciation) 

is added to the site value to determine the market value (Ventolo 2015). The key steps in 

the cost approach are (Weimer et al. 1972): 

1) Estimate the market value of the land 

2) Calculate the cost to produce new buildings 

3) Calculate the accrued depreciation 

4) Determine the indicated value of the asset ‘as is’ 
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5) Determine the indicated market value of the subject asset. 

The cost approach can be calculated as follows: 

Reproduction or replacement cost of improvements – accrued depreciation + site value = 

Property value.                                                                                                                       (3) 

The cost approach is mainly used for property insurance purposes and for single-use, non-

income-producing properties (schools, churches) as well as some industrial buildings 

which are seldom transacted on the market (Glumac and Des Rosiers 2020). It should be 

considered as the primary basis for a valuation assignment under the following 

circumstances (IVS 2016): 

1) The asset could be rebuilt quickly that market participants would not be willing 

to pay a significant premium for the ability to use the subject asset immediately. 

2) The asset is non-income-producing and the uniqueness of the asset makes using 

an income approach or market approach unfeasible. 

3) The basis of value being used is fundamentally based on replacement cost. 

The reliability of the cost approach depends on the availability of information on 

construction costs and depreciation rates and whether the depreciation is adequately 

measured. 

2.1.3  Hedonic approach 

The hedonic approach, also named hedonic pricing model (HPM), is a statistical method 

based on the principle of the regression analysis in property valuation, including the 

multiple regression and the simple regression (Selim 2009; Montgomery et al. 2015). 

Research on the hedonic approach dates back to the 1920s, during which agricultural 

economists started to explain unit land prices by regressing them on property attributes 

(Colwell and Dilmore 1999). Rosen (1974) did a seminal study on hedonic prices and 

implicit markets, exploring the role of housing attributes in consumer decision making. 

After this study, different property markets around the world have been modelled using 

the HPM approach, measuring the influence of different kinds of property attributes on 

property values (Chau and Chin 2003). 
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The basic mathematic formula of the hedonic approach is based on multiple regression 

analysis (MRA) which explains the regression of a dependent variable (the property value) 

over more than one independent variable. The formula represents that property value is a 

function of its independent variables (Abidoye and Chan 2018): 

                                   𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ +  𝛽𝑘𝑥𝑖𝑘 + µ𝑖                                             (4) 

where 𝑦𝑖 is the property value, 𝑥𝑖1 … … … 𝑥𝑖𝑘 are the property attributes (building size, 

location, age, etc), 𝛽0 … … …   𝛽𝑘 indicates the effect of the changes in each property 

attribute on property values, and µ𝑖 is the error term. 

Regression analysis (RA) has a well-established position in property valuation due to 

several reasons (Mark and Goldberg 1988; Colwell et al. 2009; Kettani and Oral 2015; 

Giudice et al. 2017): 

1) RA is a widely used method in almost any area, ranging from finance to medicine 

to economics to management. 

2) It is a convenient approach to estimate the value of a specific property. 

3) The outcomes of RA are being accepted as evidence at the courts for valuation 

disputes. 

4) It is cost effective and efficient. 

5) It can provide reliable predictions that reduces the subjectivity of judgements 

during the valuation process. 

Although it has been widely used both in theory and in practice, HPM is limited in 

capturing the nonlinear relationship that exists between the property values and property 

variables. When it comes to fundamental model assumptions, hedonic pricing models 

seem unable to effectively deal with the identification of macro-economic influences, the 

selection of suitable predictor variables and the choice of hedonic equations (Adair et al. 

1996; Abidoye and Chan 2018). In addressing the shortcomings of the HPM approach, 

the artificial neural network (ANN) technique, which has produced more accurate, 

objective and reliable predictions, has been adopted in property valuation (Mora-

Esperanza 2004). In literature, a big number of studies conducted from different countries 

have compared the predictive accuracy of HPM and ANN models which were developed 

using the same dataset (a portion of the dataset was used for training models, while the 
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rest was used for testing) (Pagourtzi et al. 2003; Selim 2009; McCluskey et al. 2013; 

Grover 2016; Abidoye and Chan 2017a; Giudice et al. 2017; Abidoye and Chan 2018; 

Valier 2020). While in most cases the ANN technique outperformed the HPM in terms of 

predictive accuracy, some studies concluded that ANN is not superior to the HPM 

approach. It should be noted that no valuation models can solve all property valuation 

problems, due to the fact that each valuation method has their respective advantages and 

disadvantages. 

With the coming of big data era and improved machine assisted computation techniques, 

using AI-enhanced models to improve the accuracy and efficiency of real estate appraisal 

has motivated a big number of researchers and professionals. The next section will 

introduce artificial intelligence research and applications in property valuation field. 

2.1.4  Artificial intelligence in property valuation 

In the last two decades, due to the exponentially increasing amount of data in various 

domains, artificial intelligence has been widely applied in chatbots, healthcare, finance 

and economics (prediction and risk management), human resource management, logistics 

and supply chain etc. Similarly, there is a large amount of research on artificial 

intelligence in property valuation. For real estate price valuation which influenced by 

many objective and subjective factors, artificial intelligence models have several 

advantages: to efficiently assess information from big data; to identify non-linear 

relationships between house characters, market factors and property price; and to be more 

objective about the selection of input attributes (Kontrimas and Verikas 2011; Park and 

Bae 2015; Dimopoulos and Bakas 2019). 

To get a comprehensive understanding of artificial intelligence applications in property 

valuation, the present research conducted a systematic scientific search from four main 

academic databases namely Web of Science, Google Scholar, Science Direct and Scopus. 

The search criterion was designed as using two groups of keywords: (Property Valuation 

or Mass appraisals or House Price or Real Estate Appraisal) and (Artificial Intelligence 

or Machine Learning) within (Title or Keywords). After the removal of duplicates and 
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manual checking by the author, 45 documents were selected as relevant with artificial 

intelligence in property valuation (Table 2-1). 

Table 2- 1:  Statistics of literature on AI for property valuation from 1997-2020 

Neural Networks Genetic Algorithm GA Optimization Ensemble Other 

20 5 10 4 6 

Table 2-1 illustrates that neural networks are the most popular statistic models for 

property price predictions. Many studies have concluded that neural network models 

provide good performances in house price predictions with small size of experiment data 

(Lewis et al. 1997; Liu et al. 2011; Morano et al. 2015). However, Rafiei and Adeli (2016) 

argues that BP neural network applications on a limited number of factors have potential 

limitations that BP requires millions of iterations to converge and cannot deal with 

complex problems in a reasonable computing time. There are only a few studies (Ahn et 

al. 2012; Benedetto et al. 2015; Giudice et al. 2017) on genetic algorithm (GA) 

applications for property valuation. Ahn et al. (2012) used ridge regression coupled with 

genetic algorithm to enhance real estate price prediction, in which genetic algorithm helps 

find suitable predictor variables for property valuation. Giudice et al. (2017) concluded 

that genetic algorithms show little improvement for property valuation and the superiority 

to interpret the real estate markets. However, the integrations of genetic algorithms and 

other statistical models are quite successful, especially with neural networks. The GA 

optimized neural network models have the ability to absorb the advantages and get rid of 

the limitations of both GA and neural networks. For example, Rafiei and Adeli (2016) 

designed an interesting comprehensive model based on the integration of deep restricted 

Boltzmann machine  (DRBM) neural networks and genetic algorithm to predict house 

price at the design stage or the beginning of the construction. GA was developed to 

determine the most influential set of input attributes which generating the best results. 

Sun (2019) used genetic algorithm to optimize the connection weight and threshold of BP 

neural network for property valuation and reported better performance than traditional 

BP neural network. In the last two decades, ensemble learning models have attracted 

attention of many researchers that they usually have good performance for diverse 
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applications and are flexible to be extended. Graczyk et al. (2010) conducted an 

experiment that tested different ensembles for real estate appraisal on the Weka software, 

which was fully implemented in the Java programming language. It was concluded that 

in terms of MAPE no single algorithm generated the best ensembles. The ensembles were 

tested with only four input parameters, which normally lead to the unstable performance 

of machine learning algorithms. It is worth noticing that all ensemble classifiers with 

additive regression produced significant error reduction compared to original models. 

From the literature, it is concluded that the individual neural network or genetic algorithm 

has not achieved satisfactory results, but GA optimized neural networks have achieved 

good performance for real estate appraisals. While ensemble learning has been reported 

good performance in various domains, applications of ensemble learning in mass 

appraisals are quite limited. Compared to neural networks, ensemble learning has 

advantages in terms of model interpretability and flexibility.  

2.1.5  Sustainability in property valuation 

The earliest efforts made on reducing the building sector’s harmful impact on the natural 

environment started in the 1970s following the oil crisis, but a global movement towards 

sustainability in building industry was formally developed in the 1990s (Lambourne 

2021). After that, the effects of sustainability on the market values of properties have been 

studied by a big number of researchers. According to the Appraisal Institute (2001), there 

are four fundamental forces influencing the property values: physical forces, economic 

forces, political and governmental forces, and social forces. Within the property valuation 

process, growing interest is shown on the social responsibility, financial benefit and 

potential risk reduction that sustainable development may bring into property valuation 

domain (Lorenz and Lützkendorf 2008).  

A plethora of research has shown that green buildings have a premium market price. 

Based on over 1200 green-rated buildings including office, retail, industrial buildings, 

hospitality and others, CoStar Group used standard regression analysis models and 

concluded the average LEED impact and Energy Star impact on sales price per square 

foot is a positive 9.94% and 5.76% respectively (Miller et al. 2008). Empirical study 

conducted in Arizona concluded that properties with electricity-generating solar panel 
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have an average premium of approximately $45000 (15% of medium home value) and 

transaction price premium of $28000 (17% of medium home sales price) (Qiu et al. 2017). 

Similar studies in Switzerland and UK found that property markets were increasingly 

paying premium price for the value-relevant sustainability features (Salvi, et al., 2008; 

RICS, 2013). Convincing evidence from World Economic Forum (2016) showed: 

1) Green buildings deliver a range of financial and other less tangible benefits to 

different real estate stakeholders. For instance, for real estate managers, green 

buildings are likely to increasing revenue and reducing void period due to increase 

of sustainability conscious corporate demand. For occupiers, it may improve their 

productivity by 20% from working environment with high indoor air quality and less 

noise. 

2) There is a clear business case for adopting more sustainable practices in the built 

environment, improving capital return and reducing risks at the building, portfolio, 

and city levels. 

The environmental, social and economic benefits of sustainability-related building 

characteristics are generally accepted and extensively researched in the literature, which 

recognized as low lifecycle energy cost, energy efficiency, increased health comfort of 

tenants and being profitable and marketable than traditional buildings (Lorenz and 

Lützkendorf 2008). Discussion on sustainability and property valuation has reached a 

stage at which the key question is no longer ‘if’ but ‘how’ and ‘where’ sustainability 

issues can be considered within the valuation process (Lorenz and Lützkendorf 2011). 

As part of the wider efforts to implement the Paris Agreement, sustainability in property 

valuation has been encouraged by the RICS and several guidelines have been released 

(RICS 2013; RICS 2017b; RICS 2019). The process of estimating sustainability in 

property valuation involves two main steps (RICS 2013): 

• First, it is necessary to assess a building’s sustainability characteristics and key 

environmental risks. As buildings are complex structures, every element from 

design to construction to operation during the building lifecycle is likely to have 

an influence on the building’s performance against sustainability criteria.  

• Second, sustainability-related building characteristics and environmental risks 

will be reflected in market value or investment value. Some internationally 
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renowned green rating systems such as LEED, BREEAM and Green Star provide 

the most transparent benchmarks for potential occupiers and clients and are most 

likely to impact on rental values. 

Researchers and practitioners try to quantify the effects of sustainability-related features 

on property values such as financial gains or reduced property risks by directly or 

indirectly linking to sustainability assessment systems such as LEED, CASBEE and 

BREEAM. For instance, Miller et al. (2008) compared the effects of sustainable features 

to LEED certificated buildings and Energy Star rated buildings in terms of rent and 

occupancy rate gains, increased sale price and lower cap rates. Lorenz et al. (2007) used 

property rating systems to economically assess the relationship between characteristics 

and attributes of sustainable buildings and reduced property specific risks, such as the 

flexibility and adaptability to reduce risks of market changes, environmentally friendly 

building components and materials to reduce the litigation risks. Lützkendorf and Lorenz 

(2007) tried to find the effects and benefits of different sustainable design features on 

different actors – developers and owners, tenants, society and environment. However, the 

interpretation and application of sustainability measurement are still limited. This is 

because there is no available sustainability-related data on market values of properties or 

real estate professionals have limited knowledge and skills of sustainability assessment.  

To perform the sustainability assessment in property valuation more effectively, the 

current property valuation methods and procedures need to be improved and further 

developed. Ten possible sustainable solutions for implementing and improving the real 

estate value chain have been provided by World Economic Forum (2016), which contains 

data management platform, smart asset optimization, BIM and 3D mapping, HVAC 

analytics and occupancy adaptation, digital inspections and predictive maintenance, soft 

landing, material efficiency, green lease, end of life and zero waste construction, retrofit 

and adaptation for life-span extension. The report indicated the key benefits of BIM for 

real estate managers such as ongoing data analysis of a project, efficient and effective 

building maintenance, and for property owners such as meeting certification requirements 

(BREEAM, LEED), cost appraisal of building materials, and 3D mapping that mitigates 

unforeseen site risks.  
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As the investors’ expectations and demands including sustainable value or long-term 

value of property valuations are growing, the benefits and opportunities of BIM for 

property valuation has gradually captured the attention of researchers and the valuation 

professionals. In the next section, a critical review of BIM fundamentals and its 

applications in information exchange between AEC projects and specific business tasks 

such as property valuation will be described. 

2.2 BIM 

2.2.1 Introduction 

Building Information Modelling (BIM), defined as shared digital representation of 

physical and functional characteristics of any built object that forms a reliable basis for 

decisions, has been developed by a great number of researchers and industrial 

professionals for lifecycle project information exchange and management in the 

Architecture, Engineering, Construction and Facility Management domain (Eastman et 

al. 2011; ISO 2017). The BIM concept can be dated back to 1975, when it was initially 

called a ‘Building Description System’ (Eastman 1975). The current term BIM was first 

used by AutoCAD (Bazjanac 2004), and later gained widespread use in the AEC industry. 

BIM is expected to bring added social, economic and environmental value through 

information modelling and management, collaboration and integration to the construction 

industry, which has a fragmented nature that contributes to poor communication and work 

efficiency. For the last two decades, there is a large amount of BIM research in various 

domains which involved in construction planning, heritage and historical documentation, 

visualization, quality control, cost estimation, energy analysis, facility management, 

project management, and structure damage inspection etc (Mahamadu, A.M. et al. 2014). 

A set of common BIM features was concluded by Vanlande et al. (2008) such as the 

ability to store, share and exchange data, the capability to define building information in 

3D dimensions, the extensible ability to cover unimplemented information domains, 

lifecycle information management and the ability to cover all physical and functional 

features of a building.  
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A wide range of current and promising benefits associated with BIM have been concluded 

by researchers. For instance, according to Lindblad (2013), the benefits of BIM adoption 

involves more efficient data exchange, less data input and transfer errors, increased 

productivity, streamlined construction processes, automated workflow, and improved 

product quality and building performance. The current benefits of BIM application has 

been concluded: more intelligent and interoperable than traditional CAD (technical 

benefits), capturing comprehensive information from different domains such as COBie 

for facility management data integration (knowledge management benefits), 

systematising interoperability among AEC such as IFC data exchange standards 

(standardization benefits), energy management and monitoring (diversity management 

benefits), a collaborative platform for different stakeholders involved in a project 

lifecycle (integration benefits), high return on investment (economic benefits), BIM 4D 

scheduling that all materials and components can be ordered electronically and delivered 

on site just in time (planning and scheduling benefits), being applied in activities from 

early conceptual design stages to demolition (building LCA benefits) and immediate and 

accurate information governance for specific business tasks (decision support benefits) 

(Ghaffarianhoseini et al. 2017). 

Due to its many advantages, BIM has already been studied by researchers and 

implemented in different AEC projects all over the world. Three main stages of global 

BIM research during 2004-2019 have been concluded: formulating stage, accelerating 

stage and transforming stage (Liu et al. 2019). At the formulating stage, research themes 

were focus on three aspects: research review in BIM, conceptual BIM framework and 

building BIM capability, which formed the knowledge base for BIM research during the 

next stage. At the accelerating stage, research themes were focused on the integration of 

BIM and other related technologies such as GIS, energy calculation, rule-based checking 

and the development of BIM application. At the transforming stage, research themes 

focused on transforming the AEC industry with emerging technologies over the building 

life cycle such as cloud computing, smart buildings, laser scanning, IoT, digital twins, big 

data analysis, blockchain, drones and robots (Hofmann and Rüsch 2017; Boton and 

Forgues 2020). With regard to country-wise BIM research, the highest number of 

publications is in the UK with most of the research conducted between 2013-2019, 

followed by South Korea, Australia and China. The highest number of publications is 
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recorded in 2014 and 2015 (Shehzad et al. 2020). Research on BIM covers a variety of 

hot topics such as mobile and cloud computing, laser scan, augmented reality, ontology, 

data and knowledge mining, safety rule and code checking, framework establishment, 

semantic web technology, partial BIM model extraction, building design, facility 

management, construction supply chain management, and automated generation (Zhao 

2017; Liu et al. 2019; Yan et al. 2020). 

BIM adoption was described as ‘the successful implementation whereby an organization, 

following a readiness phase, crosses the ‘Point of Adoption’ into one of the BIM 

capability stages, namely, modelling, collaboration and integration’ (Succar and Kassem 

2015). The use of BIM has increased significantly over the last decade in the construction 

industry. For instance, according to the 10th annual BIM report published by the National 

Building Specification (NBS), the percentage of industry using BIM rose from 13% in 

2011 to 73% in 2020, which is also an increase on 2019 and marks the highest level of 

BIM adoption in 2020 (NBS 2020). Similarly, the BIM adoption in North America had 

risen from 49% in 2009 to 71% in 2012 (McGraw Hill Construction 2012). BIM adoption 

is encouraged by a big number of governments all over the world. The United States is 

one of the pioneers in BIM implementation in the construction industry. In 2003, the 

General Services Administration (GSA) established the ‘National 3D-4D-BIM program’ 

which aimed for gradually implementing 3D, 4D and BIM technologies for all major 

public projects (GSA 2003). Subsequently, the BIM Guide series had include spatial 

program validation, 3D imaging, 4D phasing, energy performance, circulation and 

security and facility management (GSA 2022). In the UK, a BIM maturity model was 

developed to indicate the level and depth of BIM adoption, categorizing different types 

of technical and collaborative working from level 0 to level 3 (BIM industry working 

group 2011). Furthermore, the CIC BIM 2050 Group developed a forecast roadmap 

indicating potential prospects of BIM and socio-technological frontiers, where key 

technologies were associated with the levels of BIM maturity across a timeline (CIC BIM 

2050 group 2014). Similar strategies and guidelines have been designed in Norway, 

Finland, Denmark, Netherlands, France, Singapore, South Korea and Hong Kong. In 

2010, the BCA in Singapore launched the world’s first BIM e-submission system of 

architectural model for regulatory approval (Thant 2014). Over 90% of proportion of 
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those who have adopted BIM expected that BIM will form the basis of all large 

construction projects before 2025 (NBS 2020). 

There are also challenges and barriers to BIM adoption. The BIM adoption issues listed 

as habits of 2D-based work, limited higher education BIM training, the possible 

reluctance of specialists to holistic planning approaches, lack of fee structures for BIM-

specific services, and inconsistency among countries regarding the acceptance and 

adoption of technologies (Herr and Fischer 2019). The barriers to BIM adoption in the 

construction industry were summarized as follows:  high initial cost, BIM benefits not 

outweighing the implementation costs, inadequate training on the use of BIM, lack of 

BIM experts, data ownership issues, longer process, complexity of the BIM model, 

interoperability between software programs, and lack of standardized tools and protocols 

(Ullah et al. 2019). To get deep understanding of BIM adoption issues, multiple sources 

of data collection should be used such as data sources from environmental factors, the 

perceptions of technology adopters, cross-cultural studies, economic factors and joint 

BIM implementations with Green building, clouding computing, IoT and Data Science 

(Shehzad et al. 2020). 

2.2.2 BIM and information exchange 

The previous section reviewed the history of BIM and its definitions, benefits, adoption 

and barriers. The concept of Building Information Modelling is based on the consistent 

use of a comprehensive digital building model as a basis for all data exchange operations, 

which avoids re-entering data manually and reduces the accompanying information error 

and missing (Borrmann et al. 2018). One of the key critical success factors for 

implementing BIM is enhancing information exchange and knowledge management 

(Antwi-Afari et al. 2018). Therefore, this section focuses on BIM and interoperability. 

Interoperability is described as ‘the ability to pass data between applications, and for 

multiple applications to jointly contribute to the work at hand’ (Eastman et al. 2011). A 

variety of BIM authoring tools have been employed by different software companies, 

governments and other stakeholders, which limits the interoperability in AEC. The 

interoperability issues associated with BIM can be viewed from the technical perspective 
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(conversion, IFC, IDM, MVD) and the collaborative perspective (exchange, share, 

cooperation, coordination, framework, collaboration, integration) (Sattler et al. 2019). To 

address the building-related interoperability issues, a common data format or structure for 

information transfer is required in AEC industry. As a result, IFC is becoming the most 

commonly used data exchange format for open BIM. The Industry Foundation Classes 

(IFC), contains geometric information and semantic information, is firstly developed by 

buildingSMART in 1997 as a non-proprietary exchange format of building information 

to facilitate data sharing and exchange across IFC-compatible applications (Volker 2011). 

The summary of IFC releases in history are illustrated in Figure 2-1. The version 1.5.1 

was the first to be implemented in construction software applications, after which the IFC 

schema is constantly evolving with a new version released every couple of years (Laakso 

and Kiviniemi 2012). There were more than 160 implementations of IFC in different 

software tools, with most of them supporting the version IFC 2×3, but this is gradually 

being replaced by IFC 4 (buildingSMART 2013). After IFC4 was released by ISO 16739-

21 in 2013, it was gradually accepted as a standardized data format to support building 

information modelling, information exchange and a variety of analysis based on BIM 

models such as quantity-take off, cost estimating, damage inspection, energy simulation 

(Volk et al. 2014).  

The IFC data model is hierarchical, object orientated, and it has a number of sub schemas 

that representing all entities, attributes and relationships of building objects. The IFC 

architecture has four layers: the resource layer, the core layer, the interoperability layer 

and the domain layer (buildingSMART 2017a). The resource layer is the lowest layer that 

contains concepts representing basic geometric elements, topology, materials, cost, 

measure, date time, quantity, actor etc. The classes in this layer are not derived from 

IfcRoot and therefore do not include a globally unique identifier. Unlike entities in other 

layers, they cannot be used independently but have to be referenced by an object declared 

at a higher layer. The core layer is the upper layer of the resource layer, which consists of 

the kernel schema and three core extension schemas. This layer contains the most 

elementary classes that can be referenced by the upper layers, such as IfcRoot, IfcObject, 

IfcActor, IfcProduct, IfcRelationship, IfcProject and IfcProcess in the Kernal schema. 

The interoperability layer, lying between the basic core layer and domain specific 

schemas, contains common concepts that are typically used for inter-domain exchange 
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and sharing of construction information such as IfcWall, IfcBeam, IfcSlab and IfcWindow. 

The domain layer is the highest layer that contains highly specialized classes that only 

apply to a specific domain. Classes in this layer such as domains for architecture, HVAC, 

structural analysis and construction management cannot be referenced by another layer 

or another domain-specific layer (Borrmann et al. 2018). 

 

Figure 2- 1: The summary of IFC releases in history 

The IFC data model is designed as a large and complex schema that can comprehensively 

store all aspects of information in AEC industry, which makes it heavy and inefficient to 

implement the complete model in different software applications (buildingSMART 

International User Group 2012). Typically, a specific business task only requires a partial 

IFC instance model. To facilitate information exchange among different stakeholders, the 

information delivery manual (IDM) is defined at project levels to formally specify the 

user requirements and ensure that the final model would be sufficiently semantically 

meaningful to provide most of the information needed for specific business processes 

(buildingSMART 2017b). Based on the IDM, a Model View Definition (MVD) was then 

defined as information concepts needed and proposed as a binding to the IFC standard 

for exchange of BIM models (Sacks et al. 2018). Basically, IDM defines information 

exchange process between two software packages that contains the use cases, process 
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map and exchange requirements and the MVD is the technical implementation of the 

exchange requirements in the form of a subset of the overall IFC data schema. In this way, 

the complete IFC instance model can be filtered with reduced sized according to an MVD 

for specific business process (Tang et al. 2020). For instance, an official MVD named 

COBie (Construction Operation Building Information Exchange) has been released by 

buildingSMART for capturing building construction handover information required by 

facility managers (BSI 2014). 

Examples of research and projects to develop IFC extensions in the AEC industry were 

published in the literature. For instance, IFC extensions for construction cost estimating 

for tendering in China was developed that included seven aspects of information: the 

building products information, the division-items project information, the cost item 

information, the schedule information, the quantity information, the resource information 

and the price information (Zhiliang et al. 2011). IFC for design change management has 

been proposed to deal with changes in different BIM models from conception to 

completion. The prototype system implemented using the .NET framework and linked 

into Revit demonstrated that managing changings through the extended IFC schema can 

improve collaborative design (Jaly-zada et al. 2015). While the IFC standard was mainly 

focused on buildings, in response to the urgent demand of international infrastructure 

stakeholders, a substantial extension of the standard to support infrastructure facilities is 

being carried out. Based on the principles specified by the IFC Infra Overall Architecture 

project, IfcBridge, IfcRail, IfcRoad and IfcTunnel have or will be initiated (Borrmann et 

al. 2019). Besides, IFC for physical damages has been proposed to support data exchange 

between different actors in bridge inspection and maintenance (Artus and Koch 2021). 

While these research efforts have contributed to the knowledge development of IFC 

extensions for specific domains, little has focused on extending the IFC schema to support 

property valuation.  

2.2.3 The integration of BIM and other digital technologies 

While there is still no agreement on a universal definition for Industry 4.0, it was 

described as ‘a shift in the manufacturing logic towards an increasingly decentralized, 

self-regulating approach of value creation, enabled by concepts and technologies such as 
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CPS, Internet of Things (IoT), Internet of Services (IoS), cloud computing or additive 

manufacturing and smart factories’ (Hofmann and Rüsch 2017). Embracing the current 

trend of automation and data exchange in manufacturing technologies, the digital 

transformation under Industry 4.0 is radically transforming industry and production value 

chains, with the aim of achieving efficiency, cost reduction and productivity increases 

through automation, integration and computer-supported collaborative working (Villani 

et al. 2018). The term Construction 4.0, derived from the broader concept - Industry 4.0, 

mainly focuses on the application of computer and cyber-physical systems (CPS) 

technologies in construction industry (Boyes et al. 2018). It requires the construction 

industry to transform towards the 4th industrial revolution that involves digitization of the 

construction industry and industrialization of construction processes (Craveiro et al. 2019; 

Forcael et al. 2020).  

While construction professionals are showing increased awareness and willingness to 

embrace this digital revolution, there are still challenges such as the complexity and 

heterogeneous feature of construction projects, the uncertainty over tangible and 

intangible constraints in the individual projects, a highly fragmented supply chain and 

low-efficient information exchange process caused by the isolated information ‘island’ 

among different stakeholders and participants (Noran et al. 2020). Digital technologies 

(shown in Figure 2-2) such as IoT, cloud computing, 3D scanning and augmented reality, 

BIM and Machine learning play a significant part in addressing these issues. Leveraging 

fusion of various technologies can provide significant improvement in the productivity 

and profitability, which construction industry seeks the most (Rastogi 2017).  

For example, the integration of BIM and cloud computing has been recognized as the 

second generation of building information management development and is expected to 

achieve a greater level of digitalization and collaboration. First, cloud-BIM data can be 

accessed using various mobile devices such as laptops, tablets and smartphones anytime 

and anywhere, enabling timely access to updated information, improving decision making 

and ensuring project delivery (Matthews et al. 2015). Second, cloud computing and BIM 

technologies, along with data stored on the Cloud, provides a real-time and collaborative 

environment for various project stakeholders from different locations (Birje et al. 2017). 

The integration of BIM and augmented reality (AR) is extremely helpful for supporting 
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complex construction tasks and facilitating decision making. For instance, the merge of 

BIM and AR could provide a vivid presentation of geometric information for operational 

and managerial tasks, allowing one to visualize how the design fits on-site before 

construction takes place, managing conflicts and checking safety problems during 

construction (Craveiro et al. 2019; Chen and Xue 2020). Besides, the integrated BIM and 

AR could also provide non-geometric information (material information, rigging orders, 

construction schedules) on tasks and relevant building components, and therefore 

enhance the quality of construction works (Chen et al. 2016; Ratajczak et al. 2019). 

 

Figure 2- 2: Digital technologies support Construction 4.0 
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Cyber physical systems (CPS), which provide close communication and interaction 

between cyber and physical components, is expected to play an important part in the 

design and development of Construction 4.0. According to Boyes (2017), cyber physical 

systems (CPS) is defined as ‘A system comprising a set of interacting physical and digital 

components, which may be centralized or distributed, that provides a combination of 

sensing, control, computation and networking functions, to influence outcomes in the real 

world through physical processes’. While both the conventional information and 

communications system (ICT) and CPS focus on processing data between digital and 

physical components, CPS pay particular attention on the control of physical process to 

produce positive outcomes (Boyes et al. 2018). BIM, as a mutual channel for information 

exchange among operators during the lifecycle of a building, can serve as a powerful 

complement to CPS that support the increased digitalization requirements in CPS (Bonci 

et al. 2019). The importance and benefits of integrating BIM and CPS have been stressed 

by several authors. For instance, Ying et al. (2020) proposed a cyber-physical based 

intelligent structural disaster prevention system based on BIM platform, in which BIM 

and IoT technologies are adopted for constructing the cloud architecture of CPS. With the 

development of 5G technology in terms of stable, reliable, real-time and secured network 

communication, the proposed comprehensive system integration is expected to achieve a 

high degree of integration of monitoring, identification and control, and therefore, 

improve the real-time and accurate intelligent monitoring of structural disaster prevention. 

Bonci et al. (2019) proposed a BIM and CPS integration for automatic building efficiency 

monitoring, in which digital models developed as BIM serves as the mirror of the physical 

system and stores the actual performance recorded by the building during operation phase. 

As a result, BIM works as the repository of information over several phases of the 

building lifecycle and keeps the facility at high performance levels and support decision 

making. 

The emergence of IoT, Cloud computing, BIM and CPS bring an exponential increase of 

data (structured or unstructured) in the construction industry, including texts, geometrics, 

images, videos and sounds, which needs to be processed by Big data technology (Bilal et 

al. 2016). With the technological advancements focusing on information modelling, the 

advent of big data era has encouraged a large amount of research on big data applications 

in construction industry. According to Yan et al. (2020), the application of big data in 
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construction industry has drawn international attention of both academics and 

practitioners. Innovation use of data and big data analytical methods have played a 

significant positive effect on knowledge discovery in construction by automatically 

discover hidden knowledge from big data repositories.  

Typical data mining methods or algorithms for prediction tasks are NN-based (ANN, 

RNN, LSTM), regression (SVM, MLR), DT-based (boosting tree, decision tree and 

random forest), and deep learning (CNN, DBM-SoftMax). Of which, most studies 

focused on one or more mature data mining methods, while only small group of studies 

developed improved methods by combining several methods and ensemble models 

generally produce better performance than individual methods (Yan et al. 2020). For 

example, Cheng et al. (2015) designed a multilevel Apriori algorithm based on genetic 

algorithms, which combines the two algorithms to extract the association rules of 

construction defects. Yu and Lin (2006) introduced a variable-attribute fuzzy adaptive 

logic control network (VaFALCON) to solve issues of mining incomplete construction 

data. Data mining (DM) applications in construction industry are classified into 9 main 

fields such as building energy consumption, cost estimation, safety management, building 

design, framework establishment and others. In the 119 selected articles, DM applications 

on building energy is ranked at the top with 33 articles related, but only 9 are related to 

framework establishment. However, there is no framework establishment research related 

to the integration of BIM and machine learning. As the volume of data in BIM is rising 

exponentially, data analytics concepts and tools integrated BIM might bring added value 

and produce revolutionary influence on industrial practices, but it exists a significant gap 

in the property valuation field. 

2.2.4 BIM for property valuation 

While it is still in the embryonic stage, a dozen of studies have concluded that BIM can 

bring added value for property valuation. Smith and Tardif (2009) anticipated that the 

accurate lifecycle building information related to building indoor environmental quality 

and outdoor environmental quality within BIM environment would change the metrics 

for property valuation. El-gohary (2010) concluded that the integration of axiology 

system and BIM can facilitate the automation of the value analysis process, especially 
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when assessing sustainability related features in a property development. (Mahdjoubi et 

al. 2013) studied the integration of 3D laser scanning and BIM for real estate services 

sector to deliver more accurate, faster and quality building surveys and information 

models. The research concluded that the integration of these two technologies will benefit 

all stakeholders in the real estate sectors including property developers, sellers, 

homebuyers and homeowners, when BIM adoption and 3D laser scanning become 

widespread. Isikdag et al. (2015) explored the utilization of 3D building models and 3D 

cadastre geometries (‘streetview’ images) for providing improved information about 

quality of the buildings and their surrounding environment. Wilkinson and Jupp (2016) 

argued that the established role for BIM in managing information in AEC projects can be 

extended to property professionals. For instance, using BIM data and simulation, clients 

can be advised of the social, economic and environmental costs and benefits of various 

options, which can help them make more informed decisions or consider the impact on 

property values. RICS (2016) explored the potential to expand BIM to property 

professionals and established the first BIM Manager Certification for some aspects in 

AEC projects may be transferable to a property-focused certification. Yu and Liu (2016) 

demonstrated that the integration of BIM and 3D GIS could improve the accuracy of 

property valuation.  

El Yamani et al. (2019) developed an enhanced property valuation method based on the 

integration of BIM and the hedonic method. The proposed approach contained four stages: 

(1) extracting related building elements and compounds from an IFC-based BIM model; 

(2) establishing the first hedonic variable based on the building cost estimation; (3) 

establishing other hedonic factors based on building indoor environment such as sunlight, 

ventilation and noise propagation; and (4) using these hedonic variables for property 

valuation. However, the external environmental factors influencing property values were 

not included in this integration method and no case studies were provided. Arcuri et al. 

(2020) proposed a BIM-GIS integration framework for automated valuation models based 

on the cost approach and concluded that BIM could serve as an important data source 

including cost related information for property valuation. Celik Simsek and Uzun (2021) 

demonstrated that BIM based property valuation can improve the valuation accuracy in 

Turkish, for one biggest problem affecting the property valuation in Turkish was the 

miscalculation of land share values based on 2D architectural project data. However, the 
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value factors and weights were determined via a questionnaire, which means the proposed 

BIM-based methodology might not be generic to be used outside the Turkish property 

valuation system. Yamani et al. (2021) provided a conceptual definition of the significant 

3D variables for property valuation based on the BIM and CIM, in which indoor building 

variables were extracted from BIM models and outdoor variables were extracted from 

CIM models. The 3D variables were grouped into 16 categories including information 

related to environmental quality such as noise level, air quality and sunlight, information 

related to indoor living quality such as energy efficiency, indoor ventilation and indoor 

temperature, information related to structural variables such as property cost and property 

quality, information related to proximity such as distance to facilities, distance to road 

and distance to view. Couto et al. (2021) proposed an automatic valuation method that 

can calculated the taxable property value using a digital BIM model and implemented it 

in two case studies. The advantages of the BIM-based automatic valuation method were 

identified as faster calculation, interconnection with other programs, automatic 

calculation, the knowledge of property values at the design stage of the project, integrated 

and coordinated database and information, reducing errors and increased productivity. 

The future valuation process visioned by RICS (2017b) integrated BIM as one of the 

advanced digital information technologies that might contribute to interactive valuation 

report, machine-led building inspection and building passports. The benefits of using 

BIM for property valuation have attracted several researchers, while it is still at the early 

stage.  

2.3 Machine Learning 

2.3.1 Introduction 

In the field of big data analytics, there is no clear boundaries between Artificial 

Intelligence (AI), statistics, Data Mining (DM) and Machine learning (ML). All these 

fields are interconnected. A machine learning system typically has three major 

components – data, models, and learning. The core of the process is to fit data to a model 

and train a function approximation algorithm (Hypothesis) based on certain performance 
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criteria. According to (Mitchell 1997), the basic design of a machine learning system can 

be classified into 4 main steps: (1) choosing the training experience; (2) choosing the 

target function; (3) choosing a representation for the target function; and (4) choosing a 

function approximation algorithm. The typical ML process is illustrated in Figure 2-3, in 

which the training data provides the training experience that the ML system will learn 

from. The model performance referring to the target function that determining exactly 

what type of knowledge will be learned and how this will be used by the performance 

program. After the definition of target function (Model performance), a model 

representation (Learning algorithm) will be proposed to describe the target function. 

Finally, a function approximation algorithm (Hypothesis) will be learned from the 

training examples based on a specific performance criterion. 

 

Figure 2- 3: A typical Machine Learning process 

In mathematics, data is referred as vectors that can be read by computers and represented 

adequately in a numerical format. Model is referred as a mathematical expression 

(functions or probability distribution) with a set of parameters to be determined. The goal 

of learning is to find the best combination of the parameters with which a model will 

perform well on unseen data (Kumar et al. 2020). How to fit data to a model is a curve 

fitting mathematical problem that a curve fits a set of points. This process normally uses 

a cost function as a measure of how far the prediction is from the result of the training 

examples. Basically, the closer the hypothesis matches the training data, the smaller value 

of the cost function. Typical cost functions are known as least square loss for regression 

problems and logistic loss for classification problems. There is a wide range of machine 

learning algorithms for training or learning models from data, such as linear regression, 

logistic regression, ensemble learning, KNN, SVM, ANN, RNN and Bayesian neural 
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network etc. It is important to choose the right training mechanism according to the nature 

of the data and its relevance to the problem.  

Feature engineering is a crucial step in the data mining process, which is associated with 

extracting and transforming features (the representation of raw data) into structured data 

formats that a machine can read. It focuses on feature generation and feature selection 

from different types of raw data (numeric, textual, image and audio data), aiming to find 

the right set of feature vectors that suit a training task. In most cases, the quality and 

accuracy of machine learning performance depends heavily on the representation of the 

feature vectors. Feature engineering can be a manual and time-consuming process that 

much effort have been paid in the design of pre-processing pipelines and data 

transformation (Heaton 2017). When learning optimal feature representation, it is 

common to manually identify all available attributes and select the relevant feature space, 

and sometimes this approach does not always work well (Kaul et al. 2017). As a result, 

automatic feature engineering has been applied to further expand feature space to improve 

model performance or work efficiency, although sometimes the generated feature vectors 

are difficult to explain (Sumonja et al. 2019). Automatic feature engineering has 

advantages when dealing with extremely large amounts of training data and a big number 

of features, especially when the task is facing less support from domain experts in practise. 

Some optimization algorithms such as gradient descent and genetic algorithm can 

automatically give a ranking of each feature with weight or provide the most relevant 

features according to their importance to a specific task (Krishnan and Padmavathi 2017). 

The ranking of the features can be used as a reference for a user to select the right 

combination of features.  

2.3.2 Optimization methods 

The selection of parameters or hyper-parameters is important for building an effective 

machine learning (ML) model, as it has a direct impact on the model architecture. Typical 

hyper-parameters configuration to achieve the best model performance involves: the 

learning rate to train a neural network, the number of estimators in an ensemble learning, 

the maximum depth of the decision tree structures or to specify an algorithm to minimize 
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the loss function (Diaz et al. 2017). Currently, various optimization methods are 

developed for tuning these hyper-parameters, especially for tree-based ML models and 

deep neural networks, such as conventional gradient-based optimization, metaheuristic 

algorithms and probabilistic methods (Yang and Shami 2020). 

Gradient-based optimization methods use the gradient information to define a search 

direction for approaching the optimal solution. For machine learning algorithms 

associated with convex functions, the gradient of specific hyper-parameters can be 

calculated and the global optimum can be reached with a fast convergence speed. 

However, they are only suitable for optimizing continuous hyper-parameters, since other 

discrete parameters do not have gradient directions (Yang and Shami 2020). Typical 

gradient-based methods involve gradient descent, Newton method and conjugate gradient 

method. 

Metaheuristic algorithms can deal with non-convex, non-continuous and non-smooth 

optimization problems, but are usually unstable and can produce different solutions as 

they involve random search process (Zhao et al. 2018). Some representative metaheuristic 

algorithms are genetic algorithms (GA), particle swarm optimization (PSO) and 

evolutionary algorithms. Genetic algorithm (GA), which simulates the evolutionary 

process of Darwin’s biological evolution theory, has been widely used for multi–

parameter optimization problems and non-linearization problems (Sevinç and Coşar 

2011). GA is essentially a heuristic search algorithm which typically performs the search 

process in four steps (as shown in Figure 2-4): (1) set initial population for real problems; 

(2) check the fitness criterion with each member of the population; (3) parents selection 

with higher fitness values; and (4) perform crossover and mutation operators to product 

new offspring for the solution (Wong and Tan 1994). One critical element of GA is to 

choose the right fitness function which defines the ability of each chromosome to solve 

the real problem. In this research, GA is used for searching the optimal trade-off between 

diversity and accuracy of GBR ensemble model, as the high model complexity and 

diversity usually lead to overfitting and the low one lack of accuracy. 
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Figure 2- 4: Diagram of simple genetic algorithm 

2.3.3 Automated valuation models (AVMs) 

The definition of automated valuation models (AVMs) is described by IAAO as: ‘a 

mathematically based computer software program that produces an estimate of market 

value based on market analysis of location, market conditions, and real estate 

characteristics from information that was previously and separately collected. The 

distinguishing feature of an AVM is that it is an estimate of market value produced 

through mathematical modelling. Credibility of an AVM is dependent on the data used 

and the skills of the modeler producing the AVM.’ (IAAO 2003). The objective of an 

AVM is to provide a credible, reliable and cost-effective estimate of a subject property’s 
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market value at a specific valuation date. AVMs have been employed in both the public 

and private sectors and they continue to show an increasing role in the stability of the 

economic and social systems (D’Amato and Kauko 2017). Vendors from UK and USA 

such as Rightmove and Zillow have provided some general background information on 

their AVMs. Rightmove declares that they have stringent criteria, employing a thorough 

filtering process in selecting the properties used in their AVMs, on the other hand, Zillow 

claims to be the largest AVM provider in the US (Łaszek et al. 2018). 

Typical AVMs training procedures can be classified as five main steps: (1) Data 

collection and pre-processing, (2) Feature selection, (3) Hyperparameter tuning, (4) 

Model fit, and (5) Evaluation. Firstly, a number of comparable traded real estate cases are 

collected from reliable sources and verified by professional valuers. Then different types 

of property attributes such as size, area, garage type and built year are applied as 

continuous or discrete attributes. The data set available is randomly divided into two 

groups: 70% or 80% for the training set and 30% or 20% for the testing set. Secondly, the 

feature selection process is about choosing the suitable number of variables and the right 

combination of them, as too many variables may lead to overfitting and inadequate ones 

will cause the model underfitting. Besides, although the increasing number of variables 

makes machine learning model more accurate with the prediction, the large number of 

input variables also needs a huge amount of training data which make the training process 

impractical for the intensive computation. This is known as dimensionality curse (Rafiei 

and Adeli 2016). Thirdly, in order to find the best fit of the learning speed and the 

complexity of the patterns to be discovered behind the training data, model 

hyperparameters such as the number of decision trees, the learning speed and the 

maximum depth of each decision tree are iteratively tested. After that, the optimum group 

of hyperparameter setting for this dataset is used to fit the model. To get a generalized 

AVM, it is suggested to test the optimum hyperparameter setting with different datasets 

or through cross-validation of the datasets. Lastly, before the model being used for real 

estate price prediction, it is tested with the test dataset according to model accuracy 

measurements such as mean absolute percentage error (MAPE), mean squared error 

(MSE) and coefficient of determination (𝑅2). 
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AVMs have gradually evolved through regression analysis (MRA), hedonic modelling 

and artificial intelligence models, and the fundamental to AVMs are statistical, data 

mining and computing methodologies. While AVMs are currently used predominantly 

for residential property only, undergoing many developments based on AI, they are 

expected to be developed for many other property types and more complex valuations 

(RICS 2017b). 

Compared to hedonic methods, machine learning models have several advantages: to 

efficiently assess information from big data; to identify non-linear relationships between 

house characters, market factors and property price; and to be more objective about the 

selection of input attributes (Kontrimas and Verikas 2011; Park and Bae 2015; 

Dimopoulos and Bakas 2019). For different types of machine learning models in property 

valuation, it was concluded through the comprehensive literature review in Section 2.1.4 

that the individual neural network or genetic algorithm (GA) has not achieved satisfactory 

results, but GA optimized neural networks have achieved good performance for real estate 

appraisals. While ANNs has attracted more attention than other algorithms, if the aim of 

data analytics is to learn models from data that can be further developed as an expert 

system, a classification tool, a recommender system or a credit scoring system, ML will 

be the priority choice. With decision tree-based ensemble learning, implicit or hidden 

knowledge can be automatically discovered, represented and modelled for various tasks. 

This will be extremely helpful for human decision making when tasks involve processing 

and analysing big data which characterized as high-volume, high-velocity and high-

variety. Compared to neural networks, ensemble learning has advantages in terms of 

model interpretability and flexibility. 

2.3.4 Validation and evaluation strategies 

After machine learning models learnt from the training data, it is necessary to evaluate 

their predictive accuracy and generalization capability on independent test data. It is 

important to use independent test data to evaluate the model accuracy and generalization, 

as error rate on the training set is not a good indicator of future performance (Witten et 

al. 2016). There are different kinds of performance measures for different tasks. The 

performance measurement is usually computed by comparing the prediction operated by 
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the model and the real value, either a discrete type or a continuous numerical value. It is 

common to use error rate to measure the model performance for classification problems, 

whereas mean squared error (MSE) or receiver operating characteristics (ROC) is more 

common to be used for regression problems. According to Sokolova and Lapalme (2009), 

for a binary classification task, the accuracy or error rate can be assessed by calculating 

the number of correctly recognized class examples (true positives), the number of 

correctly recognized examples that do not belong to the class (true negatives), class 

examples that were incorrectly assigned to the class (false positives) or that were not  

recognized as class examples (false negatives). For a regression problem, the mean square 

error (MSE) for a regression estimator is calculated as follows: 

                                               𝑀𝑆𝐸 =
1

𝑛
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1                                           (5)                                                      

where 𝐴𝑡 is the actual value and 𝐹𝑡 is the predicted value. 

In most real applications, the model training and evaluation of predictive accuracy and 

generalization capability might have to be based on limited data. A general way to 

‘increase’ the amount of data and ease the bias caused by the chosen particular sample is 

the data splitting strategies. There are some common methods to split the data, including 

the holdout method, cross-validation and bootstrapping. The general principle is to use a 

certain amount of data for training and reserve the remainder for testing, of which the 

process normally needs to be repeated several times with different random samples 

(Sylvain 2010). For holdout method, in each iteration a certain proportion (two-thirds or 

four-fifths) of the data is randomly chosen for training and the remainder is used for 

testing. Subsequently, the error rates of different iterations are averaged to produce an 

overall error rate (Witten et al. 2016). 

Sometimes, models with high generalization capability tend to be overfitting, while 

models with low generalization capability tend to be underfitting. The bias-variance 

decomposition is an importance and widely used tool for understanding the generalization 

capability of machine learning algorithms. The bias is an error term that measures the 

mismatch between the model class and the underlying data distribution, whereas the 

variance measures sensitivity to fluctuations in the training data (Yang et al. 2020). 



   

45 

 

According to Hastie et al. (2008), the expected prediction error of a regression problem 

in terms of bias and variance decomposition can be expressed using squared-error loss: 

𝐸𝑟𝑟(𝑥0) = 𝜀2 + 𝐵𝑖𝑎𝑠2(𝑓(𝑥0)) + Var(𝑓(𝑥0)) 

                                                = Irreducible Error + 𝐵𝑖𝑎𝑠2+Variance                           (6) 

From this decomposition, the expected prediction error can be understood as the sum of 

noise, (squared) bias and variance. Generally, the more complex the model 𝑓(𝑥), the 

lower the (squared) bias but the higher the variance. 

Overfitting, as a key issue in supervised machine learning, refers to a learning algorithm 

fits the training data so well that noise fits in the data by memorizing various peculiarities 

of the training data rather than finding a set of general predictive rules. On the opposite, 

underfitting refers to a learning algorithm is incapable of capturing the variability of the 

data (Jabbar and Khan 2014). Typically, models with high bias but low variance are more 

likely to be underfitting, whereas models with high variance but low bias are more likely 

to be overfitting. There are different methods to avoid the issue of overfitting and 

underfitting in supervised learning, for instance, the penalty methods and early stopping 

for training. According to Schittenkopf et al. (1997) , typical penalty methods involve: (1) 

Hold and cross-validation; (2) Generalization cross-validation; (3) Minimum description 

length (MDL) principle. Penalty method is one of important methods to control the Bias-

Variance trade-off in supervised machine learning. 

2.4 Summary of Literature Findings 

This chapter introduced the basic concepts used as part of the conducted work and offered 

an overview of research in the fields of property valuation, BIM and Machine Learning.  

Section 2.1 outlined the three traditional approaches and the three popular trends in 

property valuation, which brings forth the first findings: 



   

46 

 

1) Traditional valuation approaches are questioned as inaccurate, inefficient and 

unreliable, in the last two decades, there has been a move towards the advanced 

valuation approaches due to their many advantages dealing with the increasing 

complexity of property transaction. 

2) As the investors’ expectations and demands including sustainable value or long-

term value of property valuation are growing, the benefits and opportunities of 

BIM for property valuation have gradually captured the attention of researchers 

and the valuation professionals. 

Section 2.2 outlined research on BIM and information exchange, the integration of BIM 

and other digital technologies, and BIM for property valuation. This brings forth the 

second findings: 

3) The BIM related concepts including IFC-IDM-MVD have contributed to 

information exchange in specific domains such as construction cost estimating, 

design change management, and infrastructure facilities, little research has 

focused on the knowledge development of IFC extensions to support property 

valuation.  

4) While research on BIM for property valuation is still at the early stage, the benefits 

of using BIM for property valuation have gained researchers and professionals’ 

attention such as facilitate the automation of the value analysis process, provide 

improved information, improve the valuation accuracy, and make more informed 

decisions or consider the impact on property values. As the volume of data in BIM 

is rising exponentially, data analytics concepts and tools integrated BIM might 

bring added value and produce revolutionary influence on industrial practices, 

however, there is no framework establishment research related to the integration 

of BIM and machine learning for property valuation. 

Section 2.3 introduced the AVMs and several key stages including feature engineering, 

optimization strategies, and validation to construct a good machine learning model, which 

were further used at the system development stage. This brings forth the third findings 

(Section 2.3.3 and Section 2.1.4): 

5) Machine learning models have several advantages such as efficiently assess 

information from big data, identify non-linear relationships between house 
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characters, market factors and property price, and to be more objective about the 

selection of input attributes. 

6) While ANNs has attracted more attention than other algorithms, compared to 

neural networks, ensemble learning has advantages in terms of model 

interpretability and flexibility, which is more suitable for knowledge mining and 

system development. Since genetic algorithm (GA) optimized neural networks 

have achieved good performance for property valuation, the integration of GA 

and ensemble learning might achieve good predictive performance for property 

valuation as well as good model interpretability. 

2.5 Conclusion 

The literature reviewed throughout this chapter introduced the current state of the art 

regarding property valuation, BIM, and Machine Learning. From which, three research 

gaps were identified: (1) AVMs (Automated Valuation Models) have been more widely 

used to deal with the increasing complexity of property valuation, but the current AVM 

needs to be further improved to be able to address large data sets, non-linear relations 

among different input parameters and the outputs, and holistic decision making; (2) The 

increasing volume of life cycle data and value-related design information have not been 

leveraged to improve the property valuation performance; (3) There is a lack of integrated 

framework, where BIM and AI as revolutionary technologies can be orchestrated to 

produce smart property valuation, which is dynamic and holistic. 
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Chapter 3. Research Methodology 

3.1 Research objectives 

Based on the research findings from the literature review, an integration framework based 

on BIM and Machine Learning information technologies is proposed, which aims at 

facilitating information exchange between AEC projects and property valuation and 

supporting automated property valuation. 

The nature of a research project can be classified as exploratory, descriptive, explanatory, 

evaluative or a combination of them (Saunders et al. 2015). While explanatory research 

concentrates on explaining the relationships between different variables of a specific issue, 

exploratory research focuses on studying a specific topic, problem or phenomenon 

through open questions (Schutt 2011). Descriptive research focuses on describing persons 

or situations accurately and evaluative research concentrates on assessing the efficiency 

of the studied object (Saunders et al. 2015). This research has a combination of 

explanatory, exploratory and evaluative purposes, with several objectives identified: 

• Objective 1: Identify determinants of house price and the value-specific 

design information in AEC projects (explanatory nature) 

• Objective 2: Compare different AI-enhanced AVMs for automated property 

valuation and improve the performance of current AVMs (exploratory nature) 

• Objective 3: Achieve automatic information exchange between AEC projects 

and property valuation (exploratory nature) 

• Objective 4: Explore whether the use of BIM and Machine Learning 

information technologies can promote current property valuation process and 

bring added value to the construction and property industry (exploratory and 

evaluative nature). 
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3.2 Design science methodology and framework 

 

Figure 3- 1: Research methodology for this thesis 

Due to the fact that this research is implemented in the information technology domain, 

the adopted research methodology illustrated in Figure 3-1 follows the principles of 
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design science research (DSR) methodology (Peffers et al. 2007), which can be classified 

into four main steps: (1) problem statement, (2) requirement analysis, (3) system design 

and development, and (4) system testing and validation. In this research, each step is 

associated with corresponding research questions which are addressed in different 

chapters. The research methodology for this thesis is explained as follows: 

1) Problem Statement 

The related problems have been introduced in the introduction and literature review 

chapters, which illustrated that the advantages of using AI-enhanced AVMs for property 

valuation have been recognized by researchers and professionals, but the predictive 

accuracy and model interpretability of current AVMs need to be further improved. The 

benefits and opportunities of BIM for property valuation have gradually captured the 

attention of researchers and valuation professionals, however, research on BIM for 

property valuation is still in its early stage.  

The contents of Chapter 2 responded to the first research question (Q1), which is 

described as:  

Q1: What is the current BIM and Machine Learning implementation on property 

valuation and What are the opportunities and challenges concerning automated 

property valuation and information exchange between AEC projects and property 

valuation?  

2) Requirement Analysis 

The requirement analysis is focused on possible future changes that information 

technologies including BIM and Machine Learning will bring to the current property 

valuation process, and focused on the information requirements that existed in the AEC 

projects which can be further developed for property valuation.  

The traditional valuation process mainly involves seven steps: (1) problem identification 

and assignment definition; (2) data collection and verification; (3) preliminary data 

analysis; (4) land value estimate; (5) form opinion of property values using the three main 



   

51 

 

valuation approach; and (6) reconcile values for final opinions of value. In the last two 

decades, the real estate market has experienced changes including the new client 

expectations such as a faster delivery of the valuation and a long-term property valuation, 

and the increasing complexity of property valuation assignments such as taking into 

consideration of sustainability-related features within property valuation process. With 

the increasing complexity of property valuation assignments, it is expected that the future 

valuation process will be more fragmented. The emerging advanced information 

technologies such as IoT, AI, Blockchain and BIM are going to transform the role of 

valuers and the traditional valuation process, responding to the increasing complexity of 

client expectations and the real estate transactions.  

The contents of Chapter 4 responded to the second research question (Q2), which is 

described as: 

Q2: How innovative information technologies such as BIM and Machine Learning 

(ML) will improve the current valuation process and what are the information 

requirements for property valuation? 

3) System Design and Development 

Based on the findings in Chapter 2 and Chapter 4, to facilitate information exchange 

between AEC projects and property valuation and support automated property valuation 

workflow, the BIM-ML system is designed and developed that includes three main 

components: (1) an IFC extension for property valuation that includes missing but 

necessary value-related entities and property sets; (2) an IFC-based information 

extraction for automatic information exchange between AEC projects and property 

valuation; and (3) an automated valuation model (GA-GBR) based on the integration of 

gradient boosting ensemble machine learning and genetic algorithm.  

One of the main components – the proposed automated valuation model (GA-GBR) starts 

with an experiment with 11 different types of AI-enhanced AVMs in Chapter 5, including 

AVMs based on linear regression, ridge regression, lasso regression, elastic net regression, 

KNN, SVM, ANN, CART, AdaBoost, Random forest, and gradient boosting ensemble 

(GBR), with the aim at comparing the performances of different AVMs and selecting the 
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suitable machine learning model for system development. After that, the structure of the 

genetic algorithm optimized gradient boosting ensemble model is explained and tested 

with the UCI Machine Learning repository – Boston dataset. The model performance of 

the proposed GA-GBR is compared with a similar house price prediction study using 

random forest machine learning with the same Boston housing dataset (Adetunji et al. 

2022), which lays the foundation for further experiments in the next stage. 

The contents of Chapter 5 responded to the third research question (Q3), which is 

described as: 

Q3: What kind of automated valuation models (AVMs) might have a better 

prediction performance for property valuation and how to improve the current 

AVMs? 

Another two components of the proposed system – an IFC extension for property 

valuation and an IFC-based information extraction are addressed in the first two 

subsections in Chapter 6. Based on the 62 collected value-relevant variables for property 

valuation in Section 4.3, an IFC extension including related building object entities and 

properties are developed for property valuation. It firstly discusses the property valuation 

related modelling capabilities of the current IFC schema and identifies the value-related 

design information that can be used for developing the IFC extension for property 

valuation. Based on the identified influential variables on property valuation, a number 

of missing but necessary value-specific entities and property sets are proposed to be added 

in the IFC extension for property valuation. After that, an IFC-based information 

extraction algorithm is designed to automatically extract the required value-specific 

design information from an IFC-based BIM instance model.  

In the last subsection of Chapter 6, the proposed automated valuation model (GA-GBR), 

which serves as an automated valuation engine, is trained with traded property data from 

the Chinese and American real estate markets. Before fitting data to the GA-GBR model, 

the preliminary steps including data preparation, exploratory data analysis and feature 

engineering are performed. 
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The development of the three main components in Chapter 6 responded to the fourth 

research question (Q4): 

Q4: How to implement the BIM-ML integration framework and how to develop the 

three main components accordingly? 

4) System Testing and Validation 

In Chapter 7, three validation tests are conducted to verify the proposed BIM-ML system, 

which involves: 

• Validate the developed automated valuation model (GA-GBR) through different 

performance measures of machine learning such as MAE, MAPE, MSE, RMSE, 

and 𝑅2. The GA-GBR model is tested with three datasets from different countries 

including China, U.S. and the UK, where the UK dataset is only used for testing. 

In addition, the developed GA-GBR model was implemented for six months in a 

commercial real estate appraisal and advisory company (HXZH) in China, 

comparing the model performances with the traditional valuation method. A case 

study was provided to demonstrate the two methods and feedback documents 

were provided. 

• Validate the required information extraction from the extended IFC schema 

through three case studies from three countries including China, U.S. and the UK. 

• Validate the comprehensive BIM-ML integration framework as a complete 

system. In addition, feedback documents upon the implementation of the BIM-

ML system in the commercial company were provided. 

This responds to the last research question (Q5), which is described as: 

Q5: How reliable is the proposed BIM-ML integration framework that can facilitate 

information exchange and support automated property valuation? 
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3.3 Conclusion 

The core methodology throughout this research has been outlined in this chapter. The 

main phases of this research were identified along with the objectives for each of them. 

To test the initial hypothesis, the divided five research questions were linked to the 

corresponding phase stating the main components of the linked chapters. The developed 

research methodology framework highlighted: (1) Research question 1, linked to Chapter 

two, described the current state of the art of BIM and Machine Learning on property 

valuation; (2) Research question 2, linked to Chapter 4, explained the requirements 

analysis for conducting property valuation; (3) Research questions 3 & 4, linked to 

Chapter 5 & 6, illustrated the process of system design and development including the 11 

typical AVMs comparison experiment, the proposed GA-GBR model, detailed IFC 

development, and detailed GA-GBR model development; (4) Research question 5, linked 

to Chapter 7, solved the last phase of this research namely system testing and validation, 

including the proposed AVM (GA-GBR) validation, the IFC extraction validation, and 

the overall framework validation. 
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Chapter 4. Comprehensive Analysis for 

Property Valuation Process and Framework 

In this section, a specific literature review upon the current state of the art of property 

valuation process and framework will be provided, in the meantime considering 

requirements and potential solutions for the proposed integration framework.  

In the first subsection, the current valuation process and the future possible changes to 

the current valuation process will be described. The emerging advanced information 

technologies such as IoT, AI, Blockchain and BIM are going to transform the role of 

valuers and the valuation process, responding to the increasing complexity of client 

expectations and the real estate transactions. At the end of this subsection, the influence 

of AI enhanced AVMs on the current valuation process is summarized. The second 

subsection introduces the BIM influence on current valuation workflows and information 

exchange. The future information flow and data exchange in property valuation, 

associated with BIM and other information technologies, is envisaged which involves 

five layers including the physical layer, the technical layer, the pre-processing layer, the 

information storage layer, and the domain layer. The third subsection describes the 

comprehensive determinants collected for property valuation from archival research of 

174 research documents including research paper, projects and industrial valuation 

standards. The identified variables related to BIM concepts have been classified as six 

different types and 28 subtypes of information related to property valuation. The last 

subsection introduces the fundamentals of the bagging ensemble and the boosting 

ensemble. Subsequentially, in the fourth subsection the gradient boosting ensemble 

learning model is specified, which is going to be developed and optimized as the AVM 

at the system development stage.  

4.1 Property Valuation Process 
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4.1.1  The current valuation process 

There are three main property valuation approaches all over the world: market approach, 

cost approach and income approach. In deriving a final value estimation of a property, 

the appraiser will use one or the combination of the three valuation approaches, which 

may be determined by the type of the subject property and the factors of greatest 

importance to clients (Ventolo 2015). For instance, a rental house normally will be 

appraised using the sales comparison method that existing sales data are compared to the 

subject property, whereas an office building valuation typically will choose the income 

method such as discounted cash flow (DCF) which calculates the final value based on the 

revenues and cost of the office. 

Figure 4-1 illustrates the current valuation process that involves seven steps from the 

appraisal assignment to the final value estimation report (Bienert et al. 2009; Ventolo 

2015; RICS 2017a). The detail of each step is explained as follows: 

1) Problem Identification and Assignment Definition: It focuses on 

defining the scope of work, such as the type and extent of the valuation needs to 

perform. This step is associated with several assignments: identification of the 

asset and location of the asset, identification of property rights, definition of value 

to be estimated, purpose and intended use of the valuation, valuation data and any 

other special limited conditions that the client and the appraiser need to be 

informed. 

2) Data Collection and Verification: Once an appraisal assignment accepted, 

the appraiser will choose the suitable valuation approach based on the requests of 

client and the type of the asset. From that point, general data upon the surrounding 

area, specific data about the asset and data applicable to specific valuation 

approaches require to be gathered and verified. General data is associated with the 

geometric and economic features of the nation, region, city and neighborhood. 

Specific data includes a detailed physical description of the asset and the property 

site. Data for each approach has different requirements such as the sales 

comparison method requires the collection of sales data on comparable properties, 
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while income valuation approach requires income and expense data from the 

property’s history. 

3) Preliminary Data Analysis: The appraiser will conduct a highest and best 

use analysis of the relevant data, considering the influence of the market 

components on the value of the subject asset. The subject property’s highest and 

best use should not only satisfy the human needs, but also be revealed by social 

and economic market indicators such as supply and demand, inflation 

expectations, vacancy rate, purchasing power and demographic structure and 

development. 

4) Land Value Estimate: Based on the physical features and amenities of the 

subject site (except for the asset), an opinion of land value is estimated. 

5) Form Opinion of Value Using the Three approached: Based on 

different valuation approaches, an opinion of the subject property value is 

estimated using relevant mathematic functions and techniques. For instance, in 

the sales comparison method, the appraiser makes adjustment by comparing any 

significant differences between the comparable property and the subject property 

and gives the estimated price of the subject property. 

6) Reconcile Values for Final Opinions of Value: The appraiser may use 

more than one valuation approaches for the subject asset. The final opinions of 

the estimated value will be calculated by the weighted average of the estimated 

values from different methods. The most relevant approach normally should be 

given the greatest weight in determining the final opinions of value. 

7) Report Final Value Estimation: Finally, the client will be presented with the 

conclusion of the final value in the reporting form that complying with specific 

valuation standards. Basically, the report content will cover all the information 

related to the assignment definition, data collection and analysis, any assumptions 

and special assumptions, valuation approach and reasoning, date of the report and 

commentary on any information uncertainty in relation to the valuation process 

(RICS 2017a). 
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Figure 4- 1:   The current valuation process 
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4.1.2  The future valuation process 

In the last two decades, property valuation has experienced changes from traditional 

valuation methods and individual valuers’ subjective assessment to computer-aided 

valuation approaches such as big data and artificial intelligence (AI) in property valuation. 

With the advanced in the availability of computer technology and information system, 

automated valuation models (AVMs) are evolving quickly because of their advantages 

that they are systematic, fast and less dependent on human subjective judgements (Łaszek 

et al. 2018). The technological developments of big data, blockchain, AI and AVMs in 

part reflects the changing client expectations such as a faster delivery of the valuation and 

in part reflects the increasing complexity of many real estate transactions such as the 

added value comes from sustainability features. As a result, the role of the valuer and the 

valuation process are more likely to face a period of significant changes in coming years 

(RICS 2017b).  

With the increasing complexity of property valuation assignments, it is expected that the 

future valuation process will be more fragmented. The future valuation process is 

visioned that the valuer may only need to work on parts of the current valuation process, 

with other parts carried out by other methods such as automation. In Figure 4-2 below, a 

future valuation process is visioned as four main steps as follows (RICS 2017b): 

1) Pre-valuation: The problem identification and assignment definition process 

(Step 1 in Figure 4-1) will be automated and facilitated by smart contracts 

(blockchain-based systems) which enforce the pre-valuation negotiation process 

automatically through the use of digital information communication technologies 

and related computer protocols and standards. This will save time and costs. 

2) Data Collection and Verification: The traditional data collection and 

verification process (Step 2 in Figure 4-1) may be partially or entirely replaced 

by the emerging information modelling and communication technologies such as 

3D scanning, drones, image streaming, smart buildings and Internet of Things 

(IoT) and building passports based on BIM and blockchain. The future valuation 

process will benefit from near real-time availability of data. However, it is 
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expected that verification of data will remain a task to be carried out by a 

professional valuer or a junior data scientist with skills in statistics and analytics. 

  

Figure 4- 2: The vision of future valuation process according to (RICS 2017b) 
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3) Data Handling and Interpretation: From the preliminary data analysis to 

generate final opinions of value processes (Step 3-6 in Figure 4-1) will be carried 

out, replaced or assisted by AI enhanced AVMS. The advancement in big data 

and AI technologies will move AVMs from low-risk valuations with sufficient 

comparable transactions (automated residential property valuation) towards more 

complex valuations for all property types. The valuation process of certain low-

risk tasks will remain including the client, the smart contract and an AVM, 

whereas the process of more complex valuations might still follow the entire 

process. Statistical property valuation techniques such as AI and AVMs are going 

to play a significant role in the data analysis and interpretation stage. Valuers with 

statistical analysis skills are more likely to satisfy the client’s needs, as the 

outcome of the AVM needs to be checked and interpreted, especially for complex 

valuations. 

4) Post-valuation with Reporting: The final valuation report (Step 7 in Figure 

4-1) will be operated in a more complex and highly regulated environment – an 

interactive valuation report. The client can get an interactive valuation reporting 

with various information from different sources and different perspectives, such 

as a valuation range provided by AVMs, the future advised value provided by 

valuers and more reliable and objective information stored in blockchain. 

As information technologies including big data and artificial intelligence advances fast, 

many stakeholders including investors, banks, public authorities and real estate 

companies expect to benefit from the full potential of automated valuation services which 

can perform the valuation quickly, improve the transparency of current valuation process, 

and reduce inaccuracies from reliance on human judgement and attendant bias (RICS 

2017b). For instance, an appraisal system based on AVMs has been developed for the 

Canada government and implemented in the province of Quebec, with the aim of 

providing basis for property taxation implementation (Kettani and Oral 2015). A vendor 

from UK - Rightmove declares that they have stringent criteria, employing a thorough 

filtering process in selecting the properties used in their AVMs, on the other hand, Zillow 

claims to be the largest AVM provider in the US (Łaszek et al. 2018). 



   

62 

 

The influence of AI enhanced AVMs on the current valuation process is summarized as 

follows:  

1) Data collection and data sharing: Currently, valuers predominantly use 

primary data sources including client, inspection, property analysis, market 

analysis and public sources. There are issues of data accessibility and uncertainty 

about the accuracy and reliability of the data gather during this process. In the 

future, data collection is expected to become a more specialized profession or a 

more automated one, with the technological developments such as inspection with 

drones, the IoT and smart buildings. Big data could partially replace the primary 

data sources, as data can be collected from secondary data tools such as Google 

Analytics and Google Trends.  

2) Valuation method: Despite traditional valuation approaches being extensively 

used in the valuation processes, over the last decade there has been a move 

towards automated valuation approaches, especially for residential property 

(Łaszek et al. 2018). Although currently automated valuation models (AVMs) 

cannot substitute the human valuer in all instances, with the impact of AI and big 

data developments, the usability of AI-enhanced AVMs is expected to expand 

towards different property types and more complex valuations (RICS 2017b). 

Some advocates hold the opinion that the majority of valuations will be carried 

out by AI systems and AI-enhanced AVMs will replace the valuer, considering 

the fact that AVMs are undertaking mass valuation work performed for banks. 

Others believe AI-enhanced AVMs will change the valuation process and help the 

valuer in many aspects, but it will not replace some part of valuation where the 

valuer interprets data and makes judgements on the impact of that data on value. 

3) The role of valuer: In the future, valuers will spend less time on property 

investigation and inspection, data verification and analysis, instead, they will act 

as an impartial judge or an adviser. For complex valuations, a valuer will need to 

check and interpret the outcome of the AVMs (RICS 2017b). 
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4.2 Impact of BIM on Information Flows in the Valuation 

Process 

Building Information Modelling (BIM), as a digital and computable representation of a 

building and its related lifecycle information, has significantly improved information 

flow among stakeholders involved at all stages - from the early design stage to the 

construction and long operation stage (Borrmann et al. 2018). To support information 

communication, digital technologies such as databases, model servers and project 

platforms are often employed in a comprehensive manner. According to Lindblad (2013), 

the benefits of BIM adoption involve more efficient data exchange, less data input and 

transfer errors, streamlined construction processes, automated workflow, improved 

product quality and building performance, and increased productivity. As a result, 

property valuation professionals concluded that there was great potential to expand the 

current BIM data for property valuation use, such as linking data with Building 

Management Systems. For instance, property professionals currently use 24 different 

types of data in their technical practice and some of these data have already been found 

in BIM (Wilkinson and Jupp 2016). 

For property valuation professionals, it is essential for them to access to and use lifecycle 

building performance information from reliable data sources. The discussion on 

sustainable buildings and the potential ‘green’ impact on property value is ongoing 

between valuers and clients (RICS 2017b). The complexity of sustainability assessment 

and taking account this into different traditional property valuation methods require a 

significant change in the data collection and information exchange of property valuation 

professionals and other related market actors (Lorenz et al. 2007). While researchers and 

practitioners are trying to perform sustainable property valuation, the sustainability-

related information upon property values is limited from real estate market. 

Sustainability-related information contains information on the environmental and health 

impacts of related building components and materials, energy and water saving, safety 

and security, demography and structure of households, etc. This information cannot be 

solely acquired by a licensed property valuer through a building inspection, but requires 

access to and analysis of other reliable sources of information, for instance, information 
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provided by facility managers and information founded in documentation of the design 

and planning process (Lützkendorf and Lorenz 2011). The integration of sustainability 

assessment into traditional property valuation process requires not only the traditional 

building information on type, size and number of bedrooms, but also information on 

actual building performance information such as heating, acoustics, air quality on energy 

savings, which is currently limited in real estate market. 

As data sharing issues exist in current valuation process, data standardization such as 

property measurement standard is expected to improve the accuracy and efficiency for 

the property industry (RICS 2017b). On the one hand, information losses and 

misunderstandings among different market actors happen inevitably when using different 

descriptive ways for data interpretations. According to Ventolo (2015), there are about 

45 data sources involved in the traditional building survey: government councils, 

professional journals, local material suppliers, building and architectural plans etc. Each 

market actor in real estate market uses raw data for property valuation according to their 

own benefits, or they collect and process information from other data source suppliers. 

Different market actors use various descriptive ways interpreting information in different 

formats, which causes the information losses and misunderstandings during information 

exchange processes. On the other hand, an increased and more detailed consideration of 

sustainability-related information not only exists in property valuation, but also in other 

related processes of the building industry such as procurement, design, construction, 

operation and maintenance etc. As a consequence, in order to address sustainability issues 

within property valuation practices, different market actors such as portfolio and 

corporate real estate managers, investors, designers, and engineers will have to work 

together and provide related information in formats that are easy to access and can be 

interpreted into the valuation process (Lützkendorf and Lorenz 2011). 

Based on this, the future information flow and data exchange in property valuation, 

associated with BIM and other information technologies, is envisaged in the Figure 4-3. 

There will be five layers of the information workflow in property valuation process, 

including the physical layer, the technical layer, the pre-processing layer, the information 

storage layer, and the domain layer.  
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Figure 4- 3:  The future information flow and data exchange in property valuation 

As shown in Figure 4-3, firstly, the raw data within the life cycle of buildings will be 

collected through the use of different technologies in the technical layer such as BIM, IoT, 

laser scanning, sensors, robots, and drones. Secondly, the collected raw data will be 

cleaned and verified by information technologies such as ML algorithms and valuation 

data analysts with statistical skills. Thirdly, the processed information will be classified 

as traditional information requirements such as property size, age, and height and 

extended information requirements such as green – rating certificates, energy saving 
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materials, and rooms with high-level natural lighting and ventilation. The organized 

information will be stored in the common data environment (CDE) in the information 

storage layer. Finally, the information stored in the CDE can be used to support 

applications in different domains such as property valuation, sustainability assessment, 

and risk analysis.  

This form of information flow has the potential to contribute to property valuation and 

the construciton industry with saved time and costs, and improved productivity. All actors 

in property markets can not only access raw data in the life cycle of buildings, but also 

use the information prepared by other actors for other purposes. For instance, the 

sustainability assessment results can serve as an informational basis for property 

valuation, in return, the improved property image with added value will faciliate the 

sustainability assessment in other related processes in the building industry. As a 

consequence, a reliable and continuous platform for maintaining and updating building-

related information within the entire building life cycle is needed.  

To sum up, the influence of BIM on information flows in the current valuation process is 

summarized as improved data exchange, less data input and sharing errors, data 

standardization, linked data with other information sources, saved time and costs, and 

improved productivity. 

In the next section, information requirements for property valuation will be explained. 

4.3 Information Requirements for Property Valuation  

To get a comprehensive understanding of all the relevant determinants or parameters that 

can be used to work out the final property values, this research reviewed 174 research 

documents, the list of value-relevant building properties is explained in Table A-1 (in the 

Appendix A). Most of them are identified through literature review, some of them are 

proposed for their potential impact on the future valuation process. The required 

information has been classified with six different types of information related to property 

valuation: information related to environmental quality, social and economic quality, 

functional quality, process quality, technical quality and site quality. Information 

included in traditional building survey is compared with information required for 
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sustainability assessment and information achievable within BIM related processes. The 

column A in yellow colour stands for information needed for traditional real estate 

appraisal. The column B in green colour means information needed for green assessment. 

The column C in dark red stands for information can be defined and developed in the 

BIM related platform (design, planning, operation and maintenance phases), which is the 

core for semi-automated information exchange for property valuation. The identified 

variables were further used for the IFC-based data interpretation at the system 

development stage. The column D in light red means information needed by both property 

valuation and green assessment. 

In column C of Table A-1 (in the Appendix A), attention is given to variables that have 

potential to be associated with BIM related concepts. Among 95 variables reviewed in 

the literature, 62 of them are identified as relevant to this research. The identified related 

variables in the column C for building the valuation information model are classified as 

six main types and 28 subtypes of information related to property valuation, which is 

illustrated in Figure 4-4. For instance, for technical quality, variables related to 

construction quality and renovation condition are considered as relevant, while the 

variable related to protection against burglary is not retained in the valuation information 

model. Similarly, there are three subtypes identified for variables related to environmental 

quality, five subtypes identified for variables related to process quality, seven subtypes 

for variables related to functional quality, two subtypes for social and economic quality 

and one subtype for site quality. 
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Figure 4- 4: Selected variables for property valuation 
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4.4 The Gradient Boosting Ensemble Method 

From literature review in section 2.1.4 and section 2.3.3, it was concluded that compared 

to neural networks, ensemble learning has advantages in terms of model interpretability 

and flexibility, which is more suitable for knowledge mining and system development for 

property valuation. Since genetic algorithm (GA) optimized neural networks have 

achieved good performance for property valuation, the integration of GA and ensemble 

learning might achieve good predictive performance for property valuation as well as 

good model interpretability. 

Ensemble learning is a machine learning method that multiple base learners or classifiers 

are trained and combined for the same task, aiming to improve the predictive performance 

and control overfitting. It has been widely used in various applications such as gene 

expression analysis, text categorization, bankrupt prediction etc. Generally speaking, to 

construct a good ensemble model, the individual base learners should be as accurate and 

as diverse as possible (Zhou 2012b). 

Ensemble methods can be very powerful and often perform better than individual 

classifiers that make them up. According to Yang (2016), there are three fundamentals of 

ensemble learning: (1) the strategies to train each of base learners; (2) the combining 

methods of multiple base learners; and (3) the critical factors to value the success of 

ensemble learning model such as the bias-variance decomposition. The reason why the 

generalization ability of an ensemble is stronger than individual base learners is 

concluded by Dietterich (2000) from three different perspectives: (1) From the statistical 

perspective, an ensemble can ‘average’ the votes of multiple base learners and reduce the 

risk of choosing the wrong classifier; (2) From the computational perspective, compared 

to individual classifier which may get stuck in local optima, an ensemble which performs 

local search from many different starting points may have a better chance to approaching 

the best approximation for the hypothesis; and (3) From the representational perspective, 

an ensemble can expand the space of representable functions to deal with the issue of 

most machine learning applications that the true function 𝑓(𝑥) cannot be represented by 

any of the hypotheses. 
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Bagging and Boosting are two representative ensemble methods, both of which are 

constructed in two steps: (1) generate individual base learners, and (2) combine the base 

learners together through the averaging or voting. In bagging, base learners are trained in 

a parallel manner, which is illustrated in Figure 4-5. Firstly, in the bootstrap stage, each 

base learner is independently trained on resampled training set, which is randomly chosen 

from the original training set (Graczyk et al. 2010). The data resampling technique 

ensures the uniqueness of each base learner, which increases the diversity of bagging 

ensemble and provides the ability to significantly reduce the predictive error caused by 

variance. Secondly, in the aggregating stage, the individual base learners generated in the 

first stage are combined through voting methods for classification tasks, and through 

average methods for regression tasks such as house price prediction. One famous example 

of the bagging ensemble is called random forest. 

 

Figure 4- 5: Bagging method 

The boosting ensemble method is illustrated in Figure 4-6. Firstly, base learners are 

sequentially trained where the first one is trained on the whole training set and the 

following one is trained based on the performance of the previous one (Graczyk et al. 

2010). The previous base learners with big errors are given more attention (weight 

adjustment) in the next boosting iteration. Secondly, all the base learners are combined 
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together for the prediction task. The weight based boosting and residual based boosting 

are two successful boosting methods. One famous residual based boosting ensemble 

application in engineering is XGBoost, which is based on gradient boosting ensemble.  

 

Figure 4- 6: Boosting method 

Differences between bagging and boosting methods are summarized as: 

• While the base learners are parallelly trained in bagging, they are sequentially 

trained in boosting. 

• The boosting ensembles are sensitive to the abnormal values in the training data 

set, whereas the bagging ensembles are not easily influenced by the abnormal 

data. 

• The bagging ensembles can reduce the error caused by variance, which are 

devoted to unstable learners that suffered from large variance such as neural 

networks (Zhou 2012a). In contrast, the boosting ensembles can reduce the error 

caused by bias significantly. 

• When performing the prediction, most of the bagging ensembles use the majority 

voting method, whereas most of the boosting ensembles use the average method. 
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Table 4- 1:  Gradient tree boosting algorithm 

______________________________________________________________________ 

Inputs: 

Training dataset: D = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁, 𝑦𝑁)} ; Loss function: 𝐿(𝑦, 𝑓(𝑥)) 

______________________________________________________________________ 

Algorithm: 

Initialize 𝑓0(𝑥) = 𝑎𝑟𝑔 min
 
𝛶 ∑ 𝐿(𝑦𝑖 

𝑁
𝑖=1 , 𝛶)  

For m = 1 to M: 

For i = 1, 2, . . . , N compute the negative gradient: 

𝑟𝑖𝑚 =  − [
𝜕𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))  

∂𝑓(𝑥𝑖)
]

𝑓=𝑓𝑚−1

 

Fit a regression tree to the targets 𝑟𝑖𝑚 giving terminal regions 𝑅𝑗𝑚,  j = 1, 2, . . . , 𝐽𝑚 

For j = 1, 2, . . . , 𝐽𝑚 compute: 

Υ𝑗𝑚 = 𝑎𝑟𝑔 min
 
𝛶 ∑ 𝐿(

𝑥𝑖∈𝑅𝑗𝑚

𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖) +  𝛶) 

Update 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + ∑ Υ𝑗𝑚𝐼(𝑥𝑖 ∈ 𝑅𝑗𝑚
𝐽𝑚
𝑗=1 )  

Output 𝑓(𝑥) =  𝑓𝑀(𝑥) = ∑ ∑ Υ𝑗𝑚𝐼(𝑥𝑖 ∈ 𝑅𝑗𝑚
𝐽𝑚
𝑗=1 )𝑀

𝑚=1  

______________________________________________________________________ 

The gradient boosting regression (GBR) ensemble is a representative boosting ensemble 

method, which will be developed further in this research. Typically, a gradient boosting 

regression (GBR) model is constructed in two steps, the details are explained in Table 4-

1. First, weak learners 𝑓0(𝑥) are initialized and generated in a sequential style where a 

new weak learner is trained based on the error of the whole ensemble learnt so far. The 

logic behind this is to produce the new estimators to be maximally correlated with the 

negative gradient (𝑟𝑖𝑚) of the whole ensemble’s loss function. Second, the base learners 

are combined as  𝑓(𝑥) to do predictions through weighted averaging method.  
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The GBR machines have shown great success in various domains (computer-aided 

medical diagnosis, energy prediction and facial recognition) as they often provide high 

predictive accuracies. The main advantage of GBR ensemble is its flexibility and 

extensibility, since researchers can choose different classifiers (linear models, decision 

trees, instance-based, Bayesian or rule-based learners) to train the base learners and 

customize their loss functions with regard to specific tasks. Besides, the ensemble 

provides several hyperparameter tuning options (the number of boosting iterations, 

learning rate, the maximum depth of individual estimators) that make it flexible to use. 

However, GBR model is essentially a greed algorithm and can overfit a training dataset 

quickly with the number of base learners increasing. Therefore, it is necessary to use 

regularization to ensure the model’s generalization capability. 

4.5 Conclusion 

This chapter presented the requirements to enable a framework where new technologies 

such as BIM and Machine Learning (ML) can be introduced to improve the objectiveness, 

accuracy, and efficiency of property valuation. The section provided an in-depth view of 

the influence of BIM and ML can produce on property valuation, a comprehensive 

collection of property value determinants from the literature, and a detailed review of the 

gradient boosting ensemble machine learning model. The content of this chapter also 

responded to research question two (Q2), which is explained as: 

Q2: How innovative information technologies such as BIM and Machine Learning 

(ML) can improve the current valuation process and what are the information 

requirements for property valuation? 

The answer to this research question is summarized as: 

• The influence of AI enhanced AVMs on the current valuation process was 

summarized as: (1) data collection and exchange: to be more automated and 

improved accuracy and efficiency with data standardization; (2) the valuation 

method: from traditional methods to AVMs; and (3) the role of valuers: from 
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performing traditional property inspection and data analysis to interpreting the 

outcome of AMVs.  

• The influence of BIM on information flows in the current valuation process was 

summarized as improved data exchange, less data input and sharing errors, data 

standardization, linked data with other information sources, saved time and costs, 

and improved productivity. 

• Among 95 variables reviewed in the literature, 62 of them were identified as 

relevant to this research. The identified variables that have potential to be 

associated with BIM related concepts were classified as six main types and 28 

subtypes of information related to property valuation, which were further used for 

the IFC-based data interpretation at the system development stage. 
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Chapter 5. System Design 

Based on the findings in Chapter 2 and Chapter 4, to facilitate information exchange 

between AEC projects and property valuation and support automated property valuation 

workflow, this research proposes an integration framework that using BIM and Machine 

learning (ML) technologies for property valuation which contains three main components: 

(1) an IFC extension for property valuation that includes missing but necessary value-

related entities and property sets; (2) an IFC-based information extraction for automatic 

information exchange between AEC projects and property valuation; and (3) an advanced 

valuation model (GA-GBR) based on the integration of gradient boosting ensemble 

learning and genetic algorithm. This is introduced in the first subsection. 

The second subsection conducts an experiment with all AI-enhanced AVMs, including 

AVMs based on linear regression, ridge regression, lasso regression, elastic net regression, 

KNN, SVM, ANN, CART, AdaBoost, Random forest, and gradient boosting ensemble 

(GBR), with the aim at comparing the performance of different AVMs and validate the 

logic of choosing the GBR model for the proposed system. 

The third subsection explains the structure of the GA-GBR model. The fourth subsection 

then tested the proposed GA-GBR model with the UCI Machine learning repository 

Boston housing dataset. 

5.1 Property Valuation Framework Definition 

The review of theories in Chapter 2 and Chapter 4 identified that current data collection 

and information flows in property valuation could be improved by the emerging 

technology developments including the integration of BIM and ML technologies.  

Firstly, the value-specific design information produced in AEC projects has not been 

widely used for property valuation, and there is a need to facilitate the current information 

exchange process between the two parties. For instance, the information exchanging 

process can be facilitated by developing IFC extensions for property valuation and an 

IFC-based information extraction algorithm. Secondly, while ANNs has attracted more 
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attention than other algorithms, compared to neural networks, ensemble learning has 

advantages in terms of model interpretability and flexibility, which is more suitable for 

knowledge mining and system development. The optimization strategies suggested the 

integration of GA and ensemble learning might achieve good predictive performance for 

property valuation as well as good model interpretability.  

These findings provided the practical guidelines to improve the information exchange 

process and the optimization strategies for the automated valuation models. Based on this, 

the BIM-ML system has been designed that involves three main components, which is 

explained in Figure 5-1:  

• Component 1 – IFC Extension for Property Valuation: Information 

requirement that covers all the value-relevant design information for property 

valuation is provided based on an overview of 174 archival research documents, 

which was introduced in Section 4.3. Based on the collected 62 variables, an IFC 

extension is proposed that extends the existing IFC schema (IFC4-Addendum 2) 

to support a comprehensive property valuation. 

• Component 2 – Information Extraction: Based on the IFC extension 

development, an IFC-based information extraction algorithm is developed to 

automatically extract the value-related design information from BIM models. The 

extracted information is further used to support automatic property valuation. 

• Component 3 – Automated Valuation Model (AVM): A genetic 

algorithm optimized gradient boosting regression ensemble learning model (GA-

GBR) is proposed that works as a smart valuation engine to achieve automated 

property valuation. The GA-GBR is firstly trained with house transaction data 

from the Chinese and American real estate mark, and then use the extracted 

information from IFC for house price prediction. 
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Figure 5- 1: System design for property valuation 
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5.2 Comparison and Selection among Eleven different AVMs 

The findings from literature suggested that ensemble learning application on property 

valuation is emerging, and the integration of genetic algorithm and ensemble learning 

might achieve good predictive performance for property valuation as well as good model 

interpretability. To validate this, it is necessary to conduct an experiment with different 

AI-enhanced AVMs and compare the model performances. The selected eleven AVMs 

contain linear regression, ridge regression, lasso regression, elastic net regression, KNN, 

SVM, ANN, CART, AdaBoost, Random forest, and gradient boosting ensemble (GBR). 

The UCI Machine Learning repository - Boston housing dataset was collected for the 

experiment of the abovementioned AVMs, which includes 506 entries represent 

aggregated data with 14 variables for house price prediction in Boston in 1978 (Harrison 

and Rubinfeld 1978). The detailed information about the 14 variables are described in 

Table 5-1. In the development of the AVMs, the Boston housing dataset is randomly split 

into the training set (70%) and testing set (30%). The trainings of the eleven AVMs are 

performed on the Python 3.7 using scikit-learn library on the PyCharm platform, which 

is an integrated development environment using python language for machine learning. 

Model performance metrics are essential in evaluating the predictive accuracy of 

statistical models. In the scientific community, a number of performance metrics have 

been defined and are currently in use for regression analysis, including the mean absolute 

error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root 

mean squared error (RMSE), and coefficient of determination ( 𝑅2 ) etc. To get a 

comprehensive understanding of the performance of the eleven AVMs, all the above-

mentioned metrics are selected. 

The mean absolute error (MAE) measures the average magnitude of the errors in terms 

of the absolute differences between the prediction values and the actual results. The 

calculation of MAE is relatively simple, which provides a generic and bounded 

performance measure for average model bias. MAE can be used where there are a small 

number of training outliers, as the model performance will mediocre if there are many 

outliers in the test set.  
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Table 5- 1:  Description of each variable in the Boston dataset 

Variables Description 

CRIM The average crime rate by town. 

ZN The proportion of residential land zoned for lots over 25000 

square feet. 

INDUS The proportion of non-retail business acres per town. 

CHAS Charlies River dummy variable (1 if tract bounds river; 0 

otherwise). 

NOX Nitric oxides concentration (parts per 10 million). 

RM The average number of rooms per dwelling. 

AGE The proportion of owner-occupied units built prior to 1940. 

DIS The weighted distances to five Boston employment centres. 

RAD The index of accessibility to radial highways. 

TAX The full-value property-tax rate per $ 10,000. 

PTRATIO The pupil-teacher ratio by town. 

B 1000(Bk – 0.63) ̂ 2 where Bk is the proportion of blacks by town. 

LSTAT The lower status of the population. 

MEDV Median value of owner-occupied homes in $ 1000’s. 
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The MAE is expressed as follows:  

                                                MAE =
1

n
∑ |At −n

t=1 Ft|                                                        (7) 

where At is the actual value and Ft is the predicted value. 

The mean absolute percentage error (MAPE) is commonly used in model evaluation of 

regression tasks, for its intuitive interpretation in terms of relative error. In practice, the 

MAPE is useful to calibrate prices of products since some customers pay more attention 

to relative variations than to absolute variations (Myttenaere et al. 2016). However, it is 

often criticised for its being biased towards low forecasts, which makes it unsuitable for 

predictive models with large errors (Chicco et al. 2021). The MAPE is often calculated 

as a percentage: 

                                            MAPE =
1

n
∑ |

At − Ft

At 

n
t=1 |                                                           (8) 

where At is the actual value and Ft is the predicted value. 

The mean squared error (MSE) measures the average squared difference between the 

predicted values and the actual results. Due to its definition, the squaring part of the 

function magnifies the error, which makes it great for attributing larger weights to outliers 

(Chicco et al. 2021). The MSE has an advantage to sometimes make a comprehensive 

assessment that combines the effect of bias and random measurement error (Holst and 

Thyregod 1999). The MSE is expressed as: 

                                            MSE =
1

n
∑ (At − Ft)2n

t=1                                                           (9) 

where At is the actual value and Ft is the predicted value. 

The root mean squared error (RMSE), which is the square root of MSE, would bring the 

unit back to actual unit. Compared to the MAE, RMSE gives a relative high weight to 

large errors since the errors are squared before they are averaged. The RMSE is specified 

as: 

                                            𝑅MSE =  √
1

n
∑ (At − Ft)2n

t=1                                                           (10) 

where At is the actual value and Ft is the predicted value. 
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The coefficient of determination (𝑅2), also known as R-squared or squared multiple 

correlation coefficient, represents the quantity that estimates the percentage of variance 

of the response variable explained by its relationship with the explanatory variables. It is 

usually to be used by practitioners to assess the quality of the fit in a regression model, 

which provides an indication of the suitability of the chosen explanatory variables in 

predicting tasks (Renaud and Victoria-Feser 2010). The 𝑅2 is expressed as follows:  

                                       R2(y, ŷ) = 1 −  
RSS

TSS
= 1 −  

∑ (yi−ŷi)2n
i=1   

∑ (yi−y̅)2n
i=1

                                           (11)                           

where ŷi  represents the predicted value of the ith  sample, yi  is the corresponding true 

value, y̅ =  
1

n
∑ yi

n
i=1 ,  TSS =  ∑ (yi − y̅)2n

i=1  represents the total sum of squares and 

RSS = ∑ (yi − ŷi)
2n

i=1 = ∑ Єi
2n

i=1  represents the corresponding residual sum of squares. 

Table 5- 2: Accuracy metrics of different regression models in the Boston dataset 

Accuracy metrics MAE MAPE MSE RMSE     𝐑𝟐 

Linear regression 3.36 17.2% 23 4.7 71.6% 

Ridge regression 3.36 17.1% 23 4.7 71.7% 

Lasso regression 3.73 19.3% 29 5.3 64.5% 

Elastic Net regression 3.75 19.2% 31 5.4 62.8% 

KNN 2.94 13.7% 22 4.6 74.0% 

SVM 2.87 15.6% 23 4.6 73.3% 

ANN 2.67 13.5% 15 3.8 83.2% 

CART 2.67 13.8% 13 3.6 82.8% 

AdaBoost 2.02 10.6% 7.8 2.7 90.0% 

Random forest 2.12 10.8% 9 2.9 88.7% 

GBR 

 

 

 

 

2.04 10.4% 7.6 2.7 90.3% 
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Table 5-2 lists the five different accuracy metrics introduced above, of which the MAE, 

MAPE, MSE, and RMSE are measuring regression models in terms of different types of 

errors and the R-squared (𝑅2) is measuring regression models in terms of prediction 

accuracy. This means that the lower the MAE, MAPE, MSE, and RMSE, the higher the 

R-squared (𝑅2) lead to a better model performance of the AVMs.  

From the experiments on the test dataset (30%), it is observed that the four classic linear 

regression models including the linear, ridge, lasso, and elastic net regression, have 

similar poor model performances, with the mean MAE at 3.55, the mean MAPE at 18.2%, 

the mean MSE at 26.5, the mean RMSE at 5.025, and the mean 𝑅2 at 67.65%. Compared 

to the four classic linear models, the KNN and SVM models have better model 

performances, with the mean MAE at 2.9, the mean MAPE at 14.7%, the mean MSE at 

22.5, the mean RMSE at 4.6, and the mean 𝑅2 at 73.7%. Compared to the KNN and SVM, 

the ANN and CART (the simple decision tree based) models have better model 

performances, with the mean MAE at 2.67, the mean MAPE at 13.7%, the mean MSE at 

14, the mean RMSE at 3.7, and the mean 𝑅2 at 83%. Compared to the ANN and CART, 

the other three decision tree-based models including AdaBoost, Random Forest and GBR 

have better model performances, with the mean MAE at 2.06, the mean MAPE at 10.6%, 

the mean MSE at 8.1, the mean RMSE at 2.77, and the mean 𝑅2 at 89.7%.  

 

Figure 5- 2: Errors of the eleven AVMs in terms of the MSE 



   

83 

 

It is worth to mention that the GBR model has the highest model prediction accuracy with 

the MAPE at 10.4%, the MSE at 7.6, the RMSE at 2.7, and the mean 𝑅2 at 90.3%. For 

instance, the errors of the eleven AVMs in terms of MSE are shown in Figure 5-2, which 

illustrates that the GBR model has the best model performance of the eleven different 

types of AVMs. This complies with the findings from literature. 

5.3 The Proposed Automated Valuation Model (GA-GBR) 

In this section the framework of the proposed genetic algorithm optimized gradient 

boosting ensemble model (GA-GBR) will be described.  

The experiment in the last section indicated that gradient boosting decision tree (GBR) 

model has the highest predictive accuracy of the eleven different types of AVMs. In fact, 

the GBR machines have shown great success in various domains such as computer-aided 

medical diagnosis, energy prediction, and facial recognition, as they often provide high 

predictive accuracies. However, compared to random forest algorithms, since the base 

learners in the GBR are dependent on each other, the GBR machines are more likely to 

be overfitting with a training dataset.  

It has been recognized that a good ensemble depends on the individual learners being as 

accurate, and as diverse as possible. However, generating diverse individual learners is 

quite challenging as the individual base learners are usually highly correlated for dealing 

with the same training data. This means the more accurate individual learners are, the less 

diverse they are. Therefore, the success of a GBR ensemble is essentially about getting a 

good trade-off between the accuracy and diversity of individual base learners. To 

encourage the diversity of an ensemble, the basic logic is to inject some heuristic 

mechanisms into the learning process. There are four typical effective methods: 

manipulation of training data, manipulation of input features (the random subspace 

method), manipulation of learning parameters, and manipulation of output representation 

(Zhou 2012b). 

To make up the deficiency and improve the predictive accuracy of the traditional GBR 

model, whilst considering the exploration of the relationship between the input features 
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and the target price, the genetic approach for optimizing boosting ensemble is proposed. 

The genetic algorithm (GA) in the proposed GA-GBR works as an evolutionary feature 

selection engine to search the optimal feature subset which is further used to train a good 

boosting ensemble. There are three reasons for choosing the genetic optimizer for 

traditional GBR ensembles: 

1) For data with a big number of input features, input feature manipulation method 

often gives a good result. The manipulation of input features using GA increases 

the diversity of individual base learners. 

2) The GA searches the suitable number of input features and updates the weights of 

them, which enables the GA-GBR to explore the relationship between the input 

features and the target price, and therefore gives an improved model 

interpretability over traditional boosting ensemble machines.  

3) The evolutionary feature selection engine eliminates the redundant and irrelevant 

features without affecting the prediction accuracy, which avoids the overfitting of 

traditional GBR machines. 

Implementation of the proposed GA-GBR model has three steps, as shown in Figure 5-3, 

including base learner generation, problem encoding and genetic search. Details about 

each step will be described below. 

1) Base learner generation 

The first step is to generate the pool of base learners with the input domain dataset. There 

are three common base-learner models: linear models, smooth models and decision trees. 

The base learners in this research use decision trees of same sizes which are good at 

handling mixed types of data and modelling complex functions. GBR ensemble combines 

multiple base learners 𝑓𝑚(𝑥𝑖) to generate a strong model 𝑓(𝑥), which is displayed below. 

                                                 𝑓(𝑥)= ∑ 𝑓𝑚(𝑥𝑖)
𝑀
𝑚=1                                                             (12) 
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Figure 5- 3: The framework of the GA-GBR model 
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The objective function of base learner is to learn a mapping  𝑓(𝑥) between the input 

feature vector and the output (house price). Typical loss functions for regression model 

are Gaussian 𝐿2 loss function, Laplace 𝐿1 loss function, Huber loss function and Quantile 

loss function (Natekin and Knoll 2013). After initial testing on the GBR model, it had the 

best prediction accuracy with Huber loss function.  

2) Problem encoding 

The problem encoding task is performed in the second step. When dealing with a real 

search problem, the search parameters need to be encoded and represent the problem as 

a function objective. There are several ways to encoding a problem in genetic algorithm 

(GA), such as binary codification, decimal, hexadecimal and so on. This research uses 

binary encoding to represent the solutions, because one of the research focuses is to 

explore the relationship between the input features and the target price. In dealing with 

feature selection problems, each chromosome represents a feature subset, and the quality 

of each candidate solution is evaluated using a fitness function.  

In the GA-GBR model training, each chromosome in the population represents an 

individual which has N input features of the training data (shown in Figure 5-4), for 

instance, parameter A represents house size and parameter B represents central heating. 

A one or zero represents that the feature is selected or not respectively. The task of using 

binary encoding for feature selection is to find the near optimal chromosome in which 

each bit corresponds to a feature, with the aim to find the feature subset with the smallest 

number of features that achieve the best performance (Kanan et al. 2007). The size of the 

chromosome is decided by the N input features, for example, the UCI machine learning 

repository - Boston housing dataset in the comparison and selection experiment in the last 

section, N equals to 13, excluding the target price variable. Similarly, N equals to 56 and 

61 in the development of the GA-GBR model using the Chinese and the American 

datasets respectively described in Section 6.3.1 (the original number of input features are 

22 and 15, after one-hot encoding they changed to 56 and 61 respectively). 
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Figure 5- 4: Binary encoding of chromosome 

3) Genetic search 

In the last step, the genetic search is applied to evaluate each chromosome of the 

population, and obtain the most suitable combination and weight of input features to train 

the GA-GBR model. As mentioned in section 2.3.2, genetic search consists of three main 

steps: (1) initial population generation, (2) fitness function definition, and (3) the action 

of generic operators including selection, cross over and mutation. 

• Initial population generation 

The genetic search starts with the first generation of solutions which are randomly 

generated. Each chromosome represents a binary vector that represents the combination 

of N input features, in which each bit corresponds to a feature. After that, the GBR 

ensemble is trained with the binary vector (an individual in a population), and the error 

of the trained GBR is calculated. The quality of an individual solution (chromosome) is 

then evaluated through a fitness function, which is explained in the following. 

• Fitness function definition 

Fitness function is defined in GA to assess the ability of a chromosome to solve the 

problem. In this research, after tested with different regression accuracy metrics including 

MAE, MAPE, MSE, RMSE, and 𝑅2, the coefficient of determination (𝑅2)  is set as the 

fitness function of the genetic algorithm. It represents the proportion of variance that 

produced by the independent variables in a machine learning model and explains how 

well the model fits the training data and the generalization of the model. 𝑅2 function was 

defined as follows: 
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                                        𝑅2(𝑦, ŷ) = 1 −  
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1   

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                                                  (13) 

where ŷ𝑖  represents the predicted value of the 𝑖𝑡ℎ  sample, 𝑦𝑖  is the corresponding true 

value, �̅� =  
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  and ∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1 = ∑ Є𝑖
2𝑛

𝑖=1 . 

• Selection, crossover and mutation 

The selected chromosomes are subjected to the action of the three operators to obtain new 

chromosomes for the next generation, namely selection, cross over and mutation. Firstly, 

parents are selected based on their fitness values: chromosomes with higher 𝑅2 are more 

likely to be parents of new generations, on the other hand, individuals with lower 𝑅2 may 

not be selected at all. Tournament selection and roulette wheel selection are two popular 

selection methods. This study uses the roulette wheel selection method, which enables 

the selection of the best chromosome with a higher chance (Lipowski and Lipowska 

2012). 

Secondly, the selected parent chromosomes are used in the crossover to produce a new 

offspring. Typical crossovers include one-point crossover, two-point crossover, and 

multi-point crossover (Spears and Anand 1991). Study on the population size and 

crossover shown that two-point crossover performs better when the population is large, 

whereas multi-point crossover performs better for the small size populations (De Jong 

and Spears 1991). Compared to one-point crossover, two-point crossover is able to avoid 

the exact duplication of parents for the old population, which ensures the new offspring 

being produced through crossover operation is able to survive in the next generation 

(Bajpai and Kumar 2010). Based on this and initial test with the three types of crossover 

operators, two - point crossover is selected for this research. Two - point crossover is 

performed between two chromosomes, with crossover points randomly generated. Each 

crossover point is set on the boundary between the two chromosomes below. For example, 

binary string between the two crossover points of chromosome 1 and the rest part of 

chromosome 2 are copied to make a new offspring (shown in Figure 5-5). 
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Figure 5- 5: two - point crossover method 

The last operator of genetic algorithm is mutation which randomly chooses a point in one 

bit-string and inverts the value of selected bit (from 1 to 0 or from 0 to 1). Mutation can 

occur at each point of chromosomes with small possibility, mutation rate between 0.5%-

1% normally gives better performance of GA search (Hassanat et al. 2019). Operators 

with big mutation rate often have strong ability to generate new offspring and prevent 

premature convergence of genetic search, but also may harm the stability of population 

structure.  

The new generation is continuously constituted after the three generic operators until the 

GA reach the maximum iteration times. Finally, the most suitable weight of input features 

and the optimal GA-GBR model are acquired. 

5.4 The Proposed GA-GBR model: A Proof-of-concept Study 

The proposed GA-GBR model is then tested with the UCI Machine Learning repository 

- Boston dataset introduced in Section 5.2, comparing model performance with the 

traditional GBR. In the development of the GA-GBR model, the Boston housing dataset 

is randomly split into training set (70%) and testing set (30%). The training of the GA-

GBR follows the framework designed in the last section 5.3, which is performed on the 

Python 3.7 using scikit-learn library on Pycharm platform. 

The initial population is randomly generated with N solutions, with the number of base 

learners and their associated combination method. After N solutions are randomly 
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generated, the next generation of solutions is generated through genetic search operations. 

The fitness of each chromosome of the new generation is evaluated according to the 

fitness function R-square (𝑅2). The chromosomes with higher 𝑅2 than the GBR model 

are selected. The parameters in GA were tested using trial-and-error method using 

gradient boosting regression ensemble library in scikit-learn and the specifically designed 

genetic algorithm. Through repeated tests, it was found the best performance of GA-GBR 

model when the parameters in GA were set as follows: 

• Population size: 600 

• Generations: 32 

• Crossover probability: 0.5 

• Mutation rate: 0.1 

Using grid search algorithm for testing the model hyperparameters, the GBR model was 

trained with the best performance when hyperparameters were set as the number of 

estimators (200), learning rate (0.1), maximum depth (5), minimum sample leaf (6), 

maximum features (0.2), loss function (Huber). The 𝑅2 in GA-GBR (using the best 

chromosome) had an advantage of 0.2% over the GBR model, with 90.5% for GA-GBR 

and 90.3% for GBR respectively. Adetunji et al. (2022) conducted a similar house price 

prediction research using random forest machine learning with the same Boston housing 

dataset, in terms of 𝑅2 , showing 90.0% for the random forest. Compared with this recent 

research, the proposed GA-GBR shows a slight superiority of 0.5%. Considering that 

there are only 506 entries data in the Boston housing dataset, the performance of the 

proposed GA-GBR could be improved when using dataset with a large number of house 

transaction cases. 

5.5 Conclusion 

This chapter presented the overall BIM and Machine learning integration framework 

design, including three main components namely IFC extension, information extraction 

and the proposed automated valuation model (GA-GBR). After that, the performance of 

11 typical AVMs was tested and compared using the UCI Machine Learning repository 
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– Boston housing data set, aiming at finding the AVM with the lowest predictive error 

namely the GBR model. Then the traditional GBR model was combined with GA as the 

new algorithm for the framework, following with a proof-of-concept study of the 

proposed GA-GBR model using the Boston housing data set. In terms of 𝑅2 , the proposed 

GA-GBR showed an advantage of 0.5% over the similar research from Adetunji et al. 

(2022). The content of this chapter responded to research question three (Q3), which is 

explained as: 

Q3: What kind of automated valuation models (AVMs) might have a better 

prediction performance for property valuation and how to improve the current 

AVMs? 

From the experiment results of the eleven AI-enhanced AVMs, it indicated that the classic 

linear models showed the poorest model performance and predictive accuracy, and the 

decision tree-based models including AdaBoost, Random Forest and GBR showed the 

highest model performance and predictive accuracy. The KNN and SVM models showed 

advantage over the ANN and CART, but showed disadvantages over the AdaBoost, 

Random Forest and GBR. It is worth to mention that the GBR model has the highest 

model prediction accuracy of the eleven different types of AVMs, with the MAPE at 

10.4%, the MSE at 7.6, the RMSE at 2.7, and the mean 𝑅2 at 90.3%. This complies with 

the findings from the literature and validate the logic of choosing the GBR model for the 

proposed system. 

To make up the deficiency of GBR, whilst considering the exploration of the relationship 

between the input features and the target price, the GA-GBR model is proposed. The 

genetic algorithm (GA) in the GA-GBR works as an evolutionary feature selection engine 

to search the near optimal feature subset which is further used to train a good boosting 

ensemble. The advantages of the proposed GA-GBR model are concluded as: (1) increase 

the diversity of individual base learners, (2) improved model interpretability over 

traditional GBR machines, and (3) avoid overfitting. After explaining the structure of the 

proposed GA-GBR model, the initial test of the GA-GBR with the UCI Machine Learning 

repository - Boston dataset indicated improved model performance compared with the 

traditional GBR. 
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Chapter 6. System Development 

This chapter outlines the core contributions of this research. The property valuation 

framework introduced in Section 5.1 defines three components, which are divided into 

three subsections in this chapter: an IFC extension for property valuation (Section 6.1), 

an IFC-based information extraction (Section 6.2), and an AI-enhance automated 

valuation model developed based on the genetic algorithm optimized boosting ensemble 

learning (Section 6.3).  

The workflow of Section 6.1 and Section 6.2 is displayed in Figure 6-1 below. Section 

6.1 aims to find and add the missing but necessary value-specific property sets and 

properties to the current IFC schema. The development of the IFC Property Valuation 

extension is based on the identified relevant variables in the information requirements for 

property valuation in Section 4.3 and the valuation information model (LADM_VM) 

which is derived from the ISO 19152:2012 Land Administration Domain Model (LADM). 

In Section 6.2, after the development of IFC Property Valuation extension, the required 

value-specific design information is extracted automatically from an IFC-based BIM 

instance model using an information extraction algorithm developed based on the open-

source BIM information extraction library - IfcOpenShell. The extraction process is 

divided into eight main steps, during which the nominal values of requried varibles are 

extracted from an IFC instance model.  

Section 6.3 introduces the preliminary steps of training the proposed GA-GBR model, 

including data preparation, exploratory data analysis, and feature selection. After that, the 

proposed genetic algorithm optimized boosting ensemble learning model (GA-GBR) is 

experimented on real estate transaction data from the Chinese and American real estate 

markets. There are two different experimental setups for the training, one is performed 

on the whole Chinese and American datasets, and the one is performed on the divided 

datasets representing different perspectives which aims at exploring the implicit 

relationships between the input features and the target price. 
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Figure 6- 1: Workflow for the development of the IFC extension and IFC-based 

information extraction 

6.1 IFC Extension for Property Valuation 

In this section, an IFC extension for property valuation based on the target information 

including building object entities and properties will be developed. There are two main 

steps for developing an IFC extension for property valuation: (1) identify and analyse the 

building object entities and property sets that support property valuation in the existing 

IFC schema (IFC4-Addendum 2), and (2) search and add the missing but necessary value-

relevant property sets and properties to relevant entities in the IFC4 schema.  

1) Identify the existing entities in the IFC4 schema  

Identifying and analysing the coverage of the existing IFC schema is an essential step for 

developing IFC extension for property valuation. Currently, the most updated official IFC 

schema, IFC4-Addendum2-Technical Corrigendum 1, contains 776 entities and 420 

property sets (buildingSMART 2017a). The IFC schema focuses on describing the 

geometric and semantic data structure of a building using object-oriented representation. 

It follows a hierarchical and modular framework, which is divided into four conceptual 

layers from up to bottom: domain layer, interoperability layer, core layer and resource 

layer (ISO 2018). Each layer has a number of classes that contain various entities, types, 
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enumerations, rules and functions, of which entities are used to describe building 

information and surrounding components (Zhiliang et al. 2011). As in any object-oriented 

data model, the semantic meaning and implementation of the entities are generalized 

using inheritance hierarchy, which is illustrated in Figure 6-2 below. 

 

Figure 6- 2: Part of the inheritance hierarchy showing the most important entities 

according to Borrmann et al. (2018) 

The IfcSpace and IfcZone entities in the IFC4 schema were identified as useful for the 

IFC Property Valuation extension, referring to the Valuation Information Model 

(LADM_VM) which derived from the ISO 19152:2012 Land Administration Domain 

Model (LADM). The Valuation Information Model (LADM_VM) is provided in Figure 

A-1 in the Appendix A (Kara et al. 2018). For instance, the IfcSpace entity is an existing 

entity in the current IFC4 schema, which represents an area or volume that provide for 

certain functions within a building (buildingSMART 2017a). This entity can be used to 

cover information about the room volume, building area, number of rooms, construction 

time, and renovation condition. The IfcZone entity is an existing entity in the current IFC4 

schema, which represents a group of spaces, partial spaces or other zones 
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(buildingSMART 2017a), which can be designed to contain multiple IfcSpace entity 

instances. Each of these entities has property sets that contain specific properties of 

building objects, which can be used for property valuation.  

2) The proposed property sets and properties for property valuation 

Among 95 variables reviewed in the literature, 62 of them are identified as relevant to 

this research, which are detailed in Section 4.3 – Information requirements for property 

valuation. The 62 variables are grouped into the six main types and 28 subtypes including 

basic information (age, size, structure), flexibility and adaptability, amenities, acoustic 

comfort, and indoor air quality etc. Based on the identified 62 influential variables and 

the Valuation Information Model (LADM_VM), the required property sets and their 

properties are proposed to add to the IfcSpace and IfcZone entities, which are listed in 

Table B-1 in the Appendix B. The property types and data types are identified from the 

current official IFC schema (IFC4-Addendum 2). It is necessary to choose the right data 

type for individual properties. For instance, the IfcLabel is a string data type that can be 

used store the human-interpretable names and shall have a natural-language meaning. The 

IfcBoolean normally has value True or False that can be used to represent whether the 

subject property has a garage or not. 

Seven property sets are proposed to add to the IfcSpace entity, including 

Pset_PV_Transaction, Pset_PV_Parcel, Pset_PV_Building, Pset_PV_CondominiumUnit, 

Pset_PV_Valuation, Pset_PV_MassValuation, and Pset_PV_Annex. The detail of each 

property set is explained as follows. 

The Pset_PV_Transaction property set is designed to provide information related to the 

real estate transactions, which covers 11 properties such as transactionID, registrationID, 

activeDays (active days on market), transferDate (when the sale was completed), 

paidCategory (the type of price paid transactions), noOfFollowers, 

communityAveragePrice, and propertyRights (if the owner has the property for less than 

5 years). The Pset_PV_Parcel property set is designed to provide information related to 

land parcel, which covers 13 properties such as parcel area, parcelGeometry, 

parcelLocation, longitude, latitude, city, town, district, and country. 
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The Pset_PV_Building property set is designed to provide information related to the 

buildings to be evaluated, which covers 34 properties such as total area, living area, 

garage area, built date, the number of bedrooms, kitchens, bathrooms, property type, 

storey, renovation condition, the number of floors, heating and cooling, structure, and 

elevator. The Pset_PV_CondominiumUnit property set is designed to provide 

information related to the several condominium units as a group, which covers similar 34 

properties in the Pset_PV_Building property set. 

The Pset_PV_Valuation property set is designed to provide information related to 

property valuation using traditional valuation method, which covers 5 properties such as 

valuation ID, valuation purpose, valuation date, valuation method, and the calculated 

value. The Pset_PV_MassValuation property set is designed to provide information 

related to property valuation using advanced valuation method, which covers 5 properties 

such as valuation ID, valuation purpose, valuation date, algorithm, and the calculated 

value. The Pset_PV_Annex property set is designed to provide information related to 

some special considerations from customers which might affect the property value. For 

instance, considering the education of their children, some customers might think the 

distance to a famous school is an important factor when buying a house.  

In total, there are 7 property sets and 104 properties proposed for the IFC Property 

Valuation extension (Table B-1 in the Appendix B). 

6.2 Information Extraction from the Extended IFC Schema as 

Required 

In the literature, studies on partial data model retrieval can be classified into two main 

streams: the schema-based data extraction approach and the instance-based data 

extraction approach. The schema-based approach focuses on developing a definition 

format with various mappings for data exchange, and it usually extract partial data 

information according to a predefined model data structure such as the IFC schema, XML 

schema and SQL schema. For instance, the generalized model subset definition schema 

(GMSD) method was based on the schema defined in EXPRESS for consistence with the 
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IFC. The GMSD contains two subparts, one of them provides support to the dynamic 

selection of object instances in model server queries and the other enables the 

development of view definitions (Weise et al. 2003). This approach requires a large 

amount of effort on defining or editing MVDs, which is challenging for some users and 

sometimes has the problems of high structural complexity and low data density. On the 

other hand, the instance-based approach is trying to directly deal with the data in the 

original model and focuses on the extraction of specific information within related objects. 

For instance, Won et al. (2013) in their research proposed a no-schema algorithm for 

extracting a partial model from an IFC instance model at the class and object level, 

without the support of IFC schema. This approach allows the information extraction 

according to the user’s specific requirements and gives users enough flexibility, but 

generally it requires more efforts on developing complex querying algorithms (Deng et 

al. 2020).  

To support effective information extraction from a BIM model, several commercial or 

open-source BIM information extraction libraries have been developed, such as 

IfcOpenShell, BimQL and Industry Foundation Classes (IFC) File Analyzer (Mazairac 

and Beetz 2013; IfcOpenShell 2018; NIST 2018). For instance, the IFC File Analyzer is 

effective in extracting the complete information from a BIM model and summarizing the 

extracted information in an excel table (NIST 2018).  

Inspired by the no-schema algorithm (Won et al. 2013), this research uses the combination 

of the instance-based approach and one of the open-source BIM information extraction 

library - IfcOpenShell. This integration provides an information extraction of a partial 

BIM model that can extract some common physical elements efficiently and gives enough 

flexibility of user’s information requirements. The information extraction algorithm aims 

to acquire the required information elements about building objects and their properties 

based on the IFC extension for property valuation. Three main steps are involved in the 

information extraction development which will be explained as follows: (1) target 

information identification and its related data structure definition, (2) developing an 

information extraction algorithm that can extract value-relevant design information from 

an IFC instance model, and (3) deploying the information extraction algorithm in an IFC 

instance model. 
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1) Target information identification in IFC instances 

This step aims to identify the target information in an IFC instance model and define the 

representation of its data structure. The target information within an IFC instance model 

contains value-related design information existing in building objects (IfcSpace) and their 

value-specific properties (total area, built date and renovation condition). Therefore, the 

representation of the target information includes several key elements in an IFC data 

model: (1) the globally unique identifier number (GUID) of an IFC instance model, (2) 

the attributes of building objects including building object names, and (3) the attributes 

of required IfcProperty instances that contain the property set names, property names, 

property types, and their nominal values. Figure 6-3 gives an example of the 

representation of the target information according to the IFC data structure. 

 

Figure 6- 3: An example of an item in the data structure representation 
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2) Information extraction algorithm development 

To extract value-related information elements about building objects and their attributes 

for property valuation, information exchange between AEC projects and property 

valuation is delivered through an IFC-based information extraction algorithm. The 

context of how to develop an IFC-based information extraction algorithm is described in 

Figure B-1 and Figure B-2 in the Appendix B. After analyzing the information elements 

and their relationships between IfcObject and IfcProperty, the IFC-based information 

extraction algorithm was developed on Python 3.7 using IfcOpenshell-python module on 

Pycharm software (IfcOpenShell 2018).  

The algorithm works as follows that it will firstly detect the required IFC entities 

associated with selected building elements and then recursively iterate through data 

instances related to the selected elements until all related data instances are extracted. 

Figure B-3 in the Appendix B illustrates the flowchart of the developed IFC-based 

information extraction algorithm that extracting the required building entities and 

properties directly through IfcRelDefinesByProperties and indirectly through 

IfcRelDefinesByType. The extraction process can be classified into 8 steps:  

(1) it will iteratively go through the IfcRelDefinesByProperties and 

IfcRelDefinesByType instances until all required data instances are extracted 

(2) it will extract all the ID numbers of IfcObject and IfcPropertyset (IfcTypeObject) from 

instances extracted in step 1 

(3) it will find instances of IfcObject, IfcPropertySet and IfcTypeObject based on ID 

numbers of instances extracted in step 2 

(4) it will extract ID numbers of IfcPropertySet and IfcProperty instances from step 3 

(5) it will find instances of IfcProperty and IfcPropertySet based on ID numbers extracted 

in step 4 

(6) it will extract ID numbers of IfcPropety instances from the extracted IfcPropertySet 

instances and find instances of IfcProperty based on ID numbers of IfcProperty instances 

(7) it will extract object names, object types, property names and property nominal values 

from step 3, step 5 and step 6 
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(8) the duplicates of the extracted object names, object types, property names and property 

nominal values will be compared and removed. 

The application of the developed IFC-based information extraction algorithm to extract 

required information through the IfcRelDefinesByProperties instance directly and 

IfcRelDefinesByType instance indirectly was explained in Figure B-4 in the Appendix B. 

An example of an extracted information item for required information extraction was 

displayed in Table 6-1. 

Table 6- 1: An example of an extracted information item 

Instance GUID Object name Property set Property name Property nominal value 

30 Bedroom  Pset_PV_Building renovationCondition IFCLabel(‘simplicity’) 

 

6.3 Genetic Algorithm Optimized Gradient Boosting 

Ensemble Model (GA-GBR) 

6.3.1  Data preparation and descriptive statistics 

The preliminary steps of constructing the proposed GA-GBR model involve data 

collection, data pre-processing and coding of input variables. The experimental datasets 

were collected from two sources. One was collected from the Kaggle website, uploaded 

by  Qiu (2018), that contains sale price data on the registered property sales in China from 

2009 to 2018, which originally fetched from Lianjia (a well-known Chinese real estate 

brokerage company). The other one is about the transacted property sales in USA from 

the GitHub website which was published by a data scientist from San Francisco (Katepalli 

2017). 

1) The Chinese data set 
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Table 6- 2: Property variables in the Chinese dataset 

Variables Columns in Dataset Description 

House price totalPrice Transacted price (RMB) 

Total area square Size of property in square meters (㎡) 

Living room livingRoom The number of living room 

Drawing room drawingRoom The number of drawing room 

Kitchen kitchen The number of kitchens 

Trade time tradetime The time of transaction 

Active days DOM Active days on market 

Bathroom bathroom The number of bathrooms 

Followers followers The number of people follow the transaction 

Building category buildingType Including tower (1), bungalow (2), combination 

of plate and tower (3), and plate (4). 

Construction time constructionTime The time of construction 

Renovation 

condition 

renovationCondition Including other (1), rough (2), Simplicity (3), 

and hardcover (4). 

Height floor The height of the house 

Community 

average price 

communityAverage Community average price by square (RMB) 

Building structure buildingStructure Including unknown (1), mixed (2), brick and 

wood (3), brick and concrete (4), steel (5), and 

steel-concrete composite (6). 

Elevator elevator Have (1) or not have elevator (0) 

Longitude Lng Longitude coordinates using the BD09 protocol. 

Latitude Lat Latitude coordinates using the BD09 protocol. 

Ladder ratio ladderRatio The proportion between the number of residents 

on the same floor and the number of elevators of 

ladder. It describes how many ladders a resident 

has on average. 

Property right fiveYearsProperty If the owner has the property for less than 5 

years. 
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After data pre-processing, 36728 traded houses in Beijing from 2010 to 2018 were 

selected as the Chinese housing price dataset (the specific number chosen is to keep the 

same size with the American dataset in the next). Each traded property contains various 

property variables such as the size of house, the number of living room, kitchen, bathroom, 

the height of the house, building categories, construction time, renovation condition, 

building structure, the number of people follow the transaction, active days on market, 

and address. The detailed information upon the 23 variables were explained in the Table 

6-2. Continuous, categorical and binary variables were applied. For instance, continuous 

variables included House price, Total area, Active days, Followers, Height, Construction 

time, Community average price, Longitude, Latitude, and Ladder ratio. While Elevator, 

Property right and Subway used binary variables, the others belong to categorical types. 

The descriptive statistics in the Table 6-3 displays the variability within the data, such as 

minimum, maximum, mean, and standard deviation. The average property size is 82.5 

square meters (㎡) with two living rooms. The average number of stories is 13. By the 

traded house price, the average is ¥4110000 and standard deviation is ¥2530000. 

Table 6- 3: Descriptive statistics of variables 

Variables Minimum Maximum Mean Standard Deviation 

Total area 7.4 640 82.5 36.5 

Living room 0 7 2 0.7 

Active days 1 1677 29 50 

Drawing room 0 5 1 0.5 

Bathroom 0 6 1 0.4 

Followers 0 1143 27 44 

Height 1 63 13 7.8 

Community 

average price 

10847 183109 63319 22215 

House price 110000 49000000 4110000 2530000 
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2) The American data set 

Table 6- 4: Property variables in the American dataset 

Variables Columns in dataset Description 

House price sale_price Transacted price ($) 

Total area total_sqft Size of property in square meters (㎡) 

Living area livable_sqft Size of living area in square meters (㎡) 

Garage area garage_sqft Size of garage in square meters (㎡) 

Pool has_pool Whether have a pool or not 

Garage attached garage_type_attached Have an attached garage 

Garage detached garage_type_detached Have a detached garage 

Full bathroom full_bathroom The number of full bathrooms 

Fireplace has_fireplace Whether have a fireplace 

Number of 

Bedrooms 

num_bedrooms The number of bedrooms 

Carport area carport_sqft Size of carport area in square meters (㎡) 

Built year year_built The built year of property 

Stories stories The total number of stories 

Half bathroom half_bathroom The number of half bathrooms (a bathroom 

with only a toilet and sink, but no bath or 

shower) 

Central cooling has_central_cooling Whether have central cooling system or not 

Central heating has_central_heating Whether have central heating system or not 

City  city The name of cities 
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The American housing price dataset includes 36728 traded houses from 1889 to 2017 in 

46 different cities of USA. Each property data contains various property variables such 

as Total area, Living area, Garage type, Garage size, Pool, Bathroom, Fireplace, the 

Number of bedrooms, Carport area, Built year, Stories, Central cooling, Central heating, 

and Address. The details about the property variables were illustrated in Table 6-4. 

Continuous, categorical, and binary variables were applied. For example, continuous 

variables contained Total area, Living area, Garage area, Carport area, Built year and 

house price. While Fireplace, Pool, Central heating, and Central cooling used binary 

variables, garage type had three categorical types: attached, detached and none. 

The descriptive statistics (Table 6-5) displays the variability within the data, such as 

minimum, maximum, mean, and standard deviation. The average property size is 224.7 

square meters (㎡) with three bedrooms. By the parking area, the average garage size and 

the average carport size are 53.0 square meters (㎡ ) and 5.3 square meters (㎡ ) 

respectively. The average number of stories of housing is 1.41. By the transacted house 

price, the average is $447003.5 and standard deviation is $297570. 

Table 6- 5: Descriptive statistics of variables 

Variables Minimum Maximum Mean Standard Deviation 

Total area 87 1544.9 224.7 91.4 

Living area 79 1240.6 210.6 83.529 

Garage area 1 831.8 53.0 17.2 

Carport area 0 18.2 5.3 5.7 

Number of Bedrooms 0 14 3.36 0.96 

Stories 0 4 1.41 0.52 

Full bathrooms 0 8 1.99 0.76 

Half bathrooms 0 1 0.56 0.50 

House price 1260 10836000 447003.5 297570 
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6.3.2  Exploratory data analysis 

Before fitting data to the proposed GA-GBR model, it is necessary to explore the 

relationship between the input features and the target price. This helps researchers 

discover the implicit patterns from different data sets, which might contribute to 

improving model performance of the proposed AVM. 

1) The Chinese data set 

Figure 6-4 explains the correlation between the input features and the target price in the 

Chinese data set. While the Total area (square) variable shows the highest correlation 

with the house price, the Ladder ratio (ladderRatio) variable shows the lowest correlation 

with the house price. Five variables, which are Living room, Drawing room, Bathroom, 

Trade time, and Community average price, show a relatively high positive correlation 

with the house price. Three variables, which are Longitude, Building category and 

Property right, show negative correlations with the house price. 

 

Figure 6- 4: Correlation analysis of the house price and the input features in the Chinese 

dataset 
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Figure 6-5 displays the linear relationship between the continuous variables (Active days, 

Total area, Followers, Height, Construction time, Community average price, Longitude, 

Latitude, and Trade time) and house price by plotting data and a linear regression model 

fit. The y-axis shows the value of the total house price and the x-axis shows the value of 

individual continuous variables. The red lines show the linear fits of continuous variables, 

while the blue points show the actual data. Generally, a linear regression model fit figure 

would show the blue points around the red line, going up or down gradually. The plots in 

Figure 6-5 show the blue points are scattered around the red line, which means that the 

relationship between the house price and input continuous features are complex and 

significantly non-linear. While the Longitude variable shows a negative correlation with 

the house price, the other eight continuous variables show positive correlations with the 

house price.  

 

Figure 6- 5: Correlation analysis of the house price and the input features in the Chinese 

dataset 
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Figure 6- 6: Correlation analysis of the house price and the input features in the Chinese 

dataset 

Figure 6-6 presents the box plots that represent the the relationship between the 

categorical variables and the house price. The y-axis shows the value of the total house 

price and the x-axis shows the value of individual categorical variables. The vertical dots 

show the distribution of obsearvations. Four variables, which are Living room, Drawing 
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room, Kitchen, and Bathroom, show clear positive relationships with the house price. The 

other variables show the total price of different categories or groups in the related 

variables. For instance, there are 4 groups in the building type variable: (1) the tower 

group, (2) the bungalow group, (3) the combination of plate and tower group, and (4) the 

plate group. From the subfigure, it shows the combination of plate and tower group has 

the highest house price and the the bungalow group has the lowest house price. In the 

distrct variable, there are 13 groups: (1) the DongCheng district, (2) the FengTai district, 

(3) the DaXing district, (4) the FaXing district, (5) the FangShang district, (6) the 

ChangPing district, (7) the ChaoYang district, (8) the HaiDian district, (9) the 

ShiJingShan district, (10) the XiCheng district, (11) the TongZhou district, (12) the 

ShunYi district, and (13) the MenTouGou district. From the subfigure, it shows the 

XiCheng district (the closest district to the city centre) has the highest house price and the 

ShunYi district (the longest distance to the city centre) has the lowest house price. 

2) The American data set 

 

Figure 6- 7: Correlation analysis of the house price and the input features in the 

American dataset 
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Figure 6-7 illustrates the correlation between the input features and the target price in the 

American data set. While the Total area (total_sqft) variable shows the highest correlation 

with the house price, the Half bathrooms variable shows the lowest correlation with the 

house price. Five variables, which are Living area, Garage area, Full bathrooms, the 

Number of bedrooms, and Pool, show a relatively high positive correlation with the house 

price. Two variables, which are the Carport area (carport_sqft) and Detached Garage 

(garage_type_detached), show negative correlations with the house price.  

 

Figure 6- 8: Correlation analysis of the house price and continuous features in the 

American dataset 

Figure 6-8 shows the linear relationship between the continuous variables (Built year, 

Living area, Total area, Garage area, and Carport area) and the house price by plotting 

data and a linear regression model fit. The y-axis shows the value of the total house price 

and the x-axis shows the value of individual continuous variables. The red lines show the 

linear fits of continuous variables, while the blue points show the actual data. Generally, 

a linear regression model fit figure would show the blue points around the red line, going 

up or down gradually. The plots in Figure 6-8 show the blue points are scattered around 
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the red line, which means the relationship between the house price and input continuous 

features are complex and significantly non-linear. Three variables, which are Living area, 

Total area, and Garage area, show strong positive correlations with the house price, 

whereas the Built year feature shows a low positive correlation with the house price. It 

should be noticed that the Carport area feature shows a negative correlation with the house 

price.  

 

Figure 6- 9: Correlation analysis of the house price and categorical features in the 

American dataset 

Figure 6-9 presents the box plots that represent the the relationship between the 

categorical variables and the house price. The y-axis shows the value of the total house 
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price and the x-axis shows the value of individual categorical variables. The vertical dots 

show the distribution of obsearvations. Two variables, which are Number of bedrooms 

and Full bathrooms, show clear positive relationships with house price, whereas the 

Detached Garage (garage_type_detached) feature shows a negative relationship with the 

house price. A house with a fireplace, pool or central heating system shows a higher price. 

To sum up, in the Chinese data set, seven variables, which are Total area, Living room, 

Drawing room, Bathroom, Kitchen, Trade time, and Community average price, show a 

relatively high positive correlation with the house price, of which the Total area variable 

shows the highest correlation with the house price. The Longitude variable shows a 

negative correlation with the house price. From the perspective of different building types, 

the combination of plate and tower group shows the highest house price and the the 

bungalow group shows the lowest house price. From the perspective of different districts 

in Beijing, the XiCheng district (the closest district to the city centre) shows the highest 

house price and the ShunYi district (the longest distance to the city centre) shows the 

lowest house price. 

In the American data set, six variables, which are Total area, Living area, Garage area, 

Full bathrooms, the Number of bedrooms, and Pool, show a relatively high positive 

correlation with the house price, of which the Total area shows the highest correlation 

with the house price. A house with a fireplace, pool or central heating system shows a 

higher price. Two variables, which are the Carport area and Detached Garage, show 

negative correlations with the house price. 

From the correlation analysis of the input features and the target price, it is revealed that 

the relationship between the input features and the target price are complex and 

significantly non-linear, and the Total area variable shows the strongest positive 

correlation with the house price in both the Chinese and American data sets. It is indicated 

that the complex relationships between the input features and the target price are difficult 

to be directly estimated using simple linear machine learning models such as Linear 

Regression and KNN, whereas complex models such as ANN and decision tree-based 

machine learning models have the potential to fit well with the data. 



   

112 

 

6.3.3  Feature selection 

Feature engineering is a crucial step in machine learning pipeline that involves extracting 

features from input raw data and transforming them into suitable formats for machine 

learning algorithm requirements. The right feature engineering can get rid of non-

important features, reduce the model complexity, contribute to model explanation, 

achieve the information gain, and improve the performance of machine learning models. 

The right features can only be defined in the context of both the model and the data, for 

data and models are so diverse that it is difficult to generalize the practice of feature 

engineering across projects (Zheng and Casari 2018). 

There are three typical feature selection techniques: filtering methods, wrapper methods 

and embedded methods. Filtering methods are much cheaper than wrapper methods, but 

they are not connected to the model being employed. As missing useful features will 

generate a weak machine learning model, it is suggested to do prefiltering conservatively 

in order to avoid accidentally pruning away useful features before the model training stage 

(Zheng and Casari 2018). Wrapper methods are expensive but provide a quality score for 

a proposed subset of features. Embedded methods perform feature selection as part of the 

model training process. Compared to wrapper methods, embedded methods are less 

powerful but strike a balance between computational expense and quality of results. 

Considering the quality of feature selection and computational cost, the wrapper method 

(RFE) and embedded methods are selected in this project, to get an understanding of the 

optimal feature subsets in different data sets. 

• The wrapper method 

 Recursive feature elimination (RFE) is a wrapper-type feature selection algorithm, which 

aims at finding the best performing feature subset by removing the least important 

features whose deletion will have the least effect on model generalization performance. 

While RFE starts from a complete dataset and then prune away the least relevant feature 

one by one to find the most important features, it is worth to mention that several useless 

weak features by themselves can provide a significant performance improvement when 

used together (Chen and Jeong 2007). An important hyperparameter for tuning RFE 
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algorithm is the number of features to select. In practice, it is difficult to find the best 

number of features to select with RFE, so different values should be tested.  

1) The Chinese data set 

Figure 6-10 displays the relationship between model accuracy (𝑅2) and the number of 

features (original 21 input columns before one hot encoding) using the decision tree based 

RFE. After testing with different numbers of input features, it was observed that the model 

accuracy reaches the highest score with 9 features at 0.9381. The top 9 features selected 

by the decision tree - based RFE are Total area, Height, Trade time, Active days, 

Construction time, Community average price, Followers, Latitude, and Longitude. 

 

Figure 6- 10: The relationship between model accuracy (𝑅2) and the number of features 

using the RFE method in the Chinese dataset 

2) The American data set 

Figure 6-11 displays the relationship between model accuracy (𝑅2) and the number of 

features (original 15 input columns before one hot encoding) using the decision tree - 

based RFE. After testing with different numbers of input features, it was observed that 

the model accuracy reaches the highest score with 6 features at 0.8589. The 6 most 
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important features selected by decision tree - based RFE are Total area, Living area, 

Garage area, Built year, Stories, and Pool. 

 

Figure 6- 11: The relationship between model accuracy (𝑅2) and the number of features 

using the RFE method in the American dataset 

In Figure 6-10 and Figure 6-11, it is discovered that very good predictive accuracy (R-

square) is already obtained with several dominant features. For instance, in Figure 6-10, 

the predictive accuracy of the top 3 features is almost as good as the top 9 features. In 

Figure 6-11, the predictive accuracy of the top 5 features is almost as good as the top 13 

features. It seems that it is not worth spending massive efforts on using more features to 

have only a small percentage of improvement on predictive accuracy. However, this small 

improvement on predictive accuracy might actually have a big influence on the income 

of commercial companies or on human well-being. For instance, the small improvement 

on predictive accuracy of the AVM for a big real estate company (e.g. Zoopla) might 

bring 1% more transactions, this will increase the annual revenue with £31.7 million, 

referring to the annual revenue of Zoopla at £317.35 million on 2018 (Craft 2022). In 

order to reduce the carbon footprint, the UK innovation agency – Nesta did an experiment 

with 130 participants, the AI-based recommendation system for recommending healthier 

food with less calories can save an average of 3.9 kilos of carbon dioxide per participant. 
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If 1000 people made the similar choices of the healthier food recommended by the AI 

system, the saved carbon footage is equivalent to diving a petrol-powered car 27000 

kilometres, which is two-thirds the way around the planet (Nesta 2022). In addition, 

research on AI for automatic driving and medical diagnosis is a popular trend in the past 

two decades, the predictive accuracy of AI on these areas related human life will always 

require to be further improved. 

• The embedded method 

The embedded method performs feature selection as part of training machine learning 

models. Typical embedded methods are based on various types of algorithms such as 

decision tree, logistic regression, and Lasso regression etc. Since the relationship between 

the target price and the input features are complex and significantly non-linear, it is 

difficult for classic linear models such as SVM, Linear regression, and KNN to fit the 

data. While complex neural networks might fit the data well but limited in the non-

transparent nature known as ‘block box’. Therefore, the decision tree – based embedded 

methods are selected including the GBDT, LightGBM, XGBoost, and Random Forest. 

The decision tree–based algorithms provide a feature importance ranking property 

(feature_importances_) which can calculate the relative importance scores for each input 

feature. The feature importance rankings calculated by the decision–tree based embedded 

methods are provided in the Appendix C. 

1) The Chinese data set 

Table 6-6 lists the feature importance ranking details with the four decision-tree based 

embedded methods and the average ranking of them in the Chinese data set. The four 

columns in the middle of the table list the feature importance rankings of each input 

feature, which are calculated by four different decision-tree based algorithms (GBDT, 

LightGBM, XGBoost, and random forest). Since the feature importance rankings are 

different with different algorithms, to get a generalized feature ranking, the last column 

on the right lists the feature importance ranking calculated by the average ranking of the 

four algorithms. The top 9 important features calculated by the average ranking are 

Community average price, Total area, Trade time, Bathroom, Active days, Living room, 

Latitude, District, and Longitude. 
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Table 6- 6: Feature importance ranking out of 21 calculated by four different decision 

tree-based embedded methods in the Chinese dataset 

Feature GBDT LightGBM XGBoost Random 

Forest 
Average Ranking 

Total area 3 2 1 1 1.75 

Community 

average price 

1 1 2 2 1.5 

Bathroom 6 12 3 3 6 

Trade time 2 3 4 5 3.5 

Active days 5 10 5 6 6.5 

District 7 13 6 10 9 

Building 

structure 

15 21 7 12 13.75 

Living room 4 11 8 4 6.75 

Elevator 17 17 9 13 14 

Latitude 8 4 10 9 7.75 

Drawing room 9 14 11 7 10.25 

Subway 16 18 12 18 16 

Longitude 10 5 13 11 9.75 

Renovation 

condition 

18 15 14 17 16 

Construction 

time 

14 6 15 16 12.75 

Ladder ratio 13 9 16 8 11.5 

Followers 11 8 17 14 12.5 

Building 

category 

19 16 18 19 18 

Kitchen 21 20 19 20 20 

Property right 20 19 20 21 20 

Height 12 7 21 15 13.75 
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Compare with the top 9 features selected by the wrapper method, the Bathroom, Living 

room and District features selected by the embedded method were replaced by the Height, 

Construction time and Followers features in the wrapper method, while the other six 

features remain the same. In total, there are 12 important features selected by the two 

methods, namely Community average price, Total area, Trade time, Bathroom, Active 

days, Living room, Latitude, District, Height, Construction time, Followers, and 

Longitude. There are 6 common features selected by the two methods, including 

Community average price, Total area, Trade time, Active days, Latitude, and Longitude. 

These 6 features are given more attention when trying to improve the model performance 

of the GA-GBR model in the experiment stage. 

2) The American data set 

Table 6-7 lists the feature importance ranking details with the four different decision-tree 

based embedded methods and the average ranking of them in the American data set. The 

four columns in the middle of the table list the feature importance rankings of each input 

feature, which are calculated by four different decision-tree based algorithms (GBDT, 

LightGBM, XGBoost, and random forest). The last column on the right displays the 

feature importance ranking calculated by the average ranking of the four algorithms. The 

top 6 important features calculated by the average ranking are Total area, Living area, 

Garage area, Built year, Full bathroom, and Pool. It is worth to mention that the Number 

of Bedrooms feature ranks the seventh in the average ranking column, which might be 

questioned that it should rank before the Garage area or the Full Bathroom features in real 

life. The possible reason behind this phenomenon is that the feature importance of the 

Living area feature has already reflected this impression that the weight of the Living area 

feature is much higher than that of the Number of Bedrooms feature. 

Compare with the six most important features selected by the wrapper method - RFE, the 

Full Bathroom feature selected by the embedded method was replaced by the Stories 

feature in the wrapper method, whereas the other five features remain the same. In total, 

there are seven important features selected by the two methods, namely Total area, Living 

area, Garage area, Built year, Stories, Full Bathroom and Pool. There are 5 common 
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features selected by the two methods, namely Total area, Living area, Garage area, Built 

year, and Pool. These five features are given more attention when trying to improve the 

model performance of the GA-GBR model in the experiment stage. 

Table 6- 7: Feature importance ranking out of 15 calculated by four different decision 

tree-based embedded methods in the American dataset 

Feature GBDT LightGBM XGBoost Random Forest Average Ranking 

Total area 1 4 1 2 2 

Living area 2 3 3 1 2.25 

Garage area 3 1 9 4 4.25 

Built year 4 2 5 6 4.25 

Number of 

bedrooms 

7 5 7 7 6.5 

Pool 6 8 2 5 5.25 

Full bathroom 5 6 6 3 5 

Fireplace 8 10 8 8 8.5 

Stories 9 7 4 9 7.25 

Half bathroom 10 9 10 11 10 

Garage 

attached 

11 11 12 14 12 

Central heating 12 14 15 12 13.25 

Carport area 13 12 14 15 11 

Central cooling 14 13 13 10 12.5 

Garage 

detached 

15 15 11 13 13.5 
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6.3.4  The GA-GBR model training  

1) Experimental setup 

The trainings of the GBR and GA-GBR models were performed on the Python 3.7 using 

the scikit-learn library on the PyCharm platform, which was an integrated development 

environment using python language for machine learning. Firstly, the GBR and GA-GBR 

models were experimented with the whole Chinese and American datasets respectively, 

trying different model hyperparameters to find the optimal solution of each model. 

Secondly, the two datasets were divided into different groups according to different 

perspectives, which allows the deep analysis of the relationship between the input features 

and the target price. For instance, the Chinese dataset was divided into 22 groups by 

different building categories (3 groups), building structures (3 groups), renovation 

conditions (3 groups), and districts (13 groups), with 1000 traded house data in each of 

them. The American dataset was divided into 23 groups by different cities (20 groups) 

and different types of garages (3 groups), with 1000 traded house data in each of them. 

There are several model hyperparameters in a traditional GBR model, including the 

number of estimators, learning rate, maximum depth of decision trees, minimum sample 

leaf, and loss function. The hyperparameters tested with grid search algorithm are 

displayed as follows: 

• Number of estimators: 80, 100, 150, 200, 500 

• Learning rate: 0.01, 0.05, 0.1, 0.2 

• Maximum depth: 4, 5, 6, 7, 8, 9 

• Minimum sample leaf: 3, 4, 5, 7, 9 

• Maximum features: 0.1, 0.2, 0.3, 1 

• Loss function: Ls, Lad, Huber 

 

2) GBR model training 

After being cleaned, inspected, and prepared, the Chinese and American datasets were 

randomly split into the training set (70%) and the testing set (30%). Through grid search 

algorithm, the GBR model was experimented with the selected hyperparameter setup 

above. 
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For the two datasets (undivided), it was found that the experimental error of the GBR 

model was the smallest in both the Chinese and the American datasets when model 

hyperparameters were set as: 

• Number of estimators (200) 

• Learning rate (0.2) 

• Maximum depth (7) 

• Minimum sample leaf (5) 

• Maximum features (0.2) 

• Loss function (Huber) 

 

For the divided datasets with 1000 samples, the optimal setting of the model 

hyperparameters were different in the Chinese and American datasets. In the divided 

Chinese datasets, it was found that the experimental error of the GBR model was the 

smallest when model hyperparameters were set as: 

• Number of estimators (100) 

• Learning rate (0.1) 

• Maximum depth (4) 

• Minimum sample leaf (4) 

• Maximum features (0.1) 

• Loss function (Huber) 

 

In the divided American datasets, it was found that the experimental error of the GBR 

model was the smallest when model hyperparameters were set as: 

• Number of estimators (135) 

• Learning rate (0.2) 

• Maximum depth (6) 

• Minimum sample leaf (5) 

• Maximum features (0.1) 

• Loss function (Huber) 
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3) GA-GBR model training 

Generally, the GA-GBR model was trained based on the framework designed in Section 

5.3. The initial population was randomly generated with N solutions, with the number of 

base learners and their associated combination methods. After N solutions were randomly 

generated, the next generation of solutions was generated through the three genetic search 

operations. The fitness of each chromosome in the new generation was evaluated 

according to the fitness function - coefficient of determination (𝑅2) , which was a 

regression accuracy measurement that explains how well a machine learning model fit 

the data. The chromosomes with higher 𝑅2 scores than the GBR model were selected.  

After testing with trial-and-error, it was found that the experimental error of the GA-GBR 

model was the smallest when the parameters in the genetic algorithm were set as follows: 

• Population size: 600 

• Generations: 32 

• Crossover probability: 0.5 

• Mutation rate: 0.1 

The model performance of the trained GA-GBR model is presented and validated with 

three different datasets from China, US and the UK in the next chapter. 

6.4 Conclusion 

This chapter presented the development of the three components of the proposed system, 

including the detailed IFC extension for property valuation, the detailed information 

extraction, and the detailed GA-GBR model training. 7 property sets and 104 properties 

were proposed to add to the IfcSpace and the IfcZone entities as the IFC Property 

Valuation extension. The information extraction algorithm was developed using the 

instance-based approach and the open-source BIM information extraction library – 

IfcOpenShell. The development of the proposed GA-GBR model was divided into 4 main 

steps: (1) data collection and preparation, (2) exploratory data analysis, (3) feature 
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selection using the wrapper method and the embedded method, and (4) the GA-GBR 

model training. The content of this chapter aimed to answer Research Question 4: 

Q4: How to implement the BIM-ML integration framework and how to develop the 

three main components accordingly? 

Answering this research question contributed to developing a prototype system that 

enabled automatic information exchange between AEC projects and property valuation 

and automated property valuation. The detailed answer to this research question is 

discussed further in the Chapter 7.  
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Chapter 7. System Testing and Validation 

This chapter presents the validation of the developed BIM-ML system, which involves 

three steps: (1) validate the trained automated valuation model (GA-GBR), (2) validate 

the IFC-based information extraction as required, and (3) validate the proposed BIM-ML 

system as a complete artifact. Section 7.1 outlines the BIM-ML system testing objectives. 

Section 7.2–7.4 present the implementation and verification results, with the aim to prove 

that the BIM-ML system is functional and reliable when performing automated property 

valuation. 

7.1 System Testing Objectives 

The proposed BIM-ML system testing objectives in terms of the three validation tests are 

explained as follows. 

1) Validation of the trained GA-GBR model 

After training the GA-GBR model, it is necessary to use independent test data sets to 

evaluate the model predictive accuracy and generalization capability. Model performance 

metrics are essential in evaluating the predictive accuracy of statistical models. In the 

scientific community, a number of performance metrics have been defined and are 

currently in use for regression analysis, including the mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean squared error (MSE), root mean squared error 

(RMSE), and coefficient of determination (𝑅2) etc. The details of the five metrics have 

been introduced in the comparison experiment on the eleven different AVMs in Section 

5.2.  

While regression analysis plays an important role in supervised machine learning tasks, 

no consensus has been reached on a unified performance metric to assess the quality of 

the performance of a regression method and explain the mutual relation between the 

ground truth and the predict model. In general, MSE is more sensitive to outliers than 

MAE, and has an advantage to make a comprehensive assessment considering the effect 
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of bias and variance. MAPE, which focuses on the percentage error, makes it suitable for 

evaluating tasks when relative variations being an important factor in the regression task. 

Compared to MAE, MAPE, MSE, and RMSE, a single value of the four metrics does not 

explain much on the performance of the regression model, while the coefficient of 

determination (𝑅2 ) has an advantage in terms of interpretability that it can indicate 

regression performances in an absolute manner. Taking into consideration of model 

predictive accuracy and model explanation capability, in this research the regression 

metrics for the assessment of the trained GA-GBR model has been focused on coefficient 

of determination (𝑅2) and mean squared error (MSE), with the results of other 

abovementioned metrics provided as well. 

As explained in Table 7-1, the validation of the trained GA-GBR model has been 

conducted on three different datasets (from China, US, and UK) in two ways: validation 

on the three undivided datasets and validation on the divided datasets representing 

different perspectives. For the consistency, in the next, the divided datasets will be clearly 

mentioned, whereas it means the datasets are undivided if there are no additional 

statements.  

There are two main objectives of testing the trained GA-GBR model on the three datasets: 

(1) compare model performances with different regression models such as linear 

regression, ridge regression, KNN, SVM, ANN, CART, random forest, XGBoost, 

LightGBM, GBR and the proposed GA-GBR; (2) identify the general features in the three 

datasets from different countries. The objective of testing on the divided datasets is to 

explore the implicit relationships between the input features and the target price from 

different perspectives, including perspectives from different building categories, building 

structures, renovation conditions, and districts in the Chinese data set; different cities and 

garages in the American data set; and different property types and Price Paid categories 

in the UK data set. The data descriptions of the Chinese and the American datasets have 

been introduced in Section 6.3.1, after which 70% of the two data sets had been used for 

training the GA-GBR model. The UK data set, works as a comparable group or control 

group for testing the generalization capability of the proposed GA-GBR, will be 

explained in Section 7.2.1 in the next. 
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Table 7- 1: Testing objectives of the trained GA-GBR on the three datasets 

Training 

on the 

three 

datasets 

Training Training on 

the divided 

datasets 

Training 

Chinese 

dataset (70%) 

US dataset 

(70%) 

Chinese 

dataset (70%) 

US dataset 

(70%) 

 

Test on 

the three 

datasets 

Testing  

Test on the 

divided 

datasets 

Testing 

Chinese 

dataset 

(30%) 

U.S. 

dataset 

(30%) 

UK 

dataset 

(100%) 

Chinese 

dataset 

(30%) 

U.S. 

dataset 

(30%) 

UK 

dataset 

(100%) 

 

 

 

Objectives 

 

 

• Compare model performance 

with different regression 

models. 

 

• Identify the general features 

in the big datasets from 

different countries. 

 

 

 

  Objectives 

Explore the relation between 

different input features and the 

target price from different 

perspectives, including views 

from different building categories, 

building structures, renovation 

conditions, districts, cities, 

garages, and Price Paid methods 

(PPD categories) etc. 

2) Validation of the IFC-based information extraction as required 

The validation of the IFC-based information extraction uses the case study method on 

three different BIM models from China, US, and the UK. Due to the limited time and 

resources, the value-related information was firstly achieved from the valuation reports 

of three real estate transaction companies and then translated into the three IFC-based 

BIM models. Based on the developed IFC Property Valuation extension in Section 6.1, 

the value-related information was added in the proposed property sets and properties in 

the IfcSpace and IfcZone entities according to the input features existed in the three data 

sets. There are 22, 15 and 9 input features in the three data sets from China, US and the 

UK. The proposed property sets were listed in Table B-1 in the Appendix B, including 

the Pset_PV_Transaction, Pset_PV_Parcel, Pset_PV_Building, 



   

126 

 

Pset_PV_CondominiumUnit, Pset_PV_Valuation, Pset_PV_MassValuation, and 

Pset_PV_Annex.  

After that, the required value-relevant information was extracted through the developed 

IFC-based information extraction algorithm.  

3) Validation of the proposed BIM-ML system as a complete artifact 

While the proposed GA-GBR model and the IFC-based information extraction were 

validated through the abovementioned steps, it is necessary to validate the two elements 

as a complete artifact. The validation of the whole BIM-ML system was conducted 

through a main python script, which was developed on the PyCharm platform, calling 

together the two functions including the IFC-based information extraction and the 

automated house price prediction.  

 

7.2 Validation of the Automated Valuation Model (GA-GBR) 

7.2.1 Introduction of the UK dataset 

The UK dataset was collected from the UK Housing Prices Paid from the Kaggle website, 

which was originally released by HM Land Registry under the Open Government License 

3.0 (HM Land Registry 2017). The dataset contains all the recorded individual house 

transactions in England and Wales between 1995 and 2017, to keep the same size with 

the Chinese and American datasets, 11018 traded individual houses were selected as one 

of the testing datasets. Each individual case contains ten property variables such as Price, 

Transaction unique identifier, Date of transfer, Property type, Old/new (the age of the 

property), Duration, Town/city, District, County, and PPDCategory type. The detailed 

descriptions of the 10 variables are displayed in the Table 7-2 below. While most of them 

are categorical variables, except for the Price variable with the average value at 

117500£ and standard deviation at 7500£. 
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Table 7- 2: Property variables in the UK dataset 

Variables Description 

Price Transacted price (RMB) 

Transaction unique 

identifier 

A reference number which is unique and automatically generated when 

a sale is recorded. 

Date of transfer When the sale was completed. 

Property type Including detached house (D), which is a stand-alone building; semi-

detached house (S), which shares one common wall with anther house, 

terraced (T), flats or Maisonettes (F), and other types (O). 

Old/New Indicates the age of the property: a newly built property (Y), an 

established residential building (N). 

Duration Related to the tenure: freehold (F), leasehold (L). 

Town/City Town or city 

District District 

County County 

PPDCategory  Indicates the type of Price Paid transaction: (A) Standard Price Paid 

entry, includes single residential property sold for full market value. 

(B) Additional Price Paid entry including transfers under a power of 

sale/repossessions, buy-to-lets (where they can be identified by a 

Mortgage) and transfers to non-private individuals.  
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• Feature selection - the wrapper method 

Figure 7-1 displays the relationship between model accuracy (𝑅2) and the number of 

features using the wrapper method - RFE. After testing with different numbers of input 

features, it was discovered that the model accuracy reached the highest score with 7 

features at 0.8878. The top 7 features selected by the RFE method are Property type, 

Town/City, District, County, Year, Month, and Day. 

 

Figure 7- 1:   The relationship between model accuracy (𝑅2) and the number of input 

features using the wrapper method - RFE in the UK dataset 

• Feature selection - the embedded method 

Table 7-3 lists the feature importance ranking details with the four decision-tree based 

embedded methods and the average ranking of them in the UK dataset. The four columns 

in the middle of the table list the feature importance rankings of each input feature, which 

are calculated by four decision-tree based algorithms (GBDT, LightGBM, XGBoost, and 

random forest). Since the feature importance rankings are different with different 

algorithms, to get a generalized feature ranking, the last column on the right explains the 

feature importance ranking calculated by the average ranking of the four algorithms. The 
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top 7 important features calculated by the average ranking are Year, Town/City, County, 

Property type, District, Duration, and Day. 

Compare with the top 7 features selected by the wrapper method, the Duration feature 

selected by the embedded method were replaced by the Month feature in the wrapper 

method, while the other 6 features remain the same. There are 6 common features selected 

by the two methods, including Year, Town/City, County, Property type, District, and Day. 

Table 7- 3: Feature importance ranking out of 10 calculated by four different decision 

tree-based embedded methods in the UK dataset 

Feature GBDT LightGBM XGBoost Random Forest Average Ranking 

Year 1 2 1 1 1.25 

Town/City 5 5 3 2 3.75 

County 2 4 4 3 3.25 

Property type 3 7 2 4 4 

District 4 1 6 5 4 

Duration 6 8 5 6 6.25 

Day 7 3 7 7 6 

Month 8 6 8 8 7.5 

Old/New 9 9 9 9 9 

PPDCategory 

type 

10 10 10 10 10 

 

7.2.2 Validation on the three undivided datasets 
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The performance of the trained GA-GBR model was firstly evaluated on the three 

undivided datasets, comparing the model performances of the 12 different regression 

models including the proposed GA-GBR and identifying the general features from the 

three different countries. 

1) Testing on the Chinese dataset 

In Figure 7-2, the red line explains the average 𝑅2 of each generation during the genetic 

search process in the GA-GBR model. The predictive accuracy R-square increases from 

generation to generation and shows a convergence around Generation 28. The R-square 

score of the 600 individual chromosomes in Generation 32 is illustrated in Figure 7-3, 

which shows the similar increasing trendline. 

After that, the best chromosome with the highest  𝑅2  was selected for testing model 

predictive accuracy. In terms of coefficient of determination (𝑅2), the model accuracy of 

GA-GBR had an advantage of 1.3% over the GBR model, with 95.2% for GA-GBR and 

93.9% for GBR respectively.  

 

Figure 7- 2: The average 𝑅2 score of each generation during the genetic search process 
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Figure 7- 3: The 𝑅2 score of the 600 individuals of Generation 32 during the genetic 

search process 

Table 7-4 lists the five different accuracy metrics introduced in the first section of this 

chapter, of which the MAE, MAPE, MSE, and RMSE are measuring regression models 

in terms of different types of errors and the coefficient of determination (𝑅2) is measuring 

regression models in terms of prediction accuracy. This means that a better model 

performance requires a lower MAE, MAPE, MSE, and RMSE, and a higher R-squared 

(𝑅2). From the experiments on the test dataset, it is observed that the four linear regression 

models have similar general model performances, with the mean MAE at 77.14, the mean 

MAPE at 26.1%, the mean MSE at 13236, the mean RMSE at 114.8, and the mean 𝑅2 at 

80%. The KNN, SVM and ANN models have unsatisfactory model performances, with 

the MAE ranges from 129.19 to 171.28, the MAPE ranges from 35.5% to 52.9%, the 

MSE ranges from 40468 to 69810, the RMSE ranges from 200.7 to 263.7, and the 𝑅2 

ranges from 5.3% to 39%. The decision tree-based models have good model 

performances, with the mean MAE at 43.88, the mean MAPE at 13.96%, the mean MSE 

at 5406.2, the mean RMSE at 71.86, and the mean 𝑅2 at 92%. It is worth to mention that 

the proposed GA-GBR model has the highest predictive accuracy of the 12 listed models, 
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with the MAE at 35.71, the MAPE at 11.3%, the MSE at 3703, the RMSE at 60.9, and 

the mean 𝑅2 at 95.2%. 

Table 7- 4: Predictive accuracy of the 12 different AVMs in the Chinese data set 

Accuracy metrics MAE MAPE MSE RMSE     𝐑𝟐 

Linear regression 76.79 26.0% 13042 114 80.3% 

Ridge regression 76.75 26.0% 13033 113.9 80.3% 

Lasso regression 77.11 26.1% 13265 114.9 80.0% 

Elastic Net regression 77.89 26.3% 13602 116.4 79.5% 

KNN 129.19 35.5% 40468 200.7 39.0% 

SVM 171.28 51.4% 69810 263.7 5.3% 

ANN 156.73 52.9% 51625 227.2 22.2% 

CART 54.28 15.7% 8610 90.4 86.9% 

AdaBoost 52.89 18.5% 6119 77.9 90.8% 

Random forest 38.65 12.0% 4545 66.7 93.2% 

GBR 

 

 

 

 

37.85 12.3% 4054 63.4 93.9% 

GA-GBR (proposed) 35.71 11.3% 3703 60.9 95.2% 

To understand the trained GA-GBR model, it is necessary to find out which features are 

in the optimal input feature subset and to what extent each feature has contributed to the 

house price prediction. The GBR and GA-GBR, both are decision tree–based models, 

provide a feature importance ranking property for this purpose. The detailed feature 

importance rankings calculated by the GBR and GA-GBR models are illustrated in the 

Appendix D. Referring to the number of input features selected by the two feature 

selection methods in Section 6.3.3, Table 7-5 displays the top 9 features calculated by the 

GBR and GA-GBR models. The total feature importance of the top 9 features selected by 
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the GBR and GA-GBR account for 87.32% and 91.02% of all the 56 input features 

respectively.  

Compare with the six common important features selected by the two feature selection 

methods in Section 6.3.3, all the six common features contributed to the GBR model: 

Total area, Trade time, Active days, Community average price, Latitude, and Longitude; 

and five of them contributed to the GA-GBR model: Total area, Trade time, Active days, 

Latitude, and Longitude. This gives five generic important features in the Chinese 

datasets, namely Total area, Trade time, Active days, Latitude, and Longitude. 

Table 7- 5: Feature importance ranking (top 9 out of 56) calculated by the GBR and 

GA-GBR in the Chinese dataset 

GBR feature Ranking GA-GBR feature Ranking 

communityAverage 23.18% constructionTime 25.06% 

square 21.25% tradeTime 23.46% 

tradeTime 19.37% followers 18.33% 

DOM 6.07% buildingStructure_2 8.92% 

Lat 4.25% Lat 4.10% 

bathRoom 3.81% square 3.06% 

livingRoom_1 3.58% Lng 3.02% 

district_10 3.39% DOM 2.72% 

Lng 2.42% buildingStructure_3 2.35% 

Total feature importance 87.32% Total feature importance 91.02% 

Compare the top 9 features selected by the GBR and GA-GBR models, it was discovered 

that the evolutionary feature selection engine in the proposed GA-GBR model had 

changed the weights of the input features, which make it more suitable for generating a 

good machine learning model. For instance, the GA-GBR model has reduced the weight 
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of the Active days (DOM) feature from 6.07% to 2.72% and increased the weight of the 

Trade time (tradeTime) feature from 19.37% to 23.46%. As introduced in Section 6.3.3 - 

feature selection, the right features can only be defined in the context of both the model 

and the data, for data and models are so diverse that it is difficult to generalize the practice 

of feature engineering across projects (Zheng and Casari 2018). In the context of the GA-

GBR model and the Chinese dataset, the experiment results indicated the Construction 

time, Trade time, and Follower features are more important to generate a good decision-

tree based machine learning model. 

2) Testing on the American dataset 

In Figure 7-4, the red line explains the average  𝑅2 of each generation during the genetic 

search process in the GA-GBR model. The predictive accuracy R-square increases from 

generation to generation and shows a convergence around Generation 28. The R-square 

score of the 600 individual chromosomes in Generation 32 is illustrated in Figure 7-5, 

which shows the similar increasing trendline. 

 

Figure 7- 4: The average 𝑅2 score of each generation during the genetic search process 
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After that, the best chromosome with the highest  𝑅2  was selected for testing model 

predictive accuracy. In terms of coefficient of determination (𝑅2), the model accuracy of 

GA-GBR had an advantage of 3.57% over the GBR model, with 82.5% for GA-GBR and 

78.92% for GBR respectively.  

 

Figure 7- 5: The 𝑅2 score of the 600 individuals of Generation 32 during the genetic 

search process 

Table 7-6 lists the five different accuracy metrics introduced in the first section of this 

chapter, of which the MAE, MAPE, MSE, and RMSE are measuring regression models 

in terms of different types of errors and the R-squared (𝑅2) are measuring regression 

models in terms of prediction accuracy. From the experiments on the test dataset, it is 

observed that the four linear regression models have similar general model performances, 

with the mean MAE at 101982, the mean MAPE at 30.9%, the mean MSE at 3.87e10, the 

mean RMSE at 192855, and the mean 𝑅2 at 60.5%. Compared to the linear regression 

models, the ANN has a relatively better model performance with the MAE at 82297, the 

MAPE at 24.8%, the MSE at 2.84e10, the RMSE at 168508, and the mean 𝑅2 at 70.3%. 
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However, the SVM has the poorest model performance with the MAE at 108669, the 

MAPE at 33.6%, the MSE at 4.39e10, the RMSE at 205520, and the mean 𝑅2 at 55.1%. 

The decision tree-based models have good model performances, with the mean MAE at 

71678, the mean MAPE at 26.3%, the mean MSE at 2.94e10, the mean RMSE at 164781, 

and the mean 𝑅2 at 72.4%. It is worth to mention that the proposed GA-GBR model has 

the highest model prediction accuracy with the MAE at 64356, the MAPE at 20.8%, the 

MSE at 2.08e10, the RMSE at 144341, and the mean 𝑅2 at 82.5%. 

Table 7- 6: Predictive accuracy of the 12 different AVMs in the American dataset 

Accuracy metrics MAE MAPE MSE RMSE 𝑹𝟐 

Linear regression 97006 29.2% 3.67e10 187653 62.7% 

Ridge regression 96985 29.2% 3.67e10 187653 62.7% 

Lasso regression 97006 29.2% 3.67e10 187652 62.7% 

Elastic Net regression 116929 35.9% 4.45e10 208461 53.8% 

KNN 108669 33.6% 4.39e10 205520 55.1% 

SVM 159601 49.3% 9.78e10 310218 2.4% 

ANN 82297 24.8% 2.84e10 168508 70.3% 

CART 84572 26.6% 4.26e10 193374 58.3% 

AdaBoost 101000 37.1% 3.03e10 171939 68.3% 

Random forest 67318 22.8% 2.52e10 155155 74.2% 

GBR 

 

 

 

 

71144 24.1% 2.79e10 159098 78.9% 

GA-GBR (proposed) 64356 20.8% 2.08e10 144341 82.5% 

To understand the trained GA-GBR model, it is necessary to find out which features are 

in the optimal input feature subset and to what extent each feature has contributed to the 

house price prediction. The detailed feature importance rankings calculated by the GBR 

and GA-GBR models are illustrated in the Appendix D. Referring to the number of input 
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features selected by the two feature selection methods in Section 6.3.3, Table 7-7 displays 

the top 6 features calculated by the GBR and GA-GBR models. The total feature 

importance of the top six features selected by the GBR and GA-GBR account for 70.68% 

and 73.72% of all the 61 input features respectively.  

Compare with the five common important features selected by the two feature selection 

methods in Section 6.3.3, four of them contributed to the GBR model: Total area, Living 

area, Built year, and Pool; and two of them contributed to the GA-GBR model: Total area 

and Living area. This gives two generic important features in the American datasets, 

namely the Total area and Living area features. 

Table 7- 7: Feature importance ranking (top 6 out of 61) calculated by the GBR and 

GA-GBR in the American dataset 

GBR feature Ranking GA-GBR feature Ranking 

total_sqft 37.01% total_sqft 23.68% 

livable_sqft 13.61% livable_sqft 20.28% 

city_Coletown 6.43% has_fireplace 9.12% 

full_bathrooms 5.13% garage_type_detached 7.81% 

year_built 4.59% garage_sqft 6.57% 

has_pool 3.91% num_bedrooms 6.26% 

Total feature importance 70.68% Total feature importance 73.72% 

Compare the top 6 features selected by the GBR and GA-GBR models, it was discovered 

that the evolutionary feature selection engine in the proposed GA-GBR model had 

changed the weights of the input features, which make it more suitable for generating a 

good machine learning model. For instance, the GA-GBR model has reduced the total 

weight of the Total area (total_sqft) and Living area (livable_sqft) features from 50.62% 

to 43.96% and increased the weight of the Number of bedrooms (num_bedrooms) feature 

from 2.51% to 6.26% and garage-related features (garage_type_detached and garage_sqft) 

from 3.38% to 14.38%. In the context of the proposed GA-GBR model and the American 
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dataset, the experiment results indicated that the Number of bedrooms and the garage-

related features is more important to generate a good machine learning model than that in 

the traditional GBR. 

3) Testing on the UK dataset 

In Figure 7-6, the red line explains the average R^2 of each generation during the genetic 

search process in the GA-GBR model. The predictive accuracy R-square increases from 

generation to generation and shows a convergence around Generation 28. The R-square 

score of the 600 individual chromosomes in Generation 32 is illustrated in Figure 7-7, 

which shows the similar increasing trendline. 

After that, the best chromosome with the highest  𝑅2  was selected for testing model 

predictive accuracy. In terms of coefficient of determination (𝑅2), the model accuracy of 

GA-GBR had an advantage of 2.4% over the GBR model, with 75.6% for GA-GBR and 

73.2% for GBR respectively.  

 

Figure 7- 6: The average 𝑅2 score of each generation during the genetic search process 
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Figure 7- 7: The 𝑅2 score of the 600 individuals of Generation 32 during the genetic 

search process 

Table 7-8 lists the five different accuracy metrics introduced in the first section of this 

chapter, of which the MAE, MAPE, MSE, and RMSE are measuring regression models 

in terms of different types of errors and the R-squared (𝑅2) are measuring regression 

models in terms of prediction accuracy. From the experiments on the test dataset, it is 

observed that the four linear regression models have similar general model performances, 

with the mean MAE at 0.52, the mean MAPE at 4.5%, the mean MSE at 0.44, the mean 

RMSE at 0.65, and the mean 𝑅2 at 11.56%. Compared to the linear regression models, 

the ANN has a relatively better model performance with the MAE at 0.38, the MAPE at 

3.2%, the MSE at 0.23, the RMSE at 0.48, and the mean 𝑅2 at 58.3%. The decision tree-

based models have good model performances, with the mean MAE at 0.34, the mean 

MAPE at 3.0%, the mean MSE at 0.21, the mean RMSE at 0.45, and the mean 𝑅2 at 

66.8%. It is worth to mention that the proposed GA-GBR model has the highest model 

prediction accuracy with the MAE at 0.31, the MAPE at 2.7%, the MSE at 0.16, the 

RMSE at 0.41, and the mean 𝑅2 at 75.6%. 
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Table 7- 8: Predictive accuracy of the 12 different AVMs in the UK dataset 

Accuracy metrics MAE MAPE MSE RMSE 𝑹𝟐 

Linear regression 0.43 3.7% 0.3 0.55 46.0% 

Ridge regression 0.43 3.7% 0.3 0.55 0.08% 

Lasso regression 0.60 5.2% 0.6 0.75 0.08% 

Elastic Net regression 0.60 5.2% 0.56 0.75 0.08% 

KNN 0.43 3.7% 0.31 0.56 44.5% 

SVM 0.48 4% 0.38 0.62 32.0% 

ANN 0.38 3.2% 0.23 0.48 58.3% 

CART 0.37 3.2% 0.27 0.48 59.3% 

AdaBoost 0.37 3.2% 0.22 0.48 59.4% 

Random forest 0.33 2.8% 0.19 0.43 66.4% 

GBR 

 

 

 

 

0.34 2.9% 0.19 0.43 73.2% 

GA-GBR (proposed) 0.31 2.7% 0.16 0.41 75.6% 

To understand the trained GA-GBR model, it is necessary to find out which features are 

in the optimal input feature subset and to what extent each feature has contributed to the 

house price prediction. The detailed feature importance rankings calculated by the GBR 

and GA-GBR models are illustrated in the Appendix D. Referring to the number of input 

features selected by the two feature selection methods in Section 7.2.1, Table 7-9 displays 

the top 7 features calculated by the GBR and GA-GBR models. The total feature 

importance of the top 7 features selected by GBR and GA-GBR account for 94.03% and 

98.9% of all the 17 input features respectively.  

Compare with the 6 common important features selected by the two feature selection 

methods in Section 7.2.1, all the 6 common features contributed to the GBR model, and 
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5 of them contributed to the GA-GBR model. This gives 5 generic features in the UK 

dataset, namely Year, Town/City, County, Property type, and District. 

Compare the top 7 features selected by the GBR and GA-GBR models, it was discovered 

that the evolutionary feature selection engine in the proposed GA-GBR model had 

changed the weights of the input features, which make it more suitable for generating a 

good machine learning model. For instance, the GA-GBR model has reduced the weight 

of the Property_Type_is__D feature from 11.16% to 0.16% and increased the weight of 

the month feature from 1.2% to 13.90%. In the context of the proposed GA-GBR model 

and the UK dataset, the experiment results indicated that the month feature is more 

important to the GA-GBR model, which generated a higher model predictive accuracy 

than that in the traditional GBR model. 

Table 7- 9: Feature importance ranking (top 7 out of 17) calculated by the GBR and 

GA-GBR in the UK dataset 

GBR feature Ranking GA-GBR feature Ranking 

year 45.83% year 47.86% 

County 15.20% County 17.76% 

Property_Type_is__D 11.16% month 13.90% 

Town/City 10.82% Town/City 8.99% 

District 7.11% District 7.73% 

Property_Type_is__T 2.58% Property_Type_is__F 1.71% 

day 1.33% Property_Type_is__D 0.96% 

Total feature importance 94.03% Total feature importance 98.9% 

 

From the testing results on the Chinese, American and UK datasets, it was concluded by 

the author as follows:  
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(1) From the comparison of different regression model accuracy metrics on the 12 

AVMs including the proposed GA-GBR model, in general, linear regression 

models does not have a good model fit on all the three datasets. The KNN and 

SVM have not achieved a satisfactory model performance on the Chinese and 

American datasets but show better performance than the linear models on the UK 

dataset. The ANN preforms better than the linear regression models on the 

American and UK datasets, but shows disadvantage on the Chinese dataset. The 

decision-tree based models generally have better performances than all other 

models with decent predictive accuracy scores, in which, the proposed GA-GBR 

model has the highest predictive accuracy. 

(2) During the genetic search process, all the 32 GA generations had a higher 

predictive accuracy ( 𝑅2) over the traditional GBR model, with an advantage of 

predictive accuracy at 1.3% on the Chinese dataset, 3.57% on the American 

dataset, and 2.4% on the UK dataset. This proves the proposed GA-GBR model 

not only has achieved a decent predictive accuracy, but also has a high 

generalization capability for property valuation. 

7.2.3 Validation on the divided datasets representing different 

perspectives 

The relationships between the GA-GBR model and the input features will be further 

explored in this section. The three big datasets were divided into different groups 

according to eight different perspectives, with 1000 house transaction data in each of them. 

For instance, the Chinese dataset was divided into 22 groups by different building 

categories (3 groups), building structures (3 groups), renovation conditions (3 groups), 

and districts (13 groups). The American dataset was divided into 23 groups by different 

cities (20 groups) and different types of garages (3 groups). The UK dataset was divided 

into 6 groups by different property types (4 groups) and different types of Price Paid 

transactions (2 groups).  

The predicted price by the GBR and GA-GBR models was compared with the actual price 

using different datasets from different perspectives. From Figure 7-8 to Figure 7-15, the 
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bar chart showed the predicted values of house price by the two models and the actual 

price in the three groups, while the line chart on the top explained the price difference of 

the two models by using the regression metrics MAPE, which is often calculated as a 

percentage: 

                                         MAPE =
1

n
∑ |

At − Ft

At 

n
t=1 |                                                           (14) 

where At is the actual value and Ft is the predicted value. 

 

1) Testing on the Chinese dataset 

The Chinese dataset was tested from four different perspectives including different 

building categories, building structures, districts, and renovation conditions. 

• From the perspective of different building categories 

The predicted price by the GBR and GA-GBR models was firstly compared with the 

actual price using the three different building-category-related datasets: (1) the tower 

group, (2) the combination of plate and tower group, and (3) the plate group. From Figure 

7-8, it was observed the predicted price by the GA-GBR model was closer to the actual 

price than that predicted by the GBR model, with a smaller MAPE at 0.6%, 1.6% and 

1.02% in the three different groups respectively. This proved the advantage of the 

proposed GA-GBR model with a higher prediction accuracy than the traditional GBR 

model. 

To understand the predictive performance improvement of the GA-GBR model, Table 7-

10 listed the top three important features to the two models in the three groups, which 

were calculated using the embedded feature importance function in the decision tree-

based models. In group 1 (the tower group), the second important feature – 

CommunityAverage (the community average price) in the GBR model was replaced by 

the feature – Elevator in the GA-GBR model, with other two features weights changed: 

21.11% to 14.58% for the Square feature and 11.66% to 13.47% for the Trade time 
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Figure 7- 8: Comparison of the actual price and predicted price by the two models in the 

three building-category-related datasets 

(TradeTime) feature. In group 2 (the combination of plate and tower group), the Square 

and CommunityAverage features in the GBR model were replaced by the DOM (active 

days on market) and Floor (the height of houses) in the GA-GBR model. In group 3 (the 

plate group), the Square and CommunityAverage features in the GBR model were 

replaced by the DOM (active days on market) and ConstructionTime (the time of 

construction) in the GA-GBR model. It was discovered that the Trade Time feature was 

important to both the GA-GBR and GBR in all the three groups. For the tower building 
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type, the Elevator feature was considered more important to the GA-GBR model than the 

GBR model. For the plate building type, the DOM (active days on market) and 

Construction Time features were considered more important to the GA-GBR than the 

GBR model. 

Table 7- 10: Feature importance ranking (top 3) by GBR and GA-GBR in the three 

building-category-related datasets 

Tower Plate and tower Plate 

GBR feature Rank GBR feature Rank GBR feature Rank 

Square 21.11% Square 19.74% CommunityAverage 18.82% 

CommunityAverage 13.67% CommunityAverage 16.69% TradeTime 15.07% 

TradeTime 11.66% TradeTime 14.76% Square 13.36% 

GA-GBR feature Rank GA-GBR feature Rank GA-GBR feature Rank 

Square 14.58% DOM 26.85% ConstructionTime 25.52% 

Elevator 13.94% TradeTime 25.81% DOM 16.86% 

TradeTime 13.47% Floor 14.67% TradeTime 12.72% 

• From the perspective of different building structures 

In this subsection, the predicted price by the GBR and GA-GBR models was compared 

with the actual price using the three different building-structure-related datasets: (1) the 

mixed group, (2) the brick and concrete group, and (3) the steel-concrete composite group. 

In Figure 7-9, it was observed the predicted price by the GA-GBR model was closer to 

the actual price than that predicted by the GBR model, with a smaller MAPE at 0.09%, 

1.69% and 1.12% in the three different groups respectively. This proved the advantage of 

the proposed GA-GBR model with a higher prediction accuracy than the traditional GBR 

model. 
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Figure 7- 9: Comparison of the actual price and predicted price by the two models in the 

three building-structure-related datasets 

To understand the predictive performance improvement of the GA-GBR model, Table 7-

11 listed the top three important features to the two models in the three groups, which 

were calculated using the embedded feature importance function in the decision tree-

based models. In group 1 (the mixed group), the second important feature – 

CommunityAverage (the community average price) in the GBR model was replaced by 

the feature – Lng (Longitude) in the GA-GBR model, with other two features weights 

changed: 8.6% to 13.15% for the DOM (active days on market) feature and 27.39% to 

27.12% for the TradeTime feature. In group 2 (the brick and concrete group), the Square 

and CommunityAverage features in the GBR model were replaced by the DOM (active 
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days on market) and ConstructionTime (the time of construction) in the GA-GBR model. 

In group 3 (the steel-concrete composite group), the Square and CommunityAverage 

features in the GBR model were replaced by the Followers and LadderRatio in the GA-

GBR model.  

It was discovered that the Trade Time feature was important to both the GA-GBR and 

GBR in all the three groups. For the brick and concrete group, the Construction Time 

feature was considered more important to the GA-GBR model than the GBR. For the 

steel-concrete composite group, the Followers and LadderRatio features were considered 

more important to the GA-GBR than the GBR.  

Table 7- 11: Feature importance ranking (top 3) by GBR and GA-GBR in the three 

building-structure-related datasets 

Mixed Brick and concrete Steel-concrete composite 

GBR feature Rank GBR feature Rank GBR feature Rank 

TradeTime 27.39% TradeTime 23.69% CommunityAverage 20.04% 

CommunityAverage 22.92% CommunityAverage 23.68% Square 14.31% 

DOM 8.6% Square 8.02% TradeTime 11.5% 

GA-GBR feature Rank GA-GBR feature Rank GA-GBR feature Rank 

TradeTime 27.12% ConstructionTime 22.63% Followers 26.02% 

Lng 14.31% DOM 12.54% TradeTime 21.16% 

DOM 13.15% TradeTime 10.83% LadderRatio 19.33% 

 

• From the perspective of different districts 
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Figure 7- 10: Comparison of the actual price and predicted price by the two models in 

the 13 district-related datasets 

In this subsection, the predicted price by the GBR and GA-GBR models was compared 

with the actual price using the 13 different district-related datasets: (1) the DongCheng 

district, (2) the FengTai district, (3) the DaXing district, (4) the FaXing district, (5) the 

FangShang district, (6) the ChangPing district, (7) the ChaoYang district, (8) the HaiDian 

district, (9) the ShiJingShan district, (10) the XiCheng district, (11) the TongZhou district, 

(12) the ShunYi district, and (13) the MenTouGou district. In Figure 7-10 above, it was 
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observed the predicted price by the GA-GBR model was closer to the actual price than 

that predicted by the GBR model, with a smaller MAPE in all the 13 different groups 

respectively. This proved the advantage of the proposed GA-GBR model with a higher 

prediction accuracy than the traditional GBR model. 

Table 7- 12: Feature importance ranking (top 3) by GBR and GA-GBR in the four 

district-related datasets 

XiCheng district  FengTai district ChaoYang district ShunYi district 

GBR 

feature 

Rank GBR 

feature 

Rank GBR 

feature 

Rank GBR 

feature 

Rank 

square 23.82% square 28.29% square 23.11% tradeTime 28.46% 

tradeTime 21.44% tradeTime 16.10% community

Average 

12.98% square 18.22% 

DOM 10.30% DOM 11.32% tradeTime 12.07% DOM 11.38% 

GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank 

Lng 33.72% Lat 50.32% followers 27.37% Lat 25.76% 

Lat 20.91% ladderRatio 11.35% floor 16.44% followers 19.05% 

square 9.32% Lng 9.03% Lat 14.03% tradeTime 19.05% 

To understand the predictive performance improvement of the GA-GBR model, Table 7-

12 listed the top three important features to the two models in the four groups including 

the XiCheng district (group 10), the FengTai district (group 2), the ChaoYang district 

(group7), and the ShunYi district (group 12), in which the XiCheng district is the closest 

one to the centre of Beijing, the ShunYi district is the farthest one to the centre of Beijing, 
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and the other two are in the middle. In the XiCheng district, the tradeTime and DOM 

(active days on market) features in the GBR model were replaced by the Lng and Lat 

features in the GA-GBR model. In the ShunYi district, the square and DOM features in 

the GBR model were replaced by the followers and Lat features in the GA-GBR model. 

In the FengTai district, the square, tradeTime and DOM features in the GBR model were 

replaced by the Lng, ladderRatio and Lat features in the GA-GBR model. In the 

ChaoYang district, the square, tradeTime and communityAverage features in the GBR 

model were replaced by the followers, floor and Lat features in the GA-GBR model. 

It was discovered that in the XiCheng and FengTai districts, the Longitude (Lng) and 

Latitude (Lat) features (the location related features) were considered more important to 

the GA-GBR model than the GBR. In the ShunYi district, the Followers and TradeTime 

features were considered more important to the GA-GBR model than the GBR.  

• From the perspective of different renovation conditions 

In this subsection, the predicted price by the GBR and GA-GBR models was compared 

with the actual price using the three different renovation-related datasets: (1) the rough 

group, (2) the simplicity group, and (3) the hardcover group. In Figure 7-11, it was 

observed the predicted price by the GA-GBR model was closer to the actual price than 

that predicted by the GBR model, with a smaller MAPE at 2.92%, 0.14% and 1.37% in 

the three different groups respectively. This proved the advantage of the proposed GA-

GBR model with a higher prediction accuracy than the traditional GBR model. 

To understand the predictive performance improvement of the GA-GBR model, Table 7-

13 listed the top three important features to the two models in the three groups, which 

were calculated using the embedded feature importance function in the decision tree-

based models. In group 1 (the rough group), the most important feature – square in the 

GBR model was replaced by the feature – bathroom in the GA-GBR model. In group 2 

(the simplicity group), the Square and CommunityAverage features in the GBR model 

were replaced by the ladderRatio and followers features in the GA-GBR model. In group 

3 (the hardcover group), the Square and CommunityAverage features in the GBR model 

were replaced by the bathRoom and Lat in the GA-GBR model.  
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Figure 7- 11: Comparison of the actual price and predicted price by the two models in 

the three renovation-related datasets 

It was discovered that in the rough and hardcover group, the Bathroom feature was 

considered more important to the GA-GBR model than the GBR. In the simplicity group, 

the Followers and LadderRatio features were considered more important to the GA-GBR 

than the GBR.  
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Table 7- 13: Feature importance ranking (top 3) by GBR and GA-GBR in the three 

renovation-related datasets 

Rough Simplicity Hardcover 

GBR feature Rank GBR feature Rank GBR feature Rank 

square 16.84% communityAverage 15.69% square 19.57% 

communityAverage 15.64% square 15.66% communityAverage   14.35% 

tradeTime 13.83% tradeTime 12.32% tradeTime 11.91% 

GA-GBR feature Rank GA-GBR feature Rank GA-GBR feature Rank 

bathRoom 24.73% ladderRatio 22.81% tradeTime 35.13% 

Lng 23.84% followers 18.11% bathRoom 21.01% 

Lat 13.31% tradeTime 17.94% Lat 10.33% 

 

2) Testing on the American dataset 

The American dataset was tested from two different perspectives including different cities 

and garages. 

• From the perspective of different cities 

In this subsection, the predicted price by the GBR and GA-GBR models was compared 

with the actual price using the 20 different location-related datasets: (1) the Chadstad, (2) 

the Coletown, (3) the Davidfort, (4) the Amychester, (5) the East_Lucas, (6) the Hallfort, 

(7) the Jeffreyhaven, (8) the Joshuafurt, (9) the Lake_Carolyn, (10) the Lake_Christina, 

(11) the Lake_Dariusborough, (12) the Lake_Jack, (13) the Lewishaven, (14) the 

Morris_port, (15) the North_Erinville, (16) the Port_Andrealand, (17) the 
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Port_Jonathanborough, (18) the Scottberg, (19) the South_Anthony, and (20) the 

West_Ann. In Figure 7-12 above, it was observed the predicted price by the GA-GBR 

model was closer to the actual price than that predicted by the GBR model, with a smaller 

MAPE in all the 20 different groups respectively. This proved the advantage of the 

proposed GA-GBR model with a higher prediction accuracy than the traditional GBR 

model. 

 

Figure 7- 12: Comparison of the actual price and predicted price by the two models in 

the 20 city-related datasets 
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To understand the predictive performance improvement of the GA-GBR model, Table 7-

13 listed the top three important features to the two models in the four groups including 

the Morris_port (group 14), the Amychester (group 4), the Lake_Carolyn (group 9), and 

the Lake_Christina (group 10), in which the Morris_port (group 14) is in the New York 

city in the east of America with the highest price among the 20 groups, the Lake_Christina 

(group 10) is in Tampa in the south of America with the lowest price among the 20 groups, 

the Amychester (group 4) is in Los Angeles in the west and the Lake_Carolyn (group 9) 

is in Dallas in the middle of America with price in between. In the Morris_port group, the 

most important feature – livable_sqft in the GBR was replaced by the feature – stories in 

the GA-GBR. In the Lake_Christina group, the most important feature – livable_sqft in 

the GBR was replaced by the feature – num_bedrooms in the GA-GBR. In the 

Amychester group), the total_sqft and has_pool features in the GBR model were replaced 

by the full_bathrooms and year_built features in the GA-GBR model. In the 

Lake_Carolyn group, all the top three features - livable_sqft, total_sqft and year_built 

were replaced by the stories, full_bathrooms and num_bedrooms in the GA-GBR model. 

From the experiment results in Table 7-14, it was discovered that that the livable_sqft and 

total_sqft features were considered as the top two important to the GBR model in all the 

four groups. These two common features were replaced by other features such as 

num_bedrooms, stories, full_bathrooms, half_bathrooms, and year_built in the GA-GBR 

model. The abovementioned features are generally considered as important features in 

the house transaction market, however, the features selected by GA-GBR are more 

independent than those selected by the GBR. For instance, the livable_sqft and total_sqft 

features selected by GBR are highly connected to each other. As mentioned earlier, one 

of the important rules to generate an ensemble model is ‘as independent as possible’. This 

might be the reason that the GA-GBR models had achieved an improved predictive 

accuracy. 
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Table 7- 14: Feature importance ranking (top 3) by GBR and GA-GBR in the four city-

related datasets 

Morris_port Amychester Lake_Carolyn Lake_Christina 

GBR 

feature 

Rank GBR 

feature 

Rank GBR 

feature 

Rank GBR 

feature 

Rank 

livable_sqft 39.91% livable_sqft 22.08% livable_sqft 35.55% livable_ sqft 29.30% 

total_ sqft 23.38% total_sqft 21.94% total_sqft 21.22% total_sqft 19.07% 

has_ pool 8.95% has_pool 14.80% year_built 11.76% year_built 13.00% 

GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank 

stories 42.51% year_built 24.70% stories 42.99% num_ 

bedrooms 

39.96% 

num_ 

bedrooms 

26.74% livable_sqft 22.71% full_ 

bathrooms 

21.05% full_ 

bathrooms 

21.50% 

half_ 

bathrooms 

17.04% full_ 

bathrooms 

20.26% num_ 

bedrooms 

19.38% stories 12.93% 

• From the perspective of different garage types 

In this subsection, the predicted price by the GBR and GA-GBR models was compared 

with the actual price using the three different garage-related datasets: (1) the attached 

garage group, (2) the detached garage group, and (3) the none garage group. In Figure 7-

13, it was observed the predicted price by the GA-GBR model was closer to the actual 

price than that predicted by the GBR model, with a smaller MAPE at 0.47%, 0.2% and 

1.69% in the three different groups respectively. This proved the advantage of the 
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proposed GA-GBR model with a higher prediction accuracy than the traditional GBR 

model. 

 

Figure 7- 13: Comparison of the actual price and predicted price by the two models in 

the three garage-related datasets 

To understand the predictive performance improvement of the GA-GBR model, Table 7-

15 listed the top three important features to the two models in the three groups, which 

were calculated using the embedded feature importance function in the decision tree-

based models. In the attached group, the livable_sqft and has_pool features in the GBR 

model were replaced by the Full Bathroom (full_bathrrom) and Carport Size 
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(carport_sqft) features in the GA-GBR model. In group 2 (the detached group), the 

total_sqft and has_fireplace features in the GBR model were replaced by the Number of 

Bedrooms (num_bedrooms) and Stories in the GA-GBR model. In group 3 (the none 

garage group), the most important feature – carport_sqft in the GBR model was replaced 

by the Full bathroom feature in the GA-GBR model. 

From the experiment results, it was discovered that in the attached garage group, the 

Carport size and Full bathroom features were considered more important to the GA-GBR 

than the GBR. In the detached garage group, the Number of Bedrooms and Stories 

features were considered more important to the GA-GBR than the GBR. In the none 

garage group, the Full bathroom feature was considered more important to the GA-GBR 

than the GBR. Compare the attached garage group with the none garage group, the 

Carport size feature was considered more important by the garage owners, while it was 

surprising to see that the none garage owners paid more attention to the Full bathroom 

feature. 

Table 7- 15: Feature importance ranking (top 3) by GBR and GA-GBR in the three 

garage-related datasets 

Attached Detached None 

GBR feature Rank GBR feature Rank GBR feature Rank 

livable_sqft 18.85% livable_sqft 17.16% carport_sqft 14.75% 

total_sqft 16.62% total_sqft 13.58% livable_sqft 12.79% 

has_pool 9.30% has_fireplace 10.86% year_built 9.29% 

GA-GBR feature Rank GA-GBR feature Rank GA-GBR feature Rank 

full_bathrooms 52.80% livable_sqft 19.93% full_bathrooms 17.25% 

total_sqft 12.09% num_bedrooms 17.38% livable_sqft 13.98% 

carport_sqft 5.69% stories 12.04% year_built 11.24% 
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3) Testing on the UK dataset 

The UK dataset was tested from two different perspectives including different property 

types and PPD (Price Paid Transaction) types. 

• From the perspective of different property types 

 

Figure 7- 14: Comparison of the actual price and predicted price by the two models in 

the four property-type-related datasets 



   

159 

 

In this subsection, the predicted price by the GBR and GA-GBR models was compared 

with the actual price using the four different property type-related datasets: (1) the 

detached group, (2) the flats group, (3) the semi-detached group, and (4) the terraced 

group. In Figure 7-14, it was observed the predicted price by the GA-GBR model was 

closer to the actual price than that predicted by the GBR model, with a smaller MAPE at 

0.29%, 0.12%, 0.19% and 0.33% in the three different groups respectively. This proved 

the advantage of the proposed GA-GBR model with a higher prediction accuracy than the 

traditional GBR model. 

Table 7- 16: Feature importance ranking (top 3) by GBR and GA-GBR in the four 

property-type-related datasets 

Detached (1) Flats (2) Semi-detached (3) Terraced (4) 

GBR 

feature 

Rank GBR 

feature 

Rank GBR 

feature 

Rank GBR 

feature 

Rank 

Town/City 78.81% Town/City 27.74% year 60.22% year 52.83% 

index 19.78% County 25.75% County 14.69% County 17.72% 

District 0.65% District 21.80% Town/City 7.22% Town/City 8.63% 

GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank GA-GBR 

feature 

Rank 

District 52.95% year 46.01% Town/City 48.43% District 34.38% 

Town/City 15.38% Town/City 15.83% index 33.20% index 27.99% 

index 10.59% County 13.67% District 17.66% Town/City 22.72% 

To understand the predictive performance improvement of the GA-GBR model, Table 7-

16 listed the top three important features to the two models in the four groups, which were 

calculated using the embedded feature importance function in the decision tree-based 

models. In group 1 (the detached), the Town/City, index and District features were 
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selected by both the GBR and GA-GBR models, with different weights of importance. In 

group 2 (the flats), the District feature in the GBR model were replaced by the year feature 

in the GA-GBR model, with the other two features’ weights changed. In group 3 (the 

semi-detached) and group 4 (the terraced), the year and county features in the GBR model 

were replaced by the index and District features in the GA-GBR model. 

The Town/City feature was considered as important to both GBR and GA-GBR models 

in all the four groups, which can be concluded as a general feature in different building 

types. For the detached and semi-detached groups, the Town/City, index and District 

features were considered more important to GA-GBR models than that to GBR models. 

For the flats group, the year feature was selected as the most important one to the GA-

GBR, which indicated that this type of building might have a close connection to the time-

related features. 

• From the perspective of different PPD Categories (Price Paid 

transaction) 

In this subsection, the predicted price by the GBR and GA-GBR models was compared 

with the actual price using the two different PPD-related datasets: (A) the Standard Price 

Paid group, (B) the Additional Price Paid group. In Figure 7-15, it was observed the 

predicted price by the GA-GBR model was closer to the actual price than that predicted 

by the GBR model, with a smaller MAPE at 0.14% and 0.15% in the two different groups 

respectively. This proved the advantage of the proposed GA-GBR model with a higher 

prediction accuracy than the traditional GBR model. 

To understand the predictive performance improvement of the GA-GBR model, Table 7-

17 listed the top three important features to the two models in the two groups, which were 

calculated using the embedded feature importance function in the decision tree-based 

models. In group A (the Standard Price Paid), the year, county and Property_Type_is__D 

features selected by the GBR were replaced by the Town/City, index and District features 

in the GA-GBR models. In group B (the Additional Price Paid), the county, Town/City 

and Property_Type_is__D features selected by the GBR were replaced by the month, 

index and District features in the GA-GBR models.  
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Figure 7- 15: Comparison of the actual price and predicted price by the two models in 

the two PPD-related datasets 

The abovementioned features suggest that the location-related features such as County, 

District and Town/City were important to the PPD related house transactions, in which 

the District feature was selected as the most important one to GA-GBR in both groups. 

As for time-related features, while the year feature was considered as the most important 

one to the GBR in the Standard Price Paid group, the month feature was considered as 

important to the GA-GBR in the Additional Price Paid group. 
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Table 7- 17: Feature importance ranking (top 3) by GBR and GA-GBR in the two PPD-

related datasets 

Standard Price Paid Additional Price Paid 

GBR feature Rank GBR feature Rank 

year 46.69% County 24.26% 

County 13.19% Town/City 23.77% 

Property_Type_is__D 9.04% Property_Type_is__D 11.70% 

GA-GBR feature Rank GA-GBR feature Rank 

District 52.95% District 33.00% 

Town/City 15.38% index 20.69% 

index 10.59% month 18.02% 

 

7.3 Validation of the IFC-based Information Extraction as 

Required 

In this section, three Revit models were tested for the IFC-based information extraction 

for property valuation. Due to limited time and resources, the value-related information 

for the three BIM models was achieved from three well-known real estate brokerage 

companies, namely the Lianjia company from China, the Zillow company from US, and 

the Zoopla company from the UK. After that, the required value-related information for 

property valuation was added into the spaces and zones defined in the Revit models, based 

on the proposed property sets and properties in the extended IFC schema and the input 

features in the three testing datasets. The syntactic and semantic validation of the IFC 

models were performed on Solibri Model Checker referring to the ISO 10303-11 (ISO 

2014), with no missing mandatory entities or incorrect data structure. Lastly, the required 
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value-relevant information was extracted using the developed IFC-based information 

extraction algorithm automatically. 

1) IFC-based information extraction from the Chinese BIM model as required 

 

Figure 7- 16: An IFC-based BIM model of the duplex house with required value-related 

information added according to the 22 input features in the Chinese dataset 

Referring to the 22 input features in the Chinese dataset and the extended IFC schema, 

value-related information (collected from the Lianjia company) for property valuation in 

terms of property sets, properties, and the nominal value of the properties were added into 

the BIM model through the shared parameters under the Manage tab setting panel. The 

added properties and their nominal value were displayed on the left sidebar in Figure 7-

16, for instance, the IfcLabel ‘brick and concrete’ was added into the Structure property 

under the Pset_PV_Building property set, the IfcInteger ‘50’ was added into the 

activeDays property under the Pset_PV_Transaction property set, and the IfcReal 
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‘11900000’ was added into the Property value property under the Pset_PV_Valuation 

property set.  

Table 7- 18: The extracted value-related information from the Chinese BIM model 

Property set name Property name Data type 
Adapted nominal 

value 

Pset_PV_Building totalArea IfcAreaMeasure (150.05) 150.05 ㎡ 

Pset_PV_Building noOflivingRooms IfcInteger (3) 3 

Pset_PV_Building noOfDrawingRooms IfcInteger (1) 1 

Pset_PV_Building noOfKitchens IfcInteger (1) 1 

Pset_PV_Transaction transferDate 
IfcDateTime (2017-03-

12) 
2017-03-12 

Pset_PV_Transaction activeDays IfcInteger (28) 28 

Pset_PV_Building noOfBathrooms IfcInteger (2) 2 

Pset_PV_Transaction noOfFollowers IfcInteger (55) 55 

Pset_PV_Building buildingCategory IfcLabel (‘plate’) plate 

Pset_PV_Building renovationCondition IfcLabel (‘simplicity’) simplicity 

Pset_PV_Transaction communityAveragePrice IfcReal (71853) 71853 RMB 

Pset_PV_Building structure 
IfcLabel (‘brick and 

concrete’) 
brick and concrete 

Pset_PV_Building elevator IfcBoolean(.F.) False 

Pset_PV_Parcel longitude IfcLabel (‘116.3885’) 116.3885 

Pset_PV_Parcel latitude IfcLabel (’39.9860’) 39.9860’ 

Pset_PV_Transaction propertyRights IfcBoolean(.T.) True 

Pset_PV_Building storey IfcInteger (3) 3 

Pset_PV_Building constructionDate IfcDateTime (2001) 2001 

Pset_PV_Building ladderRatio IfcReal (0.2) 0.2 

Pset_PV_Parcel district IfcLabel (‘ChaoYang’) ChaoYang 

Pset_PV_Valuation Property Value IfcReal (11900000) 11900000 RMB 
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The value-related information regarding the 22 input features in the Chinese dataset was 

extracted using the developed information extraction algorithm, which is displayed in 

Table 7-18.  

2) FC-based information extraction from the American BIM model as required 

 

Figure 7- 17: An IFC-based BIM model of the duplex house with required value-related 

information added according to the 15 input features in the American dataset 

Referring to the 15 input features in the American dataset and the extended IFC schema, 

required information (collected from the Zillow company) for property valuation in terms 

of property sets, properties, and the nominal value of the properties were added into the 

BIM model through the shared parameters under the Manage tab setting panel. The added 

properties and their nominal value were displayed on the left sidebar in Figure 7-17, for 

instance, the IfcAreaMeasure ‘5454 ㎡’ was added into the totalArea property under the 

Pset_PV_Building property set, the IfcLabel ‘South Anthony’ was added into the city 

property under the Pset_PV_Parcel property set, and the IfcReal ‘1058401’ was added 

into the Property value property under the Pset_PV_Valuation property set. 



   

166 

 

The value-related information regarding the 15 input features in the American dataset was 

extracted using the developed information extraction algorithm, which is displayed in 

Table 7-19.  

Table 7- 19: The extracted value-related information from the American BIM model 

Property set name Property name Data type Adapted nominal value 

Pset_PV_Building totalArea IfcAreaMeasure (545.4) 545.4㎡ 

Pset_PV_Building livingArea IfcAreaMeasure (474.1) 474.1㎡ 

Pset_PV_Building pool IfcBoolean(.F.) False 

Pset_PV_Building garageAttached IfcInteger (1) 1 

Pset_PV_Building garageDettached IfcInteger (0) 0 

Pset_PV_Building fullBathroom IfcInteger (4) 4 

Pset_PV_Building fireplace IfcBoolean(.T.) True 

Pset_PV_Building noOfBedRooms IfcInteger (4) 4 

Pset_PV_Building carportArea IfcAreaMeasure (0) 0 

Pset_PV_Building builtYear IfcInteger (2016) 2016 

Pset_PV_Building storey IfcInteger (2) 2 

Pset_PV_Building halfbathroom IfcInteger (0) 0 

Pset_PV_Building centralCooling IfcBoolean(.T.) True 

Pset_PV_Building centralHeating IfcBoolean(.T.) True 

Pset_PV_Parcel city 
IfcLabel (‘South 

Anthony’) 

South Anthony 

Pset_PV_Building garageArea IfcAreaMeasure (72.4) 72.4㎡ 

Pset_PV_Valuation Property Value IfcReal (‘1058401’) 1058401 $ 
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3) IFC-based information extraction from the UK BIM model as required 

 

Figure 7- 18: An IFC-based BIM model of the duplex house with required value-related 

information added according to the 9 input features in the UK dataset 

Referring to the 9 input features in the UK dataset and the extended IFC schema, required 

information (collected from the Zoopla company) for property valuation in terms of 

property sets, properties, and the nominal value of the properties were added into the BIM 

model through the shared parameters under the Manage tab setting panel. The added 

properties and their nominal value were displayed on the left sidebar in Figure 7-18, for 

instance, the IfcLabel ‘detached house' was added into the buildingCategory property 

under the Pset_PV_Building property set, the IfcLabel ‘Standard Price Paid’ was added 

into the paidCategory property under the Pset_PV_Transaction property set. 

The value-related information regarding the 9 input features in the UK dataset was 

extracted using the developed information extraction algorithm, which is displayed in 

Table 7-20.  
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Table 7- 20: The extracted value-related information from the UK BIM model 

Property set name Property name Data type 

Adapted nominal 

value 

Pset_PV_Transaction transactionID 

IfcLabel (‘1D861C06-A416-

4865-973C-4956DB12CD12’) 

1D861C06-A416-4865-

973C-4956DB12CD12 

Pset_PV_Transaction transferDate IfcDateTime (2006-12-14) 2006-12-14 

Pset_PV_Building buildingCategory IfcLabel (‘terraced’) terraced 

Pset_PV_Building qualityType IfcLabel (‘new’) new 

Pset_PV_Transaction rentalAnnotation IfcLabel (‘freehold’) freehold 

Pset_PV_Parcel city IfcLabel (‘London’) London 

Pset_PV_Parcel district IfcLabel (‘Wandsworth’) Wandsworth 

Pset_PV_Parcel county IfcLabel (‘Greater London’) Greater London 

Pset_PV_Transaction paidCategory IfcLabel (‘standard price paid’) standard price paid 

Pset_PV_Valuation Property Value IfcReal (‘795000’) 795000 £ 

From the testing results on the three IFC-based BIM models, it was summarized by the 

author as follows:  

The proposed properties and property sets in the extended IFC schema are functional for 

property transaction case management, and the required value-related information for 

property valuation can be extracted from the IFC instance model automatically. This can 

ease the use of information in the AEC projects for the property valuation professionals 

who are lack of BIM knowledge and skills. However, during the testing process, there are 

some mismatched issues regarding the input feature names in the three testing datasets, 

which in turn increases the requirement for the standardized data format among the 

property valuation processes. For instance, the building category feature in the Chinese 

dataset is named as the property type in the UK dataset, the built year feature in the 

American dataset has the same meaning with the construction time feature in the Chinese 

dataset. 
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7.4 Validation of the Proposed BIM-ML Framework as a 

Complete Artifact 

The validation of the whole BIM-ML system was conducted through a main python script 

on the PyCharm platform, calling the IFC-based information extraction algorithm and the 

GA-GBR model. Figure 7-19 displayed the validation of the complete BIM-ML system 

using the Chinese BIM model introduced in Figure 7-16. Based on the extracted 

information from the Chinese BIM model, the predicted house value using the GBR and 

the GA-GBR models are 10819100 RMB and 11022905 RMB respectively. With the 

actual value at 11900000 RMB, the value predicted by the GA-GBR model is more 

accurate than the GBR mode. 

 

Figure 7- 19: Validation of the complete BIM-ML system 

For the American BIM model, using the same approach, the predicted house value using 

the GBR and the GA-GBR models are 1152242 $ and 1087472 $ respectively. With the 
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actual value at 1058401 $, the value predicted by the GA-GBR model is more accurate 

than the GBR mode. 

For the UK BIM model, using the same approach, the predicted house value using the 

GBR and the GA-GBR models are 128300 £ and 129700 £ respectively. With the actual 

value at 135860 £, the value predicted by the GA-GBR model is more accurate than the 

GBR mode. 

As introduced in Section 2.1.1, the international acceptable margin error of the predictive 

accuracy in the appraisal domain is between ± 0 and 10% (Brown et al. 1998; Abidoye 

and Chan 2018). The predictive error of the complete BIM-ML system tested using the 

three BIM models from China, US and the UK are 7.4%, 2.7% and 4.5% respectively, 

which complies with the international valuation standard. 

The impact of the complete artifact in practical use: 

The proposed BIM-ML system was implemented for five months in a commercial real 

estate appraisal and advisory company (HXZH) in China in 2021. The traditional 

valuation process applied in this commercial company can be classified into five main 

steps: 

1) Task initialization - identifying the objectives and problems 

2) Data collection through building survey onsite and online 

3) Preliminary data analysis and provide an initial report of the indicated value 

4) Calculation of the market value of the subject asset using the three traditional 

approaches 

5) Deliver the final valuation report including the building information and the 

selected method to the client. 

Comparing the traditional valuation process in the commercial real estate company and 

the developed BIM-ML system framework (illustrated in Figure 5-1), the main 

differences lie in the data collection and information exchange process (step 2 above) and 

the valuation method (step 4 above). 

1) Data collection and information exchange 
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The data in the commercial real estate company is normally collected through building 

survey onsite and online, which normally takes at least several hours or several days. The 

collected data from onsite will be stored in a word file, with descriptions of this evaluation 

task, all the data for the evaluation, and attached pictures. It is manual based, time-

consuming, and error-prone. In contrast, in this research partial data of the building to be 

evaluated is collected through BIM models, using the defined IFC property valuation 

extension and the information extraction algorithm. The information exchange process is 

based on the standard data format, which is automatic, efficient and less information 

missing or misunderstanding. Following the same process, different types of data such as 

subjective factors and green factors can be defined in the IFC extension and information 

extraction. In the long term, this IFC-based data definition and information exchange can 

save time and human costs for the real estate industry.  

2) Valuation method 

The sales comparison method, one of the most popular traditional property valuation 

methods, contains three main steps: (1) select the appropriate traded house in the same 

real estate transaction market in recent years; (2) compare the feature differences of the 

selected traded house as a reference with the subject house to be evaluated; and (3) make 

the value adjustments based on the feature differences according to the sales comparison 

grid and the comparison factor correction coefficient grid. There are a large amount of 

human subjective judgements on the value adjustments for different features and how 

many weights to be assigned for individual features. These human subjective judgements 

existed are more likely to produce an evaluated house price with a range, which makes it 

hard to compare the predictive accuracy with the predicted price by the GA-GBR model 

in this research. However, comparing the decision making in the two methods, in this 

research the value adjustment based on the feature differences and different weights 

allocated to individual features is implemented by the GA-GBR models, finding the 

implicit patterns from the three big data sets, which is more objective and less errors from 

human bias. 
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In addition, the feedback documents of the performance comparison of the developed 

BIM-ML system and traditional valuation method were provided in Figure E-1 in the 

Appendix E, which is summarized as follows: 

• Compared with the traditional valuation process, the BIM-ML framework can 

produce accurate prediction results when dealing with residential buildings.  

• Compared with the traditional valuation process, the BIM-ML framework can 

produce more objective results, which has the potential to reduce prediction error 

caused by human bias on selected variables and individual judgements on value 

adjustments.  

• Compared with the traditional valuation process which normally take several 

hours gathering building information from building survey on site and generating 

the final results, the BIM-ML framework is much faster that can produce 

prediction results based on information acquired from BIM models in several 

minutes. The BIM-ML framework can be extremely helpful when a company are 

facing a large amount of prediction tasks.  

7.5 Conclusion 

This chapter presented the three validations of the developed BIM-ML system, including 

the validation of the developed AVM (the GA-GBR model), the validation of the IFC-

based information extraction, and the validation of the complete artifact. It is concluded 

by the author that the developed BIM-ML system is reliable in terms of three aspects: (1) 

the developed IFC property valuation extension provides a standard way to store and 

exchange information in the real estate industry; (2) the IFC-based information extraction 

can save time and human costs on the data collection and information exchange in the 

commercial real estate companies; and (3) the enhanced AVM (the GA-GBR model) 

improves the predictive accuracy of house price prediction and helps understand the 

reasons behind different market factors and property transaction activities. The BIM-ML 

system has facilitated the automation of the data collection and information exchange and 

improved the objectiveness and predictive accuracy of property valuation. 

 



   

173 

 

Chapter 8. Discussion  

Reflecting on the observations and findings from previous sections, this chapter provides 

a summary discussion of this research by revisiting the hypothesis and research questions. 

Subsequently, the limitations of the conducted research and recommended future work 

are presented. 

8.1  Answer the Research Hypothesis 

The research hypothesis tested for this research was: A BIM and Machine Learning 

integration framework that allows the interpretation of value-relevant design information, 

information retrieval from BIM models automatically and an AI enhanced automated 

property valuation by leveraging existing BIM data and comprehensive property value 

determinants to enhance the decision-making processes about property valuation. 

The proposed research hypothesis has been broken down into five research questions (Q1 

– Q5) which determine the contents of each chapter in this thesis. The five research 

questions and their answers will be provided as follows. 

Q1: What is the current BIM and Machine Learning implementation on property 

valuation and What are the opportunities and challenges concerning automated 

property valuation and information exchange between AEC projects and property 

valuation?  

The answer to the first research question was aimed at summarizing the research findings 

from literature review and identifying the research gaps. The current implementation of 

BIM and Machine Learning on property valuation is summarized as: 

• Since traditional valuation approaches are questioned as inaccurate, inefficient 

and unreliable, in the last two decades, there has been a move towards the 

advanced valuation approaches due to the increasing complexity of property 
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transaction and many advantages of the AI-enhanced AVMs. The advantages of 

Machine Learning for property valuation include: (1) efficiently assess 

information from big data; (2) identify non-linear relationships between house 

characters, market factors and property price; and (3) make decisions in the 

property valuation process with less human bias. 

• While ANNs has attracted more attention than other algorithms, it is often 

recognized as ‘black box’ and shows limits on explaining the relationship between 

the input variables and the target price. Compared to neural networks, decision 

tree-based ensemble learning has advantages in terms of model interpretability 

and flexibility, which is more suitable for knowledge mining and system 

development. Since genetic algorithm (GA) optimized neural networks have 

achieved good prediction accuracy for property valuation, the integration of GA 

and ensemble learning has the potential to achieve good predictive performance 

for property valuation as well as good model interpretability. 

• While research on BIM for property valuation is still at the early stage, the benefits 

of using BIM for property valuation have gained researchers and professionals’ 

attention. The value-relevant design information existed in AEC projects has not 

been widely utilized for property valuation, and there is a need to improve 

information exchange between AEC projects and property valuation. As the 

volume of data in BIM is rising exponentially, data analytics concepts and tools 

integrated BIM might bring added value and produce revolutionary influence on 

the construction industry, however, there is no framework establishment research 

related to the integration of BIM and Machine Learning for property valuation. 

Q2: How innovative information technologies such as BIM and Machine Learning 

(ML) can improve the current valuation process and what are the information 

requirements for property valuation? 

The answer to the second research question was aimed at providing a specific review of 

the current valuation process and future possible changes that BIM and ML will bring, 

whilst considering requirements for the envisaged proposed system. This is summarized 

as: 
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• The influence of AI enhanced AVMs on the current valuation process was 

summarized as: (1) data collection and exchange: to be more automated, and 

improved accuracy and efficiency with data standardization; (2) the valuation 

method: from traditional methods to AVMs; and (3) the role of valuers: from 

performing traditional property inspection and data analysis to interpreting the 

outcome of AMVs.  

• The influence of BIM on information flows in the current valuation process was 

summarized as improved data exchange, less data input and sharing errors, data 

standardization, linked data with other information sources, saved time and costs, 

and improved productivity. 

• Among 95 variables reviewed in the literature, 62 of them were identified as 

relevant to this research. The identified variables that have potential to be 

associated with BIM related concepts were classified as six main types and 28 

subtypes of information related to property valuation, which were further used for 

the IFC extension development at the system development stage. 

Q3: What kind of automated valuation models (AVMs) might have a better 

prediction performance for property valuation and how to improve the current 

AVMs? 

The answer to the third research question addresses one of the three main components of 

the proposed BIM-ML system – the optimized AVM, which is the main focus of this 

research. It involves dealing with the suitability of the selected machine learning model 

(gradient boosting ensemble machine) for automated property valuation, and the 

optimized structure design for the proposed GA-GBR. 

The findings from literature suggested that ensemble learning based AVMs are emerging, 

and the integration of GA and ensemble learning has the potential to achieve good 

predictive performance for property valuation as well as good model interpretability. To 

test this theory, it is necessary to conduct a comparison experiment with eleven AI-

enhanced AVMs and compare their model performances. The eleven AI-enhanced AVMs 

are linear regression, ridge regression, lasso regression, elastic net regression, KNN, SVM, 

ANN, CART, AdaBoost, Random forest, and gradient boosting ensemble (GBR). The 
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experiment was tested with the UCI Machine learning repository Boston housing dataset, 

which included 506 entries represent aggregated data with 14 variables for house price 

prediction in Boston in 1978. Model performances of the eleven AVMs were measured 

using the MAE, MAPE, MSE, and RMSE (measuring prediction errors) and the R-

squared (measuring prediction accuracy). 

From the comparison of the experiment results, it indicated that the classic linear models 

showed the poorest model performance and predictive accuracy, and the decision tree-

based models including AdaBoost, Random Forest and GBR showed the highest model 

performance and predictive accuracy. The KNN and SVM models showed advantages 

over the linear models but showed disadvantages over the ANN and CART. The 

AdaBoost, Random Forest and GBR models showed advantages over the ANN and 

CART. It is worth to mention that the GBR model has the highest model prediction 

accuracy of the eleven different types of AVMs, with the MAPE at 10.4%, the MSE at 

7.6, the RMSE at 2.7, and the mean 𝑅2 at 90.3%. This complies with the findings from 

the literature and validate the logic of choosing the GBR model for the proposed system. 

To solve the conflicts between the accuracy of individual weak learners and the diversity 

among them, whilst considering the exploration of the relationship between the input 

features and the target price, this research presented a study on an AVM based on genetic 

algorithm optimized gradient descent regression ensemble (GA-GBR) for property 

valuation. The genetic algorithm (GA) in the GA-GBR works as an evolutionary feature 

selection engine to search the near optimal feature subset which is further used to train a 

good boosting ensemble.  

There are two major advantages of the proposed GA-GBR model: 

1) For data with a big number of input features, input feature manipulation method 

often gives a good result. The manipulation of input features using GA increases 

the diversity of individual base learners. The evolutionary feature selection engine 

eliminates the redundant and irrelevant features without affecting the prediction 

accuracy, which avoids the overfitting of traditional GBR machines. As a good 

ensemble depends on the individual base learners being as accurate, and as diverse 

as possible, the increased diversity of individual base learners and the reduced 
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data dimensionality ensure the GA-GBR model with good prediction accuracy 

and model generalization capability. 

2) The GA searches the suitable number of input features and updates the weights of 

them, which enables the GA-GBR to explore the relationship between the input 

features and the target price, and therefore gives an improved model 

interpretability over traditional boosting ensemble machines.  

After explaining the structure of the proposed GA-GBR model, an initial test of the GA-

GBR with the UCI Machine Learning repository - Boston dataset was performed. 

Compared to a similar house price prediction study using random forest machine learning 

with the same Boston housing dataset (Adetunji et al. 2022), in terms of 𝑅2 , showing 

90.0% for the random forest, the proposed GA-GBR showed slight superiority of 0.5%. 

Considering that there are only 506 entries data in the Boston housing dataset, the 

performance of the proposed GA-GBR could be improved when using dataset with a 

bigger number of house transaction cases. 

Q4: How to implement the BIM-ML integration framework and how to develop the 

three main components accordingly? 

The answer to the fourth research question was aimed at developing the three main 

components of the BIM-ML system. 

Firstly, an IFC extension for property valuation and an IFC-based partial information 

extraction were developed. The IFC extension definition came from 95 variables 

reviewed in the literature, of which 62 variables were identified as relevant to this research. 

Based on the identified 62 influential variables and the Valuation Information Model 

(LADM_VM), the required property sets and their properties are proposed to add to the 

IfcSpace and IfcZone entities. Seven property sets are proposed to add to the IfcSpace 

entity, including Pset_PV_Transaction, Pset_PV_Parcel, Pset_PV_Building, 

Pset_PV_CondominiumUnit, Pset_PV_Valuation, Pset_PV_MassValuation, and 

Pset_PV_Annex. Each of these property sets covers a number of properties that related 

to real estate transactions, the subject buildings, the valuation methods, and other special 
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considerations from stakeholders. In total, there are 104 properties and 7 property sets 

proposed for the IFC Property Valuation extension (Table B-1 in the Appendix B). 

After the analysis of information elements and their relationships between IfcObject and 

IfcProperty, the IFC-based information extraction algorithm was designed and developed 

on Python 3.7 using IfcOpenshell-python module on Pycharm software. The extraction 

algorithm was developed to extract a partial model for property valuation based on the 

internal data structure and internal relationships of the IFC schema, with the aim to ease 

the use of the value-relevant design information for property valuation professionals who 

were lack of BIM related knowledge and skills. 

Secondly, before fitting data to the proposed AVM, the corelation relationship between 

the input features and the target price was explored, with the aims at discovering the 

implicit patterns in the data set. The exploratory data analysis concluded that the 

relationship between the input features and the target price are complex and significantly 

non-linear, and the Total Area variable shows the strongest positive correlation with the 

house price in both the Chinese and American data sets. It is indicated that the complex 

relationships between the input features and the target price are difficult to be directly 

estimated using simple linear machine learning models such as Linear Regression and 

KNN, whereas complex models such as ANN and decision tree-based machine learning 

models have the potential to fit well with the data. 

After that, the optimal input feature subsets were explored using two typical feature 

selection techniques, namely the wrapper method and the embedded method. In the 

Chinese data set, the wrapper method – RFE selected 9 features including Total Area, 

Height, Trade Time, Active Days, Construction Time, Community Average Price, 

Followers, Latitude, and Longitude. The top 9 features ranked by the embedded methods 

were Community Average Price, Total Area, Trade Time, Bathroom, Active days, Living 

Room, Latitude, District, and Longitude. Compared with the top 9 features by the two 

methods, the Bathroom, Living room and District features selected by the embedded 

method were replaced by the Height, Construction time and Followers features in the 

wrapper method, while the other 6 features remain the same. In total, there are 12 

important features selected by the two methods, and 6 common features including 

Community Average Price, Total Area, Trade Time, Active Days, Latitude, and 
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Longitude. These 6 features are given more attention when trying to improve the model 

performance of the GA-GBR model in the experiment stage. In the American data set, 

the wrapper method – RFE selected 6 features including Total Area, Living Area, Garage 

Area, Built Year, Stories, and Pool. The top 6 features ranked by the embedded methods 

were Total Area, Living Area, Garage Area, Built Year, Full Bathroom, and Pool. 

Compared with the top 6 features by the two methods, the Full Bathroom feature selected 

by the embedded method was replaced by the Stories feature in the RFE method, whereas 

the other 5 features remain the same. In total, there are 7 important features selected by 

the two methods, and 5 common features including Total Area, Living Area, Garage Area, 

Built Year, and Pool. These 5 features are given more attention when trying to improve 

the model performance of the GA-GBR model in the experiment stage. 

Q5: How reliable is the proposed BIM-ML integration framework that can facilitate 

information exchange and support automated property valuation? 

The answer to the last research question aimed at validating the proposed BIM-ML 

system, which was divided into three steps: (1) validate the trained GA-GBR model, (2) 

validate the IFC-based information extraction as required, and (3) validate the proposed 

BIM-ML system as a complete piece.  

1) Validation of the trained GA-GBR model 

The validation of the proposed GA-GBR model has been performed on the three different 

datasets, divided and undivided. In the next, the divided datasets will be clearly mentioned, 

whereas it means the datasets are undivided if there are no additional statements. 

Basically, there are two goals of the proposed GA-GBR model, one is to improve the 

predictive accuracy of current AVMs, and the other one is to improve the model 

interpretation capability.  

• Model predictive accuracy 
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From the validation of the trained GA-GBR model with three datasets from different 

countries including China, US, and the UK, it was surprising that the proposed GA-GBR 

model achieved the highest predictive accuracy of the twelve different AVMs in terms of 

all the five typical regression accuracy metrics in all the three datasets. Moreover, on the 

divided datasets, it was observed the predicted price by the GA-GBR model was closer 

to the actual price than the predicted price by the GBR model, with a smaller MAPE in 

all the divided groups. This proves the proposed GA-GBR model not only has achieved 

a decent predictive accuracy, but also has a high generalization capability for property 

valuation. 

In terms of coefficient of determination (𝑅2), the model accuracy of the GA-GBR had an 

advantage of 1.3% over the traditional GBR model in the Chinese dataset, an advantage 

of 3.57% in the American dataset, and an advantage of 2.4% in the UK dataset. The 

difference of the improved predictive accuracy on the three datasets probably because of 

the GBR models’ predictive accuracy score baseline and the number of input variables in 

the GBR model after one-hot encoding. The GA-GBR model had a small predictive 

accuracy improvement (1.3%) on the Chinese dataset, because the traditional GBR model’ 

predictive accuracy score baseline is already as high as 93.9%. This means that the 

decision-tree based structure had already fit well with the Chinese dataset, and the 

evolutionary feature selection function of the proposed GA-GBR model has limited 

positive effects on improving the predictive accuracy. In contrast, there was a big 

predictive accuracy improvement (3.57%) on the American dataset, because the 

traditional GBR model’ predictive accuracy score baseline is only at 78.92%. This means 

that the decision-tree based structure had not fit so well with the American dataset, and 

therefore the evolutionary feature selection function of the proposed GA-GBR model has 

major positive effects on improving the predictive accuracy. However, the GA-GBR 

model had a medium predictive accuracy improvement (2.4%) on the UK dataset with 

the traditional GBR model’ predictive accuracy score baseline at 73.2%. This is probably 

because of the data dimension reduction effect, which caused by the evolutionary feature 

selection function of the proposed GA-GBR model, requires a certain number of input 

features to improve the predictive accuracy. However, there are only 17 input features in 

the UK dataset after one-hot encoding, in contrast that there are 56 and 61 input features 

in the Chinese and American datasets.  
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From the comparison with the predictive accuracy of the twelve different AVMs, in 

general, linear regression models did not fit well on all the three datasets, which complies 

with the discovery from the exploratory data analysis before training the AVMs that the 

correlation relationship between the input features and the target price are complex and 

significantly non-linear. The KNN and SVM preformed worse than the linear regression 

models on the Chinese and American datasets but showed better performance than them 

on the UK dataset. The ANN showed advantages over the linear regression models on the 

American and UK datasets but shows disadvantages on the Chinese dataset. In general, 

the decision-tree based models had better predictive performances than all other models 

with high predictive accuracies. Surprisingly, the proposed GA-GBR model had the best 

predictive performance on all the three datasets. While a number of researchers in the 

literature indicated that ANN had achieved good predictive accuracy on property 

valuation, in this research the proposed GA-GBR model performed better predictive 

results than the ANN. The possible reason behind is that the ANN is good at dealing with 

unstructured input data, and the feature selection operation in the ANN is performed 

automatically by the embedded functions. In contrast, the proposed GA-GBR model, 

which has the decision tree-based structure, is good at dealing with structured input data 

(which is the case in this research), and the genetic algorithm or the evolutionary function 

engine in the proposed GA-GBR model has searched the optimal feature subsets which 

are more suitable for property valuation. 

Compared with a similar research using the same Chinese dataset conducted by Quang et 

al. (2020), the extreme gradient boosting (XGBoost), which is the industrial application 

of the GBR model, had the predictive error at 0.1660 on the test set in terms of RMSLE. 

Whereas, in this research the RMSLE of the proposed GA-GBR model achieved smaller 

predictive error at 0.1626 on the test set, which is significantly better than the results of 

XGBoost in that paper. The Root Mean Squared Logarithmic Error (RMSLE) evaluation 

function used is calculated as follows: 

𝑅MSLE =  √
1

n
∑ (log(At + 1) − log(Ft + 1))2n

t=1                     (16) 

where At is the actual value and Ft is the predicted value. 
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• Model interpretability 

From the experiment results of the feature importance rankings calculated by the GBR 

and GA-GBR in the three datasets, it was discovered that the evolutionary feature 

selection engine in the proposed GA-GBR model had changed the weights of the input 

features, which make it more suitable for generating a good machine learning model. In 

the Chinese dataset, the total feature importance of the top 9 features selected by the GBR 

and GA-GBR account for 87.32% and 91.02% of all the 56 input features respectively. 

Compared with the six common important features selected by the two feature selection 

methods in Section 6.3.3, the five generic important features in the Chinese datasets are 

concluded by the author including the Total area, Trade time, Active days, Latitude, and 

Longitude features. Compare the top 9 features selected by the GBR and GA-GBR 

models, the experiment results indicated the Construction time, Trade time, and Follower 

features are more important to the GA-GBR model, which generated better predictive 

performance that the features selected by the traditional GBR model.  

In the American dataset, the total feature importance of the top 6 features selected by the 

GBR and GA-GBR account for 70.68% and 73.72% of all the 61 input features 

respectively. Compared with the five common important features selected by the two 

feature selection methods in Section 6.3.3, there are two generic important features in the 

American dataset concluded by the author including the Total area and Living area 

features. Compare the top 6 features selected by the GBR and GA-GBR models, the 

experiment results indicated that the Number of bedrooms feature is more important to 

generate a good machine learning model than that in the traditional GBR model. 

In the UK dataset, the total feature importance of the top 7 features selected by GBR and 

GA-GBR account for 94.03% and 98.9% of all the 17 input features respectively. 

Compared with the 6 common important features selected by the two feature selection 

methods in Section 7.2.1, there are 5 generic important features in the UK dataset 

concluded by the author including Year, Town/City, County, Property type, and District. 

Compare the top 7 features selected by the GBR and GA-GBR models, the experiment 

results indicated that the Month feature is more important to the GA-GBR model, which 

generated a higher model predictive accuracy than that in the traditional GBR model. 
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From the testing results of the feature importance rankings in the three datasets, it 

was concluded by the author as follows: 

1. The top N features contributed more than 70% feature importance to the proposed 

GA-GBR model (N ≤ 10). 

2. There are five generic features in the Chinese dataset: Total area, Trade time, 

Active days, Latitude, and Longitude features; two generic features in the 

American dataset: Total area and Living area features; five generic features in the 

UK dataset: Year, Town/City, County, Property type, and District. 

3. From the Comparison of the top N features selected by the GBR and GA-GBR 

models in the three datasets, it indicated that real estate transactions in Beijing 

happen more frequently, since the Construction time, Trade time, and Follower 

features are more important to generate a higher predictive performance model. 

In the American dataset customers seem to focus more on the number of bedrooms 

and garage-related features, whereas in the UK dataset time-related factors such 

as the Month feature is more important. 

The relationships between the input features and the GA-GBR model were further 

explored in the divided datasets representing different perspectives. The Chinese dataset 

was divided into 22 groups by different building categories (3 groups), building structures 

(3 groups), renovation conditions (3 groups), and districts (13 groups). The American 

dataset was divided into 23 groups by different cities (20 groups) and different types of 

garages (3 groups). The UK dataset was divided into 6 groups by different property types 

(4 groups) and different PPD Categories (2 groups). 

In the divided Chinese datasets, from the perspective of different building categories, it 

was discovered that the Trade time feature was important to both the GA-GBR and GBR 

in all the three groups. For the tower building type, the Elevator feature was considered 

more important to the GA-GBR model than the GBR model, which was more likely to 

represent the correlation relationship between the market factors and the house price in 

the real life. For the plate building type, the DOM (active days on market) and 

Construction time features were considered more important to the GA-GBR than the GBR. 
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From the perspective of different building structures, it was discovered that the Trade 

Time feature was important to both the GA-GBR and GBR in all the three groups. For 

the brick and concrete group, the Construction time feature was considered more 

important to the GA-GBR model than the GBR. For the steel-concrete composite group, 

the Followers and LadderRatio features were considered more important to the GA-GBR 

than the GBR. In the Chinese house transaction market, the steel-concrete composite 

building structure are normally used in a building with high stories and this type of 

buildings often have a higher price over other types of building structure. Therefore, the 

followers and LadderRatio features might contribute more to the model construction in 

the steel-concrete composite group. 

From the perspective of different districts, it was discovered that in the XiCheng and 

FengTai districts, the Longitude (Lng) and Latitude (Lat) features (the location related 

features) were considered more important to the GA-GBR model than the GBR. In the 

ShunYi district, the Followers and TradeTime features were considered more important 

to the GA-GBR model than the GBR. In the Chinese house transaction market, the 

location related feature has always been one of the most important features to the house 

price. This might be the reason that the GA-GBR model considered the Longitude and 

Latitude features more important to the price of houses in the XiCheng district, which 

was the closest district to the city centre and had the highest price in all the 13 groups. 

The ShunYi district, which had the longest distance to the city centre and the lowest price 

in the 13 groups, the Followers and TradeTime features selected by the GA-GBR model 

indicated that houses in this district were traded more frequently. 

From the perspective of different renovation conditions, it was discovered that in the 

rough and hardcover group, the Bathroom feature was considered more important to the 

GA-GBR model than the GBR. In the Chinese house transaction market, the bathroom 

might be renovated frequently, and houses with simplicity renovation conditions are the 

most frequently traded type in the three groups. That might be the reason that the GA-

GBR model considered the Bathroom feature more important in the rough and hardcover 

group, and considered the Followers feature more important in the simplicity group. 

In the divided American datasets, from the perspective of different cities, it was 

discovered that that the livable_sqft and total_sqft features were considered as the top two 
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important to the GBR model in all the four groups. These two common features were 

replaced by other features such as num_bedrooms, stories, full_bathrooms, 

half_bathrooms, and year_built in the GA-GBR model. The abovementioned features are 

generally considered as important features in the house transaction market, however, the 

features selected by GA-GBR are more independent than those selected by the GBR. For 

instance, the livable_sqft and total_sqft features selected by GBR are highly connected to 

each other. As mentioned earlier, one of the important rules to generate an ensemble 

model is ‘as independent as possible’. This might be the reason that the GA-GBR models 

had achieved an improved predictive accuracy. 

From the perspective of different garage types, it was discovered that in the attached 

garage group, the Carport size and Full bathroom features were considered more 

important to the GA-GBR than the GBR. In the detached garage group, the Number of 

Bedrooms and Stories features were considered more important to the GA-GBR than the 

GBR. In the none garage group, the Full bathroom feature was considered more important 

to the GA-GBR than the GBR. Compare the attached garage group with the none garage 

group, the Carport size feature was considered more important by the garage owners, 

while it was surprising to see that the none garage owners paid more attention to the Full 

bathroom feature. 

In the divided UK datasets, from the perspective of different property types, it was 

discovered that the Town/City feature was considered as important to both the GBR and 

GA-GBR models in all the four groups, which can be concluded as a general feature in 

different building types. For the detached and semi-detached groups, the Town/City, index 

and District features were considered more important to the GA-GBR model than that to 

the GBR model. For the flats group, the year feature was selected as the most important 

one to the GA-GBR, which indicated that this type of building might have a close 

connection to the time-related factors. 

From the perspective of different PPD Categories, it was discovered that the location-

related features such as County, District and Town/City were important to the PPD related 

house transactions, in which the District feature was selected as the most important one 

to the GA-GBR in both groups. As for time-related features, while the year feature was 

considered as the most important one to the GBR in the Standard Price Paid group, the 
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month feature was considered as important to the GA-GBR in the Additional Price Paid 

group. 

From the testing results of the feature importance rankings in the divided datasets 

representing different perspectives, it was concluded by the author as follows: 

1. The top three important features selected by the GA-GBR model are closely 

connected to the corresponding represented perspectives. For instance, in the 

divided Chinese datasets, from the perspective of different building categories, 

the Elevator feature selected by the GA-GBR model is closely connected to the 

tower building category. From the perspective of different building structures, the 

LadderRatio feature selected by the GA-GBR model is closely connected to the 

steel-concrete composite building structure. From the perspective of different 

districts, the Longitude and Latitude features (the location related features) 

selected by the GA-GBR model is closely connected to the Xicheng district, 

which was the closest district to the city center and had the highest price in all the 

13 groups. From the perspective of different renovation conditions, the Bathroom 

and Followers features selected by the GA-GBR model are closely connected to 

the hardcover renovation condition and the simplicity renovation condition 

respectively. In the divided American datasets, from the perspective of different 

garage types, the Carport size feature was considered more important by the 

garage owners. 

2. The evolutionary feature selection engine in the GA-GBR model had changed the 

weights of the input features and increased the independence of individual 

features. For instance, in the divided American datasets, from the perspective of 

different cities, the Living area and Total area features selected by GBR are highly 

connected to each other. This correlated relationship has been minished in the GA-

GBR model, which increased the model diversity and therefore improved the 

predictive accuracy. 

3. In addition, it was discovered that time- related features are more important in the 

divided UK datasets, while it was surprising to see that the none garage owners 

paid more attention to the Full bathroom feature from the perspective of different 

garage types in the divided American datasets. 
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To sum up, the proposed GA-GBR model has not only improved the predictive accuracy 

of the traditional GBR, but also achieved improved model interpretation capability.  The 

intended purpose of the proposed GA-GBR model in Section 5.3 has been achieved and 

the superiority of the GA-GBR model has been proved. 

The housing prices are influenced by many different variables, some of them are objective 

factors such as number of rooms, building structure, size, age, stories and garages; the 

others are subjective factors that related to the economic, social and political indicators 

such as unemployment rate, Consumer Price Index (CPI), population, and gross domestic 

product (GDP). The objective factors are stationary, while features related to subjective 

factors are rather unstable or fluctuated. For instance, the DOM (active days on market) 

feature in the Chinese data set is influenced by the market demand that might go up or 

down based on the confidence of consumers. The national average house price fluctuates 

seasonally, but generally increases in the long-term period. As a time-series regression 

task, there are two strategies dealing with the subjective factors on machine learning 

based house price prediction. First, these subjective factors or time-dependent variables 

can be addressed by selecting representative data sets over a long period that the AVM 

can learn the patterns including the influence of the subjective factors which are unstable 

or fluctuated and further predict the house price today using the ‘learned knowledge’. 

That is one of the reasons why the collected data sets require to be explored and pre-

processed before the machine learning model training, making sure that the data sets are 

representative for this particular task. In this research, the time period of the Chinese data 

set ranges from 2010 to 2018, the American data set ranges from 1889 to 2017, and the 

UK data set ranges from 1995 to 2017.  

Second, for the data sets with a short time period, the percentage change of housing price 

caused by the time dependent parameters can be tackled with some time series models 

(i.e., VAR, ARIMA) or calculations for time difference error correction. For instance, 

Yan et al. (2007) used commercial housing sales price index as a basis for comparison, 

the time difference correlation analysis predicts that national commercial housing price 

would rise 6.88% in Q4-2006 and 6.64% in Q1-2007. Wang et al. (2019) combined the 

ARIMA (a well-known time series model) with deep learning for house price prediction, 

the experimental results showed that the proposed approach showed an advantage over a 
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SVR method and the predicted house price trend was basically consistent with the real 

data when dealing with short-term prediction. 

2) Validation of the IFC-based information exchange as required 

The proposed property sets (e.g. Pset_PV_Transaction, Pset_PV_Parcel, 

Pset_PV_Building and Pset_PV_Valuation) and properties (e.g. propertyRights, 

renovationCondition and communityAveragePrice) in the extended IFC schema were 

tested using three IFC-based Revit models from China, US and the UK. After which, the 

required value-relevant information was automatically extracted using the developed 

IFC-based information extraction algorithm, which indicated only the necessary 

information was extracted. This demonstrated the IFC-based information extraction was 

functional and reliable. As mentioned in Chapter 4, more information technologies are 

expected to be involved in the data collection, data exchange, and data processing 

processes. The proposed property sets and properties in the extended IFC schema not only 

fill a knowledge gap that considering design-related information for property valuation, 

but also could be used in 3D in an accurate and efficient manner. In the long term, the 

extended IFC schema can be further developed with more entities and property sets, 

which can be a valuable information enrichment for property valuation.  

The literature indicated the professionals are exploring the use of BIM for property 

valuation, but it is challenging since there are a large number of various types of 

information in the IFC-based BIM models. The proposed IFC-based information 

extraction algorithm helps property valuation professionals who lack of BIM knowledge 

and digital skills to acquire value-specific information from AEC projects automatically. 

In practise, the proposed IFC-based information exchange for property valuation enables 

effective and efficient human decision-making in selecting the design alternatives with 

the highest value to different stakeholders. Besides, this method can be easily adapted to 

support other automation tasks in the AEC industry, for instance, automated energy 

prediction, automated clash detection, and automated compliance checking. 

During the testing process, there are also some mismatched issues regarding the input 

feature names in the three testing datasets, which in turn increases the importance of using 
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the standardized data format such as the IFC format among the property valuation 

processes. For instance, the building category feature in the Chinese dataset is named as 

the property type in the UK dataset, the built year feature in the American dataset has the 

same meaning with the construction time feature in the Chinese dataset. According to 

Ventolo (2015), the data collection in the traditional building survey can come from more 

than 40 data sources: regional government officials, property managers, professional 

journals, financial institutions, building architects, contactors, engineers and so on. All 

market actors in property markets can create their own sets of raw data in the building 

lifecycle, or they can collect and process information from other information source 

suppliers. Different market actors use different descriptive ways to interpret information 

in different data formats, which means information exchange issues will inevitably 

happen. The IFC-based data interpretation and information extraction provided a 

standardized method for managing value-related information on trading cases.  

3) Validation of the proposed BIM-ML framework as a complete system 

The validation of the whole BIM-ML system was conducted through a main python script 

on the PyCharm platform, putting the IFC-based information extraction algorithm and the 

GA-GBR model together. The predictive error of the complete BIM-ML system tested 

using the three BIM models from China, US and the UK are 7.4%, 2.7% and 4.5% 

respectively, which complies with the international acceptable margin error of the 

predictive accuracy in the appraisal domain is between ± 0 and 10%. 

The literature indicated that the use of innovative information technology BIM and 

machine learning could be a revolution for data-driven applications in construction 

industry, but there is a significant gap in property valuation domain. In this research, this 

gap was filled by the development and validation of the proposed BIM-ML system. In 

practice, the real-time valuation results from the proposed BIM-ML system can be treated 

as constraints to optimize design, construction and operation strategies, which can be 

further developed as a decision-making tool for construction companies or property 

investors. 
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Based on the system development and the three validation tests, it can be concluded that 

the hypothesis is true, the IFC-based data interpretation and information extraction 

provided a standardized method for managing value-related information, the use of value-

related information existed in AEC projects was promoted for the valuation professionals, 

and the predictive accuracy of automated valuation model was significantly improved. 

8.2  Research Limitations 

There are some deficiencies concerning the data, the methodology and the system used 

in implementation and testing in this research. The value-related information was firstly 

achieved from the valuation reports of three real estate transaction companies and then 

translated into the three IFC-based BIM models. Ideally, the IFC model should be 

collected from a real estate company who has both the trading cases information and the 

related BIM models. In addition, the proposed IFC Property Valuation extension has not 

been verified the experts in the valuation domain, due to the limited time and resources. 

While the proposed GA-GBR has showed improved predictive accuracy and model 

interpretation capability, the evolutionary feature selection process has heavy computing 

cost. 

8.3  Future Work 

Although this research has achieved its main aims through the development and 

validation of the proposed BIM-ML system, a series of suggestions for future work are 

summarised as follows. 

1) The framework explored a way of using BIM as an information source for automated 

property valuation, in the future, more information systems could be integrated in this 

framework. For instance, the geographic information system (GIS) is a valuable 

information source for external environmental information.  
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2) Technology infusion of BIM, Machine Learning and other emerging digital 

technologies (IoT, digital twin systems, block chain and cloud computing) is worth 

exploring for property valuation and construction industry. 

3) To support a more comprehensive property valuation, the entities, property sets and 

properties in the IFC Property Valuation can be further developed. 

4) The proposed GA-GBR model used the integration of genetic algorithm and gradient 

boosting decision trees, in the future, more hybrid methods can be explored such as 

the integration of machine learning and deep learning models. While the GA-GBR 

model is tested with improved predictive accuracy using the evolutionary feature 

selection engine for tree-based models, the other optimization strategies such as 

decreasing the computing cost should be investigated. 

5) This research focused on improving the predictive accuracy and automation process 

of property valuation. As mentioned in the literature review, sustainable property 

valuation is another popular research trend, it is worth exploring how the green 

parameters contribute to the proposed GA-GBR model in the future. 
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Chapter 9. Conclusion  

To facilitate information exchange between AEC projects and property valuation and 

support automated property valuation, this thesis presented a BIM and Machine Learning 

integration framework for property valuation, which contains three main components: (1) 

an IFC extension for property valuation; (2) an IFC-based information extraction; and (3) 

an advanced automated valuation model (GA-GBR). Along with the developments of the 

three components in the proposed BIM-ML system, this research contributes as follows. 

Firstly, this research contributes to the knowledge development of an extended IFC 

schema for property valuation. Among 95 variables reviewed in the literature, 62 of them 

are identified as relevant to this research, which is further used for the definition of the 

IFC extension. The extended IFC schema includes 7 new property sets and 104 new 

properties. The seven proposed property sets are Pset_PV_Transaction, Pset_PV_Parcel, 

Pset_PV_Building, Pset_PV_CondominiumUnit, Pset_PV_Valuation, 

Pset_PV_MassValuation, and Pset_PV_Annex. Each of these property sets contains a 

number of specific properties which can be used for property valuation. The proposed 

property sets and properties in the extended IFC schema can serve as a valuable 

information source for property valuation in the future. After that, the required value-

specific design information is extracted automatically from an IFC-based BIM instance 

model using the developed information extraction algorithm.  

Secondly, a genetic algorithm optimized gradient boosting ensemble model (GA-GBR) 

is firstly applied to automated property valuation, with the aim at improving the predictive 

accuracy of current AVMs and exploring the implicit patterns between the input features 

and the target price. Based on the findings from literature, the innovative GA-GBR model 

design starts with testing 11 different types of AVMs including linear regression models, 

SVM, ANN and decision tree-based models, and discovered the traditional GBR model 

has the highest model prediction accuracy. After that, to make up the deficiency and 

improve the predictive accuracy of the traditional GBR model, whilst considering the 

exploration of the relationship between the input features and the target price, the genetic 

approach for optimizing boosting ensemble is proposed. The proposed GA-GBR model 

was firstly validated on three different datasets from China, US, and the UK, comparing 
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predictive accuracy with the other 11 AVMs using five typical regression accuracy 

metrics (MAE, MAPE, MSE, RMSE, and 𝑅2), during which the GA-GBR model showed 

the highest predictive accuracy. Moreover, the proposed GA-GBR model was validated 

on 51 divided datasets representing 8 different perspectives including different building 

categories, building structures, renovation conditions, districts, cities, garages, property 

types, and PPD categories, during which the model interpretability was explored to 

understand the optimal input feature subsets, the individual feature importance to the GA-

GBR model, and the patterns representing property transaction activities in the real life. 

Lastly, as the volume of data in BIM is rising exponentially, data mining concepts and 

tools integrated BIM are expected to bring added value and produce revolutionary 

influence on industrial practices, but it exists a significant gap in the property valuation 

field. In this research a BIM-ML integration system was designed and implemented in 

property valuation, which filled that gap. 

Several main findings have been identified in this research, which are highlighted as 

follows. 

This research not only improved the predictive accuracy of current AVMs, but also 

achieved a high generalization capability for property valuation.  

• From the validation results of the proposed GA-GBR model on three different 

datasets from China, US, and the UK, it was surprising that the GA-GBR model 

showed the highest predictive accuracy of the 12 AVMs in terms of all the five typical 

regression accuracy metrics (MAE, MAPE, MSE, RMSE, and 𝑅2) on all the three 

test datasets.  

• In terms of coefficient of determination (𝑅2), the model accuracy of the GA-GBR 

had an advantage of 1.3% over the traditional GBR model in the Chinese dataset, an 

advantage of 3.57% in the American dataset, and an advantage of 2.4% in the UK 

dataset.  

• Moreover, on the divided datasets, it was discovered that the predicted price by the 

GA-GBR model was closer to the actual price than the predicted price by the GBR 

model, with a smaller MAPE in all the divided groups.  
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• Compared with a similar research using the same Chinese dataset conducted by 

Quang et al. (2020), the extreme gradient boosting (XGBoost), which is the industrial 

application of the GBR model, had the predictive error at 0.1660 on the test set in 

terms of RMSLE. Whereas, in this research the proposed GA-GBR model achieved 

smaller predictive error at 0.1626 on the test set (2% improvement), which is 

significantly better than the results of the XGBoost in that paper. 

This research contributes to the knowledge mining from datasets and recognizing 

the non-linear relationships between the input features and the target price, which 

offers insights into the reasons for different market factors and property transaction 

activities in the real life. 

• Real estate transactions in Beijing happen more frequently, since the Construction 

time, Trade time, and Follower features are more important to generate a higher 

predictive performance model. In the American dataset customers seem to focus 

more on the number of bedrooms, whereas in the UK dataset time-related factors 

such as the Month feature is more important. It was surprising to see that the none 

garage owners paid more attention to the Full bathroom feature from the perspective 

of different garage types in the divided American datasets. 

• The top N features contributed more than 70% feature importance to the decision tree 

– based structure of Machine Learning (N ≤ 10).  

• The top three important features selected by the GA-GBR model are closely 

connected to the corresponding represented perspectives.  

• The evolutionary feature selection engine in the GA-GBR model had changed the 

weights of the input features and increased the independence of individual features, 

which increased the model diversity and therefore improved the predictive accuracy. 

The proposed BIM-ML system, provided a valuable information source for 

property valuation, eased the use of BIM knowledge and skills for the valuation 

professionals, enhanced the automated valuation process, and helped understand 

the implicit patterns behind property valuation. 
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Appendix A: Information Requirements for 

Property Valuation  

Table A- 1:   Holistic data interpretation of value-relevant attributes for property 

valuation 

Type of 

Information 

Subtype  Performance indicator and 

attribute 

A B C D 

Environmental 

Quality 

Local Environmental Impact Climate Change     

Pollution 

Noise from transport service 

and building service 

equipment, water pollution, 

land contamination, 

electromagnetic pollution 

   

 

 

Land Use 

Soil Characteristics     

Layout, size, inclination, 

topography 

   
 

Sustainable Resource 

Rainwater use     

Green area     

Sunlight/Solar potential     

Waste Water Volume Waste water disposal     

Social and 

Economic 

Quality 

 

Commercial Viability 

Policy and economic situation     

Demographic structure and 

development 

   
 

Purchasing power, letting 

prospects, expected rates of 

return 

   

 

Rental growth potential, 

inflation expectations, rental 

payments, other payments 
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Payments for construction, 

acquisition, disposal, payments 

for operating costs, marketing / 

letting fee, payments for 

revitalization 

  

 

 

 

Number of tenants, Duration 

and structure of rental 

contracts 

   

 

Vacancy rate, tenant 

fluctuation 

   
 

Safety and Security 

Location regrading natural 

hazards (risk of floods, 

landslides, collapse) 

   

 

Lifecycle Cost Water demand and price, 

energy demand and price  

   
 

 

 

 

 

 

 

 

Functional 

Quality 

Indoor Air Quality Sufficient natural air flow, low 

emitting material 

   
 

Acoustic Comfort Noise reduction     

Visual Comfort Good scene view, sufficient 

natural light 

   
 

Thermal Comfort Hygrothermal rating     

Flexibility and Adaptability 

Flexibility of use (residential, 

office, medical practice), 

adaptability to users 

   

 

Wheelchair accessibility     

Wheelchair accessible 

washrooms 

   
 

Usability of outside space     

Elevators (for all stories or 

not) 

   
 

Wide doors and wide halls     

Floor plan, storey height     
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Brand Value 

Green certification     

Famous designer     

Design/Aesthetic Quality Architectural quality, Holistic 

monument 

   
 

Process  

Quality 

Sustainability Aspects in 

Tender Phase 

Ecological or recycled 

construction materials, risks 

and impacts for the local 

environment and residence 

   

 

Documentation for Sustainable 

Management  

Documented maintenance and 

servicing activities 

   
 

Urban Planning and Design 

Procedure 

Public accessibility, quality of 

layout 

   
 

Construction Process/Site 

Quality control during 

construction (air-tightness, 

thermography, sound 

insulation) 

   

 

FM-compliant Planning Maintenance management     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basic Information 

Structure, age, size, 

construction type, main 

construction materials 

   

 

Availability of green 

roofs/green facades 

   
 

Renovation condition, 

construction quality 

   
 

Building equipment and 

appliances 

   
 

Sound Insulation Noise Protection Techniques 

and Components 

   
 

Quality of the Building 

Envelope 

Heat insulation     

Moisture proofing of the 

thermal building envelope 
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Technical 

Quality 

 

 

 

 

 

 

 

 

 

 

 

Ease of Cleaning Building 

Components 

Ease of conducing cleaning, 

building services and 

maintenance works 

   

 

Recyclability and Energy 

efficiency 

Ease of recovery and 

recycling, efficiency of heating 

ventilation, solar radiation, 

rainwater use 

   

 

Immission Control External and internal 

accessibility 

   
 

Infrastructure Fitness     

Quality of Indoor and Outdoor 

Spaces 

Balcony, storage space    
 

Safety and Security 

Clear arrange routes for escape     

Protection against burglary     

Fire Protection     

Quality of sanitary and 

electronic fixtures 

   
 

Structural Safety     

Durability of building 

components 

   
 

Site 

 Quality 

Local Environment and Policy Visual context, building 

permission and planning 

regulations 

   

 

Transport Access Public transport, parking     

Amenities Area and distance to facilities 

(shopping, social and medical) 
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Figure A- 1:   The VM_ValuationUnit and related classes in the Valuation Information 

Model (LADM_VM) from (Kara et al. 2018) 
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Appendix B: IFC Extension and IFC-based 

Information Extraction 

Table B- 1:   The proposed property sets and properties to be added in the IfcSpace and 

IfcZone entities for property valuation 

Property Set  Property Name Property Type Data Type 

Pset_PV_Transaction transactionID IfcPropertySingleValue IfcIdentifier 

 
registrationDate IfcPropertySingleValue IfcDateTime 

 
activeDays IfcPropertySingleValue IfcInteger 

 
transferDate IfcPropertySingleValue IfcDateTime 

 
paidCategory IfcPropertyEnumerated

Value 

IfcLable 

 
easement IfcPropertyEnumerated

Value 

IfcLable 

 
mortgage IfcPropertySingleValue IfcBoolean 

 
rentalAnnotation IfcPropertySingleValue IfcBoolean 

 
noOfFollowers IfcPropertySingleValue IfcInteger 

 
communityAverag

ePrice 

IfcPropertySingleValue IfcReal 

 
propertyRights IfcPropertyEnumerated

Value 

IfcLable 

Pset_PV_Parcel propertyNumber IfcPropertySingleValue IfcInteger 

 
parcelNumber IfcPropertySingleValue IfcInteger 

 
area IfcPropertySingleValue IfcAreaMeasure 

 
ID IfcPropertySingleValue IfcIdentifier 

 
parcelUseType IfcPropertyEnumerated

Value 

IfcLable 

 
parcelGeometry IfcPropertySingleValue IfcBoolean 
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Property Set  Property Name Property Type Data Type 

 
parcelFrontage IfcPropertySingleValue IfcReal 

 
parcelLocation IfcPropertyEnumerated

Value 

IfcLable 

 
city IfcPropertyEnumerated

Value 

IfcLable 

 
district IfcPropertyEnumerated

Value 

IfcLable 

 
town IfcPropertyEnumerated

Value 

IfcLable 

 
county IfcPropertyEnumerated

Value 

IfcLable 

 
longitude IfcPropertyEnumerated

Value 

IfcLable 

 
latitude IfcPropertyEnumerated

Value 

IfcLable 

Pset_PV_Building buildingID IfcPropertySingleValue IfcIdentifier 

 
totalArea IfcPropertySingleValue IfcAreaMeasure 

 
livingArea IfcPropertySingleValue IfcAreaMeasure 

 
garageArea IfcPropertySingleValue IfcAreaMeasure 

 
carportArea IfcPropertySingleValue IfcAreaMeasure 

 
builtDate IfcPropertySingleValue IfcDateTime 

 
noOfBedrooms IfcPropertySingleValue IfcInteger 

 
noOfDrawingRoo

ms 

IfcPropertySingleValue IfcInteger 

 
noOfGarages IfcPropertySingleValue IfcInteger 

 
noOfBathrooms IfcPropertySingleValue IfcInteger 

 
noOfKitchens IfcPropertySingleValue IfcInteger 

 
bathroomType IfcPropertyEnumerated

Value 

IfcLable 
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Property Set  Property Name Property Type Data Type 

 
garageType IfcPropertyEnumerated

Value 

IfcLable 

 
buildingCategory IfcPropertyEnumerated

Value 

IfcLable 

 
storey IfcPropertySingleValue IfcInteger 

 
height IfcPropertySingleValue IfcReal 

 
volume IfcPropertySingleValue IfcVolumeMeas

ure 

 
noOfFloors IfcPropertySingleValue IfcInteger 

 
constructionType IfcPropertyEnumerated

Value 

IfcLable 

 
qualityType IfcPropertyEnumerated

Value 

IfcLable 

 
renovationConditio

n 

IfcPropertyEnumerated

Value 

IfcLable 

 
constructionDate IfcPropertySingleValue IfcDateTime 

 
heatingCooling IfcPropertySingleValue IfcBoolean 

 
centralCooling IfcPropertySingleValue IfcBoolean 

 
centralHeating IfcPropertySingleValue IfcBoolean 

 
structure IfcPropertyEnumerated

Value 

IfcLable 

 
elevator IfcPropertySingleValue IfcInteger 

 
ladderRatio IfcPropertySingleValue IfcReal 

 
pool IfcPropertySingleValue IfcBoolean 

 
fireplace IfcPropertySingleValue IfcBoolean 

 
balcony IfcPropertySingleValue IfcBoolean 

 
energyEfficiency IfcPropertyEnumerated

Value 

IfcLable 
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Property Set  Property Name Property Type Data Type 

 
indoorSoundLevel IfcPropertyEnumerated

Value 

IfcLable 

 
indoorDaylight IfcPropertySingleValue IfcRatioMeasur

e 

Pset_PV_Condominium

Unit 

condominiumUnitI

D 

IfcPropertySingleValue IfcIdentifier 

 
totalArea IfcPropertySingleValue IfcAreaMeasure 

 
livingArea IfcPropertySingleValue IfcAreaMeasure 

 
garageArea IfcPropertySingleValue IfcAreaMeasure 

 
carportArea IfcPropertySingleValue IfcAreaMeasure 

 
builtDate IfcPropertySingleValue IfcDateTime 

 
noOfBedrooms IfcPropertySingleValue IfcInteger 

 
noOfDrawingRoo

ms 

IfcPropertySingleValue IfcInteger 

 
noOfGarages IfcPropertySingleValue IfcInteger 

 
noOfBathrooms IfcPropertySingleValue IfcInteger 

 
noOfKitchens IfcPropertySingleValue IfcInteger 

 
bathroomType IfcPropertyEnumerated

Value 

IfcLable 

 
garageType IfcPropertyEnumerated

Value 

IfcLable 

 
condominiumUnit

Category 

IfcPropertyEnumerated

Value 

IfcLable 

 
storey IfcPropertySingleValue IfcInteger 

 
height IfcPropertySingleValue IfcReal 

 
volume IfcPropertySingleValue IfcVolumeMeas

ure 

 
noOfFloors IfcPropertySingleValue IfcInteger 
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Property Set  Property Name Property Type Data Type 

 
constructionType IfcPropertyEnumerated

Value 

IfcLable 

 
qualityType IfcPropertyEnumerated

Value 

IfcLable 

 
renovationConditio

n 

IfcPropertyEnumerated

Value 

IfcLable 

 
constructionDate IfcPropertySingleValue IfcDateTime 

 
heatingCooling IfcPropertySingleValue IfcBoolean 

 
centralCooling IfcPropertySingleValue IfcBoolean 

 
centralHeating IfcPropertySingleValue IfcBoolean 

 
structure IfcPropertyEnumerated

Value 

IfcLable 

 
elevator IfcPropertySingleValue IfcInteger 

 
ladderRatio IfcPropertySingleValue IfcReal 

 
pool IfcPropertySingleValue IfcBoolean 

 
fireplace IfcPropertySingleValue IfcBoolean 

 
balcony IfcPropertySingleValue IfcBoolean 

 
energyEfficiency IfcPropertyEnumerated

Value 

IfcLable 

 
indoorSoundLevel IfcPropertyEnumerated

Value 

IfcLable 

 
indoorDaylight IfcPropertySingleValue IfcRatioMeasur

e 

Pset_PV_Valuation valuationID IfcPropertySingleValue IfcIdentifier 

 
valuationPurpose IfcPropertyEnumerated

Value 

IfcLable 

 
valuationDate IfcPropertySingleValue IfcDateTime 

 
valuationMethod IfcPropertyEnumerated

Value 

IfcLable 
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Property Set  Property Name Property Type Data Type 

 
Property value IfcPropertySingleValue IfcReal 

Pset_PV_MassValuatio

n 

valuationID IfcPropertySingleValue IfcIdentifier 

 
valuationPurpose IfcPropertyEnumerated

Value 

IfcLable 

 
valuationDate IfcPropertySingleValue IfcDateTime 

 algorithm IfcPropertyEnumerated

Value 

IfcLable 

 Property value IfcPropertySingleValue IfcReal 

Pset_PV_Annex type IfcPropertyEnumerated

Value 

IfcLable 

 
sID IfcPropertySingleValue IfcIdentifier 

 

Before developing an IFC-based information extraction algorithm, it is necessary to 

understand the types of information elements and their relationships between IfcObject 

and IfcProperty in an IFC-based instance model. Referring to IFC4-ADD2 schema, 

IfcObject and IfcProperty are linked directly and indirectly. The relationships between 

them are displayed in Figure B-1 and Figure B-2 (ISO 2018). On the one hand, they are 

directly linked through IfcRelDefinesByProperties (Figure B-1) – an objectified 

relationship that defines the relation between objects and property sets. In an IFC instance 

model, an instance of a property set (IfcPropertySetDefinition) is directly linked to an 

instance of a building object (IfcObjectDefinition) by IfcRelDefinesByProperties. For 

example, a specific instance of IfcWindow can be associated with a specific instance of 

IfcPropertySet through IfcRelDefinesByProperties. 
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Figure B- 1: Direct relationships between IfcObject and IfcProperty in IFC4-ADD2 

On the other hand, building objects and their properties are indirectly linked through 

IfcRelDefinesByType (Figure B-2). IfcRelDefinesByType defines the relationship between 

an object type and object occurrences which can leverage a one-to-N relationship. The 

one-to-N relationship can link one or more objects to one object type, which means these 

objects are sharing the same object type and related property sets (ISO 2018). For 

instance, multiple instances of IfcSlab can be related to an instance of IfcSlabType through 

IfcRelDefinesByType, and all these instances of IfcSlab share the same property sets 

assigned to the specific instance of IfcSlabType. 
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Figure B- 2: Indirect relationships between IfcObject and IfcProperty in IFC4-ADD2 

 

 

 



   

226 

 

 

Figure B- 3: Flowchart of the developed IFC-based information extraction algorithm 
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The extraction based on direct relationships was displayed in Figure B-4 (a). 

 First, an IfcRelDefinesByProperties instance with the ID number of #563 was 

extracted. Subsequently, the ID numbers of an IfcWall instance (#215) and an 

IfcPropertySet instance (#558) were extracted from IfcRelDefinesByProperties 

instance (#563).  

Second, an IfcWall instance (#215) and an IfcPropertySet instance (#558) were found 

by the algorithm. Subsequently, the ID number of the IfcProperty instance (#557) was 

extracted from the IfcPropertySet instance (#558).  

Third, an IfcProperty instance (#557) was found by the algorithm. After that, the object 

name (Basic Wall:300_22_wand_HSBwand_12-140-12:7326535), property name 

(FireRating) and property nominal value (IfcLabel('60')) were extracted with removed 

duplicated data from the IfcWall instance (#215) and the IfcProperty instance (#557). 

The extraction based on indirect relationships is displayed in Figure B-3 (b).  

First, an IfcRelDefinesByType instance with the ID number of #442681 was extracted. 

Subsequently, the ID numbers of an IfcWall instance (#215) and an IfcWallType 

instance (#551) were extracted from instance (#442681).  

Second, an IfcWall instance (#215) and an IfcWallType instance (#551) were found by 

the algorithm. Subsequently, the ID number of the IfcPropertySet instance (#558) was 

extracted from the IfcPropertySet instance (#551).  

Third, an IfcPropertySet instance (#558) was found by the algorithm. After that, the 

object name (Basic Wall:300_22_wand_HSBwand_12-140-12:7326535), object type 

(Basic Wall:300_22_wand_HSBwand_12-140-12:7011920), property name 

(LoadBearing) and property nominal value (IfcBoolean(.F.)) were extracted with 

removed duplicated data from the IfcWall instance (#215) and the IfcProperty instance 

(#554). 
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Figure B- 4: An example for using the IFC-based information extraction algorithm 
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Appendix C:  Feature Importance Ranking 

Calculated by Decision Tree – based Embedded 

Methods 

 

Figure C- 1:   Feature importance ranking calculated by GBDT in the Chinese dataset 
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Figure C- 2:   Feature importance ranking calculated by LightGBM in the Chinese 

dataset 

 

Figure C- 3:   Feature importance ranking calculated by XGBoost in the Chinese dataset 
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Figure C- 4:   Feature importance ranking calculated by Random Forest in the Chinese 

dataset 

 

Figure C- 5:   Feature importance ranking calculated by GBDT in the American dataset 
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Figure C- 6:   Feature importance ranking calculated by LightGBM in the American 

dataset 

 

Figure C- 7:   Feature importance ranking calculated by XGBoost in the American 

dataset 
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Figure C- 8:   Feature importance ranking calculated by Random Forest in the American 

dataset 
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Appendix D:  Feature Importance Ranking 

Calculated by GBR and GA-GBR Model 

 

 

Figure D- 1:   Feature importance ranking calculated by GBR model in the Chinese 

dataset 



   

235 

 

 

Figure D- 2:   Feature importance ranking calculated by GBR model in the American 

dataset 

 

 

Figure D- 3:   Feature importance ranking calculated by GBR model in UK dataset 
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Figure D- 4:   Feature importance ranking calculated by GA-GBR model in the Chinese 

dataset 

 

 

Figure D- 5:   Feature importance ranking calculated by GA-GBR model in UK dataset 
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Figure D- 6:   Feature importance ranking calculated by GA-GBR model in the 

American dataset. 
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Appendix E:  Delivered Feedback Form from 

Industry - Validation of the Comprehensive 

BIM-ML Integration Framework 
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Figure E- 1:   The feedback document of the comprehensive BIM-ML framework from 

the HXZH commercial real estate appraisal Co., Ltd. 


