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ABSTRACT cyber-attacks. More specifically, coordinated False Data Injection

Smart Grid (SG) networks, as a part of critical national infrastruc-
ture, are vulnerable to sophisticated cyber-physical attacks. Specifi-
cally, a coordinated false data injection attack aiming to generate
fake transient measurements in the SG’s Automatic Generation
Control (AGC), can cause unwarranted actions and blackouts in the
worst scenario. Unlike other works that overlook contextual corre-
lations, this work utilizes prior information and a temporal model
to detect cyber-attacks. Specifically, we depart from the traditional
deep learning anomaly detection, driven by black-box detection;
instead, we envision an approach based on physics-informed hybrid
deep learning detection. Our approach utilizes the combination of
process control-based variational autoencoder, prior knowledge
of physics, and long short-term memory for a false data injec-
tion attack. To the best of our knowledge, our method is the first
contextual-based anomaly detection that incorporates process con-
trol prior information against complex attacks in the smart grid.
The proposed approach is evaluated on the modified high-class
PowerWorld simulated dataset based on the IEEE 37-bus model.
Our experiments observe the lowest reconstruction error and offer
96.9% accuracy, demonstrating superiority over other baselines.
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1 INTRODUCTION

Smart grid (SG) networks orchestrate advanced communication,
sensing, monitoring, and control technologies. With these inte-
grations come added vulnerability to emerging threats knowns as
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(FDI) attacks have emerged as an important concern [4]. Besides
random load disturbances, the adversary can simultaneously falsify
power system measurements that collate data via suitable sensors to
mislead control operations maliciously. Compared with traditional
FDI attacks, this simultaneous attack can closely follow the behav-
ior of the physical system to vitiate the detection mechanism. Worse
still, the attackers can prevent operators from successfully deter-
mining the cause of an anomaly, potentially inducing unwarranted
actions to cause a power outage in the worst scenario. Consequently,
cyber-security has become a significant concern, necessitating the
development of holistic detection techniques to counter the threats
encountered by modern power grid networks.

The prevalent detection approaches for FDI attacks are broadly
classified into model-based and data-driven approaches. Model-
based methods require a deep understanding of the underlying
power-system modeling and suffer scalability issues [2]. The data-
driven methods require historical data and a training procedure;
datasets can be generated through simulations, and there are avail-
able historical datasets, which is the motivation to use this approach
in this work. However, deriving complex physical dynamics based
on only data is still beyond the scope of Machine Learning (ML),
and Deep Learning (DL) approaches.

While there have been efforts to incorporate temporal corre-
lations in attack detection [1, 3], none of these efforts consider
the physics-informed and process control-based prior knowledge
between input and output variables and control invariants: It is
particularly crucial for attacks where the adversaries can imitate
the signatures of natural load disturbance in the power grid. For
example, on a power system dataset with only point anomalies to
reflect load disturbance, a deep learning model may learn that such
anomaly is associated with a particular load disturbance. While
this may be a valid correlation, the crux, rather, is that it does not
reflect the true effect between input and output and will lead to
incorrect predictions on test data that include more stealthy attack
instances with varying impacts on the control processes of the SG.
Therefore, much of what is known about contextual detection in
power grids is still anecdotal.

Contributions. Motivated by the aforementioned challenges,
we propose a hybrid approach coupling data-driven deep learn-
ing versatility and physics-informed prior information for power
grid networks. More specifically, we need to answer the primary
research question of this work: How can deep anomaly detection be
utilized to augment physics-informed attributes to reflect the temporal
correlations in the data-driven approach for contextual detection in
power systems?



Figure 1: A three-area 37-bus power grid

In this sense, we utilize the prior information based on the ob-
served data and auxiliary elements in the Automatic Generation
Control (AGC) of SG to detect coordinated FDI attacks. To this end,
prior knowledge can augment the training data containing pro-
cess control and correlational relationships between certain input
variables and invariants. In so doing, we decompose the informa-
tion into a data-driven term such that the process control-based
knowledge only compliments the information that the data-driven
approach cannot reflect.

Going beyond, we aim to introduce a deep learning-based context-
aware detection framework that augments physics-informed at-
tributes driven by the deep learning method. As such, our approach
enforces hybrid properties to ensure interpretability and general-
ization in conjunction with minimizing the bottleneck of black-box
detection in power systems. We use the Process Control Variational
Autoencoder (VAE) with a context sub-network and Long-short
Term Memory (LSTM), which we call PC-VAE-LSTM, to detect
cyber-attacks conditioned on context. To evaluate our approach,
we use the synthetic datasets from the high-class PowerWorld simu-
lator based on the IEEE 37-bus model. Beyond improving detection
accuracy, our approach produces fewer false positives and higher
precision, recall, and F1 scores than the other models.

2 PHYSICS-INFORMED CONTEXTUAL
DETECTION

This section presents the AGC and attack model details. Further-
more, we provide the workflow of the detection scheme, seeking
to reflect the temporal correlation with physics-informed prior
information.

2.1 System and Attack Model

System Model. We consider a standard electric power AGC system,
where the system’s function is to maintain the system frequency
at its nominal value, e.g., 60 Hz in North America, and to regulate
the net scheduled value of power flow across different Balancing
Authorities (BAs) [4]. The AGC controller computes the Area Con-
trol Error (ACE), an integral part of the AGC algorithm, using these
measurements after receiving them over a communication network.
For the i’h area, ACE; = a; - P, + b; - f;, where Pg,; and f; are
the it" area’s power export and frequency deviation of the grid,
whereas a; and b; are the constants. The ACE values are sent to the
generators to adjust the primary control loop set-points, and the
process is repeated every 2-4 seconds, also referred to as the AGC
cycle. Figure 1 [6] illustrates a three-area grid with 37 buses, where
the tie-lines are represented by dotted lines.

Attack Model. We consider a coordinated attack model in the
AGC system, introducing multi-staged stealthy FDI attacks with
several coordinated iterations in different areas of the AGC system.
The adversary mounts a multi-staged attack starting with 20 cycles
of a scale attack on a tie-line for a minimum time of seconds. Si-
multaneously, a ramp attack on tie-line 2-3 is executed, whereas a
random attack is followed on the frequency in area 3. The random
attack on the frequency of Area 3 is coordinated with the scale and
ramp attack; it is to compensate for the deviation of the sudden fre-
quency change to ensure that the frequency signal, ACE value, and
their corresponding rate of change must be within the acceptable
range.

2.2 Workflow of Detection Scheme

Network Architecture. Our approach uses CP-VAE-LSTM, a fairly
simple network structure, and unlabeled training requirements,
with a context subnetwork to explicitly incorporate physics-informed
prior information concerning the AGC mechanism. The context
subnetwork acts as a variant of process-specific control logic to
tune the weight added in the VAE during the output divergence as
feedback during model training. To enrich this model with tempo-
ral correlations, we use the LSTM encoder-decoder. According to
the observations, the ACE data of control areas have specific pat-
terns based on the physical configurations of the AGC system. Any
manipulations will disrupt these patterns. Therefore, a Recurrent
Neural Network (RNN) variant, called LSTM, is used to predict sens-
ing time-series data accurately and detect malicious anomalies. The
framework takes initial input from sensor measurements, including
voltage, frequency, tie-line, and power flow from the AGC time
series PowerWorld generated dataset. The anomaly predictions
are filtered via the contextual subnetwork and the LSTM-based
encoders. The detection approach proceeds in two steps.

In this first step, the model uses the reconstruction error to detect
anomalies in data. During the inference, it takes sensor and process
control measurements, including anomalies, and returns the cor-
responding latent variable X = (x1, x2, ., x;) as outputs. Using the
output, it tries to calculate reconstruction. As such, for anomalies,
the reconstruction error is higher than the normal data. Since it
uses the reconstruction error as an anomaly score, a high recon-
struction performance is necessary to prevent false load deviation
predictions concerning what is normal or abnormal.

Prior Information. The second step is crucial to augment prior
information in the context subnetwork and convert unsupervised
training mode into semi-supervised training mode. The motivation
behind this is that we encode some additional information into the
model if there is knowledge of certain links. If, for example, we
know that one variable is dependent on another, we can compute
that variable in a certain way that makes sense concerning the de-
pendent variables. We modify the training approach by introducing
the prior information context subnetwork so that the output of
the subnetwork and LSTM encoder-decoder is obtained as a single
representation ‘Z’.

The variables have associated scores inspired by the physics-
informed process-based metrics. For instance, the frequency must
not exceed 1Hz during a 15-second window, and the ACE signal
must not exceed +0.05 p.u in potential violation strength variables.
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Figure 2: Predicted frequency deviation

We correlate such metrics and use the historical values of ACE,
tie-lines, and power flow measurements as an input for contextual
analysis. The contextual attributes such as line tripping data, and
load change profile in conjunction with date/time are additionally
given as vectors to the context sub-network. The correlations of
loads can reflect this dependency at different times, which also
implies the correlations on states and measurements.

3 EVALUATION

Dataset. We conduct PowerWorld simulations based on the three-
area IEEE 37-bus model, an industry-class simulator. For reference
and reasonable load profile, we use historical load profiles of NY-ISO
[5] to modify the dataset. The states are composed of the individ-
ual buses’ frequency, voltage, power flow, tie-line measurements,
and ACE values. Furthermore, each generator is equipped with 4
second AGC cycle length. We manually tune the measurements in
a coordinated way to simulate load fluctuations in multiple areas
of the AGC system without violating any predefined rules for the
standard power system scenarios; however, the modification can
be anomalous under given conditions based on prior information.
Exploiting vulnerabilities and mounting actual attacks is not the
scope of this work.

Contextual Detection. We add feeding features into a PC-VAE
and perform temporal modeling with LSTM encoders. We trained
our model in two settings: with and without prior information con-
text. The "without prior information" setting contains no additional
physics-informed metrics and contextual information to identify
to what extent the model degrades without the additional informa-
tion. The "with prior information” setting is representative of the
information about the control process of AGC, which includes the
physics-based system metrics and other attributes relevant to the
power system. We then compare our approach with several other
baselines, including AE, VAE, and VAE-LSTM. True positives (TP),
true Negatives (TN), False Negatives (FN), and False Positives (FP)
are used for performance results. These four results are computed
for the Accuracy, Precision, Recall, and F1 scores.

Results. Table 1 and Figure 2 show the performance of our ap-
proach in terms of given evaluation metrics and load deviation
prediction in AGC, respectively. The algorithm successfully recon-
structs the frequency deviation based on prior information and
closely follows the expected deviation in normal settings. PC-VAE-
LSMT is superior compared with their respective baselines. Overall,
AE and VAE have relatively poor performance; these algorithms do
not exploit the temporal information nor leverage the prior infor-
mation between the variable and the control invariants. Therefore,
it justifies the advantage of utilizing LSTM, which provides better

Table 1: Results and Comparison

Method Acc. Prec. | Rec. F1 Recon.
error
AE 78.3% | 76.1% | 74.2% | 75.1% | 0.09
VAE 84.2% | 82.9% | 79.2% | 81.0% | 0.05
VAE-LSTM 88.4% | 86.5% | 85.6% | 86.0% | 0.03

(without prior)
PC-VAE-LSTM | 96.9% | 95.3% | 93.4% | 94.3% | 0.00
(contextual
with prior)

Acc.: Accuracy; Prec.: Precision; Rec.: Recall

features for temporal correlation. However, removing prior infor-
mation from our approach observed drastic performance degrada-
tion for contextual anomaly detection. We observed slightly better
performance for iterative coordinated FDI attacks; the flip side is
significantly higher latency in anomaly detection. Unsurprisingly,
PC-VAE-LSTM performs significantly better with 96.9% accuracy,
95.3% precision, 93.4% recall, and 94.3% F1 score. Moreover, the
reconstruction loss of our approach also outperforms other algo-
rithms. We note that reducing false positives and recall performance
can be improved further by optimizing some factors, for exam-
ple, choosing the better attack threshold and incorporating attack
scenario-specific control invariants and better prior information
into the model.

4 CONCLUSION AND FUTURE WORK

We proposed a context-based anomaly detection approach based on

hybrid deep learning for power systems. Unlike previous work that

overlooked underlying prior information and control invariant cor-
relation, this paper presented a new physics-informed augmentation-
based approach that exploits temporal and contextual correlation

to detect coordinated FDI attacks in power systems. We observe

that our proposed approach is superior to other baselines; for ex-
ample, PC-VAE-LSTM with prior contextual information achieved

96.9% accuracy, 95.3% precision, 93.4% recall, and 94.3% F1 score.
Moreover, the reconstruction loss of our approach also outperforms

other algorithms. For future work, we plan to build on the cur-
rent work by utilizing more prior information, including sensor

measurement and network packets in a hybrid neural network, to

further enhance contextual detection in power systems.
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